Electrical Sector Solutions

Est•N

Powering Business Worldwide

Volume 2-Commercial Distribution

Tab 1-Switching Devices . V2-T1-1

Tab 2-Transformers
V2-T2-1
Tab 3-Panelboards and Lighting Control V2-T3-1
Tab 4-Switchboards . V2-T4-1
Tab 5-Transfer Switches . V2-T5-1

Tab 6-Low Voltage Busway . V2-T6-1
Appendix 1-Eaton Terms \& Conditions V2-A1-1
Appendix 2-Catalog Parent Number Index V2-A2-1
Appendix 3-Alphabetical Product Index V2-A3-1

Dimensions, Weights and Ratings

Dimensions, weights and ratings given in this catalog are approximate and should not be used for construction purposes. Drawings containing exact dimensions are available upon request. All listed product specifications and ratings are subject to change without notice. Photographs are representative of production units.

Terms and Conditions

All prices and discounts are subject to change without notice. When price changes occur, they are published in Eaton's Price and Availability Digest (PAD). All orders accepted by Eaton's Electrical Sector are subject to the general terms and conditions as set forth in Appendix 1-Eaton Terms \& Conditions.

Technical and Descriptive Publications

This catalog contains brief technical data for proper selection of products. Further information is available in the form of technical information publications and illustrated brochures. If additional product information is required, contact your local Eaton Products Distributor, call 1-800-525-2000 or visit our website at www.eaton.com.

Compliance with Nuclear Regulation 10 CFR 21

Eaton products are sold as commercial grade products not intended for application in facilities or activities licensed by the United States Nuclear Regulatory Commission for atomic purposes, under 10 CFR 21. Further certification will be required for use of these products in a safety-related application in any nuclear facility licensed by the U.S. Nuclear Regulatory Commission.

WARNING

The installation and use of Eaton products should be in accordance with the provisions of the U.S. National Electrical Code ${ }^{\circledR}$ and/or other local codes or industry standards that are pertinent to the particular end use. Installation or use not in accordance with these codes and standards could be hazardous to personnel and/or equipment.

[^0]Powering Business Worldwide

Eaton is a global leader in power distribution, power quality, control and automation, and monitoring products.

At Eaton, we believe a reliable, efficient and safe power system is the foundation of every successful enterprise. Through innovative technologies, cutting-edge products and our highly skilled services team, we empower businesses around the world to achieve a powerful advantage.
In addition, Eaton is committed to creating and maintaining powerful customer relationships built on a foundation of excellence. From the products we manufacture to our dedicated customer service and support, we know what's important to you.

Solutions

Eaton takes the complexity out of power systems management with a holistic and strategic approach, leveraging our industry-leading technology, solutions and services. We focus on the following three areas in all we do:

- Reliability-maintain the appropriate level of power continuity without disruption or unexpected downtime
- Efficiency-minimize energy usage, operating costs, equipment footprint and environmental impact
- Safety-identify and mitigate electrical hazards to protect what you value most

Using the Eaton Catalog Library

As we grow, it becomes increasingly difficult to include all products in one or two comprehensive catalogs. Knowing that each user has their specific needs, we have created a library of catalogs for our products that when complete, will contain 15 volumes. Since the volumes will continuously be a work in progress and updated, each volume will stand alone. Refer to our volume directory, MZ08100001E, for a quick glance of where to look for the products you need. The 15 volumes include:

- Volume 1-Residential and Light Commercial (CA08100002E)
- Volume 2-Commercial Distribution (CA08100003E)
- Volume 3—Power Distribution and Control Assemblies (CA08100004E)
- Volume 4-Circuit Protection (CA08100005E)
- Volume 5-Motor Control and Protection (CA08100006E)
- Volume 6-Solid-State Motor Control (CA08100007E)
- Volume 7-Logic Control, Operator Interface and Connectivity Solutions (CA08100008E)
- Volume 8-Sensing Solutions (CA08100010E)
- Volume 9-Original Equipment Manufacturer (CA08100011E)
- Volume 10—Enclosed Control (CA08100012E)
- Volume 11-Vehicle and Commercial Controls (CA08100013E)
- Volume 12-Aftermarket, Renewal Parts and Life Extension Solutions (CA08100014E)
- Volume 13-Counters, Timers and Tachometers (CA08100015E)—Available in electronic format only
- Volume 14-Fuses (CA08100016E)—Available in electronic format only
- Volume 15-Solar Inverters and Electrical Balance of System (CA08100018E)

These volumes are not all-inclusive of every product, but they are meant to be an overview of our product lines. For our full range of product solutions and additional product information, consult Eaton.com/electrical and other catalogs and product guides in our literature library. These references include:

- The Consulting Application Guide (CA08104001E)
- The Eaton Power Quality Product Guide (COR01FYA)

If you don't have the volume that contains the product or information that you are looking for, not to worry. You can access every volume of the catalog library at Eaton.com/electrical in the Literature Library.
By installing our Automatic Tab Updater (ATU), you can be sure you always have the most recent version of each volume and tab.

Icons

Green Leaf
Eaton Green Solutions are products, systems or solutions that represent Eaton benchmarks for environmental performance. The green leaf symbol is our promise that the solution has been reviewed and documented as offering exceptional, industry-leading environmental benefits to customers, consumers and our communities. Though all of Eaton's products and solutions are designed to meet or exceed applicable government standards related to protecting the environment, our products with the Green Leaf designation further provide "exceptional environmental benefit."

Learn Online
When you see the Learn Online icon, go to Eaton.com/electrical and search for the product or training page. There you will find 100-level training courses, podcasts, webcasts or games and puzzles to learn more.

Drawings Online

When you see the Drawings Online icon, go to Eaton.com/electrical and find the products page. There you will find a tab that includes helpful product drawings and illustrations.

Contact Us

If you need additional help, you can find contact information under the Customer Care heading of Eaton.com/electrical.

Switching Devices

1.1 Safety SwitchesProduct OverviewV2-T1-3
Cross-Reference V2-T1-5
Catalog Number Selection V2-T1-13
Options and Accessories V2-T1-14
Modifications—Flex Center V2-T1-16
Standard Lug Capacities V2-T1-20
General Duty V2-T1-26
Heavy-Duty V2-T1-31
Six-Pole Switches. V2-T1-43
Double-Throw Switches V2-T1-45
EnviroLine—Stainless Steel Switch. V2-T1-53
EnviroLine—Upper and Lower Window Switches. V2-T1-56
EnviroLine—Receptacle Switches V2-T1-59
EnviroLine—Non-Metallic KRYDON Switch V2-T1-61
Shunt Trip Safety SwitchShunt Trip Safety Switch. V2-T1-63
NEMA 7/9—Hazardous Location Disconnect Switch V2-T1-66
Quick Connect Switches V2-T1-68
Solar Disconnect Switch V2-T1-70
316-Grade Stainless Steel Safety Switches. V2-T1-72
Mill-Duty Rated, Heavy-Duty, Fusible, Non-Fusible, Single-Throw V2-T1-76
Heavy-Duty Fusible Safety Switches Accepting Cube Fuses V2-T1-78
Elevator Control Switch V2-T1-81
Auxiliary Power Heavy-Duty Safety Switch V2-T1-83
Left-Handed Safety Switch V2-T1-86
200\% Neutral Safety Switches V2-T1-87
Pringle Bolted Pressure Switch V2-T1-88
Type DS, Fusible and Non-Fusible V2-T1-91
Type Visi-Flex DE-ION V2-T1-94
Flange Mounted—Variable Depth V2-T1-98
Flange Mounted—Fixed Depth V2-T1-102
1.2 Enclosed Circuit Breakers
Product Description V2-T1-104
Application Description V2-T1-104
Features, Benefits and Functions V2-T1-105
Standards and Certifications V2-T1-105
Cross-Reference V2-T1-106
Product Selection V2-T1-108
Accessories. V2-T1-110
Flex Center V2-T1-112
Technical Data and Specifications V2-T1-113
Dimensions V2-T1-115
1.3 Enclosed Rotary Disconnects
Product Overview V2-T1-122
Product Selection V2-T1-123
Dimensions V2-T1-124

1
General-Duty Safety Switch

Contents

Description	Page
Product Overview	
Product Selection Guide	V2-T1-3
Standards and Certifications	V2-T1-4
Cross-Reference	V2-T1-5
Catalog Number Selection	V2-T1-13
Options and Accessories	V2-T1-14
Modifications-Flex Center.	V2-T1-16
Technical Data and Specifications	V2-T1-20
Dimensions	V2-T1-24
General Duty.	V2-T1-26
Heavy-Duty.	V2-T1-31
Six-Pole Switches	V2-T1-43
Double-Throw Switches	V2-T1-45
EnviroLine-Stainless Steel Switch	V2-T1-53
EnviroLine-Upper and Lower Window Switches	V2-T1-56
EnviroLine-Receptacle Switches	V2-T1-59
EnviroLine-Non-Metallic KRYDON Switch	V2-T1-61
Shunt Trip Safety SwitchShunt Trip Safety Switch	V2-T1-63
NEMA 7/9—Hazardous Location Disconnect Switch .	V2-T1-66
Quick Connect Switches.	V2-T1-68
Solar Disconnect Switch	V2-T1-70
316-Grade Stainless Steel Safety Switches	V2-T1-72
Mill-Duty Rated, Heavy-Duty, Fusible, Non-Fusible,	V2-T1-76
Heavy-Duty Fusible Safety Switches Accepting	
Cube Fuses	V2-T1-78
Elevator Control Switch.	V2-T1-81
Auxiliary Power Heavy-Duty Safety Switch.	V2-T1-83
Left-Handed Safety Switch	V2-T1-86
200\% Neutral Safety Switches.	V2-T1-87
Pringle Bolted Pressure Switch.	V2-T1-88
Type DS, Fusible and Non-Fusible.	V2-T1-91
Type Visi-Flex DE-ION.	V2-T1-94
Flange Mounted-Variable Depth.	V2-T1-98
Flange Mounted-Fixed Depth.	V2-T1-102

Safety Switches

Product Overview

Product Selection Guide

Safety Switch

Notes

(1) See specific catalog number page for Fuse Class details. Enclosed rotary switches are non-fusible only.
(2) NEMA Type 12 enclosures $(30-800 A)$ can be field modified to meet NEMA $3 R$ rainproof requirements when a factory provided drain screw is removed.
(3) Class J fuse clips provided.

1.1

Switching Devices

Safety Switches

Product Description

- Used to open or close a circuit
- Non-fusible safety switches provide a means to manually connect or disconnect the load from the source
- Fusible safety switches provide a means to manually open and close a circuit and overcurrent protection by means of installed fuses
- Also commonly referred to as a disconnect switch or disconnect
- Available from 30 to 1200 A

Standards and Certifications

- UL® 98
- UL 50
- NEMA KS-1
(U)

General-Duty

Ampere Rating	Catalog Number Eaton	General Electric	Siemens	Square D
Plug Fuse, Single-Pole, Two-Wire, 120 Vac, NEMA 1				
30	DP111NGB	TPF130	LF111N	D211N
Plug Fuse, Two-Pole, Three-Wire, 240 Vac, NEMA 1				
30	DP221NGB	TPF230	LF211N	D211N
Fusible, Two-Pole, Three-Wire, 240 Vac, NEMA 1				
30	DG221NGB	TG3221	GF221N	D221N
60	DG222NGB	TG3222	GF222N	D222N
100	DG223NGB	TG3223	GF223N	D223N
200	DG224NGK	TG3224	GF224N	D224N
400	DG225NGK	TG3225	GF225N	D225N
600	DG226NGK	TG3226	GF226N	D226N
Fusible, Three-Pole, Three-Wire, 240 Vac, NEMA 1				
30	DG321NGB	TG4321	GF321N	D321N
60	DG322NGB	TG4322	GF322N	D322N
100	DG323NGB	TG4323	GF323N	D323N
200	DG324NGK	TG4324	GF324N	D324N
400	DG325FGK	TG3325	GF325N	D325N
600	DG326FGK	TG3326	GF326N	D326N
Fusible, Three-Pole, Four-Wire, 240 Vac, NEMA 1				
30	DG321NGB	TG4321	GF321N	D321N
60	DG322NGB	TG4322	GF322N	D322N
100	DG323NGB	TG4323	GF323N	D323N
200	DG324NGK	TG4324	GF324N	D324N
400	DG325NGK	TG4325	GF325N	D325N
600	DG326NGK	TG4326	GF326N	D326N
Non-Fusible, Two-Pole, Two-Wire, 240 Vac, NEMA 1				
30	DG221UGB	TGN3321	N/A	N/A
60	DG222UGB	TGN3322	N/A	Q0260NATS
100	DG223UGB	TGN3323	N/A	Q02000NS
200	DG324UGK	TGN3324	N/A	DU324
400	DG325UGK	TGN3325	N/A	DU325
600	DG326UGK	TGN3326	N/A	DU326
Non-Fusible, Three-Pole, Three-Wire, 240 Vac, NEMA 1				
30	DG321UGB	TGN3321	GNF321	DU321
60	DG322UGB	TGN3322	GNF322	DU322
100	DG323UGB	TGN3323	GNF323	DU323
200	DG324UGK	TGN3324	GNF324	DU324
400	DG325UGK	TGN3325	GNF325	DU325
600	DG326UGK	TGN3326	GNF326	DU326

General-Duty, continued

Ampere Rating	Catalog Number Eaton	General Electric	Siemens	Square D
Fusible, Two-Pole, Three-Wire, 240 Vac, NEMA 3R				
30	DG221NRB	TG3221R	GF221NR	D221NRB
60	DG222NRB	TG3222R	GF222NR	D222NRB
100	DG223NRB	TG3223R	GF223NR	D223NRB
200	DG224NRK	TG3224R	GF224NR	D224NRB
400	DG225NRK	TG3225R	GF225NR	D225NR
600	DG226NRK	TG3226R	GF226NR	D226NR

Fusible, Three-Pole, Three-Wire, 240 Vac, NEMA 3R

30	DG321NRB	TG4321R	GF321NR	D321NRB
60	DG322NRB	TG4322R	GF322NR	D322NRB
100	DG323NRB	TG4323R	GF323NR	D323NRB
200	DG324NRK	TG4324R	GF324NR	D324NRB
400	DG325FRK	TG3325R	GF325NR	D325NR
600	DG326FRK	TG3326R	GF326NR	D326NR

Fusible, Three-Pole, Four-Wire, 240 Vac, NEMA 3R

30	DG321NRB	TG4321R	GF321NR	D321NRB
60	DG322NRB	TG4322R	GF322NR	D322NRB
100	DG323NRB	TG4323R	GF323NR	D323NRB
200	DG324NRK	TG4324R	GF324NR	D324NRB
400	DG325NRK	TG3325R (1)	GF325NR	D325NR
600	DG326NRK	TG3326R (1)	GF326NR	D326NR

Non-Fusible, Two-Pole, Two-Wire, 240 Vac, NEMA 3R

30	DG221URB	TGN3321R	GNF321R	DU221RB
60	DG222URB	TGN3322R	GNF322R	DU222RB
100	DG223URB	TGN3323R	GNF323R	002000NRB
200	DG324URK	TGN3324R	GNF324R	DU324RB

Non-Fusible, Three-Pole, Three-Wire, 240 Vac, NEMA 3R

30	DG321URB	TGN3321R	GNF321R	DU321RB
60	DG322URB	TGN3322R	GNF322R	DU322RB
100	DG323URB	TGN3323R	GNF323R	DU323RB
200	DG324URK	TGN3324R	GNF324R	DU324RB
400	DG325URK	N/A	N / A	N / A
600	DG326URK	N / A	N / A	N / A

Notes

(1) Separate neutral kit required.

Always verify the number of poles and wires required since catalog numbers may appear in multiple tables.

Switching Devices

Safety Switches

Heavy-Duty

| Ampere
 Rating Catalog Number
 Eaton General Electric | Siemens |
| :--- | :--- | :--- | :--- | :--- | Square D

Fusible, Two-Pole, Three-Wire, 240 Vac, NEMA 1

30	DH221NGK	TH3221	HF221N	H221N
60	DH222NGK	TH3222	HF222N	H222N
100	DH223NGK	TH3223	HF223N	H223N
200	DH224NGK	TH3224	HF224N	H224N
400	DH225NGK	TH3225	HF225N	H225N
600	DH226NGK	TH3226	HF226N	H226N
800	DH227NGK	TC72267 (1)	HF227N	H227N
1200	DH328NGK	TC72268 (1)	HF228N	H228N

Fusible, Three-Pole, Three-Wire, 240 Vac, NEMA 1

30	DH321FGK	TH4321	N/A	H321N
60	DH322FGK	TH4322	N/A	H322N
100	DH323FGK	TH4323	N/A	H323N
200	DH324FGK	TH4324	N/A	H324N
400	DH325FGK	TH3325	N/A	H325
600	DH326FGK	TH3326	N/A	H326
800	DH327FGK	TC72367	N/A	H327
1200	DH328FGK	TC72368	N/A	H328

Fusible, Three-Pole, Four-Wire, 240 Vac, NEMA 1

30	DH321NGK	TH4321	HF321N	H321N
60	DH322NGK	TH4322	HF322N	H322N
100	DH323NGK	TH4323	HF323N	H323N
200	DH324NGK	TH4324	HF324N	H324N
400	DH325NGK	TH4325	HF325N	H325N
600	DH326NGK	TH4326	HF326N	H326N
800	DH327NGK	TC72367 (1)	HF327N	H327N
1200	DH328NGK	TC72368 (1)	HF328N	H328N

Fusible, Four-Pole, Four-Wire, 240 Vac, NEMA 1

30	DH421FGK	N/A	F421	H461 (2)
60	DH422FGK	N/A	F422	H462 (2)
100	DH423FGK	N/A	F423	H463 (2)
200	DH424FGK	N/A	F424	H464 (2)
400	DH425FGK	N / A	F425	H465 (2)
600	DH426FGK	N/A	F426	H466 (2)

Heavy-Duty, continued

Ampere Rating	Catalog Number Eaton	General Electric	Siemens	Square D
Non-Fusible, Three-Pole,	Three-Wire, 240 Volt/600 Vac, NEMA 1			
30	DH361UGK	THN3361	HNF361	HU361
60	DH362UGK	THN3362	HNF362	HU362
100	DH363UGK	THN3363	HNF363	HU363
200	DH364UGK	THN3364	HNF364	HU364
400	DH365UGK	THN3365	HNF365	HU365
600	DH366UGK	THN3366	HNF366	HU366
800	DH367UGK	TC36367	HNF367	HU367
1200	DH368UGK	TC36368	HNF368	HU368

Fusible, Three-Pole, Two-Wire, 240 Vac, NEMA 3R

30	DH221NRK	TH3221R	N/A	H221NRB
60	DH222NRK	TH3222R	N/A	H222NRB
100	DH223NRK	TH3223R	N/A	H223NRB
200	DH224NRK	TH3224R	N / A	H224NRB
400	DH225FRK	TH3225R	N / A	H225R
600	DH226FRK	TH3226R	N / A	H226R
800	DH227NRK	TC72267R	N / A	H227R
1200	DH328FRK	TC72268R	N / A	H228R

Fusible, Two-Pole, Three-Wire, 240 Vac, NEMA 3R

30	DH221NRK	TH3221R	HF221NR	H221NRB
60	DH222NRK	TH3222R	HF222NR	H222NRB
100	DH223NRK	TH3223R	HF223NR	H223NRB
200	DH224NRK	TH3224R	HF224NR	H224NRB
400	DH225NRK	TH3225R	HF225NR	H225NR
600	DH226NRK	TH3226R	HF226NR	H226NR
800	DH227NRK	TC72267R (1)	HF227NR	H227NR
1200	DH328NRK	TC72268R (1)	HF228NR	H228NR

Fusible, Three-Pole, Three-Wire, 240 Vac, NEMA 3R

30	DH321FRK	TH4321R	N/A	H321NRB
60	DH322FRK	TH4322R	N/A	H322NRB
100	DH323FRK	TH4323R	N/A	H323NRB
200	DH324FRK	TH4324R	N/A	H324NRB
400	DH325FRK	TH3325R	N/A	H325NR
600	DH326FRK	TH3326R	N/A	H326NR
800	DH327FRK	TC72367R	N/A	H327NR
1200	DH328FRK	TC72368R	N/A	H328NR

Notes

[^1]Heavy-Duty, continued

Ampere Rating	Catalog Number Eaton	General Electric	Siemens	Square D
Fusible, Three-Pole, Four-Wire, 240 Vac, NEMA	3R			
30	DH321NRK	TH4321R	HF321NR	H321NRB
60	DH322NRK	TH4322R	HF322NR	H322NRB
100	DH323NRK	TH4323R	HF323NR	H323NRB
200	DH324NRK	TH4324R	HF324NR	H324NRB
400	DH325NRK	TH3325R (1)	HF325NR	H325R
600	DH326NRK	TH3326R (1)	HF326NR	H326R
800	DH327NRK	TC72367R (1)	HF327NR	H327R
1200	DH328NRK	TC72368R (1)	HF328NR	H328R

Non-Fusible, Three-Pole, Three-Wire, 240 Volt/ 600 Vac, NEMA 3R

30	DH361URK	THN3361R	HNF361R	HU361RB
60	DH362URK	THN3362R	HNF362R	HU362RB
100	DH363URK	THN3363R	HNF363R	HU363RB
200	DH364URK	THN3364R	HNF364R	HU364RB
400	DH365URK	THN3365R	HNF365R	HU365R
600	DH366URK	THN3366R	HNF366R	HU366R
800	DH367URK	N/A	HNF367R	HU367R
1200	DH368URK	N/A	HNF368R	HU368R

Fusible, Two-Pole, Two-Wire, 240 Vac, NEMA 4/4X

30	DH221NWK	TH2221SS	HF221S	H221DS
60	DH222NWK	TH2222SS	HF222S	H222DS
100	DH223NWK	TH3223SS	HF223S	H223DS
200	DH224NWK	TH3224SS	HF224S	H224DS
400	DH225FWK	TH3225SS	HF325S	H225DS
600	DH226FWK	TH3226SS	HF326S	H226DS

Fusible, Two-Pole, Three-Wire, 240 Vac, NEMA 4/4X

30	DH221NWK	TH3221SS	HF321S (1)	H221DS (1)
60	DH222NWK	TH3222SS	HF322S (1)	H222DS (1)
100	DH223NWK	TH3223SS	HF323S (1)	H223DS (1)
200	DH224NWK	TH3224SS	HF324S (1)	H224DS (1)
400	DH225NWK	TH3225SS	HF325S (1)	H225NDS
600	DH226NWK	TH3226SS	HF326S (1)	H226NDS
800	DH227NWK	N/A	HF327S (1)	N/A

Fusible, Three-Pole, Three-Wire, 240 Vac, NEMA 4/4X

30	DH321FWK	TH3321SS	HF321S	H321DS
60	DH322FWK	TH3322SS	HF322S	H322DS
100	DH323NWK	TH4323SS	HF323S	H323DS
200	DH324NWK	TH4324SS	HF324S	H324DS
400	DH325FWK	TH4325SS	HF325S	H325DS
600	DH326FWK	TH4326SS	HF326S	H326DS
800	DH327FWK	N/A	HF327S	N/A

Fusible, Three-Pole, Four-Wire, 240 Vac, NEMA 4/4X

30	DH321NWK	TH4321SS	HF321S © ${ }^{(1)}$	H321DS (1)
60	DH322NWK	TH4322SS	HF322S (1)	H322DS (1)
100	DH323NWK	TH4323SS	HF323S (1)	H323DS (1)
200	DH324NWK	TH4324SS	HF324S (1)	H324DS (1)
400	DH325NWK	TH4325SS	HF325S (1)	H325NDS
600	DH326NWK	TH4326SS	HF326S (1)	H326NDS

Heavy-Duty, continued

Ampere Rating Catalog Number Eaton General Electric	Siemens	Square D		
Fusible, Two-Pole, Two-Wire, 240 Vac, NEMA $\mathbf{1 2}$				
30	DH221NDK	TH2221J	HF221J	H221AWK
60	DH222NDK	TH2222J	HF222J	H222AWK
100	DH223NDK	TH3223J	HF223J	H223AWK
200	DH224NDK	TH3224J	HF224J	H224AWK
400	DH225FDK	TH3225J	HF325J	H225AWK
600	DH226FDK	TH3226J	HF326J	H226AWK
800	DH227FDK	N/A	HF327J	H227AWK
1200	N/A	N/A	N/A	H228AWK

Fusible, Two-Pole, Three-Wire, 240 Vac, NEMA 12

30	DH221NDK	TH3221J	HF221J (1)	H221AWK
60	DH222NDK	TH3222J	HF222J (1)	H222AWK
100	DH223NDK	TH3223J	HF223J (1)	H223AWK
200	DH224NDK	TH3224J	HF224J (1)	H224AWK
400	DH225NDK	TH3225J	HF325J (1)	H225NAWK
600	DH226NDK	TH3226J	HF326J (1)	H226NAWK
800	DH227NDK	N/A	HF327J (1)	H227NAWK
1200	N/A	N/A	N/A	H228NAWK

Fusible, Three-Pole, Three-Wire, 240 Vac, NEMA 12

30	DH321FDK	TH3321J	HF321J	H321AWK
60	DH322FDK	TH3322J	HF322J	H322AWK
100	DH323FDK	TH4323J	HF323J	H323AWK
200	DH324FDK	TH4324J	HF324J	H324AWK
400	DH325FDK	TH4325J	HF325J	H325AWK
600	DH326FDK	TH4326J	HF326J	H326AWK
800	DH327FDK	N/A	HF327J	H327AWK
1200	N/A	N/A	N/A	H328AWK

Fusible, Three-Pole, Four-Wire, 240 Vac, NEMA 12

30	DH321NDK	TH4321J	HF321J (1)	H321AWK (1)
60	DH322NDK	TH4322J	HF322J (1)	H322AWK (1)
100	DH323NDK	TH4323J	HF323J (1)	H323AWK (1)
200	DH324NDK	TH4324J	HF324J (1)	H324AWK (1)
400	DH325NDK	TH4325J	HF325J (1)	H325NAWK
600	DH326NDK	TH4326J	HF326J (1)	H326NAWK
800	N/A	N/A	HF327J (1)	H327NAWK
1200	N/A	N/A	N/A	H328NAWK

Fusible, Four-Pole, Four-Wire, 240 Vac, NEMA 12

30	DH421FDK	N/A	N/A	N/A
60	DH422FDK	N/A	N/A	N/A
100	DH423FDK	N/A	N / A	N/A
200	DH424FDK	N/A	N / A	N / A

Notes

(1) Separate neutral kit required.

Always verify the number of poles and wires required since catalog numbers may appear in multiple tables.

1.1
 Switching Devices

Safety Switches

Heavy-Duty, continued

| Ampere
 Rating Catalog Number
 Eaton General Electric | Siemens |
| :--- | :--- | :--- | :--- | :--- | Square D

Fusible, Three-Pole, Three-Wire, 600 Vac, NEMA 1

30	DH361FGK	TH3361	HF361	H361
60	DH362FGK	TH3362	HF362	H362
100	DH363FGK	TH3363	HF363	H363
200	DH364FGK	TH3364	HF364	H364
400	DH365FGK	TH3365	HF365	H365
600	DH366FGK	TH3366	HF366	H366
800	DH367FGK	TC72367	HF367	H367
1200	DH368FGK	TC72368	HF368	H368

Fusible, Three-Pole, Four-Wire, 600 Vac, NEMA 1

30	DH361NGK	TH3361 (1)	HF361N	H361N
60	DH362NGK	TH3362 (1)	HF362N	H362N
100	DH363NGK	TH3363 (1)	HF363N	H363N
200	DH364NGK	TH3364 (1)	HF364N	H364N
400	DH365NGK	TH3365 (1)	HF365N	H365N
600	DH366NGK	TH3366 (1)	HF366N	H366N
800	DH367NGK	TC72367 (1)	HF367N	H367N
1200	DH368NGK	TC72368 (1)	HF368 (1)	H368N

Fusible, Four-Pole, Four-Wire, $\mathbf{6 0 0}$ Vac, NEMA 1

30	DH461FGK	TH6661	N/A	H461
60	DH462FGK	TH6662	N/A	H462
100	DH463FGK	TH6663	N / A	H463
200	DH464FGK	TH6664	N / A	H464
400	DH465FGK	N / A	N / A	H465
600	DH466FGK	N/A	N / A	H466

Non-Fusible, Two-Pole, Two-Wire, 600 Vac, NEMA 1

30	DH261UGK	THN2261DC	HNF261	HU361
60	DH362UGK	THN2262DC	HNF262	HU362
100	DH263UGK	THN2263DC	HNF263	HU363
200	DH364UGK	N/A	N/A	HU364
400	DH265UGK	N/A	HNF265	HU265
600	DH266UGK	N/A	HNF266	HU266
800	DH267UGK	N/A	N/A	HU267
1200	N/A	N/A	N/A	HU268

Heavy-Duty, continued

| Ampere
 Rating Catalog Number
 Eaton General Electric | Siemens |
| :--- | :--- | :--- | :--- | :--- | Square D

Fusible, Two-Pole, Two-Wire, 600 Vac, NEMA 3R

30	DH361FRK	TH2261RDC	HF261R	H361RB
60	DH362FRK	TH2262RDC	HF262R	H362RB
100	DH363FRK	TH2263RDC	HF263R	H363RB
200	DH364FRK	N/A	N/A	H364RB
400	DH365FRK	N/A	N/A	H265R
600	DH366FRK	N/A	HF265R	H266R
800	DH367FRK	N/A	HF266R	H267R
1200	DH368FRK	N/A	N/A	H268R

Fusible, Three-Pole, Three-Wire, 600 Vac, NEMA 3R

30	DH361FRK	TH3361R	HF361R	H361RB
60	DH362FRK	TH3362R	HF362R	H362RB
100	DH363FRK	TH3363R	HF363R	H363RB
200	DH364FRK	TH3364R	HF364R	H364RB
400	DH365FRK	TH3365R	HF365R	H365R
600	DH366FRK	TH3366R	HF366R	H366R
800	DH367FRK	TC72367R	HF367R	H367R
1200	DH368FRK	TC72368R	HF368R	H368R

Fusible, Three-Pole, Four-Wire, 600 Vac, NEMA 3R

30	DH361NRK	TH3361R (1)	HF361NR	H361NRB
60	DH362NRK	TH3362R (1)	HF362NR	H362NRB
100	DH363NRK	TH3363R (1)	HF363NR	H363NRB
200	DH364NRK	TH3364R (1)	HF364NR	H364NRB
400	DH365NRK	TH3365R (1)	HF365NR	H365NR
600	DH366NRK	TH3366R (1)	HF366NR	H366NR
800	DH367NRK	TC72367R (1)	HF367NR	H367NR
1200	DH368NRK	TC72368R (1)	HF368R	H368NR

Non-Fusible, Three-Pole, Three-Wire, 600 Vac, NEMA 3R

30	DH361URK	THN2261RDC	HNF261R	HU361RB
60	DH362URK	THN2262RDC	HNF262R	HU362RB
100	DH363URK	THN2263RDC	HNF263R	HU363RB
200	DH364URK	N/A	N/A	HU364RB
400	DH365URK	N/A	HNF265R	HU265R
600	DH366URK	N/A	HNF266R	HU266R
800	DH367URK	N/A	N/A	HU267R
1200	DH368URK	N/A	N/A	HU268R

Notes
(1) Separate neutral kit required.

Always verify the number of poles and wires required since catalog numbers may appear in multiple tables.

Heavy-Duty, continued

Ampere Rating Catalog Number Eaton General Electric	Siemens	Square D		
Non-Fusible, Four-Pole, Four-Wire, $\mathbf{6 0 0}$	Vac,	NEMA 3R		
30	DH461UDK	THN6661	N / A	N / A
60	DH462UDK	THN6662	N / A	N / A
100	DH463UDK	THN6663	N / A	N / A
200	DH464UDK	THN6664	N / A	N / A

Fusible, Two-Pole, Two-Wire, 600 Vac, NEMA 4/4X Stainless Steel

30	DH261FWK	TH2261SSDC	HF261S	H361DS
60	DH362FWK	TH2262SSDC	HF262S	H362DS
100	DH363FWK	TH2263SSDC	HF263S	H363DS
200	DH264FWK	N/A	N/A	H364DS
400	DH365FWK	N/A	HF265S	H265DS
600	DH366FWK	N/A	HF266S	H266DS
800	DH367FWK	N/A	N/A	N/A

Fusible, Three-Pole, Three-Wire, 600 Vac, NEMA 4/4X Stainless Steel

30	DH361FWK	TH3361SS	HF361S	H361DS
60	DH362FWK	TH3362SS	HF362S	H362DS
100	DH363FWK	TH3363SS	HF363S	H363DS
200	DH364FWK	TH3364SS	HF364S	H364DS
400	DH365FWK	TH3365SS	HF365S	H365DS
600	DH366FWK	TH3366SS	HF366S	H366DS
800	DH367FWK	N/A	HF367S	N/A

Fusible, Three-Pole, Four-Wire, $\mathbf{6 0 0}$ Vac, NEMA 4/4X Stainless Steel

30	DH361NWK	TH3361SS (1)	HF361S (1)	H361DS (1)
60	DH362NWK	TH3362SS (1)	HF362S (1)	H362DS (1)
100	DH363NWK	TH3363SS (1)	HF363S (1)	H363DS (1)
200	DH364NWK	TH3364SS (1)	HF364S (1)	H364NDS
400	DH365NWK	TH3365SS (1)	HF365S (1)	H365NDS
600	DH366NWK	TH3366SS (1)	HF366S (1)	H366NDS

Non-Fusible, Two-Pole, Two-Wire, 600 Vac, NEMA 4/4X Stainless Steel

30	DH361UWK	THN2261SSDC	HNF261S	HU361DS
60	DH362UWK	THN2262SSDC	HNF262S	HU362DS
100	DH363UWK	THN2263SSDC	HNF263S	HU363DS
200	DH364UWK	N/A	N/A	HU364DS
400	DH365UWK	N/A	HNF265S	HU265DS
600	DH366UWK	N/A	HNF266S	HU266DS
800	DH367UWK	N/A	N/A	N/A

Non-Fusible, Three-Pole, Three-Wire, 600 Vac, NEMA 4/4X Stainless Steel

30	DH361UWK	THN3361SS	HNF361S	HU361DS
60	DH362UWK	THN3362SS	HNF362S	HU362DS
100	DH363UWK	THN3363SS	HNF363S	HU363DS
200	DH364UWK	THN3364SS	HNF364S	HU364DS
400	DH365UWK	THN3365SS	HNF365S	HU365DS
600	DH366UWK	THN3366SS	HNF366S	HU366DS
800	DH367UWK	N/A	HNF367S	N/A

Heavy-Duty, continued

Ampere Rating	Catalog Number Eaton	General Electric	Siemens	Square D
Non-Fusible, Four-Pole, Four-Wire, 600 Vac, NEMA 4/4X Stainless Steel				
30	DH461UWK	N/A	N/A	HU461DS
60	N/A	N/A	N/A	HU462DS
100	N/A	N/A	N/A	HU464DS
200	N/A	N/A	N/A	HU464DS

Fusible, Two-Pole, Two-Wire, 600 Vac, NEMA 12

30	DH261FDK	TH2261JDC	HF261J	H361AWK
60	DH262FDK	TH2262JDC	HF262J	H362AWK
100	DH263FDK	TH2263JDC	HF263J	H363AWK
200	DH264FDK	N/A	N/A	H364AWK
400	DH265FDK	N/A	HF265J	H265AWK
600	DH266FDK	N/A	HF266J	H266AWK
800	DH267FDK	N/A	N/A	H267AWK
1200	N/A	N/A	N/A	H268AWK

Fusible, Three-Pole, Three-Wire, 600 Vac, NEMA 12

30	DH361FDK	TH3361J	HF361J	H361AWK
60	DH362FDK	TH3362J	HF362J	H362AWK
100	DH363FDK	TH3363J	HF363J	H363AWK
200	DH364FDK	TH3364J	HF364J	H364AWK
400	DH365FDK	TH3365J	HF365J	H365AWK
600	DH366FDK	TH3366J	HF366J	H366AWK
800	DH367FDK	N/A	HF367J	H367AWK
1200	N/A	N/A	N/A	H368AWK

Fusible, Three-Pole, Four-Wire, 600 Vac, NEMA 12

30	DH361NDK	THN3361J (1)	HF361J (1)	H361AWK (1)
60	DH362NDK	THN3362J (1)	HF362J (1)	H362AWK (1)
100	DH363NDK	THN3363J (1)	HF363J (1)	H363AWK (1)
200	DH364NDK	THN3364J (1)	HF364J (1)	H364NAWK
400	DH365NDK	THN3365J (1)	HF365J (1)	H365NAWK
600	DH366NDK	THN3366J (1)	HF366J (1)	H366NAWK
800	DH367NDK	N/A	HF367J (1)	H367NAWK
1200	N/A	N/A	N/A	H368NAWK

Fusible, Four-Pole, Four-Wire, 600 Vac, NEMA 12

30	N/A	TH6661	N/A	H461AWK
60	N/A	TH6662	N/A	H462AWK
100	DH463FDK	TH6663	N/A	H463AWK
200	DH464FDK	TH6664	N/A	H464AWK
400	N/A	N/A	N/A	H465AWK

Notes
(1) Separate neutral kit required.

Always verify the number of poles and wires required since catalog numbers may appear in multiple tables.

1.1
 Switching Devices

Safety Switches

Heavy-Duty, continued

Ampere Rating	Catalog Number Eaton	General Electric	Siemens	Square D
Non-Fusible, Two-Pole, Two-Wire, 600 Vac, NEMA 12				
30	DH261UDK	THN2261JDC	HNF261J	HU361AWK
60	DH262UDK	THN2262JDC	HNF262J	HU362AWK
100	DH263UDK	THN2263JDC	HNF263J	HU363AWK
200	DH264UDK	N/A	N/A	HU364AWK
400	DH265UDK	N/A	HNF265J	HU265AWK
600	DH266UDK	N/A	HNF266J	HU266AWK
800	DH267UDK	N/A	N/A	HU267AWK
1200	N/A	N/A	N/A	HU268AWK

Non-Fusible, Three-Pole, Three-Wire, 600 Vac, NEMA 12

30	DH361UDK	THN3361J	HNF361J	HU361AWK
60	DH362UDK	THN3362J	HNF362J	HU362AWK
100	DH363UDK	THN3363J	HNF363J	HU363AWK
200	DH364UDK	THN3364J	HNF364J	HU364AWK
400	DH365UDK	THN3365J	HNF365J	HU365AWK
600	DH366UDK	THN3366J	HNF366J	HU366AWK
800	DH367UDK	N/A	HNF367J	HU367AWK
1200	N/A	N/A	N/A	HU368AWK

Non-Fusible, Four-Pole, Four-Wire, 600 Vac, NEMA 12

30	DH461UDK	THN6661	N/A	HU461AWK
60	DH462UDK	THN6662	N/A	HU462AWK
100	DH463UDK	THN6663	N/A	HU463AWK
200	DH464UDK	THN6664	N/A	HU464AWK
400	N/A	N/A	N/A	HU465AWK

Heavy-Duty Six-Pole

Ampere Rating	Catalog Number Eaton	General Electric	Siemens	Square D
Fusible, Six-Pole, Six-Wire, 600 Vac, NEMA 3R				
30	DH661FDK	TH6661	F651H	N/A
60	DH662FDK	TH6662	F652H	N/A
100	DH663FDK	TH6663	F653H	N/A
200	DH664FDK	TH6664	N/A	N/A
Fusible, Six-Pole, Six-Wire, 600 Vac, NEMA 12				
30	DH661FDK	TH6661	F651H	N/A
60	DH662FDK	TH6662	F652H	N/A
100	DH663FDK	TH6663	F653H	H663AWK
200	DH664FDK	TH6664	N/A	H664RWK
Fusible, Six-Pole, Six-Wire, 600 Vac, NEMA 4X				
30	N/A	N/A	F651SS	N/A
60	N/A	N/A	F652SS	N/A
100	N/A	N/A	F653SS	H663DS
200	N/A	N/A	N/A	H664DS
Non-Fusible, Six-Pole, Six-Wire, 600 Vac, NEMA 3R				
30	DH661UDK	THN6661	NF651H	N/A
60	DH662UDK	THN6662	NF652H	N/A
100	DH663UDK	THN6663	NF653H	N/A
200	DH664UDK	THN6664	N/A	N/A

Non-Fusible, Six-Pole, Six-Wire, 600 Vac, NEMA 12

30	DH661UDK	THN6661	NF651H	HU661AWK
60	DH662UDK	THN6662	NF652H	HU662AWK
100	DH663UDK	THN6663	NF653H	HU663AWK
200	DH664UDK	THN6664	N/A	HU664RWK
Non-Fusible, Six-Pole, Six-Wire, 600 Vac, NEMA 4X				
30	DH661UWK	N/A	NF651SS	HU661DS
60	DH662UWK	N/A	NF652SS	HU662DS
100	DH663UWK	N/A	NF653SS	HU663DS
200	DH664UWK	N/A	N/A	HU664DS

Note
Always verify the number of poles and wires required since catalog numbers may appear in multiple tables.

Safety Switches

Double-Throw

Ampere Rating	Catalog Number Eaton	General Electric	Siemens	Square D
Fusible, Two-Pole, Two-Wire, 240 Vac, NEMA 1				
30	DT321FGK	TDT3321	N/A	N/A
60	DT322FGK	TDT3322	N/A	N/A
100	DT323FGK	TDT3323	N/A	DT223
200	DT224FGK	TDT3324	DTF224	DT224
400	DT325FGK	TDT3325	N/A	N/A
600	DT326FGK	TDT3326	N/A	N/A
Fusible, Three-Pole, Three-Wire, 240 Vac, NEMA 1				
30	DT321FGK	TDT3321	DTF321	DT321
60	DT322FGK	TDT3322	DTF322	DT322
100	DT323FGK	TDT3323	DTF323	DT323
200	DT324FGK	TDT3324	DTF324	DT324
400	DT325FGK	TDT3325	DTF325	N/A
600	DT326FGK	TDT3326	DTF326	N/A
Non-Fusible, Two-Pole, Two-Wire, 240 Vac, NEMA 1				
30	DT221UGK	N/A	DTNF221	92251
60	DT222UGK	N/A	DTNF222	DTU222
100	DT223UGK	N/A	DTNF223	DTU223
200	DT224UGK	N/A	DTNF224	DTU224
400	DT225UGK	N/A	DTNF225	92255
600	DT226UGK	N/A	DTNF226	N/A
800	DT227UGK	N/A	N/A	N/A

Non-Fusible, Three-Pole, Three-Wire, 240 Vac, NEMA 1

30	DT321UGK	TC35321	DTNF321	DTU321
60	DT322UGK	TC35322	DTNF322	DTU322
100	DT323UGK	TC35323	DTNF323	DTU323
200	DT324UGK	TC35324	DTNF324	DTU324
400	DT325UGK	TC35325	DTNF325	92355
600	DT326UGK	TC35326	DTNF326	92356
800	DT327UGK	N/A	DTNF327	N/A

Fusible, Three-Pole, Three-Wire, $\mathbf{6 0 0}$ Vac, NEMA 1

30	DT361FGK	TDT3361	DTF361	DT361
60	DT362FGK	TDT3362	DTF362	DT362
100	DT363FGK	TDT3363	DTF363	DT363
200	DT364FGK	TDT3364	DTF364	DT364
400	DT365FGK	TDT3365	DTF365	N/A
600	N/A	N/A	N/A	N/A

Non-Fusible, Two-Pole, Two-Wire, 600 Vac, NEMA 1

30	DT261UGK	N/A	DTNF261	N/A
60	DT262UGK	N/A	DTNF262	82342
100	DT263UGK	N/A	DTNF263	82343
200	DT264UGK	N/A	DTNF264	82344
400	DT265UGK	N/A	DTNF265	92345
600	DT266UGK	N/A	DTNF266	92346

Double-Throw, continued

Ampere Rating	Catalog Number Eaton	General Electric	Siemens	Square D
Non-Fusible, Three-Pole, Three-Wire, $\mathbf{6 0 0}$ Vac, NEMA 1				
30	DT361UGK	TC35361	DTNF361	DTU361
60	DT362UGK	TC35362	DTNF362	DTU362
100	DT363UGK	TC35363	DTNF363	DTU363
200	DT364UGK	TC35364	DTNF364	DTU364
400	DT365UGK	TC35365	DTNF365	92345
600	DT366UGK	TC35366	DTNF366	92346
800	DT367UGK	N/A	DTNF367	N/A
1200	N/A	N/A	N/A	N/A
Non-Fusible, Four-Pole, Four-Wire, $\mathbf{6 0 0}$ Vac,	NEMA 1			
30	N/A	N/A	N/A	N/A
60	N/A	N/A	N/A	DTU462
100	N/A	N/A	N/A	DTU463
200	DT464UGK	N/A	NF454DTK	DTU464
400	DT465UGK	N/A	NF455DTK	92445
600	DT466UGK	N/A	NF456DTK	92446
800	DT467UGK	N/A	NF457DTK	N/A

Fusible, Two-Pole, Two-Wire, 240 Vac, NEMA 3R

30	DT321FRK	TDT3321R	N/A	N/A
60	DT322FRK	TDT3322R	N/A	N/A
100	DT323FRK	TDT3323R	N/A	DT223RB
200	DT224FRK	TDT3324R	DTF224R	DT224RB

Fusible, Three-Pole, Three-Wire, 240 Vac, NEMA 3R

30	DT321FRK	TDT3321R	DTF321R	DT321RB
60	DT322FRK	TDT3322R	DTF322R	DT322RB
100	DT323FRK	TDT3323R	DTF323R	DT323RB
200	DT324FRK	TDT3324R	DTF324R	DT324RB
400	DT325FRK	N/A	FR325DTK	N/A
600	DT326FRK	N/A	FR326DTK	N/A

Non-Fusible, Two-Pole, \mathbf{T} Two-Wire, $\mathbf{2 4 0}$ Vac,				
30	NEMA $\mathbf{~ 3 R}$	N/A	N/A	N/A
60	N/A	N/A	N/A	N/A
100	DT223URK	N/A	N/A	DTU223RB
200	DT224URK	N/A	DTNF224R	DTU224RB
400	DT225URK	N/A	DTNF225R	92255R

Non-Fusible, Three-Pole, Three-Wire, 240 Vac, NEMA 3R

30	N/A	N/A	N/A	N/A
60	N/A	N/A	N/A	N/A
100	DT323URK	N/A	DTNF323R	DTU323RB
200	DT324URK	N/A	DTNF324R	DTU324RB
400	DT325URK	N/A	N/A	$92355 R$
600	N/A	N/A	N/A	$92356 R$

Note
Always verify the number of poles and wires required since catalog numbers may appear in multiple tables.

1.1
 Switching Devices

Safety Switches

Double-Throw, continued

Ampere Rating	Catalog Number Eaton	General Electric	Siemens	Square D
Fusible, Three-Pole, Three-Wire, 600 Vac, NEMA 3R				
30	N/A	N/A	N/A	DT361RB
60	N/A	N/A	N/A	DT362RB
100	DT363FRK	N/A	DTF363R	DT363RB
200	DT364FRK	N/A	DTF364R	DT364RB
400	DT365FRK	N/A	FR355DTK	N/A
Non-Fusible, Two-Pole, Two-Wire, 600 Vac, NEMA 3R				
30	N/A	N/A	N/A	N/A
60	N/A	N/A	N/A	82342RB
100	N/A	N/A	N/A	82343RB
200	DT264URK	N/A	DTNF264R	82344RB
400	DT265URK	N/A	DTNF265R	92345RB
600	DT266URK	N/A	NFR256DTK	92346RB

Non-Fusible, Three-Pole, Three-Wire, 600 Vac, NEMA 3R

30	DT361URK	N/A	DTNF361R	DTU361RB
60	DT362URK	N/A	DTNF362R	DTU362RB
100	DT363URK	N/A	DTNF363R	DTU363RB
200	DT364URK	N/A	DTNF364R	DTU364RB
400	DT365URK	N/A	DTNF365R	92345RB
600	DT366URK	N/A	DTNF366R	$92346 R B$
800	DT367URK	N/A	DTNF367R	N/A

Non-Fusible, Four-Pole, Four-Wire, 600 Vac, NEMA 3R

30	DT461URK	N/A	NFR451DTK	N/A
60	DT462URK	N/A	NFR452DTK	92442RB
100	DT463URK	N/A	NFR453DTK	$92443 R B$
200	DT464URK	N/A	NFR454DTK	$92444 R B$
400	DT465URK	N/A	NFR455DTK	$92445 R$
600	DT466URK	N/A	NFR456DTK	$92446 R$
800	DT467URK	N/A	NFR457DTK	N/A

Non-Fusible, Six-Pole, Six-Wire, 600 Vac, NEMA 3R

30	DT661URK	N/A	NFR651DTK	N/A
60	DT662URK	N/A	NFR652DTK	N/A
100	DT663URK	N/A	NFR653DTK	N/A

Non-Fusible, Two-Pole, Two-Wire, 240 Vac, NEMA 12 ©

30	DT361UDK	N/A	DTNF361J	H92251
60	DT362UDK	N/A	DTNF362J	H82252
100	DT363UDK	N/A	DTNF363J	H82253
200	DT364UDK	N/A	DTNF364J	H82254
400	DT365UDK	N/A	NF355HDTK	H92255

Non-Fusible, Three-Pole, Three-Wire, 240 Vac, NEMA $12{ }^{1}$

30	DT361UDK	N/A	DTNF361J	H92351
60	DT362UDK	N/A	DTNF362J	DTU362AWK
100	DT363UDK	N/A	DTNF363J	DTU363AWK
200	DT364UDK	N/A	DTNF364J	DTU364AWK
400	DT365UDK	N/A	NF355HDTK	H92355
600	N/A	N/A	N/A	H92356
Non-Fusible, Four-Pole, Four-Wire, 240 Vac, NEMA 12				
30	N/A	N/A	N/A	H92451
60	N/A	N/A	N/A	DTU462AWK
100	N/A	N/A	N/A	DTU463AWK
200	N/A	N/A	N/A	DTU464AWK
400	N/A	N/A	N/A	H92455
600	N/A	N/A	N/A	H92456

Double-Throw, continued

Ampere Rating	Catalog Number Eaton	General Electric	Siemens	Square D
Non-Fusible, Two-Pole, Two-Wire, $\mathbf{6 0 0}$ Vac,	NEMA 12			
30	DT361UDK	N/A	DTNF361J	N/A
60	DT362UDK	N/A	DTNF362J	H82342
100	DT363UDK	N/A	DTNF363J	H82343
200	DT364UDK	N/A	DTNF364J	H82344
400	DT365UDK	N/A	NF355HDTK	H92345
600	N/A	N/A	N/A	H92346

Non-Fusible, Three-Pole, Three-Wire, $\mathbf{6 0 0}$						Vac, NEMA $\mathbf{1 2}$
30	DT361UDK	N/A	DTNF361J	N/A		
60	DT362UDK	N/A	DTNF362J	DTU362AWK		
100	DT363UDK	N/A	DTNF363J	DTU363AWK		
200	DT364UDK	N/A	DTNF364J	DTU364AWK		
400	DT365UDK	N/A	NF355HDTK	H92345		
600	N/A	N/A	N/A	H92346		

Non-Fusible, Four-Pole, Four-Wire, 300 30				
N/A Vac, NEMA $\mathbf{1 2}$				
60	N/A	N/A	N/A	N/A
100	N/A	N/A	N/A	DTU462AWK
200	N/A	N/A	N/A	DTU463AWK
400	N/A	N/A	N/A	DTU464AWK
600	N/A	N/A	N/A	H92445

Non-Fusible, Two-Pole, Two-Wire, 600 Vac, NEMA 4X

30	DT361UWK	N/A	DTNF361S	N/A
60	DT362UWK	N/A	DTNF362S	82342DS
100	DT363UWK	N/A	DTNF363S	82343DS
200	DT364UWK	N/A	DTNF364S	82344DS
400	DT365UWK	N/A	NF355SSDTK	N/A

Non-Fusible, Three-Pole, Three-Wire, $\mathbf{6 0 0}$ Vac, NEMA 4X					
30	DT361UWK	N/A	DTNF361S	N/A	
60	DT362UWK	N/A	DTNF362S	DTU362DS	
100	DT363UWK	N/A	DTNF363S	DTU363DS	
200	DT364UWK	N/A	DTNF364S	DTU364DS	
400	DT365UWK	N/A	NF355SSDTK	N/A	

Non-Fusible, Four-Pole, 30				
N/A	N/A	N/A	N/A	
60	N/A	N/A	N/A	DTU462DS
100	N/A	N/A	N/A	DTU463DS
200	N/A	N/A	N/A	DTU464DS

Fusible, Three-Pole, Three-Wire, 600 Vac, NEMA 4X

30	DT361FWK	N/A	F351SSDTK	N/A
60	DT362FWK	N/A	F352SSDTK	N/A
100	DT363FWK	N/A	F353SSDTK	N/A
200	DT364FWK	N/A	F354SSDTK	N/A
400	DT365FWK	N/A	F355SSDTK	N/A

Notes

(1) Eaton and Siemens switches shown are 600V switches.

Always verify the number of poles and wires required since catalog numbers may appear in multiple tables.

Safety Switches

Catalog Number Selection

Safety Switch

Notes

(1) See Pages V2-T1-16 through V2-T1-19 for additional Flex Center options.
(2) Effective August 2003, 30-100A window switches are replaced by a full view window that allows blade position verification and blown fuse indication. See Page V2-T1-39 for catalog numbers.

This table is intended for use in breaking down existing catalog numbers. It is not intended for building new catalog numbers.
A factory-installed ground lug is supplied in all heavy-duty safety switches.

Safety Switches

Options and Accessories

Safety Switches

Description	Catalog Number
Neutral Kits/Ground Kits	
30A DG	DG030NB
60-100A DG	DG100NB
200A DG, DH (NEMA 1, 3R enclosures)	DG200NK
30-60A DH	DH030NK
100A DH	DH100NK
200A DH (NEMA 4X, 12 enclosures)	DH200NK
400A DG, DH	DS400NK
600A DG, DH	DS600NK
400-600A fusible DT, 800-1200A DH	DS800NK
30-100A DT	DT100NK
200 A DT	DT200NK
400A non-fusible DT	DT400NK
600A non-fusible DT	DT600NK
800A DT	DT800NK
1200A DT	DT1200NK
Ground Lug Kits	
30-100A DG	DG030GB
30-100A DH, DT ${ }^{(1)}$	DS100GK
200A DG, DH, DT	DS200GK

Switching Neutral Bonding Kits ${ }^{\text {2 }}$	
30-100A DT, 3P, 4P non-fusible	DT100BK
200A DT, 3P, 4P non-fusible	DT200BK
400A DT, 3P, 4P non-fusible	DT400BK
600A DT, 3P, 4P non-fusible	DT600BK
800-1200A DT, 3P, 4P non-fusible	DT800BK
Control Pole Kit (For 2P, 3P Switches)	
400-600A DG, 30-1200A DH, 30-800A DT	DS16CP

DS36CL

Auxiliary Contact Kits

All switches (except 30-100A DG) 1NO/1NC	DS200EK1 ${ }^{3}{ }^{3}$
All switches (except 30-100A DG) 2NO/2NC	DS200EK2 ${ }^{3}$)
NEMA 7/9 switches (30-100A) 1NO/1NC	178C265G05
NEMA 7/9 switches (30-100A) 2NO/2NC	178C265G06

Notes

(1) Ground bar kit is not listed on device publications.
(2) Order one kit per switch.
(3) For duty ratings, see table on following page.
(4) Order one kit for three poles.
(5) Order one kit for each pole.
(6) Receptacle switches.
(7) 30A Class J available as factory option only.
(8) If Class J fuse kit is not listed, then switch will accept Class J fusing by repositioning either fuse base or fuse clips. No drilling required.
(9) Order one kit for six poles.

Accessories are not applicable to NEMA 7/9 switches unless indicated otherwise. A factory-installed ground lug is supplied in all heavy-duty safety switches.

AC Pilot Duty Ratings

Catalog Number	Description	Volts	Break (Amperes)	Make (Amperes)
DS200EK1	1NO-1NC	110	15.0	40.0
DS200EK1	1NO-1NC	220	10.0	20.0
DS200EK1	1NO-1NC	440	6.0	10.0
DS200EK1	1NO-1NC	600	5.0	8.0
DS200EK2	2NO/2NC	110	3.0	30.0
DS200EK2	2NO/2NC	220	1.5	15.0
DS200EK2	2NO/2NC	440	1.0	8.0
DS200EK2	2NO/2NC	600	0.8	6.0

Approximate Dimensions in Inches (mm)

DS050MH	Myers Type Hubs NEMA 3R (400A and above) NEMA 4, 4X (stainless steel), 12	
	Catalog Number	Conduit Size
	DS050MH	0.50 (12.7)
	DS075MH	0.75 (19.1)
	DS100MH	1.00 (25.4)
	DS125MH	1.25 (31.8)
	DS150MH	1.50 (38.1)
	DS200MH	2.00 (50.8)
	DS250MH	2.50 (63.5)
	DS300MH	3.00 (76.2)
	DS350MH	3.50 (88.9)
	DS400MH	4.00 (101.6)
	DS500MH	5.00 (127.0)

DC Pilot Duty Ratings

Catalog Number	Description	Volts	Single Throw (Amperes)	Double Throw (Amperes)
DS200EK1	1NO-1NC	115	2.0	0.5
DS200EK1	1N0-1NC	230	0.5	0.2
DS200EK1	1N0-1NC	600	0.1	0.02
DS200EK2	2NO/2NC	115	1.0	0.2
DS200EK2	2NO/2NC	230	0.3	0.1
DS200EK2	2NO/2NC	600	0.1	-

Plate Type Hubs
For NEMA 3R enclosures (up to 200A)

Group 1 General-Duty, Heavy-Duty, Double-Throw Through 100A Catalog Number Conduit Size Group 2 General-Duty, Heavy-Duty, Double-Throw-200A Catalog Number Conduit Size			
DS075H1	$0.75(19.1)$	DS200H2	$2.00(50.8)$
DS100H1	$1.00(25.4)$	DS250H2	$2.50(63.5)$
DS125H1	$1.25(31.8)$	DS300H2	$3.00(76.2)$
DS150H1	$1.50(38.1)$	-	-
DS200H1	$2.00(50.8)$	-	-

Catalog number DS900AP adapter kit permits Installation of Group 1 hubs on 200A type general-duty, heavy-duty and double-throw switches.

Contact the Flex Center at 1-888-329-9272 or
FlexSwitches@eaton.com for information on hubs for non-metallic NEMA 4X switches.

Modifications-FIex Center

Introduction

The Safety Switch Flex Center is a special facility at the site of our Cleveland, Tennessee, plant that is dedicated to providing customized safety switches that meet customer's challenging applications.

Eaton's Flex Center is a solutions center that provides real value:

- A dedicated and knowledgeable engineering/ manufacturing/customer service team to meet your needs
- A production facility stocked with a full arsenal of equipment to get the job done
- The industry's shortest lead-time
- Easy ordering through our distributors

Description	Suffix	Item
Nameplates	NP	1
Fungus proofing	FP	2
Special paint		3
Lock-on provisions on heavy-duty safety switches for most enclosure types	L0	4
Trapped key interlock systems	TK	5
Upper cover viewing window	W	6
Lower cover viewing window	LW	7
Neutral assemblies factory installed for double-throw safety switches	N	8
Class "R" fuse clips factory installed for heavy-duty switches	5 or 6	9
Class "T" fuse clips factory installed for heavy-duty switches	T	10
Class "J" fuse clips factory installed for heavy-duty and doublethrow safety switches	J	11
Fuse pullers factory installed	FE	12
Special crimp lug pads factory installed for general-duty and heavyduty switches	CK	13
Copper lugs factory installed	CL	14
Equipment ground lugs factory installed	G	15
Custom lug configurations	L	16
Auxiliary contacts factory installed	2 or 3	17
Control pole factory installed	CP	18
Switching neutral double-throw	SN	19
Neutral assemblies factory installed for single-throw non-fusible safety switches	N	20
How to order		21
How to price		22

1. Nameplates

Price covers up to three lines of text with a maximum of 25 characters per line. Standard nameplates are laser-engraved plastic and have black letters on a white background. Rotary-engraved phenolic nameplates are also available at a premium. Additional color combinations and larger nameplates are available. Contact the Flex Center for price and availability for these special requirements. Customer must specify the text when placing an order.

Item 1

Description
Plastic nameplate-up to three lines
Phenolic nameplate-up to three lines

2. Fungus Proofing

All non-metallic components of the switch are coated with a moisture and fungusresistant varnish. The inhibitor used meets military specification: MIL-V-173C for MOISTURE AND FUNGUSRESISTANT TREATMENT.
The treated switch meets military specification:
MIL-T-152E for MOISTURE
AND FUNGUS-RESISTANT
TREATMENT OF COMMUNICATIONS,
ELECTRONICS AND ASSOCIATED EQUIPMENT. Not UL listed.

Item 2

Ampere Rating
30
60
100
200
400
600
800
1200

To order, add Suffix FP
to standard safety switch catalog number. Example:
DH363FGKFP.

3. Special Paint

Special paint colors are available for order quantities of five or more switches. Colors available are red, orange, yellow, green, black and white. Custom color is applied over the standard ANSI-61 gray finish.
Minimum quantity of five of the same color is required. Order by description. For quantities less than five, higher ampere ratings, or other color request, contact the Safety Switch Flex Center.

Item 3
Ampere Rating

30
60
100
200
400
600

4. Lock-On Provisions on Heavy-Duty Safety Switches for Most Enclosure Types

Available on 30-800A heavyduty and double-throw safety switches. Provision will accept a single lock.

To order, add Suffix LO to the standard catalog number. Example: DH362FRKLO.

5. Trapped Key Interlock Systems

Available only on heavy-duty and double-throw safety switches. Trapped key systems are used on safety switches to prevent unauthorized operations or to predetermine a series of power transfers by an authorized operator.

Before system construction can begin, the following information must be provided to the Flex Center:

- User-name, address and telephone number
- Complete coordination (lock scheme) required with order

To order, add Suffix TK to the standard catalog number. Example: DH363FWKTK.

Item 5

Ampere Rating	Switch Type
$30-1200$	Heavy-duty
$30-800$	Double-throw

6. Upper Cover

 Viewing WindowUpper viewing window is centered over the switching contacts to provide visual verification of ON/OFF status. Available on most heavy-duty NEMA 4X stainless steel and NEMA $12 / 3$ R and doublethrow enclosures. Not available on non-metallic enclosures. To order, add Suffix W to the standard catalog number.

Note: 30-100A window switches are now provided with a full view cover window for blade verification and blown fuse indication.

7. Lower Cover Viewing Window

Lower viewing window is positioned over fuses and provides visual verification of blown fuse indicators for Littelfuse, Inc. TM fuses. Available in 200-600A, twoand three-pole heavy-duty NEMA 4X stainless steel and NEMA 12/3R enclosures. Not available on nonmetallic enclosures. To order, add
Suffix LW to standard catalog number.

Note: 30-100A window switches are now provided with a full view cover window for blade verification and blown fuse indication.

Items 6 and 7
Viewing Window (Upper or Lower) Ampere Rating

30-200
Con-800
Contact the Safety Switch
Flex Center for lead-time.

8. Neutral Assemblies

 Factory Installed for DoubleThrow Safety SwitchesItem 8

Ampere Rating	Switch Type Two- and Three-Pole
30	Fusible and non-fusible
60	Fusible and non-fusible
100	Fusible and non-fusible
200	Fusible and non-fusible
400	Non-fusible
600	Non-fusible
400	Fusible
600	Fusible
800	Non-fusible

To order, add Suffix \mathbf{N} on non-fusible switches OR replace 6th character F with N on fusible switches. The total price is the standard switch price plus the price adder.
Example 1: DT361URKN non-fusible double-throw, three-pole, 30A switch with factory-installed neutral assembly.

Example 2: DT363NRK fusible double-throw, three-pole, 100A switch with factory-installed neutral assembly.
9. Class "R" Fuse Clips Factory Installed for Heavy-Duty Switches

Item 9

Ampere Rating	Voltage
30	240 and 600
60	240 and 600
100	240 and 600
200	240 and 600
400	240 and 600
600	240 and 600

To order, add Suffix 5 to the standard catalog number for 240 V application.
Add Suffix 6 to standard catalog number for 600 V application. Total price is the standard catalog number price plus the price adder from the table above depending on the number of safety switch poles.

Example: DH324FRK5 heavyduty, three-pole, 200A switch at 240 V with factory-installed Class " R " fuse clips.
10. Class " T " Fuse Clips Factory Installed for Heavy-Duty Switches

Item 10

Ampere Rating	Voltage
200	$\frac{240}{600}$
400	$\underline{240}$
600	$\underline{600}$
800	$\underline{240}$
1200	$\frac{240}{600}$
	240

To order, add Suffix \mathbf{T} to the standard catalog number (catalog number identifies voltage). Total price is the standard catalog number price plus the price adder depending on the number of safety switch poles.

Example: DH364FGKT heavyduty, three-pole, 200A fusible switch at 480V with factoryinstalled Class "T" Fuse Clips.
11. Class "J" Fuse Clips Factory Installed for Heavy-Duty and DoubleThrow Safety Switches

Item 11

Ampere Rating	Voltage	Switch Type
30	240	Heavy-duty and double-throw
	600	Heavy-duty and double-throw
60	240	Heavy-duty and double-throw
	600	Heavy-duty and double-throw
100	240	Heavy-duty and double-throw
	600	Heavy-duty and double-throw
200	240	Heavy-duty and double-throw
	600	Heavy-duty and double-throw
400	600	Double-throw
600	240	Heavy-duty
	600	Heavy-duty

Total price is the standard catalog number price plus the price adder from the table above depending on the number of safety poles. Order by description. A table of common 30A heavy-duty switches with "J" fuse clips factory installed is shown on
Page V2-T1-18 (field
modification kits are not available for 30A heavyduty switches).

Common 30A Heavy-Duty
Switches with "J" Fuse Clips Factory Installed

Voltage	Switch Type Three-Pole	Catalog Number
240	NEMA 1	DH321FGKJ
	NEMA 3R	DH321FRKJ
	NEMA 12	DH321FDKJ
	NEMA 4X	DH321FWKJ
600	NEMA 1	DH361FGKJ
	NEMA 3R	DH361FRKJ
	NEMA 12	DH361FDKJ
	NEMA 4X	DH361FWKJ

To order, add Suffix J to the standard catalog number (catalog number identifies voltage). Total price is the standard catalog number price plus the price adder depending on the number of safety switch poles.

Example: DH363FGKJ heavyduty, three-pole, 200A fusible switch at 480V with factoryinstalled Class "J" fuse clips.

12. Fuse Pullers Factory Installed

Item 12

Ampere Rating	Switch Type
$30-60$	Heavy-duty
100	Heavy-duty
200	General-duty and heavy-duty

To order, add Suffix FE to the standard catalog number. Example: DH361FRKFE.
Note: Standard NEMA 12/3R, 4 and $4 X$ switches through 200A are supplied with fuse pullers from the factory.
13. Special Crimp Lug
Pads Factory Installed for
General-Duty and Heavy-
Duty Switches (Crimp
Lugs are Not Included)
To order add Suffix CK
to the standard safety
switch catalog number.
Item 13

Ampere Rating
$400-600$
800
Heavy-duty Type DH
switches, $30-200 \mathrm{~A}$ are
adaptable to crimp lugs,
simply remove the box lugs.

14. Copper Lugs Factory Installed

Item 14

Ampere Rating	Switch Type
30	Heavy-duty Double-throw 60 Heavy-duty Double-throw 100 Heavy-duty 200 Double-throw 400 Heavy-duty 600 General-duty and heavy-duty

To order, add Suffix CL to the standard safety switch catalog number. The total price is the standard switch price plus the price adder.
Example: DH221FGKCL
heavy-duty, two-pole, 30A fusible switch at 240 V with copper lugs factory installed.

15. Equipment Ground Lugs
 Factory Installed for
 General-Duty and HeavyDuty Switches

Item 15

Ampere Rating
$30-100$
200
$400-1200$
To order, add Suffix G to the
standard Safety Switch Catalog
Number. The total price is the
standard switch price plus the
price adder.

16. Custom Lug

 ConfigurationsCustomer-specified lug arrangements are available on heavy-duty and double-throw safety switches. Contact the Safety Switch Flex Center for price and lead-time.
17. Auxiliary Contacts Factory Installed Provide Early-Make/Early-Break Operation

Item 17
General-Duty Switches 200-600A, Non-Metallic 30-200A,
Heavy-Duty 30-1200A and
Double-Throw Switches 30-800A

Ampere Rating	Description
$30-200$	1 NO/1NC
$2 N O / 2 N C$	
$400-1200$	1 NO/1NC
	$2 N O / 2 N C$

To order 1NO/1NC
contacts, add Suffix 2
to the standard safety switch catalog number.

To order 2NO/2NC
contacts, add Suffix 3
to the standard safety switch catalog number.

The total price is the standard switch price plus the price adder.

Example: DH423FGK2

Heavy-duty, four-pole, 100A
fusible switch at 240 V with
factory-installed 1NO/1NC contacts.

Example: DT324FGK22

double-throw, three-pole, 200A fusible switch at 240 V with two factory-installed contacts (one installed in the normal ON position and one installed in the auxiliary ON position).

18. Control Pole Factory Installed Provides Late-Make/Early-Break Operation

The K-Series control pole provides one normally open contact, late-make, earlybreak operation. It mounts in the exact location as the neutral block using the same pre-drilled holes. This is directly connected to the power pole operating shaft. Direct connection and visible blades provide more secure electrical interlocking than handle linkage operation of a snap/switch type interlock. This reliability meets the requirements of many specifications for four-pole switches when the fourth pole is required for secure electrical interlocking.

Item 18

Ampere Rating	Switch Type
$30-1200$	Heavy-duty
$30-200$	Double-throw
$400-600$	General-duty

To order, add Suffix CP to
the standard safety switch catalog number. The total price is the standard switch price plus the price adder.

Example: DH267FGKCP

heavy-duty, two-pole, 800A
fusible switch at 480 V with factory-installed control pole.

Safety Switches

19. Switching Neutral Double-Throw

UL listed for three-pole and four-pole non-fusible doublethrow safety switches. Switching neutrals are required for separately derived systems when bonding the neutral of the generator to a grounding system at the generator.

Item 19

Ampere Rating
$30-200$
400
600
800

To order, add Suffix SN to the standard safety switch catalog number. The total price is the standard switch price plus the price adder.

Example: DT324URKSN non-fusible double-throw, three-pole, 200A switch with factory-installed switching neutral.

20. Neutral Assemblies

Factory Installed for

Single-Throw Non-Fusible
Safety Switches
Available on 200-600A general-duty safety switches and 30-1200A heavy-duty safety switches.

Item 20

Ampere Rating
$30-60$
100
200 NEMA $4,4 X, 12$
200 NEMA $1,3 R$
400
600
800
1200

To order, add Suffix \mathbf{N} to the standard safety switch catalog number.

Example: DH364UWKN

Heavy-duty, three-pole, 200A, NEMA 4X.

21. How to Order

Step One: Contact the Safety Switch Flex Center for price and delivery on product being modified. An authorized negotiation (TSP) number will be provided to track your order.
Safety Switch Flex Center
Phone: 1-888-329-9272 or
FlexSwitches@eaton.com
Fax: 1-423-478-0270
Step Two: Enter the order on VISTALINE ${ }^{\text {TM }}$ by description (with catalog number if it applies) and reference the authorized negotiation (TSP) number.

Vista suffix will be "ETS."
Product code will be "BE90."
For order entry assistance, contact CSC at:
Phone: 1-800-356-1243
Fax: 1-800-752-8602

22. How to Price

Step One: Select catalog number from Pages V2-T114 through V2-T1-83 of this catalog or Vista of the switch that needs to be modified.

Step Two: Use the correct price (from Vista or the current Price and Availability Digest) of the switch that needs to be modified. If no price exists, Flex Center will provide one.
Step Three: Refer to the modification on Pages V2-T116 through V2-T1-19 for price additions.

Example: DT363URK

Options: factory installed Neutral (N)
Copper lugs (CL) (3×120.00)

Step Four: Contact the Safety Switch Flex Center for authorized price and lead-time.

Note: Existing DSP, CSP and DOP pricing does not apply.

For application, availability or pricing questions, contact the Safety Switch Flex Center at

1-888-329-9272 or

FlexSwitches@eaton.com.

Additional Safety Switch Flex Center Design Offerings

- Left-hand design (30-200A)
- Cover-mounted status lights and selector switches
- Integrated:
- Transient Voltage Surge Suppression (TVSS)
- Current transformers
- Double-throw receptacle switches
- 200% neutrals
- Seam-welded stainless steel
- Gang-operated kits:
- Mechanically interlocks two or three separate switches
- Cam-Lok ${ }^{\circledR}$ and Posi-Lok ${ }^{\circledR}$ receptacles
- Reverse feed
- Integrated wattmeter
- Custom enclosures
- Double-throw switches with windows
- 316 grade stainless steel
- Breather/drains
- Voltage/phase monitor

Literature

The Safety Switch Flex Center's innovative approach to flexible engineering, manufacturing and customer service provides the shortest production, design and delivery cycle in the industry. Find out more about how the Safety Switch Flex Center can give you the safety switch solution you need... when you need them. Order Sales Aid SA00801002E from Eaton's Literature Fulfillment Center by calling 1-800-957-7050.

Switching Devices

Safety Switches

1

Technical Data and Specifications

Standard Lug Capacities

Description	Minimum Wire Size	Maximum Wire Size	Wire Type
30A DP	\#14	\#10	Cu or ${ }^{(1)}$
	\#12	\#10	Al
30A DG	\#14	\#6	$\mathrm{Cu} / \mathrm{Al}$
30A DH, DT	\#14	\#2	Cu/Al
60A DG	\#14	\#1/0	Cu/Al
60A DH, DT	\#14	\#2	$\mathrm{Cu} / \mathrm{Al}$
$100 \mathrm{~A} \mathrm{DG} \mathrm{(2)}$	\#14	\#1/0	Cu/Al
100A DH, DT	\#14	\#1/0	$\mathrm{Cu} / \mathrm{Al}$
200A DG, DT	\#6	250 kcmil	$\mathrm{Cu} / \mathrm{Al}$
200A DH Type 1 and 3R	\#6	250 kcmil	$\mathrm{Cu} / \mathrm{Al}$
200A DH Type 4 and 12	\#6	300 kcmil	$\mathrm{Cu} / \mathrm{Al}$
400A DG, DH, DT	(2) \#1/0	(2) 300 kcmil	$\mathrm{Cu} / \mathrm{Al}$ or ${ }^{(1)}$
	(1) \#1/0	(1) 750 kcmil	$\mathrm{Cu} / \mathrm{Al}$
600A DG, DH	(1) \#2	(1) 600 kcmil	$\mathrm{Cu} / \mathrm{Al}$ and ${ }^{(3)}$
	(1) \#1/0	(1) 750 kcmil	Cu/Al
600A non-fusible DT	(2) \#250	(2) 500 kcmil	$\mathrm{Cu} / \mathrm{Al}$
800A DH	(4) \#1/0	(4) 750 kcmil	$\mathrm{Cu} / \mathrm{Al}$
800A DT, 600A fusible DT	(3) \#250	(3) 500 kcmil	Cu/Al
1200A DH, DT	(4) \#1/0	(4) 750 kcmil	Cu/Al
Copper-Bodied Lugs			
30 A Cu	\#14	\#6	Cu
60 A Cu	\#14	\#4	Cu
100A Cu	\#6	\#1/0	Cu
200 ACu	\#6	250 kcmil	Cu
400 A Cu	\#1/0	500 kcmil	Cu
600-800A Cu	(2) \#1/0	(2) 500 kcmil	Cu

Notes

(1) Single barrel lug that accepts one or two cables per phase as detailed above.
(2) The maximum size aluminum or copper-clad aluminum wire allowable for applications where the conductor enters or leaves the enclosure through the wall opposite its terminal is \#1 gauge.
(3) Double barrel lug that accepts two cables per phase as detailed above.

Although certain lug capacities are larger than required, only minimum wire bending space is provided per the requirements noted in NEC ${ }^{\circledR}$ Tables 373.6 (a) and (b) for respective ampere ratings.
A factory-installed ground lug is supplied in all heavy-duty safety switches.

General-Duty

Short-Circuit Ratings Using Class "R", "J" or "T" Fusing Where Applicable (1)

Ampere Rating	Short-Circuit Ratings (Amperes)	
	Type 1	Type 3R
30	100 k at 240 V	100k at 240V
60	100 k at 240V	100k at 240V
100	100 k at 240 V	100 k at 240V
200	100 k at 240V	100k at 240V
400	100 k at 250 V	100k at 250V
600	100 k at 250 V	100k at 250V

Shunt Trip Safety Switch

Short-Circuit Ratings Using Class "R," "J/L" or "T" Fusing (2)

Ampere Rating	$\mathbf{4 8 0 V}$	$\mathbf{6 0 0 V}$
30	200 kAIC	200 kAIC
60	200 kAIC	200 kAIC
100	200 kAIC	200 kAIC
200	200 kAIC	100 kAIC
400	200 kAIC	100 kAIC
600	200 kAIC	100 kAIC
800	200 kAIC	200 kAIC

Heavy-Duty

Short-Circuit Ratings Using Class "R," "J" or "T" Fusing Where Applicable ${ }^{(1)}$

Ampere Rating	Short-Circuit Ratings (Amperes)			
	Type 1	Type 3R	Type 12	Type 4 and 4X
30	200k at 600V	200k at 600V	200k at 600V	200k at 600V
60	200 k at 600V	200k at 600V	200k at 600V	200k at 600V
100	$\begin{aligned} & 200 \mathrm{k} \text { at } 480 \mathrm{~V} \\ & 100 \mathrm{k} \text { at } 600 \mathrm{~V} \end{aligned}$	200 k at 480 V 100 k at 600 V	200k at 600V	200 k at 600V
200	200k at 600V	200k at 600V	200k at 600V	200k at 600V
400	$\begin{aligned} & 200 \mathrm{k} \text { at } 480 \mathrm{~V} \\ & 100 \mathrm{k} \text { at } 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 200 \mathrm{k} \text { at } 480 \mathrm{~V} \\ & 100 \mathrm{k} \text { at } 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { 200k at } 480 \mathrm{~V} \\ & 100 \mathrm{k} \text { at } 600 \mathrm{~V} \end{aligned}$	200 k at 480 V 100 k at 600 V
600	$\begin{aligned} & \text { 200k at } 480 \mathrm{~V} \\ & 100 \mathrm{k} \text { at } 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 200 \mathrm{k} \text { at } 480 \mathrm{~V} \\ & 100 \mathrm{k} \text { at } 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { 200k at } 480 \mathrm{~V} \\ & 100 \mathrm{k} \text { at } 600 \mathrm{~V} \end{aligned}$	$200 \mathrm{k} \text { at } 480 \mathrm{~V}$ 100k at 600V
$800{ }^{3}$	$\begin{aligned} & \text { 200k at } 480 \mathrm{~V} \\ & 100 \mathrm{k} \text { at } 600 \mathrm{~V} \end{aligned}$	200k at 480V 100 k at 600 V	$200 \mathrm{k} \text { at 480V }$ 100k at 600V	200 k at 480 V 100 k at 600 V
$1200{ }^{3}$	200k at 600V	200k at 600V	200k at 600V	200k at 600V

Double Throw

Short-Circuit Ratings Using Class "R," "J" or "T" Fusing where Applicable (4)(6)(8)

Ampere Rating	Short-Circuit Ratings (Amperes) (600V) Type 1			Type 3R
30	100 k	Type 12	Type 4 and 4X	
60	100 k	100 k	100 k	
100	100 k	100 k	100 k	100 k
200	100 k	100 k	100 k	100 k
400	100 k	100 k	100 k	100 k
600	100 k	100 k	100 k	100 k
800	100 k	100 k	-	100 k
1200	100 k	100 k	-	-

Notes
(1) Class " H " fuse clips supplied as standard for $30-600 \mathrm{~A}$. Rated at $10,000 \mathrm{~A}$ rms symmetrical when using Class " H " fuses.
(2) Non-fusible values are based on combination rating with upstream device (see TD00801005E).
(3) Class "L" fuse connectors supplied as standard for 800A and 1200A.
(4) Class " H " fuse clips supplied as standard for $30-600 \mathrm{~A}$, except Class " T " for 400A at 600 V and 600 A at 240 V . Rated at $10,000 \mathrm{~A}$ rms symmetrical when using Class " H " fuses.
(5) Class "L" fuse connectors supplied as standard for 800A and 1200A
(6) Safety switch short-circuit ratings are applicable to AC only.
(7) Safety switch $\mathrm{I}^{2} \mathrm{t}$ and Ip values are identical to UL maximum acceptable $\mathrm{I}^{2} \mathrm{t}$ and Ip values for the corresponding class fuse.
(8) Table above is not applicable to the compact design shown on Page V2-T1-47. The compact design is suitable for use on a circuit capable of delivering not more than $10,000 \mathrm{rms}$ symmetrical amperes.

1.1
 Switching Devices

Safety Switches

Short-Circuit Ratings of Non-Fusible Switches

The UL listed short-circuit ratings for Eaton non-fusible switches are based on the switches being properly protected by overcurrent protective devices. For applications that require a UL listed short-circuit rating of $10,000 \mathrm{rms}$ symmetrical amperes or less, an Eaton non-fusible switch must be properly protected by any overcurrent protective device rated no greater than the ampere rating of the switch. For applications that require a UL listed short-circuit rating of greater than $10,000 \mathrm{rms}$ symmetrical amperes, an Eaton non-fusible switch
must be properly protected
by the appropriate class and size fusing noted. Otherwise, this non-fusible switch must be replaced with an Eaton fusible switch that uses the appropriate fusing required. Molded-case circuit breaker protection of non-fusible Eaton switches for applications that require a short-circuit rating of greater than $10,000 \mathrm{rms}$ symmetrical amperes has been evaluated and is summarized below.
Refer to the reference tables for typical Eaton fusible switch UL listed short-circuit ratings.

UL Recognized Safety Switch/Circuit Breaker
Series-Connected Ratings

Safety		Circuit Breaker Maximum Short-Circuit	
Switch	Maximum Ampere Rating	System Voltage AC	Rating (rms Symmetrical)
30 and	600	25,000	Circuit Breaker Frame(s)
60		18,000	FDC, HFD, HFDE, EGH
		14,000	FD, EGE
100	600	25,000	FDB
		18,000	FDC, HFD, HFDE, EGH
		14,000	FD, EGE
	480	35,000	FDB
200	600	25,000	EGH, EGS
		18,000	FDC, HFD, HFDE, HJD, JGH
		14,000	FD, JD, JGE
	480	65,000	FDB

Safety Switches

Information and Application

The circuit breaker or fuse rating is not to exceed the ampere rating of the nonfusible switch. When used on systems with greater than 10 kA short-circuit rating available, the UL Listed short-
circuit rating of the nonfusible switch is based upon the switch being used in combination with fuses or molded-case circuit breakers identified in the table below.

Non-Fusible Safety Switches

Eaton Non-Fusible Safety Switch Ampere Rating	Maximum System Voltage AC	Maximum Short-Circuit Rating	Upstream D Fuse Class	Breaker Frame
30 and 60	600	10,000	H, K	Any circuit breaker
		14,000		FDB
		18,000		FD, EGE
		25,000		FDC, HFD, HFDE, EGH
		200,000	R, T, J, L	
100	480	10,000	H, K	Any circuit breaker
		35,000		EGH, EGS
		200,000	R, T, J, L	
	600	10,000	H, K	Any circuit breaker
		14,000		FDB
		18,000		FD, EGE
		25,000		FDC, HFD, HFDE, EGH
		200,000 (3)	R, T, J, L	
200	480	10,000	H, K	Any circuit breaker
		65,000		HFD, HFDE, HJD, JGH
		200,000	R, T, J, L	
	600	10,000	H, K	Any circuit breaker
		14,000		FDB
		18,000		FD, JD, JGE
		25,000		FDC, HFD, HFDE, HJD, JGH
		200,000	R, T, J, L	

Notes
(1) For use on NEMA 1, 3R, 12/3R and 4 X switches.
(2) Fuse or circuit breaker rating is not to exceed switch rating.
(3) NEMA $12,4 / 4 \mathrm{X}$ only. NEMA $1,3 \mathrm{R}$ are 100 kAIC at 600 Vac .

1.1
 Switching Devices
 \author{ Safety Switches

}

Dimensions

Typical Fuse Dimensions in Inches
Note: For typical fuse dimensions in millimeters, see Page V2-T1-25

Class L Low-Peak and Limitron Fuses
KRP-C, KTU \& KLU (601-4000A) (600V)

Note: KRP-CL (150-600A) fuses have same dimensions as 601-800A case size. KTU (200-600A) have same dimensions, except tube 3-inch Igth. x 2 -inch dia.; terminal 1.63 -inch width $\times 1.25$-inch thick.

Fusetron and Limitron

Ampere	250V		600V	
	A	B	A	B
70-100	5.88	1.06	7.88	1.34
110-200	7.13	1.56	9.63	1.84
225-400	8.63	2.06	11.63	2.59
450-600	10.38	2.59	13.38	3.13
Low-Peak				
	250V		600V	
Ampere	A	B	A	B
70-100	5.88	1.16	7.88	1.16
110-200	7.13	1.66	9.63	1.66
225-400	8.63	2.38	11.63	2.38
450-600	10.38	2.88	13.38	2.88

Safety Switches

Class T
T-Tron Fuses
JJN (300V) JJS (600V)

Safety Switches

General Duty

Product Description

- 30-600A
- Suitable for service entrance applications unless otherwise noted
- Fusible and non-fusible switches are 100\% load break and 100\% load make rated
- The continuous load current of fusible switches is not to exceed 80% of the rating of fuses employed in other than motor circuits. Non-fusible switches are 100\% fully rated
- 200-600A features K-Series design
- Horsepower rated
- Fusible and non-fusible switches. Single-pole S / N through four-wire; 120/240, and 240 Vac
- With Class R fuses, switches may be used on systems capable of delivering 100,000A rms symmetrical
Note: Plug fuse switches are not service entrance rated.
- Bolt-on hub provision. Provided for general-duty switches in a NEMA 3R enclosure. See Page V2-T115 for selection

Application Description
For residential and commercial applications. Suitable for light-duty motor circuits and service entrance.

Contents

Description	Page
Product Overview .	V2-T1-3
General Duty.	V2-T1-26
Standards and Certifications	V2-T1-27
Product Selection	V2-T1-28
Dimensions	V2-T1-30
Heavy-Duty	V2-T1-31
Six-Pole Switches	V2-T1-43
Double-Throw Switches	V2-T1-45
EnviroLine-Stainless Steel Switch	V2-T1-53
EnviroLine-Upper and Lower Window Switches	V2-T1-56
EnviroLine-Receptacle Switches	V2-T1-59
EnviroLine-Non-Metallic KRYDON Switch	V2-T1-61
Shunt Trip Safety SwitchShunt Trip Safety Switch	V2-T1-63
NEMA 7/9—Hazardous Location Disconnect Switch .	V2-T1-66
Quick Connect Switches.	V2-T1-68
Solar Disconnect Switch.	V2-T1-70
316-Grade Stainless Steel Safety Switches	V2-T1-72
Mill-Duty Rated, Heavy-Duty, Fusible, Non-Fusible, Single-Throw.	V2-T1-76
Heavy-Duty Fusible Safety Switches Accepting	
Cube Fuses	V2-T1-78
Elevator Control Switch.	V2-T1-81
Auxiliary Power Heavy-Duty Safety Switch.	V2-T1-83
Left-Handed Safety Switch	V2-T1-86
200\% Neutral Safety Switches.	V2-T1-87
Pringle Bolted Pressure Switch.	V2-T1-88
Type DS, Fusible and Non-Fusible .	V2-T1-91
Type Visi-Flex DE-ION	V2-T1-94
Flange Mounted-Variable Depth	V2-T1-98
Flange Mounted-Fixed Depth.	V2-T1-102

Features, Benefits and Functions

General-Duty (Cartridge Fuse)

- Ample wire bending space provides for easier installation
- Visible double-break quickmake, quick-break rotary blade mechanism
- Side opening door on all enclosures
- Mechanically interlocked cover to prevent easy access when the switch is in the ON position
- With Class R fuses, switches may be used on systems capable of delivering 100,000A rms symmetrical
- Clearly visible and accessible neutral where applicable
- Visible ON/OFF indication
- Tangential knockouts on 30-60A designs
- Ample wiring space
- Double padlocking capability on 30-100A
- Triple padlocking capability on 200-600A
- Additional door locking capability
- Bilingual English/Spanish door label on 30-100A
- Tri-lingual nameplates

Safety Switches

Standards and Certifications

- UL listed File No. E5239
- Meets UL 98 for enclosed switches and NEMA Std. KS-1

- Door cannot be opened when the handle is in the ON position. Front and side operable defeater mechanism provides for user access when necessary on singlethrow switches

Tangential Knockouts

- An ample number are provided on the top, bottom and sides of both NEMA Types 1 and 3R enclosures through 200A

Bolt-On Hub Kits

- For switches in a NEMA Type 3R, 30-200A. Use a Myers type hub for all others

All general-duty switches above 100A and all heavyduty switches incorporate these K-Series switch design features.

- Two points of contact provide a positive open and close, easier operation, and also help prevent contact burning for longer contact life

Visible Double-Break Rotary Blade Mechanism

- Protects against accidental contact with energized parts. Probe holes enable the user to test if the line side is energized without removing the shield. Not typically provided on general-duty switches, but available as a field kit or factory installed

Clear Line Shield

- Provide easy removal of fuses

Built-In Fuse Pullers (NEMA 12 and 4X 30-200A Only)

Clearly Visible Handle

- The position (ON or OFF) can be clearly seen from a distance and the length provides for easy operation

Triple Padlocking Capability

- Personnel safety feature because the large hasp can accommodate up to three 3/8-inch (9.5 mm) shank locks

Additional Locking Capability

- Cabinet door can be further padlocked at the top and bottom as applicable

Safety Switches

Product Selection

120/240 Vac General-Duty, Fusible, Single-Throw

Cartridge Type-Two-Pole Two-Wire (Two Blades, Two Fuses) - $\mathbf{2 4 0}$ Vac

$\begin{array}{ll} 1 & 1 \\ 0 & 0 \\ 0 \\ 1 & 0 \\ 0 & 1 \end{array}$	30	-	-	1-1/2-3	3-7-1/2	-	(3)	(3)
	60	-	-	3-10	7-1/2-15	-	(3)	(3)
	100	-	-	7-1/2-15	15-30	-	(3)	(3)
	200	H	-	15	25-60	-	DG224FGK ${ }^{(4) 5}$	DG224FRK ${ }^{(4) 5}$
	400	H	-	-	50-125	-	DG225FGK ${ }^{\text {(4) }}$	DG225FRK ${ }^{\text {(4) }}$
	600	H	-	-	75-200	-	DG226FGK ${ }^{\text {(4) }}$	DG226FRK ${ }^{\text {(4) }}$
Cartridge Type-Three-Wire (Two Blades, Two Fuses, S/N) - 120/240 Vac								
$\begin{array}{lll} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 3 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	30	H	-	1-1/2-3	3-7-1/2 ©	-	DG221NGB ${ }^{\text {2 }}$	DG221NRB ${ }^{\text {2 }}$
	60	H	-	3-10	7-1/2-15 ${ }^{\text {6 }}$	-	DG222NGB ${ }^{2}$	DG222NRB ${ }^{2}$
	100	H	-	7-1/2-15	15-30 ©	-	DG223NGB (2)	DG223NRB ${ }^{2}$
	200	H	-	15	25-60 (6)	-	DG224NGK	DG224NRK
	400	H	-	-	50-125 ©	50	DG225NGK	DG225NRK
	600	H	-	-	75-200 ©	-	DG226NGK	DG226NRK

Notes

(1) Maximum hp ratings apply only when dual element time delay fuses are used.
(2) These switches do not have an interlock that prevents door from being opened when switch is in the ON position.
${ }^{(3)}$ Use three-wire catalog numbers below.
(4) Solid neutral bars are not included. Order separately from table on Page V2-T1-14.
(5) WARNING! Switch is not approved for service entrance unless a neutral kit is installed.
(6) Grounded B phase rating, UL listed.

All general-duty safety switches are individually packaged.
Accessories are limited in scope on general-duty safety switches. See Page V2-T1-14 for availability. In addition, clear line shields are available as an accessory on 200-600A general-duty switches. Catalog Numbers: 200A $=70-7759-11,400 \mathrm{~A}=70-8063-8,600 \mathrm{~A}=70-8064-8$.

Safety Switches

120/240 Vac General-Duty, Fusible, Single-Throw, continued

System	Ampere Rating	Fuse Type Provision	Maximum Horsepower Ratings ${ }^{(1)}$				NEMA 1 Enclosure Indoor Catalog Number	NEMA 3R Enclosure Rainproof Catalog Number
			Singl 120V	$240 \mathrm{~V}$	Three-Phase AC 240 V	$\begin{aligned} & \text { DC } \\ & \text { 250V } \end{aligned}$		
Cartridge Type - Three-Pole, Three-Wire (Three Blades, Three Fuses) - 240 Vac								
$\begin{array}{lll} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 9 & 9 & 9 \\ 0 & 6 & 6 \end{array}$	30	-	-	-	-	-	(2)	(2)
	60	-	-	-	-	-	(2)	(2)
	100	-	-	-	-	-	(2)	(2)
	200	H	-	15	25-60	-	DG324FGK ${ }^{3(4)}$	(2)
	400	H	-	-	50-125	-	DG325FGK ${ }^{3}{ }^{\text {4 }}$	DG325FRK ${ }^{3(4)}$
	600	H	-	-	75-200	-	DG326FGK ${ }^{(3) 4}$	DG326FRK ${ }^{(3) 4}$
Cartridge Type-Four-Wire (Three Blades, Three Fuses, S/N) - 120/240 Vac								
$\begin{array}{ll} 1 & 1 \\ 0 & 0 \\ 1 & 9 \\ 9 & 9 \\ 0 & 9 \end{array}$	30	H	-	1-1/2-3	3-7-1/2	-	DG321NGB ${ }^{5}$	DG321NRB ©
	60	H	-	3-10	7-1/2-15	-	DG322NGB ${ }^{\text {(5) }}$	DG322NRB ${ }^{\text {(5) }}$
	100	H	-	7-1/2-15	15-30	-	DG323NGB ${ }^{\text {5 }}$	DG323NRB ${ }^{\text {5 }}$
	200	H	-	15	25-60	-	DG324NGK	DG324NRK
	400	H	-	-	50-125	-	DG325NGK	DG325NRK
	600	H	-	-	75-200	-	DG326NGK	DG326NRK

DG322URB

120/240 Vac General-Duty, Non-Fusible, Single-Throw

System	Ampere Rating	Maxi Single 120V	powe 240V	Three-Phase AC 240V	$\begin{aligned} & \text { DC } \\ & 250 \mathrm{~V} \end{aligned}$	NEMA 1 Enclosure Indoor Catalog Number	NEMA 3R Enclosure Rainproof Catalog Number
Two-Pole, Two-Wire (Two Blades)-240 Vac							
o, o/	30	2	3	-	-	DG221UGB ${ }^{\text {(4) }}$	DG221URB (4)
	60	3	10	-	-	DG222UGB (4)	DG222URB (4) ${ }^{\text {(}}$
	100	-	15	-	-	DG223UGB ${ }^{445}$	DG223URB ${ }^{445}$
	200	-	15	-	-	(4)6	DG224URK ${ }^{4}$
Three-Pole, Three-Wire (Three Blades) - 240 Vac							
o, o, o	30	2	3	7-1/2	-	DG321UGB ${ }^{\text {(4) }}$	DG321URB (4)
	60	3	10	15	-	DG322UGB (4) ${ }^{\text {(}}$	DG322URB (4) ${ }^{\text {(}}$
	100	-	15	30	-	DG323UGB ${ }^{\text {(4) }}$	DG323URB (4) ${ }^{\text {(}}$
	200	-	15	60	-	DG324UGK ${ }^{4}$	DG324URK ${ }^{4}$
	400	-	-	125	-	DG325UGK ${ }^{\text {(}}$	DG325URK ${ }^{\text {(})}$
	600	-	-	200	-	DG326UGK ${ }^{\text {(}}$	DG326URK ${ }^{\text {8 }}$

Notes

(1) Maximum hp ratings apply only when dual element time delay fuses are used.
(2) Use four-wire catalog numbers below.
(3) Solid neutral bars are not included. Order separately from table on Page V2-T1-14.
(4) WARNING! Switch is not approved for service entrance unless a neutral kit is installed.
(5) These switches do not have an interlock that prevents door from being opened when switch is in the ON position.
(6) Use three-wire catalog numbers below.
(7) Drilled to accept field installed neutral kits.

All general-duty safety switches are individually packaged.
Accessories are limited in scope on general-duty safety switches. See Page V2-T1-14 for availability. In addition, clear line shields are available as an accessory on 200-600A general-duty switches. Catalog Numbers: 200A $=70-7759-11,400 \mathrm{~A}=70-8063-8,600 \mathrm{~A}=70-8064-8$.

1.1
 Switching Devices

Safety Switches

1 Dimensions

Approximate Dimensions in Inches (mm)
Plug Fuse, 120, 120/240V, Single-, Two-Pole Solid Neutral, Single-Throw

Ampere Rating	NEMA 1 Height	Width	Depth
30	$6.88(174.8)$	$4.94(125.5)$	$3.44(87.4)$

General-Duty, Non-Fusible, 240V, Three-Pole, Single-Throw ©

Ampere Rating	Width (W)	Height (H)	Depth (D)	Depth (D2)	Weight Lbs (kg)
NEMA 1					
30	$6.38(162.1)$	$10.69(271.5)$	$6.88(174.8)$	$3.75(95.2)$	$6(2.724)$
60	$8.69(220.7)$	$14.19(360.4)$	$7.38(187.5)$	$4.21(106.9)$	$9(4.086)$
100	$9.13(231.9)$	$18.81(477.8)$	$7.38(187.5)$	$4.23(107.4)$	$12(5.448)$
200	$16.00(406.4)$	$24.75(628.7)$	$11.25(285.8)$	$6.14(156.0)$	$48(21.792)$
400	$23.00(584.2)$	$44.75(1136.7)$	$12.63(320.8)$	$7.27(184.7)$	$100(45.4)$
600	$24.00(609.6)$	$52.25(1327.2)$	$14.25(362.0)$	$8.95(227.3)$	$130(59.02)$
NEMA 3R					
30	$6.38(162.1)$	$10.81(274.6)$	$6.88(174.8)$	$3.75(95.2)$	$6(2.724)$
60	$8.69(220.7)$	$14.38(365.3)$	$7.38(187.5)$	$4.21(106.9)$	$9(4.086)$
100	$9.13(231.9)$	$19.25(489.0)$	$7.38(187.5)$	$4.23(107.4)$	$12(5.448)$
200	$16.00(406.4)$	$25.50(647.7)$	$11.25(285.8)$	$6.14(156.0)$	$55(24.97)$
400	$23.00(584.2)$	$45.19(1147.8)$	$12.63(320.8)$	$7.27(184.7)$	$105(47.67)$
600	$24.00(609.6)$	$52.70(1338.6)$	$14.25(362.0)$	$8.95(227.3)$	$135(61.29)$

NEMA 1-3R 30-100A General-Duty
Non-Fusible and Fusible Single-Throw ${ }^{2}$ (

General-Duty, Fusible, 240V, Three-Pole Solid Neutral, Single-Throw ©

Ampere Rating	Width (W)	Height (H)	Depth (D)	Depth (D2)	Weight Lbs (kg)
NEMA 1					
30	$6.38(162.1)$	$10.69(271.5)$	$6.88(174.8)$	$3.75(95.2)$	$6(2.724)$
60	$8.69(220.7)$	$14.19(360.4)$	$7.38(187.5)$	$4.21(106.9)$	$10(4.54)$
100	$9.13(231.9)$	$18.81(477.8)$	$7.38(187.5)$	$4.23(107.4)$	$14(6.356)$
200	$16.00(406.4)$	$24.75(628.7)$	$11.25(285.8)$	$6.14(156.0)$	$48(21.792)$
400	$23.00(584.2)$	$44.75(1136.7)$	$12.63(320.8)$	$7.27(184.7)$	$110(49.94)$
600	$24.00(609.6)$	$52.25(1327.2)$	$14.25(362.0)$	$8.95(227.3)$	$145(65.83)$
NEMA 3R					
30	$6.38(162.1)$	$10.81(274.6)$	$6.88(174.8)$	$3.75(95.2)$	$6(2.724)$
60	$8.69(220.7)$	$14.38(365.3)$	$7.38(187.5)$	$4.21(106.9)$	$10(4.54)$
100	$9.13(231.9)$	$19.25(489.0)$	$7.38(187.5)$	$4.23(107.4)$	$14(6.356)$
200	$16.00(406.4)$	$25.50(647.7)$	$11.25(285.8)$	$6.14(156.0)$	$55(24.97)$
400	$23.00(584.2)$	$45.19(1147.8)$	$12.63(320.8)$	$7.27(184.7)$	$115(52.21)$
600	$24.00(609.6)$	$52.70(1338.6)$	$14.25(362.0)$	$8.95(227.3)$	$150(68.1)$

NEMA 1-3R 200-600A General-Duty
Non-Fusible and Fusible Single-Throw

Notes

(1) Dimensions are for estimating purposes only.
(2) Figure is not applicable to plug fuse.

Safety Switches

Heavy-Duty Safety Switch

Contents

Description	Page
Product Overview	V2-T1-3
General Duty	V2-T1-26
Heavy-Duty	
Standards and Certifications	V2-T1-32
Product Selection	V2-T1-33
Dimensions	V2-T1-42
Six-Pole Switches	V2-T1-43
Double-Throw Switches	V2-T1-45
EnviroLine-Stainless Steel Switch	V2-T1-53
EnviroLine-Upper and Lower Window Switches	V2-T1-56
EnviroLine-Receptacle Switches	V2-T1-59
EnviroLine-Non-Metallic KRYDON Switch	V2-T1-61
Shunt Trip Safety Switch	V2-T1-63
NEMA 7/9—Hazardous Location Disconnect Switch	V2-T1-66
Quick Connect Switches	V2-T1-68
Solar Disconnect Switch	V2-T1-70
316-Grade Stainless Steel Safety Switches.	V2-T1-72
Mill-Duty Rated, Heavy-Duty, Fusible, Non-Fusible, Single-Throw	V2-T1-76
Heavy-Duty Fusible Safety Switches Accepting	
Cube Fuses	V2-T1-78
Elevator Control Switch	V2-T1-81
Auxiliary Power Heavy-Duty Safety Switch	V2-T1-83
Left-Handed Safety Switch	V2-T1-86
200\% Neutral Safety Switches	V2-T1-87
Pringle Bolted Pressure Switch	V2-T1-88
Type DS, Fusible and Non-Fusible	V2-T1-91
Type Visi-Flex DE-ION	V2-T1-94
Flange Mounted-Variable Depth	V2-T1-98
Flange Mounted-Fixed Depth	V2-T1-102

Heavy-Duty

Product Description

- 30-1200A
- $600 \mathrm{Vac}, 600 \mathrm{Vdc}$ maximum
- Horsepower rated
- Fusible and non-fusible switches are 100\% load break and 100\% load make rated
- The continuous load current of fusible switches is not to exceed 80% of the rating of fuses employed in other than motor circuits. Non-fusible switches are 100\% fully rated
- Suitable for service entrance applications unless otherwise noted
- For factory modifications, refer to Pages V2-T1-16 through V2-T1-19

Application Description

For heavy commercial and industrial applications where reliable performance and service continuity are critical.
For the toughest heavy commercial and industrial applications, refer to
Page V2-T1-76 for catalog information on our mill-duty safety switch

Features, Benefits and Functions

- Deionizing arc chutes; arc chutes confine and suppress the arcs produced by opening contacts under load
- Mechanically interlocked cover to prevent easy access when the switch is in the ON position
- Clearly visible palm fitting red handle
- Complete accessory and renewal parts data shown on inner door label.
- 30-800A NEMA 12 designs convertible to NEMA 3R by opening factory-installed drain hole
- 30-1200A switches are seismic qualified and exceed the requirements of the Uniform Building Code ${ }^{\circledR}$ (UBC) and California Code Title 24
- Tri-lingual nameplates

Visible Double-Break Rotary Blade Mechanism

- Two points of contact provide a positive open and close, easier operation, and also help prevent contact burning for longer contact life

Clear Line Shield

- Protects against accidental contact with energized parts. Probe holes enable the user to test if the line side is energized without removing the shield. Not typically provided on general-duty switches, but available as a field kit or factory installed

Built-In Fuse Pullers (NEMA 12 and 4X 30-200A Only)

- Provide easy removal of fuses

Clearly Visible Handle

- The position (ON or OFF) can be clearly seen from a distance and the length provides for easy operation

Triple Padlocking Capability

- Personnel safety feature because the large hasp can accommodate up to three $3 / 8$-inch (9.5 mm) shank locks

Additional Locking Capability

- Cabinet door can be further padlocked at the top and bottom as applicable

Interlocking Mechanism

- Door cannot be opened when the handle is in the ON position. Front and side operable defeater mechanism provides for user access when necessary on singlethrow switches

Tangential Knockouts

- An ample number are provided on the top, bottom and sides of both NEMA Types 1 and 3R enclosures through 200A

Bolt-On Hub Kits

- For switches in a NEMA Type 3R, 30-200A. Use a Myers type hub for all others

Standards and Certifications

- UL listed File No. E5239
- Meets UL 98 for enclosed switches and NEMA Std. KS-1

240 Vac Heavy-Duty, Fusible, Single-Throw, Fusible - NEMA 1, 3R

System	Ampere Rating	Fuse Type Provision	Maximum Hors AC Standard Fuse Single-Phase	ower Ratings Three-Phase	Time Delay Single-Phase	Three-Phase	$\begin{aligned} & \text { DC } \\ & 2500 \end{aligned}$	NEMA 1 Enclosure Indoor Catalog Number	NEMA 3R Enclosure Rainproof Catalog Number
Two-Pole-240 Vac, $\mathbf{2 5 0} \mathbf{~ V d c}$ (Suitable for Service Entrance Use with a Neutral Kit Installed)									
$\begin{aligned} & 10 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	30	H	1-1/2	-	-	-	5	DH221FGK	(2)
	60	-	-	-	-	-	-	(2)	(2)
	100	-	-	-	-	-	-	(2)	(2)
	200	-	-	-	-	-	-	(2)	(2)
	400	H	-	50 (1)	-	125 (1)	50	DH225FGK	DH225FRK
	600	H	-	75 (1)	-	200 (1)	-	DH226FGK	DH226FRK
	800	L	-	100 (1)	-	-	-	DH227FGK	-
Three-Wire (Two Blades, Two Fuses, S/N) - 240 Vac, 250 Vdc									
	30	H	1-1/2	$3{ }^{3}$	3	7-1/2 ${ }^{\text {® }}$	5	DH221NGK	DH221NRK
	60	H	3	7-1/2 ${ }^{\text {® }}$	10	$15{ }^{\text {8 }}$	10	DH222NGK	DH222NRK
	100	H	7-1/2	$15{ }^{\text {® }}$	15	$30^{\text {® }}$	20	DH223NGK	DH223NRK
	200	H	15	$25^{\text {® }}$	15	60 (3)	40	DH224NGK	DH224NRK
	400	H	-	$50{ }^{\text {® }}$	-	$125{ }^{\text {® }}$	50	DH225NGK	DH225NRK
	600	H	-	$75{ }^{\text {® }}$	-	$200{ }^{\text {8 }}$	-	DH226NGK	DH226NRK
	800	L	-	$100{ }^{\text {(3)}}$	-	-	-	DH227NGK	DH227NRK
Three-Pole-240 Vac, 250 Vdc (Suitable for Service Entrance Use with a Neutral Kit Installed)									
$\begin{array}{ll} \hline 1 & 1 \\ 0 & b \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{array}$	30	H	1-1/2	3	3	7-1/2	5	DH321FGK	DH321FRK
	60	H	3	7-1/2	10	15	10	DH322FGK	DH322FRK
	100	H	7-1/2	15	15	30	20	DH323FGK	DH323FRK
	200	H	15	25	15	60	40	DH324FGK	DH324FRK
	400	H	-	50	-	125	50	DH325FGK	DH325FRK
	600	H	-	75	-	200	-	DH326FGK	DH326FRK
	800	L	-	100	-	-	-	DH327FGK	DH327FRK
	1200	L	-	-	-	-	-	DH328FGK	DH328FRK
Four-Wire (Three Blades, Three Fuses, S/N)-240 Vac, 250 Vdc									
	30	H	1-1/2	3	3	7-1/2	5	DH321NGK	DH321NRK
	60	H	3	7-1/2	10	15	10	DH322NGK	DH322NRK
	100	H	7-1/2	15	15	30	20	DH323NGK	DH323NRK
	200	H	15	25	15	60	40	DH324NGK	DH324NRK
	400	H	-	50	-	125	50	DH325NGK	DH325NRK
	600	H	-	75	-	200	-	DH326NGK	DH326NRK
	800	L	-	100	-	-	-	DH327NGK	DH327NRK
	1200	L	-	-	-	-	-	DH328NGK	DH328NRK
Four-Pole-240 Vac, 250 Vdc									
	30	H	3	3	10	7-1/2	5	DH421FGK	${ }^{(4)}$
	60	H	7-1/2	7-1/2	20	15	10	DH422FGK	${ }^{(4)}$
	100	H	15	15	30	30	20	DH423FGK	${ }^{(4)}$
	200	H	30	25	50	60	40	DH424FGK	${ }^{(4)}$
	400	H	50	50	-	125	50	DH425FGK	(4)
	600	H	-	75	-	200	-	DH426FGK	(4)

Notes

(1) Horsepower ratings apply only when neutral is field installed and switch is used on a grounded B phase system.
(2) Use three-pole catalog numbers below.
(3) Grounded B phase ratings, UL listed.
(4) Use NEMA 12. NEMA 12 enclosures (30-1200A) can be field modified to meet NEMA 3R rainproof requirements when a factory provided drain hole is opened.
(5) Contact the Safety Switch Flex Center (1-888-329-9272 or FlexSwitches@eaton.com) for availability of this product.

30A heavy-duty switches with Type J fuse provisions are available from the factory only. See table on Page V2-T1-18 for catalog numbers.
Suitable for service entrance use, except four-pole switches.

1.1
 Switching Devices

Safety Switches

240 Vac Heavy-Duty, Fusible, Single-Throw, Fusible-NEMA 12, 4

System	Ampere Rating	Fuse Type Provision	Maximum Hor AC Standard Fuse Single-Phase	er Ratings Three-Phase	Time Delay Single-Phase	Three-Phase	$\begin{aligned} & \text { DC } \\ & 250 \mathrm{~V} \end{aligned}$	NEMA 12 Enclosure Industrial, Dust-Tight Catalog Number	NEMA 4 Enclosure Watertight, Painted Steel Catalog Number
Two-Pole-240 Vac, $\mathbf{2 5 0}$ Vdc (Suitable for Service Entrance Use with a Neutral Kit Installed)									
$\begin{array}{ll} 1 \\ 0 & 1 \\ o & \\ 1 & 9 \\ 0 & 6 \end{array}$	30	H	1-1/2	-	-	-	5	(3)	-
	60	-	-	-	-	-	-	(3)	-
	100	-	-	-	-	-	-	(3)	-
	200	-	-	-	-	-	-	(3)	-
	400	H	-	50 (1)	-	125 (1)	50	DH225FDK ${ }^{4}$	DH225FPK
	600	H	-	$75{ }^{1}$	-	200 (1)	-	DH226FDK ${ }^{4}$	DH226FPK
	800	L	-	100 (1)	-	-	-	DH227FDK ${ }^{4}$	-
Three-Wire (Two Blades, Two Fuses, S/N) -240 Vac, 250 Vdc									
	30	H	1-1/2	$3{ }^{2}$	3	7-1/2 ${ }^{(2)}$	5	DH221NDK ${ }^{4}$	-
	60	H	3	7-1/2 ${ }^{(2)}$	10	$15^{(2)}$	10	DH222NDK ${ }^{4}$	-
	100	H	7-1/2	$15{ }^{(2)}$	15	$30^{(2)}$	20	DH223NDK ${ }^{4}$	-
	200	H	15	$25{ }^{(2)}$	15	$60{ }^{2}$	40	DH224NDK ${ }^{4}$	-
	400	H	-	50 (2)	-	$125{ }^{2}$	50	DH225NDK ${ }^{4}$	DH225NPK
	600	H	-	$75^{(2)}$	-	$200{ }^{(2)}$	-	DH226NDK ${ }^{4}$	DH226NPK
	800	L	-	$100{ }^{2}$	-	-	-	DH227NDK ${ }^{4}$	DH227NPK
Three-Pole-240 Vac, $\mathbf{2 5 0}$ Vdc (Suitable for Service Entrance Use with a Neutral Kit Installed)									
	30	H	1-1/2	3	3	7-1/2	5	DH321FDK ${ }^{4}$	-
	60	H	3	7-1/2	10	15	10	DH322FDK ${ }^{4}$	-
	100	H	7-1/2	15	15	30	20	DH323FDK ${ }^{4}$	-
	200	H	15	25	15	60	40	DH324FDK ${ }^{4}$	-
	400	H	-	50	-	125	50	DH325FDK ${ }^{4}$	DH325FPK
	600	H	-	75	-	200	-	DH326FDK ${ }^{4}$	DH326FPK
	800	L	-	100	-	-	-	DH327FDK ${ }^{4}$	DH327FPK
	1200	L	-	-	-	-	-	DH328FDK ${ }^{4}$	-
Four-Wire (Three Blades, Three Fuses, S/N)-240 Vac, 250 Vdc									
$\begin{array}{llll} 1 & 1 & d & 1 \\ 0 & 0 & 0 & \\ 0 & 1 & 1 \\ 9 & 9 & 9 & z \\ 0 & 0 & 0 & 1 \end{array}$	30	H	1-1/2	3	3	7-1/2	5	DH321NDK ${ }^{4}$	-
	60	H	3	7-1/2	10	15	10	DH322NDK ${ }^{4}$	-
	100	H	7-1/2	15	15	30	20	DH323NDK ${ }^{4}$	-
	200	H	15	25	15	60	40	DH324NDK ${ }^{4}$	-
	400	H	-	50	-	125	50	DH325NDK ${ }^{4}$	DH325NPK
	600	H	-	75	-	200	-	DH326NDK ${ }^{4}$	DH326NPK
	800	L	-	100	-	-	-	DH327NDK (4) ${ }^{\text {(}}$	-
	1200	L	-	-	-	-	-	DH328NDK ${ }^{4}$	-
Four-Pole-240 Vac, 250 Vdc									
$\begin{array}{llll} \hline 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 9 & 9 & 9 \\ 0 & 0 & 0 & 0 \end{array}$	30	H	3	3	10	7-1/2	5	DH421FDK ${ }^{4}$	-
	60	H	7-1/2	7-1/2	20	15	10	DH422FDK ${ }^{4}$	-
	100	H	15	15	30	30	20	DH423FDK ${ }^{4}$	-
	200	H	30	25	50	60	40	DH424FDK ${ }^{4}$	-
	400	H	50	50	-	125	50	(4) 5	-
	600	H	-	75	-	200	-	(4) ${ }^{\text {(5) }}$	-

Notes

(1) Horsepower ratings apply only when neutral is field installed and switch is used on a grounded B phase system.
(2) Grounded B phase ratings, UL listed.
${ }^{3}$ (Use three-pole catalog numbers below.
(4) NEMA 12 enclosures (30-1200A) can be field modified to meet NEMA 3R rainproof requirements when a factory provided drain hole is opened.
(5) Contact the Safety Switch Flex Center (1-888-329-9272 or FlexSwitches@eaton.com) for availability of this product.

30A heavy-duty switches with Type J fuse provisions are available from the factory only. See table on Page V2-T1-18 for catalog numbers.
Suitable for service entrance use, except four-pole switches.

Safety Switches

240 Vac Heavy-Duty, Fusible, Single-Throw, Fusible - NEMA 4X

Two-Pole-240 Vac, $\mathbf{2 5 0}$ Vdc (Suitable for Service Entrance Use with a Neutral Kit Installed)

$\begin{array}{ll} 1 & 1 \\ 0 & 0 \\ 0 & 9 \\ 9 & 9 \\ 0 & 9 \end{array}$	30	H	1-1/2	-	-	-	5	(3)
	60	-	-	-	-	-	-	(3) or (4)
	100	-	-	-	-	-	-	(4)
	200	-	-	-	-	-	-	(4)
	400	H	-	$50{ }^{1}$	-	$125{ }^{(1)}$	50	(4)
	600	H	-	$75{ }^{1}$	-	200 (1)	-	(4)
	800	L	-	$100{ }^{(1)}$	-	-	-	(4)

Three-Wire (Two Blades, Two Fuses, S/N) - $\mathbf{2 4 0}$ Vac, $\mathbf{2 5 0}$ Vdc

$\begin{array}{lll} 0 & 1 & 0 \\ 0 & 0 \\ 9 & z \\ 9 & 9 & 0 \end{array}$	30	H	1-1/2	$3{ }^{2}$	3	7-1/2 ${ }^{(2)}$	5	DH221NWK
	60	H	3	7-1/2 ${ }^{(2)}$	10	$15^{(2)}$	10	DH222NWK
	100	H	7-1/2	$15^{(2)}$	15	$30^{(2)}$	20	DH223NWK
	200	H	15	$25{ }^{(2)}$	15	60 (2)	40	DH224NWK
	400	H	-	50 (2)	-	$125{ }^{2}$	50	DH225NWK
	600	H	-	$75{ }^{2}$	-	$200{ }^{2}$	-	DH226NWK
	800	L	-	$100{ }^{(2)}$	-	-	-	DH227NWK

Three-Pole-240 Vac, 250 Vdc (Suitable for Service Entrance Use with a Neutral Kit Installed)

$\begin{array}{lll} 1 & 1 \\ 0 & d \\ 0 & 0 \\ 0 & 0 \\ 1 & 9 \\ 0 & o & 0 \end{array}$	30	H	1-1/2	3	3	7-1/2	5	DH321FWK
	60	H	3	7-1/2	10	15	10	DH322FWK
	100	H	7-1/2	15	15	30	20	(4)
	200	H	15	25	15	60	40	DH324FWK
	400	H	-	50	-	125	50	DH325FWK
	600	H	-	75	-	200	-	DH326FWK
	800	L	-	100	-	-	-	DH327FWK
	1200	L	-	-	-	-	-	DH328FWK
Four-Wire (Three Blades, Three Fuses, S/N) -240 Vac, 250 Vdc								
	30	H	1-1/2	3	3	7-1/2	5	DH321NWK
	60	H	3	7-1/2	10	15	10	DH322NWK
	100	H	7-1/2	15	15	30	20	DH323NWK
	200	H	15	25	15	60	40	DH324NWK
	400	H	-	50	-	125	50	DH325NWK
	600	H	-	75	-	200	-	DH326NWK
	800	L	-	100	-	-	-	(4)
	1200	L	-	-	-	-	-	DH328NWK
Four-Pole-240 Vac, 250 Vdc								
	30	H	3	3	10	7-1/2	5	(4)
	60	H	7-1/2	7-1/2	20	15	10	(4)
	100	H	15	15	30	30	20	(4)
	200	H	30	25	50	60	40	(4)
	400	H	50	50	-	125	50	(4)
	600	H	-	75	-	200	-	(4)

Notes

(1) Horsepower ratings apply only when neutral is field installed and switch is used on a grounded B phase system.
(2) Grounded B phase ratings, UL listed.
(3) Use three-pole catalog numbers below.
(4) Contact the Safety Switch Flex Center (1-888-329-9272 or FlexSwitches@eaton.com) for availability of this product.

30A heavy-duty switches with Type J fuse provisions are available from the factory only. See table on Page V2-T1-18 for catalog numbers.
Suitable for service entrance use, except four-pole switches.

1.1
 Switching Devices

Safety Switches

600 Vac Heavy-Duty, Fusible, Single-Throw, 277/480-600V-NEMA 1, 3R

Three-Pole-480 Vac-600 Vac, $\mathbf{2 5 0}$ Vdc (Suitable for Service Entrance Use with a Neutral Kit Installed)

$\begin{array}{lll} 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 9 & 1 \end{array}$	30	H	7-1/2	10	15	20	-	-	DH361FGK	DH361FRK
	60	H	20	25	30	50	-	-	DH362FGK	DH362FRK
	100	H	30	40	60	75	-	-	DH363FGK	DH363FRK
	200	H	50	50	125	150	-	-	DH364FGK	DH364FRK
	400	H	-	-	250	350	-	-	DH365FGK	DH365FRK
	600	H	-	-	400	500	-	-	DH366FGK	DH366FRK
	800	L	-	-	500	500	-	-	DH367FGK	DH367FRK
	1200	L	-	-	500	500	-	-	DH368FGK	DH368FRK
Four-Wire (Three Blades, Three Fuses, S/N) 480 Vac - 600 Vac, 250 Vdc										
$\begin{array}{llll} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & z \\ 0 & 0 & 9 & z \\ 0 & 6 & 0 & 1 \end{array}$	30	H	7-1/2	10	15	20	-	-	DH361NGK	DH361NRK
	60	H	20	25	30	50	-	-	DH362NGK	DH362NRK
	100	H	30	40	60	75	-	-	DH363NGK	DH363NRK
	200	H	50	50	125	150	-	-	DH364NGK	DH364NRK
	400	H	-	-	250	350	-	-	DH365NGK	DH365NRK
	600	H	-	-	400	500	-	-	DH366NGK	DH366NRK
	800	L	-	-	500	500	-	-	DH367NGK	DH367NRK
	1200	L	-	-	500	500	-	-	DH368NGK	DH368NRK
Four-Pole-480 Vac-600 Vac, 250 Vdc										
	30	H	$20{ }^{(3)}$	25^{3}	15	20	-	-	DH461FGK	(4)
	60	H	$40{ }^{3}$	$50{ }^{(3)}$	30	50	-	-	DH462FGK	(4)
	100	H	$50{ }^{3}$	$50{ }^{(3)}$	60	75	-	-	DH463FGK	(4)
	200	H	-	-	125	150	40	-	DH464FGK	(4)
	400	H	-	-	250	350	50	-	DH465FGK	(2)4
	600	H	-	-	400	500	-	-	DH466FGK	(2)4
	800	L	-	-	-	-	-	-	(2)	(2)4

Notes

(1) DC rating for 800 A switches is 250 V .
(2) Contact the Safety Switch Flex Center (1-888-329-9272 or FlexSwitches@eaton.com) for availability of this product.
(3) Ratings are for two-phase AC.
(4) Use NEMA 12. NEMA 12 enclosures (30-1200A) can be field modified to meet NEMA 3 r rainproof requirements when a factory provided drain hole is opened.

30A heavy-duty switches with Type J fuse provisions are available from the factory only. See table on Page V2-T1-18 for catalog numbers.
Suitable for service entrance use, except 1200A on 480Y/277 or 600Y/347 grounded wye systems, per NEC 215.10 and 230.95, and four-pole switches.

Safety Switches

600 Vac Heavy-Duty, Fusible, Single-Throw, 277/480-600V-NEMA 12, 4

System	Ampere Rating	Fuse Class Provision	Maximum Horsepower Ratings with Time Delay Fuses						NEMA 12 Enclosure Industrial, Dust-Tight Catalog Number	NEMA 4 Enclosure Watertight, Painted Steel Catalog Number
			Single-Phase AC		Three-Phase AC		DC			
			480V	600V	480V	600V	250V	600V		
Two-Pole-480 Vac-600 Vac or Vdc ${ }^{1}$ (Suitable for Service Entrance Use with a Neutral Kit Installed)										
$\begin{array}{ll} 1 & 1 \\ 0 & 0 \\ 0 \\ 9 & 9 \\ 0 & 9 \end{array}$	30	H	7-1/2	10	-	-	-	15	DH261FDK ${ }^{\text {2 }}$	-
	60	H	20	25	-	-	-	25	DH262FDK ${ }^{2}$	-
	100	H	30	40	-	-	20	-	DH263FDK ${ }^{(2)}$	-
	200	H	50	50	-	-	-	50	DH264FDK ${ }^{(2)}$	-
	400	H	-	-	-	-	50	-	DH265FDK ${ }^{2}$	(4)
	600	H	-	-	-	-	-	-	DH266FDK ${ }^{(2)}$	(4)
	800	L	-	-	-	-	-	-	DH267FDK ${ }^{(2)}$	(4)
	1200	L	-	-	-	-	-	-	(3)	-

Three-Pole-480 Vac-600 Vac, $\mathbf{2 5 0}$ Vdc (Suitable for Service Entrance Use with a Neutral Kit Installed)

$\begin{array}{lll} 1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 9 \end{array}$	30	H	7-1/2	10	15	20	-	-	DH361FDK ${ }^{2}$	-
	60	H	20	25	30	50	-	-	DH362FDK ${ }^{(2)}$	-
	100	H	30	40	60	75	-	-	DH363FDK ${ }^{(2)}$	-
	200	H	50	50	125	150	-	-	DH364FDK ${ }^{\text {2 }}$	-
	400	H	-	-	250	350	-	-	DH365FDK ${ }^{(2)}$	DH365FPK
	600	H	-	-	400	500	-	-	DH366FDK ${ }^{2}$	DH366FPK
	800	L	-	-	500	500	-	-	DH367FDK ${ }^{(2)}$	DH367FPK
	1200	L	-	-	500	500	-	-	DH368FDK	-
Four-Wire (Three Blades, Three Fuses, S/N) 480 Vac-600 Vac, 250 Vdc										
	30	H	7-1/2	10	15	20	-	-	DH361NDK ${ }^{2}$	-
	60	H	20	25	30	50	-	-	DH362NDK ${ }^{2}$	-
	100	H	30	40	60	75	-	-	DH363NDK ${ }^{2}$	-
	200	H	50	50	125	150	-	-	DH364NDK ${ }^{2}$	-
	400	H	-	-	250	350	-	-	DH365NDK ${ }^{2}$	DH365NPK
	600	H	-	-	400	500	-	-	DH366NDK ${ }^{(2)}$	DH366NPK
	800	L	-	-	500	500	-	-	(2)3	-
	1200	L	-	-	500	500	-	-	DH368NDK	-
Four-Pole-480 Vac-600 Vac, 250 Vdc										
$\begin{array}{llll} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 & 9 \\ 0 & 0 & 0 & 6 \end{array}$	30	H	20 (${ }^{\text {c }}$	25 (5)	15	20	-	-	(2)3	-
	60	H	40 ©	50 (5)	30	50	-	-	(2)3	-
	100	H	50 (${ }^{\text {(}}$	50 (5)	60	75	-	-	DH463FDK ${ }^{(2)}$	-
	200	H	-	-	125	150	40	-	DH464FDK ${ }^{(2)}$	-
	400	H	-	-	250	350	50	-	(2)3	-
	600	H	-	-	400	500	-	-	(2)3	-
	800	L	-	-	-	-	-	-	(2)3	-

Notes

(1) DC rating for 800 A switches is 250 V .
(2) Use NEMA 12. NEMA 12 enclosures (30-1200A) can be field modified to meet NEMA 3R rainproof requirements when a factory provided drain hole is opened.
(3) Contact the Safety Switch Flex Center (1-888-329-9272 or FlexSwitches@eaton.com) for availability of this product.
(4) Use three-pole catalog numbers below for $600 \mathrm{Vac}, 250 \mathrm{Vdc}$ maximum applications.
(5) Ratings are for two-phase AC.

30A heavy-duty switches with Type J fuse provisions are available from the factory only. See table on Page V2-T1-18 for catalog numbers.
Suitable for service entrance use, except 1200A on 480Y/277 or $600 \mathrm{Y} / 347$ grounded wye systems, per NEC 215.10 and 230.95 , and four-pole switches.

Safety Switches

System	Ampere Rating	Fuse Class Provision	Maxim Single	$\begin{aligned} & \text { sepow } \\ & \text { AC } \end{aligned}$	s with Three	$\begin{aligned} & \text { lay Fus } \\ & \text { AC } \end{aligned}$	DC	600V	NEMA 4X Enclosure Corrosion- Resistant, Stainless Steel Catalog Number
			480V	600V	480V	600V	250V		
Two-Pole-480 Vac-600 Vac or Vdc ${ }^{1}$ (Suitable for Service Entrance Use with a Neutral Kit Installed)									
$\begin{array}{ll} 1 \\ 0 & 1 \\ o \\ 0 \\ 0 & 9 \\ 1 & 1 \end{array}$	30	H	7-1/2	10	-	-	-	15	DH261FWK
	60	H	20	25	-	-	-	25	(2) or ${ }^{(3)}$
	100	H	30	40	-	-	20	-	(2) or (3)
	200	H	50	50	-	-	-	50	DH264FWK
	400	H	-	-	-	-	50	-	(2) or ${ }^{(3)}$
	600	H	-	-	-	-	-	-	(2) or (3)
	800	L	-	-	-	-	-	-	(2) or ${ }^{(3)}$
	1200	L	-	-	-	-	-	-	(3)
Three-Pole-480 Vac-600 Vac, 250 Vdc (Suitable for Service Entrance Use with a Neutral Kit Installed)									
$\begin{array}{lll} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 9 & 0 & 0 \\ 9 & 9 & 9 \\ 0 & 1 & 1 \end{array}$	30	H	7-1/2	10	15	20	-	-	DH361FWK
	60	H	20	25	30	50	-	-	DH362FWK
	100	H	30	40	60	75	-	-	DH363FWK
	200	H	50	50	125	150	-	-	DH364FWK
	400	H	-	-	250	350	-	-	DH365FWK
	600	H	-	-	400	500	-	-	DH366FWK
	800	L	-	-	500	500	-	-	DH367FWK
	1200	L	-	-	500	500	-	-	DH368FWK
Four-Wire (Three Blades, Three Fuses, S/N) 480 Vac -600 Vac, 250 Vdc									
	30	H	7-1/2	10	15	20	-	-	DH361NWK
	60	H	20	25	30	50	-	-	DH362NWK
	100	H	30	40	60	75	-	-	DH363NWK
	200	H	50	50	125	150	-	-	DH364NWK
	400	H	-	-	250	350	-	-	DH365NWK
	600	H	-	-	400	500	-	-	DH366NWK
	800	L	-	-	500	500	-	-	DH367NWK ${ }^{2}$
	1200	L	-	-	500	500	-	-	DH368NWK
Four-Pole-480 Vac-600 Vac, 250 Vdc									
$\begin{array}{llll} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 9 & 9 & 9 \\ 0 & 0 & 0 & 1 \end{array}$	30	H	$20{ }^{4}$	$25{ }^{4}$	15	20	-	-	(2)
	60	H	$40{ }^{(4)}$	$50{ }^{4}$	30	50	-	-	(2)
	100	H	50 (4)	$50{ }^{4}$	60	75	-	-	(2)
	200	H	-	-	125	150	40	-	(2)
	400	H	-	-	250	350	50	-	(2)
	600	H	-	-	400	500	-	-	(2)
	800	L	-	-	-	-	-	-	(2)

Notes

(1) DC rating for 800 A switches is 250 V .
(2) Contact the Safety Switch Flex Center (1-888-329-9272 or FlexSwitches@eaton.com) for availability of this product.
(3) Use three-pole catalog numbers below for $600 \mathrm{Vac}, 250 \mathrm{Vdc}$ maximum applications.
(4) Ratings are for two-phase AC.

30A heavy-duty switches with Type J fuse provisions are available from the factory only. See table on Page V2-T1-18 for catalog numbers.
Suitable for service entrance use, except 1200A on 480Y/277 or $600 \mathrm{Y} / 347$ grounded wye systems, per NEC 215.10 and 230.95 , and four-pole switches.

Safety Switches

DH362UGK

600 Vac Heavy-Duty, Non-Fusible, Single-Throw, 277/480-600V-NEMA 1, 3R

System	Ampere Rating	Maxi Singl 240V	Hors ase AC 480V	er Rat 600 V	Three 240V	se AC 480 V	600V	$\begin{aligned} & \text { DC } \\ & \text { 250V } \end{aligned}$	600V	NEMA 1 Enclosure Indoor Catalog Number	NEMA 3R Enclosure Rainproof Catalog Number
Two-Pole-480 Vac-600 Vac or Vdc ${ }^{(1)}$ (Suitable for Service Entrance Use with a Neutral Kit Installed)											
$\begin{array}{ll} 1 \\ 0 & 1 \\ 0 \end{array}$	30	3	7-1/2	10	-	-	-	-	15	DH261UGK	DH261URK
	60	10	20	25	-	-	-	-	25	DH262UGK	DH262URK
	100	20	30	40	-	-	-	20	25	DH263UGK	DH263URK
	200	15	50	50	-	-	-	-	50	DH264UGK	DH264URK
	400	-	-	-	-	-	-	50	50	DH265UGK	DH265URK
	600	-	-	-	-	-	-	-	50	DH266UGK	DH266URK
	800	-	-	-	-	-	-	-	-	DH267UGK	DH267URK
	1200	-	-	-	-	-	-	-	-	(2)	-
Three-Pole-480 Vac-600 Vac, 250 Vdc (Suitable for Service Entrance Use with a Neutral Kit Installed)											

o, o, o	30	3	7-1/2	10	10	20	30	5	-	DH361UGK	DH361URK
	60	10	20	25	20	50	60	10	-	DH362UGK	DH362URK
	100	20	40	50	40	75	100	20	-	DH363UGK	DH363URK
	200	15	50	50	60	125	150	40	-	DH364UGK	DH364URK
	400	-	-	-	125	250	350	50	-	DH365UGK	DH365URK
	600	-	-	-	200	400	500	-	-	DH366UGK	DH366URK
	800	-	-	-	-	500	500	-	-	DH367UGK	DH367URK
	1200	-	-	-	-	500	500	-	-	DH368UGK	DH368URK
Four-Pole-480 Vac-600 Vac, 250 Vdc											
1, o, o, o	30	$10{ }^{3}$	20 (3)	$25{ }^{3}$	10	20	30	5	-	DH461UGK	(4)
	60	20 (3)	40 (3)	50 (3)	20	50	60	10	-	DH462UGK	(4)
	100	40 (3)	50 (3)	50 (3)	40	75	100	20	-	DH463UGK	(4)
	200	$50{ }^{3}$	50 (3)	50 (3)	60	125	150	40	-	DH464UGK	(4)
	400	$50{ }^{(3)}$	-	-	125	250	350	50	-	DH465UGK	(2)4
	600	-	-	-	200	400	500	-	-	DH466UGK	(2)4
	800	-	-	-	-	-	-	-	-	(2)	(2)4

Notes

(1) DC rating for 800 A switches is 250 V .
(2) Contact the Safety Switch Flex Center (1-888-329-9272 or FlexSwitches@eaton.com) for availability of this product.
(3) Ratings are for two-phase AC.
(4) Use NEMA 12. NEMA 12 enclosures (30-1200A) can be field modified to meet NEMA 3R rainproof requirements when a factory provided drain hole is opened. Suitable for service entrance use, except 1200A on $480 \mathrm{Y} / 277$ or $600 \mathrm{Y} / 347$ grounded wye systems, per NEC 215.10 and 230.95 , and four-pole switches.

Safety Switches

600 Vac Heavy-Duty, Non-Fusible, Single-Throw, 277/480-600V-NEMA 12, 4

System	Ampere Rating	Maximum Horsepower Ratings Single-Phase AC			Three-Phase AC			DC		NEMA 12 Enclosure Industrial, Dust-Tight Catalog Number	NEMA 4 Enclosure Watertight, Painted Steel Catalog Number
		240V	480V	600 V	240V	480V	600 V	250 V	600V		
Two-Pole-480 Vac-600 Vac or Vdc ${ }^{1}$ (Suitable for Service Entrance Use with a Neutral Kit Installed)											
o,	30	3	7-1/2	10	-	-	-	-	15	DH261UDK ${ }^{(2)}$	-
	60	10	20	25	-	-	-	-	25	DH262UDK ${ }^{2}$	-
	100	20	30	40	-	-	-	20	25	DH263UDK ${ }^{2}$	-
	200	15	50	50	-	-	-	-	50	DH264UDK ${ }^{(2)}$	-
	400	-	-	-	-	-	-	50	-	DH265UDK ${ }^{2}$	(4)
	600	-	-	-	-	-	-	-	-	DH266UDK ${ }^{\text {2 }}$	(4)
	800	-	-	-	-	-	-	-	-	DH267UDK ${ }^{2}$	(4)
	1200	-	-	-	-	-	-	-	-	(3)	-
Three-Pole-480 Vac-600 Vac, 250 Vdc (Suitable for Service Entrance Use with a Neutral Kit Installed)											
o, o, o,	30	3	7-1/2	10	10	20	30	5	-	DH361UDK ${ }^{2}$	-
	60	10	20	25	20	50	60	10	-	DH362UDK ${ }^{2}$	-
	100	20	40	50	40	75	100	20	-	DH363UDK ${ }^{2}$	-
	200	15	50	50	60	125	150	40	-	DH364UDK ${ }^{2}$	-
	400	-	-	-	125	250	350	50	-	DH365UDK ${ }^{2}$	DH365UPK
	600	-	-	-	200	400	500	-	-	DH366UDK ${ }^{2}$	DH366UPK
	800	-	-	-	-	500	500	-	-	DH367UDK ${ }^{2}$	DH367UPK
	1200	-	-	-	-	500	500	-	-	DH368UDK	-
Four-Pole-480 Vac-600 Vac, 250 Vdc											
o, o, o, o,	30	$10^{(5)}$	$20{ }^{\text {® }}$	$25{ }^{\text {® }}$	10	20	30	5	-	DH461UDK ${ }^{2}$	-
	60	20 (5)	40 (5)	50 (5)	20	50	60	10	-	DH462UDK ${ }^{2}$	-
	100	40 (5)	50	50 (5)	40	75	100	20	-	DH463UDK ${ }^{2}$	-
	200	50 (5)	50 (5)	50 (5)	60	125	150	40	-	DH464UDK ${ }^{2}$	-
	400	50 (5)	-	-	125	250	350	50	-	(2)3	-
	600	-	-	-	200	400	500	-	-	(2)3	-
	800	-	-	-	-	-	-	-	-	(2) 3	-

Notes

(1) DC rating for 800 A switches is 250 V .
(2) NEMA 12 enclosures (30-1200A) can be field modified to meet NEMA 3 R rainproof requirements when a factory provided drain hole is opened.
(3) Contact the Safety Switch Flex Center (1-888-329-9272 or FlexSwitches@eaton.com) for availability of this product.
(4) Use three-pole catalog numbers below for $600 \mathrm{Vac}, 250 \mathrm{Vdc}$ maximum applications. For 600 Vdc , see note ${ }^{(3}$.
(5) Ratings are for two-phase AC.

Suitable for service entrance use, except 1200A on 480Y/277 or $600 \mathrm{Y} / 347$ grounded wye systems, per NEC 215.10 and 230.95 , and four-pole switches.

System	Ampere Rating	Maxi Singl 240 V	Horsep ase AC 480V	Ratings 600 V	Three 240V	AC 480 V	600V	$\begin{aligned} & \text { DC } \\ & 250 \mathrm{~V} \end{aligned}$	600V	NEMA 4X Enclosure Corrosion-Resistant, Stainless Steel Catalog Number
Two-Pole-480 Vac-600 Vac or Vdc ${ }^{(1)}$ (Suitable for Service Entrance Use with a Neutral Kit Installed)										
o, o,	30	3	7-1/2	10	-	-	-	-	15	(2) or ${ }^{(3)}$
	60	10	20	25	-	-	-	-	25	(2) or ${ }^{3}$
	100	20	30	40	-	-	-	20	25	(2) or ${ }^{3}$
	200	15	50	50	-	-	-	-	50	(2) or (3)
	400	-	-	-	-	-	-	50	-	(2) or ${ }^{(3)}$
	600	-	-	-	-	-	-	-	-	(2) or ${ }^{3}$
	800	-	-	-	-	-	-	-	-	(2) or (3)
	1200	-	-	-	-	-	-	-	-	(2)

Three-Pole-480 Vac-600 Vac, 250 Vdc (Suitable for Service Entrance Use with a Neutral Kit Installed)

o, o, o	30	3	7-1/2	10	10	20	30	5	-	DH361UWK
	60	10	20	25	20	50	60	10	-	DH362UWK
	100	20	40	50	40	75	100	20	-	DH363UWK
	200	15	50	50	60	125	150	40	-	DH364UWK
	400	-	-	-	125	250	350	50	-	DH365UWK
	600	-	-	-	200	400	500	-	-	DH366UWK
	800	-	-	-	-	500	500	-	-	DH367UWK
	1200	-	-	-	-	500	500	-	-	DH368UWK
Four-Pole-480 Vac-600 Vac, 250 Vdc										
1, o, o, o,	30	$10{ }^{4}$	$20{ }^{4}$	$25{ }^{(4)}$	10	20	30	5	-	DH461UWK
	60	$20{ }^{4}$	$40{ }^{4}$	$50{ }^{(4)}$	20	50	60	10	-	(2)
	100	$40{ }^{4}$	$50{ }^{4}$	50 (4)	40	75	100	20	-	(2)
	200	$50{ }^{4}$	$50{ }^{4}$	$50{ }^{4}$	60	125	150	40	-	(2)
	400	$50{ }^{4}$	-	-	125	250	350	50	-	(2)
	600	-	-	-	200	400	500	-	-	(2)
	800	-	-	-	-	-	-	-	-	(2)

Notes

(1) DC rating for 800 A switches is 250 V .
(2) Contact the Safety Switch Flex Center (1-888-329-9272 or FlexSwitches@eaton.com) for availability of this product.
(3) Use three-pole catalog numbers below for $600 \mathrm{Vac}, 250 \mathrm{Vdc}$ maximum applications. For 600 Vdc , see note ${ }^{(2)}$.
(4) Ratings are for two-phase AC.

Suitable for service entrance use, except 1200A on 480Y/277 or $600 \mathrm{Y} / 347$ grounded wye systems, per NEC 215.10 and 230.95 , and four-pole switches.

1.1
 Switching Devices

Safety Switches

1 Dimensions

Approximate Dimensions in Inches (mm)
Note: Dimensions are for estimating purposes only.

Heavy-Duty, Non-Fusible, 600V, Three-Pole, Single-Throw

Ampere Rating	Width (W)	Height (H)	Depth (D)	Depth (D2)	Weight Lbs (kg)
NEMA 1, 3R					
30	$8.13(206.5)$	$15.88(403.4)$	$10.00(254.0)$	$5.25(133.3)$	$16(7.264)$
60	$8.13(206.5)$	$15.88(403.4)$	$10.00(254.0)$	$5.25(133.3)$	$16(7.264)$
100	$11.13(282.7)$	$21.69(550.9)$	$10.00(254.0)$	$5.25(133.3)$	$22(9.988)$
200	$16.00(406.4)$	$27.63(701.8)$	$11.25(285.8)$	$6.14(156.0)$	$46(20.884)$
400	$23.00(584.2)$	$45.19(1147.8)$	$12.63(320.8)$	$7.27(184.7)$	$110(49.94)$
600	$24.00(609.6)$	$52.70(1338.6)$	$14.25(362.0)$	$8.95(227.3)$	$135(61.29)$
800	$25.38(644.7)$	$56.69(1439.9)$	$14.25(362.0)$	$8.95(227.3)$	$158(71.732)$
1200	$41.47(1053.3)$	$70.31(1785.9)$	$19.94(506.5)$	$12.44(316.0)$	$430(195.22)$

NEMA 12, 4X Stainless Steel, 4

30	$8.13(206.5)$	$12.13(308.1)$	$10.00(254.0)$	$5.50(139.7)$	$17(7.718)$
60	$8.13(206.5)$	$12.13(308.1)$	$10.00(254.0)$	$5.50(139.7)$	$17(7.718)$
100	$11.13(282.7)$	$24.00(609.6)$	$10.25(260.4)$	$5.50(139.7)$	$28(12.712)$
200	$16.00(406.4)$	$34.38(873.3)$	$11.50(292.1)$	$6.44(163.6)$	$55(24.97)$
400	$23.00(584.2)$	$57.63(1463.8)$	$12.63(320.8)$	$7.19(182.6)$	$125(56.75)$
600	$24.00(609.6)$	$63.00(1600.2)$	$14.25(362.0)$	$8.88(225.6)$	$167(75.818)$
800	$25.38(644.7)$	$71.75(1822.5)$	$14.25(362.0)$	$8.88(225.6)$	$175(79.45)$
1200	$41.47(1053.3)$	$70.31(1785.9)$	$19.94(506.5)$	$13.51(343.2)$	$475(215.65)$

NEMA 1-3R Heavy-Duty 30-1200A

\rightarrow D2 \rightarrow

Heavy-Duty, Fusible, 240V and 600V, Three-Pole Solid Neutral, Single-Throw

Ampere Rating Nidth (W) NEMA 1, 3R	Height (H)	Depth (D)	Depth (D2)	Weight Lbs (kg)	
30	$8.13(206.5)$	$15.88(403.4)$	$10.00(254.0)$	$5.25(133.3)$	$20(9.08)$
60	$8.13(206.5)$	$15.88(403.4)$	$10.00(254.0)$	$5.25(133.3)$	$20(9.08)$
100	$11.13(282.7)$	$21.69(550.9)$	$10.00(254.0)$	$5.25(133.3)$	$27(12.258)$
200	$16.00(406.4)$	$27.63(701.8)$	$11.25(285.8)$	$6.14(156.0)$	$52(23.608)$
400	$23.00(584.2)$	$45.19(1147.8)$	$12.63(320.8)$	$7.27(184.7)$	$120(54.48)$
600	$24.00(609.6)$	$52.70(1338.6)$	$14.25(362.0)$	$8.95(227.3)$	$153(69.462)$
800	$25.38(644.7)$	$56.69(1439.9)$	$14.25(362.0)$	$8.95(227.3)$	$168(76.272)$
1200	$41.47(1053.3)$	$70.31(1785.9)$	$19.94(506.5)$	$12.44(316.0)$	$465(211.11)$

NEMA 12, 4X Stainless Steel, 4

30	$8.13(206.5)$	$17.88(454.2)$	$10.00(254.0)$	$5.50(139.7)$	$22(9.988)$
60	$8.13(206.5)$	$17.88(454.2)$	$10.00(254.0)$	$5.50(139.7)$	$22(9.988)$
100	$11.13(282.7)$	$24.00(609.6)$	$10.25(260.4)$	$5.50(139.7)$	$30(13.62)$
200	$16.00(406.4)$	$34.38(873.3)$	$11.50(292.1)$	$6.44(163.6)$	$61(27.694)$
400	$23.00(584.2)$	$57.63(1463.8)$	$12.63(320.8)$	$7.19(182.6)$	$135(61.29)$
600	$24.00(609.6)$	$63.00(1600.2)$	$14.25(362.0)$	$8.88(225.6)$	$203(92.162)$
800	$25.38(644.7)$	$71.75(1822.5)$	$14.25(362.0)$	$8.88(225.6)$	$213(96.702)$
1200	$41.47(1053.3)$	$70.31(1785.9)$	$19.94(506.5)$	$13.51(343.2)$	$510(231.54)$

NEMA 4, 4X and 12 Heavy-Duty 30-1200A

Note: A factory-installed ground lug is supplied in all heavy-duty safety switches.

Safety Switches

Six-Pole Motor Circuit

Contents

Description	Page
Product Overview	V2-T1-3
General Duty	V2-T1-26
Heavy-Duty	V2-T1-31
Six-Pole Switches	
Product Selection.	V2-T1-44
Double-Throw Switches	V2-T1-45
EnviroLine-Stainless Steel Switch	V2-T1-53
EnviroLine-Upper and Lower Window Switches.	V2-T1-56
EnviroLine-Receptacle Switches	V2-T1-59
EnviroLine-Non-Metallic KRYDON Switch	V2-T1-61
Shunt Trip Safety SwitchShunt Trip Safety Switch.	V2-T1-63
NEMA 7/9—Hazardous Location Disconnect Switch	V2-T1-66
Quick Connect Switches	V2-T1-68
Solar Disconnect Switch	V2-T1-70
316-Grade Stainless Steel Safety Switches.	V2-T1-72
Mill-Duty Rated, Heavy-Duty, Fusible, Non-Fusible, Single-Throw	V2-T1-76
Heavy-Duty Fusible Safety Switches Accepting	
Cube Fuses	V2-T1-78
Elevator Control Switch	V2-T1-81
Auxiliary Power Heavy-Duty Safety Switch	V2-T1-83
Left-Handed Safety Switch	V2-T1-86
200\% Neutral Safety Switches	V2-T1-87
Pringle Bolted Pressure Switch	V2-T1-88
Type DS, Fusible and Non-Fusible	V2-T1-91
Type Visi-Flex DE-ION	V2-T1-94
Flange Mounted-Variable Depth	V2-T1-98
Flange Mounted-Fixed Depth .	V2-T1-102

Six-Pole Switches

Product Description

- $600 \mathrm{Vac}, 250 \mathrm{Vdc}$ maximum
- 30-800A
- Fusible or non-fusible

Application Description

A compact safety switch that's ideal for use in heavy industry...when an "in sight" disconnecting means is required for two-speed motors that are remote from their motor control devices.

Features, Benefits and Functions

- Trunk-type latches keep the cover tightly closed and a neoprene gasket seals out moisture and dust from the switch assembly
- Visible double-break quickmake, quick-break rotary blade mechanism. Two points of contact provide a positive open and close, easier operation, and also help prevent contact burning for longer contact life
- Clear line shield protection
- Built-in fuse pullers
- Clearly visible handle
- Triple padlocking capability; cabinet door can be further padlocked at the top and bottom

Standards and Certifications

- UL listed File No. E5239
- Deionizing arc chutes; arc chutes confine and suppress the arcs produced by opening
 contacts under load
- For factory modifications, refer to Pages V2-T1-16 through V2-T1-19

Safety Switches

Product Selection

600 Vac Heavy-Duty, Fusible, Six-Pole, Single-Throw

System		Ampere Rating	Maximum Horsepower Ratings, Three-Phase AC (Higher Rating with Time Delay Fuses)			NEMA 12 Enclosure Industrial, Dust-Tight Catalog Number	NEMA 4X Enclosure Corrosion-Resistant, Stainless Steel Catalog Number	
		240V	480V	600 V				
600 Vac with Fuse Clips-250 Vdc								
$\begin{array}{lll} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 9 & 9 & 0 \\ 9 & 9 & 9 \\ 0 & 0 & 6 \end{array}$	$\begin{array}{lll} 1 & 1 & d \\ 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \end{array}$		30	3-7-1/2	5-15	7-1/2-20	DH661FDK ${ }^{1}$	(2)
		60	7-1/2-15	15-30	15-50	DH662FDK ${ }^{1}$	(2)	
		100	15-30	25-60	30-75	DH663FDK ${ }^{\text {® }}$	(2)	
		200	25-60	50-125	60-150	DH664FDK ${ }^{1}$	(2)	
		400	-	-	-	(2)	(2)	
		600	-	-	-	(2)	(2)	
		800	-	-	-	(2)	(2)	

DH661UDK	600 Vac Heavy-Duty, Non-Fusible, Six-Pole, Single-Throw								
	System	Ampere Rating	Maximum Horsepower Ratings Three-Phase AC			Three-Phase DC		NEMA 12 Enclosure Industrial, Dust-Tight Catalog Number	NEMA 4X Enclosure Corrosion-Resistant, Stainless Steel Catalog Number
U	$600 \mathrm{Vac}-250 \mathrm{Vdc}$								
		30	10	20	30	5	15	DH661UDK ${ }^{1}$	DH661UWK
		60	20	50	60	10	25	DH662UDK ${ }^{1}$	DH662UWK
		100	40	75	100	20	25	DH663UDK ${ }^{1}$	DH663UWK
		200	60	125	150	40	50	DH664UDK ${ }^{1}$	DH664UWK
		400	-	-	-	-	-	(2)	(2)
		600	-	-	-	-	-	(2)	(2)
		800	-	-	-	-	-	(2)	(2)

Notes

(1) NEMA 12 enclosures $(30-800 \mathrm{~A})$ can be field modified to meet NEMA $3 R$ rainproof requirements when a factory provided drain hole is opened.
(2) Contact the Safety Switch Flex Center (1-888-329-9272 or FlexSwitches@eaton.com) for availability of this product.
(3) 600 Vdc rating requires that the switch be wired per the wiring diagram on the device publication.

30A heavy-duty switches with Type J fuse provisions are available from the factory only. See table on Page V2-T1-18 for catalog numbers.

Safety Switches

Heavy-Duty Double-Throw

Double-Throw Switches

Product Description

Used to transfer service from a normal power source to an alternate source...or to switch from one load circuit to another.

- 30-1200A
- Horsepower rated
- $600 \mathrm{Vac}, 250 \mathrm{Vdc}$ maximum
- 800-1200A fusible utilize common set of fuses; two Source 1 load applications
- Fusible or non-fusible
- Fusible and non-fusible switches are 100\% load break and 100\% load make rated
- Suitable for service entrance applications unless otherwise noted
- The continuous load current of fusible switches is not to exceed 80% of the rating of fuses employed in other than motor circuits. Non-fusible switches are 100\% fully rated
- Approved for service entrance with neutral or ground lug kit installed
- Wiring configuration from factory allows a single load to be supplied by a normal or alternate source. Can be field modified to allow two loads to be alternately supplied by a single power source

Contents

Description	Page Product Overview .
V2-T1-3	

240 Vac General-Duty, NonFusible, Compact Design, Double-Throw

- 30-100A
- Suitable for service entrance use with neutral kit installed
- Non-fusible

240 Vac General-Duty, NonFusible, Double-Throw

- 30-400A
- Horsepower rated
- Suitable for service entrance use with neutral kit installed
- Non-fusible
- Quick-make, quick-break operating mechanism

Safety Switches

- Ample wire bending space provides for easier installation
- Visible double-break quickmake, quick-break rotary blade mechanism. Two points of contact provide a positive open and close, easier operation, and also help prevent contact burning for longer contact life
- Triple padlocking capability. Personnel safety feature since the large hasp can accommodate up to three 3/8-inch (9.5 mm) shank locks. Clearly visible handle. The position (ON or OFF) can be clearly seen from a distance
- Deionizing arc chutes; arc chutes confine and suppress the arcs produced by opening contacts under load
- Additional locking capability; cabinet door can be further padlocked at the top and bottom
- Clear line shield (provided on fusible double-throw) protects against accidental contact with energized parts. Probe holes enable the user to test if the line side is energized without removing the shield
- Tangential knockouts on sides, top and bottom. Enables any size of conduit to be mounted close to the wall, providing for cable installation closer to the wall and a neat appearance

Standards and Certifications

- UL listed switching neutral capability is available on three-pole and four-pole non-fusible double-throw switches with the installation of the proper bonding kit shown on Page V2-T1-14
- Suitable for use as a manually operated switch per 2005 NEC Article 702
- UL listed File No. E5239

Product Selection

DT223URH-N Compact Design	240 Vac General-Duty, Non-Fusible, Compact Design, Double-Throw
$4{ }^{\text {a }}$	NEMA 3R Enclosure Ampere Rating Rainproof Main and Standby Catalog Number
43)	Two-Pole-240 Vac
	30 DT221URH
	60 DT222URH
	100 DT223URH
	Two-Pole, Three-Wire-240 Vac-Solid Neutral
	30 DT221URH-N
	60 DT222URH-N
	100 DT223URH-N

DT224URK-NPS

240 Vac General-Duty, Non-Fusible, Compact Design, Double-Throw

Ampere Rating Main and Standby	Maximum Horsepower Ratings							
	Single-Phase AC			Three-Phase AC			DC$250 \mathrm{~V}$	NEMA 3R Enclosure Rainproof Catalog Number
	240V	480V	600V	240V	480V	600V		
Two-Pole-240 Vac-250 Vdc								
30	3	-	-	-	-	-	5	DT221URKPS
60	1	-	-	-	-	-	10	DT222URKPS
100	20	-	-	-	-	-	20	DT223URKPS
200	15	-	-	-	-	-	40	DT224URKPS
400	-	-	-	-	-	-	50	DT225URKPS
Two-Pole, Three-Wire-240 Vac-250 Vdc, Solid Neutral								
30	3	-	-	-	-	-	5	DT221URK-NPS
60	10	-	-	-	-	-	10	DT222URK-NPS
100	20	-	-	-	-	-	20	DT223URK-NPS
200	15	-	-	-	-	-	40	DT224URK-NPS
400	-	-	-	-	-	-	50	DT225URK-NPS

Safety Switches

240 Vac Heavy-Duty, Fusible, Double-Throw

Ampere Rating Main and Standby	Fuse Class Provision	Maxi Singl	se AC	ting	Three	$\begin{aligned} & \text { Fuses } \\ & \text { se AC } \end{aligned}$		DC	NEMA 1 Enclosure Indoor Catalog Number	NEMA 3R Enclosure Rainproof Catalog Number
		240V	480V	600V	240V	480V	600V	250V		
Two-Pole-240 Vac-250 Vdc										
200	H	15	-	-	-	-	-	40	DT224FGK	DT224FRK
Three-Pole-240 Vac-250 Vdc										
30	H	3	-	-	7-1/2	-	-	5	DT321FGK	DT321FRK
60	H	10	-	-	15	-	-	10	DT322FGK	DT322FRK
100	H	15	-	-	30	-	-	20	DT323FGK	DT323FRK
200	H	15	-	-	60	-	-	40	DT324FGK	DT324FRK
400	H	-	-	-	125	-	-	50	DT325FGK	DT325FRK
600	J	-	-	-	50	-	-	50	DT326FGK	DT326FRK
800	L	-	-	-	-	-	-	-	DT327FGK	DT327FRK
1200	L	-	-	-	-	-	-	-	DT328FGK	DT328FRK

240 Vac Heavy-Duty, Non-Fusible, Double-Throw

Ampere Rating Main and Standby	Maximum Horsepower Ratings Single-Phase AC			Three-Phase AC			$\begin{aligned} & \text { DC } \\ & \text { 250V } \end{aligned}$	NEMA 1 Enclosure Indoor Catalog Number	NEMA 3R Enclosure Rainproof Catalog Number
Two-Pole-240 Vac-250 Vdc									
30	3	-	-	-	-	-	5	DT221UGK	(2)
60	10	-	-	-	-	-	10	DT222UGK	(2)
100	20	-	-	-	-	-	20	DT223UGK	(2)
200	15	-	-	-	-	-	40	DT224UGK	DT224URK
400	-	-	-	-	-	-	50	DT225UGK	DT225URK
600	-	-	-	-	-	-	-	DT226UGK	(2)
800	-	-	-	-	-	-	-	DT227UGK	DT227URK
1200	-	-	-	-	-	-	-	DT228UGK	DT228URK
Three-Pole-240 Vac-250 Vdc									
30	3	-	-	10	-	-	5	DT321UGK	(2)
60	10	-	-	20	-	-	10	DT322UGK	(2)
100	20	-	-	40	-	-	20	DT323UGK	DT323URK
200	15	-	-	60	-	-	40	DT324UGK	DT324URK
400	-	-	-	125	-	-	50	DT325UGK	DT325URK
600	-	-	-	125	-	-	50	DT326UGK	(2)
800	-	-	-	125	-	-	50	DT327UGK ${ }^{1}$	DT327URK
800	-	-	-	125	-	-	50	DT327UGK-N	DT328URK
1200	-	-	-	125	-	-	50	DT328UGK	-

Notes

(1) Field-installable neutral kit is not available. If a neutral is required, order the catalog number shown in the table with " N " suffix.
(2) Contact the Safety Switch Flex Center (1-888-329-9272 or FlexSwitches@eaton.com) for availability of this product.

UL listed switching neutral capability is available on three-pole and four-pole non-fusible double-throw switches with the installation of the proper bonding kit shown on Page V2-T1-14 See Page V2-T1-18 for factory installation from the Flex Center.

Safety Switches

DT363FGK

600 Vac Heavy-Duty, Fusible, Double-Throw

Ampere Rating Main and Standby	Fuse Class Provision	Maximum Horsepower Ratings with Time Delay Fuses					NEMA 1 Enclosure Indoor Catalog Number	NEMA 3R Enclosure Rainproof Catalog Number	NEMA 12 Enclosure Industrial, Dust-Tight Catalog Number	NEMA 4X Enclosure Corrosion-Resistant, Stainless Steel Catalog Number
		$\begin{aligned} & \text { Single } \\ & \text { AC } \\ & \text { 480V } \end{aligned}$	Phase 600V	Three AC 480V	hase 600V	$\begin{aligned} & \text { DC } \\ & 250 \mathrm{~V} \end{aligned}$				
Three-Pole-600 Vac-250 Vdc										
30	H	7-1/2	10	15	20	-	DT361FGK	(1)	(1)	DT361FWK
60	H	20	25	30	50	-	DT362FGK	(1)	(1)	DT362FWK
100	H	30	40	60	75	-	DT363FGK	DT363FRK	(1)	DT363FWK
200	H	50	50	125	150	40	DT364FGK	DT364FRK	(1)	DT364FWK
400	T	-	-	250	350	50	DT365FGK	DT365FRK	(1)	DT365FWK
600	J	-	-	-	-	-	DT366FGK	DT366FRK	(1)	(1)
800	L	-	-	-	-	-	DT367FGK	DT367FRK	(1)	(1)
1200	L	-	-	-	-	-	DT368FGK	DT368FRK	(1)	(1)

600 Vac Heavy-Duty, Non-Fusible, Double-Throw

Notes

(1) Contact the Safety Switch Flex Center (1-888-329-9272 or FlexSwitches@eaton.com) for availability of this product.
(2) Rated $600 \mathrm{Vdc}, 50 \mathrm{hp}$ in addition to ratings shown in table.
${ }^{(3)}$ Field installable neutral kit is not available. If a neutral is required, order the catalog number shown in the table with " N " suffix.
(4) NEMA 12 enclosures ($30-1200 A$) can be field modified to meet NEMA 3R rainproof requirements when a factory provided drain hole is opened.
(5) Also available in 240 Vac catalog number DT325UDK.

UL listed switching neutral capability is available on three-pole and four-pole non-fusible double-throw switches with the installation of the proper bonding kit shown on Page V2-T1-14. See Page V2-T1-18 for factory installation from the Flex Center.

1.1

Switching Devices

Safety Switches

600 Vac Heavy-Duty, Non-Fusible, Double-Throw

Ampere Rating Main and Standby	Maxi Single 480V	Horsep hase AC 600 V	Three Rat T80V	$\begin{gathered} \text { ase AC } \\ 600 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { DC } \\ & 250 \mathrm{~V} \end{aligned}$	NEMA 1 Enclosure Indoor Catalog Number	NEMA 3R Enclosure Rainproof Catalog Number	NEMA 12 Enclosure Industrial, Dust-Tight Catalog Number	NEMA 4X Enclosure Corrosion-Resistant, Stainless Steel Catalog Number
Four-Pole-600 Vac-250 Vdc ${ }^{\text {(1) }}$									
30	7-1/2	10	20	30	5	(2)	DT461URK	(2)	(2)
60	20	25	50	60	10	(2)	DT462URK	(2)	(2)
100	40	50	75	100	20	(2)	DT463URK	(2)	(2)
200	-	50	125	150	40	DT464UGK	DT464URK	(2)	(2)
400	-	-	250	350	50	DT465UGK	DT465URK	(2)	(2)
600	-	-	250	350	50	DT466UGK	DT466URK	(2)	(2)
800	-	-	250	350	50	DT467UGK	DT467URK	(2)	(2)
Six-Pole-600 Vac-250 Vdc ${ }^{(1)}$									
30	7-1/2	10	15	30	5	(2)	DT661URK	(2)	(2)
60	20	25	50	60	10	(2)	DT662URK	(2)	(2)
100	40	50	75	100	20	(2)	DT663URK	(2)	(2)

Notes

(1) Field installable neutral kit is not available. If a neutral is required, order the catalog number shown in the table with " N " suffix.
(2) Contact the Safety Switch Flex Center (1-888-329-9272 or FlexSwitches@eaton.com) for availability of this product.

UL listed switching neutral capability is available on three-pole and four-pole non-fusible double-throw switches with the installation of the proper bonding kit shown on Page V2-T1-14. See Page V2-T1-18 for factory installation from the Flex Center.

Safety Switches

Technical Data and Specifications

Typical Fusible, Double-Throw Schematic Diagram

Fusible Three-Pole
Two Sources

Fusible ThreePole Two Loads

Typical Non-Fusible, Double-Throw Schematic Diagram

Non-Fusible ThreePole Two Sources or Two Loads

Non-Fusible ThreePole Two Sources or Two Loads

Typical General-Duty, Double-Throw Schematic Diagrams (with and without factory-installed neutral)

Short-Circuit Ratings Using Class "R", "J" or "T" Fusing Where Applicable

Dimensions

Approximate Dimensions in Inches (mm)

General-Duty, Non-Fusible, 240V, Two-Pole Solid Neutral, Double-Throw, Compact Design

Ampere Rating	Height (H)	Width (W)	Depth (D)	Depth (D2)	Weight Lbs (kg)
NEMA 3R					
30	$14.69(373.1)$	$9.63(244.6)$	$10.81(274.6)$	$5.23(132.8)$	$12(5.5)$
60	$14.69(373.1)$	$9.63(244.6)$	$10.81(274.6)$	$5.23(132.8)$	$12(5.5)$
100	$14.69(373.1)$	$9.63(244.6)$	$10.81(274.6)$	$5.23(132.8)$	$12(5.5)$

General-Duty, Non-Fusible, 240V, Two-Pole Solid Neutral, Double-Throw, Quick-Make, Quick-Break Design

Ampere Rating	Height (H)	Width (W)	Depth (D)	Depth (D2)	Weight Lbs (kg)
NEMA 3R					
30	$24.63(625.6)$	$11.94(303.3)$	$9.88(251.0)$	$5.38(136.7)$	$34(15.4)$
60	$24.63(625.6)$	$11.94(303.3)$	$9.88(251.0)$	$5.38(136.7)$	$34(15.4$
100	$24.63(625.6)$	$11.94(303.3)$	$9.88(251.0)$	$5.38(136.7)$	$34(15.4)$
200	$37.38(949.5)$	$19.56(496.8)$	$11.25(285.8)$	$6.10(154.9)$	$80(36.3)$
400	$53.81(1366.8)$	$23.13(587.5)$	$12.50(317.6)$	$8.88(225.6)$	$140(63.6)$

NEMA 3R, 30-400A, General-Duty, Non-Fusible, Double-Throw

Notes

Class "H" fuse clips supplied as standard for 30-400A except Class "T" for 400A at 600V. Rated at $10,000 \mathrm{rms}$ symmetrical when using Class " H " fuses.
Table is not applicable to the compact design shown on Page V2-T1-47. The compact design is suitable for use on a circuit capable of delivering not more than $10,000 \mathrm{rms}$ symmetrical amperes.
Class " R " fuse adapter kits are shown on Page V2-T1-14. Individual adapter kits are applicable as shown on Page V2-T1-14 and yield the short-circuit ratings per the tables above when Class "R" fuses are installed. When installed, Class " R " fuse adapter kits reject all fuses except Class "R."
Class " J " fuse provisions can be obtained on most 60-400A safety switches by moving the fuse base to a new position as instructed by the device publication label. Class " J " fuse adapter kits, where needed, are shown on Page V2-T1-14 and yield the short-circuit ratings per the tables above when Class "J" fuses are installed. Class "J" fuse provisions must be factory installed on 30A heavy-duty switches. Catalog numbers are shown in table on Page V2-T1-18. Class "J" fusing is not applicable on 30-200A general-duty switches, 30-100A double-throw switches, and any switch higher than 600A.
Class " T " fuse adapter kits are shown on Page V2-T1-14. Individual adapter kits are applicable to 200-800A switches as shown on Page V2-T1-14 and yield the short-circuit ratings per the tables to the left when Class " T " fuses are installed. On 1200A switches, Class " T " fuse provisions can be obtained by moving the fuse base to a new position as instructed by the device publication label.

Safety Switches

Approximate Dimensions in Inches (mm)

Heavy-Duty, Non-Fusible, 240V and 600V, Three-Pole,
Double-Throw

Ampere Rating	Width (W)	Height (H)	Depth (D)	Depth (D2)	Weight Lbs (kg)
NEMA 1, 3R					
30	11.94 (303.3)	24.63 (625.6)	9.88 (251.0)	5.38 (136.7)	34 (15.436)
60	11.94 (303.3)	24.63 (625.6)	9.88 (251.0)	5.38 (136.7)	34 (15.436)
100	11.94 (303.3)	24.63 (625.6)	9.88 (251.0)	5.38 (136.7)	34 (15.436)
200	19.56 (496.8)	37.38 (949.5)	11.25 (285.8)	6.10 (154.9)	80 (36.32)
400	23.13 (587.5)	53.81 (1366.8)	12.50 (317.5)	7.25 (184.2)	140 (63.56)
600	24.13 (612.9)	63.31 (1608.1)	14.13 (358.9)	8.88 (225.6)	175 (79.45)
800	24.13 (612.9)	63.31 (1608.1)	14.13 (358.9)	8.88 (225.6)	175 (79.45)
1200	42.62 (1082.5)	78.11 (1984.0)	25.62 (650.7)	20.47 (519.9)	-

NEMA 12, 4X Stainless Steel

30	$12.00(304.8)$	$25.88(657.4)$	$10.25(260.4)$	$5.50(139.7)$	$60(27.24)$
60	$12.00(304.8)$	$25.88(657.4)$	$10.25(260.4)$	$5.50(139.7)$	$60(27.24)$
100	$12.00(304.8)$	$25.88(657.4)$	$10.25(260.4)$	$5.50(139.7)$	$60(27.24)$
200	$19.50(495.3)$	$41.00(1041.4)$	$11.63(295.4)$	$6.48(164.6)$	$105(47.67)$
400	$23.00(584.2)$	$57.50(1460.5)$	$12.50(317.5)$	$7.25(184.2)$	$185(83.99)$
600	-	-	-	-	-
800	-	-	-	-	-
1200	-	-	-	-	-

Heavy-Duty, Fusible, 240V and 600V, Three-Pole, Double-Throw

Ampere Rating	Width (W)	Height (H)	Depth (D)	Depth (D2)	Weight Lbs (kg)
NEMA 1, 3R					
30	$11.94(303.3)$	$36.63(930.4)$	$9.88(251.0)$	$5.38(136.7)$	$44(19.976)$
60	$11.94(303.3)$	$36.63(930.4)$	$9.88(251.0)$	$5.38(136.7)$	$44(19.976)$
100	$11.94(303.3)$	$36.63(930.4)$	$9.88(251.0)$	$5.38(136.7)$	$44(19.976)$
200	$19.56(496.8)$	$50.88(1292.4)$	$11.25(285.8)$	$6.10(154.9)$	$95(43.13)$
400	$25.38(644.7)$	$74.75(1898.7)$	$14.13(358.9)$	$8.88(225.6)$	$230(104.42)$
600	$28.12(714.3)$	$58.86(1495.0)$	$25.62(650.7)$	$20.47(520.0)$	$320(145.28)$
800	$28.12(714.2)$	$58.86(1495.0)$	$25.62(650.7)$	$20.47(519.9)$	-
1200	$42.62(1082.5)$	$78.11(1984.0)$	$29.62(752.3)$	$20.47(519.9)$	-

NEMA 12, 4X Stainless Steel, 4

30	$12.00(304.8)$	$39.81(1011.2)$	$10.25(260.4)$	$5.50(139.7)$	$45(20.43)$
60	$12.00(304.8)$	$39.81(1011.2)$	$10.25(260.4)$	$5.50(139.7)$	$45(20.43)$
100	$12.00(304.8)$	$39.81(1011.2)$	$10.25(260.4)$	$5.50(139.7)$	$45(20.43)$
200	$19.56(496.8)$	$55.63(1413.0)$	$11.63(295.4)$	$6.46(164.1)$	$100(45.4)$
400	$25.38(644.7)$	$74.75(1898.7)$	$14.13(358.9)$	$8.92(226.6)$	$260(118.04)$
600	-	-	-	-	-
800	-	-	-	-	-
1200	-	-	-	-	-

NEMA 1-3R Double-Throw 30-800A

NEMA 12-4X Double-Throw 30-400A

Safety Switches

Contents

Description	Page
Product Overview	V2-T1-3
General Duty	V2-T1-26
Heavy-Duty	V2-T1-31
Six-Pole Switches	V2-T1-43
Double-Throw Switches	V2-T1-45
EnviroLine-Stainless Steel Switch	
Product Selection.	V2-T1-54
EnviroLine-Upper and Lower Window Switches.	V2-T1-56
EnviroLine-Receptacle Switches	V2-T1-59
EnviroLine-Non-Metallic KRYDON Switch	V2-T1-61
Shunt Trip Safety SwitchShunt Trip Safety Switch.	V2-T1-63
NEMA 7/9—Hazardous Location Disconnect Switch	V2-T1-66
Quick Connect Switches	V2-T1-68
Solar Disconnect Switch	V2-T1-70
316-Grade Stainless Steel Safety Switches.	V2-T1-72
Mill-Duty Rated, Heavy-Duty, Fusible, Non-Fusible, Single-Throw	V2-T1-76
Heavy-Duty Fusible Safety Switches Accepting	
Cube Fuses	V2-T1-78
Elevator Control Switch	V2-T1-81
Auxiliary Power Heavy-Duty Safety Switch	V2-T1-83
Left-Handed Safety Switch	V2-T1-86
200\% Neutral Safety Switches	V2-T1-87
Pringle Bolted Pressure Switch	V2-T1-88
Type DS, Fusible and Non-Fusible	V2-T1-91
Type Visi-Flex DE-ION	V2-T1-94
Flange Mounted-Variable Depth	V2-T1-98
Flange Mounted-Fixed Depth .	V2-T1-102

EnviroLine—Stainless Steel Switch

Product Description

Primarily for use in the meat packing and food processing industries or any application where water is frequently used to hose down equipment. In addition to the stainless steel NEMA $4 X$ enclosure, the interior mechanism, backpan and springs are stainless steel. Ratings for these heavy-duty switches are 30-400A, 240600 Vac , available as fusible and non-fusible switches.

Features

- Stainless steel enclosure (304 grade)
- Stainless steel mechanism (304 grade)
- 30-400A
- Horsepower rated
- Suitable for service entrance use

Standards and Certifications

- Upper and lower window UL listed and NEMA approved
- UL 98
- UL listed under Section 508
- UL listed File No. E165150 and E5239

Safety Switches

Product Selection

240 Vac Heavy-Duty, Fusible, Single-Throw Stainless Steel Enclosure and Operating Mechanism

			Maximum Ho	ver Ratings	Time Delay F			
System	Ampere Rating	Fuse Class Provision	AC Standard Fuse Single-Phase	Three-Phase	Time Delay Single-Phase	Three-Phase	$\begin{aligned} & \text { DC } \\ & \text { 250V } \end{aligned}$	NEMA 4X Enclosure Corrosion-Resistant, Stainless Steel Catalog Number
Three-Wire (Two Blades, Two Fuses, S/N), $\mathbf{2 4 0}$ Vac-250 Vdc								
	30	H	1-1/2	3	3	7-1/2	5	DH221NWKX
	60	H	3	7-1/2	10	15	10	DH222NWKX
	100	H	7-1/2	15	15	30	20	DH223NWKX
	200	H	15	25	15	60	40	DH224NWKX
	400	H	-	50	-	125	50	DH225NWKX

Three-Pole, 240 Vac- $\mathbf{2 5 0}$ Vdc (Suitable for Service Entrance Use with a Neutral Kit Installed)

$\begin{array}{lll} 1 & d \\ 0 & d \\ 0 & 0 \\ 0 & 0 \\ 0 & o & 0 \\ 1 & 1 & \end{array}$	30	H	1-1/2	3	-	7-1/2	-	DH321FWKX
	60	H	3	7-1/2	-	15	-	DH322FWKX
	100	H	-	-	-	-	-	(1)
	200	H	15	25	-	60	40	DH324FWKX
	400	H	-	50	-	125	50	DH325FWKX
Four-Wire (Three Blades, Three Fuses, S/N), $\mathbf{2 4 0}$ Vac-250 Vdc								
	30	H	-	3	-	7-1/2	-	DH321NWKX
	60	H	-	7-1/2	-	15	-	DH322NWKX
	100	H	-	15	-	30	20	DH323NWKX
	200	H	-	25	-	60	-	DH324NWKX
	400	H	-	50	-	125	50	DH325NWKX

Notes

(1) Contact the Safety Switch Flex Center (1-888-329-9272 or FlexSwitches@eaton.com) for availability of this product.

30A heavy-duty switches with Type J fuse provisions are available from the factory only. See table on Page V2-T1-18 for catalog numbers.

600 Vac Heavy-Duty, Fusible 277/480V, Single-Throw Stainless Steel Enclosure and Operating Mechanism

System	Ampere Rating	Fuse Class Provision	Maximum Horsepower Ratings with Time Delay Fuses						NEMA 4X Enclosure Corrosion-Resistant, Stainless Steel Catalog Number
			$\begin{aligned} & \text { Single } \\ & \text { 480V } \end{aligned}$	e AC 600 V	Three 480V	AC 600 V	DC 250V	600V	
Two-Pole, $480 \mathrm{Vac} \mathbf{- 6 0 0 ~ V a c ~ o r ~ V d c ~}{ }^{1}$ (Suitable for Service Entrance Use with a Neutral Kit Installed)									
$\begin{array}{ll} 1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 9 & 9 \\ 0 & 6 \end{array}$	30	H	7-1/2	10	-	-	-	15	DH261FWKX
	60	H	-	-	-	-	-	-	(2)
	100	H	-	-	-	-	-	-	(2)
	200	H	50	50	-	-	-	50	DH264FWKX
	400	H	-	-	-	-	-	-	(2)
	600	H	-	-	-	-	-	50	DH265FWKX
Three-Pole, 480 Vac -600 Vac, 250 Vdc (Suitable for Service Entrance Use with a Neutral Kit Installed)									
$\begin{array}{lll} 1 & 1 \\ 0 & d \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 1 & 1 & 1 \end{array}$	30	H	7-1/2	10	15	20	-	-	DH361FWKX
	60	H	20	25	30	50	-	-	DH362FWKX
	100	H	30	30	60	75	-	-	DH363FWKX
	200	H	50	50	125	150	-	-	DH364FWKX
	400	H	-	-	250	350	-	-	DH365FWKX
	600	H	-	-	250	350	-	-	DH366FWKX
Four-Wire (Three Blades, Three Fuses, S/N) 480 Vac -600 Vac, 250 Vdc									
	30	H	7-1/2	10	20	30	-	-	DH361NWKX
	60	H	20	25	50	60	-	-	DH362NWKX
	100	H	40	50	75	100	-	-	DH363NWKX
	200	H	50	50	125	150	-	-	DH364NWKX
	400	H	-	-	250	350	-	-	DH365NWKX
	600	H	-	-	250	350	-	-	DH366NWKX

600 Vac Heavy-Duty, Non-Fusible 277/480V, Single-Throw Stainless Steel Enclosure and Operating Mechanism

System	Ampere Rating	Maximum Horsepower Ratings						NEMA 4X Enclosure Corrosion-Resistant, Stainless Steel Catalog Number
		Single-Phase AC		Three-Phase AC		DC		
		480V	600V	480V	600V	250V	600V	
Three-Pole, 480 Vac -600 Vac, 250 Vdc (Suitable for Service Entrance Use with a Neutral Kit Installed)								
o, o,	30	7-1/2	10	20	30	5	-	DH361UWKX
	60	20	25	50	60	10	-	DH362UWKX
	100	40	50	75	100	20	-	DH363UWKX
	200	50	50	125	150	40	-	DH364UWKX
	400	-	-	250	350	50	-	DH365UWKX
	600	-	-	250	350	50	-	DH366UWKX

Notes

(1) DC rating for 400 A switches is 250 V .
(2) Contact the Safety Switch Flex Center (1-888-329-9272 or FlexSwitches@eaton.com) for availability of this product.

30A heavy-duty switches with Type J fuse provisions are available from the factory only. See table on Page V2-T1-18 for catalog numbers.

Contents	
Description	Page
Product Overview .	V2-T1-3
General Duty.	V2-T1-26
Heavy-Duty	V2-T1-31
Six-Pole Switches	V2-T1-43
Double-Throw Switches	V2-T1-45
EnviroLine-Stainless Steel Switch	V2-T1-53
EnviroLine-Upper and Lower Window Switches	
Product Selection	V2-T1-57
EnviroLine-Receptacle Switches	V2-T1-59
EnviroLine-Non-Metallic KRYDON Switch	V2-T1-61
Shunt Trip Safety SwitchShunt Trip Safety Switch	V2-T1-63
NEMA 7/9-Hazardous Location Disconnect Switch .	V2-T1-66
Quick Connect Switches.	V2-T1-68
Solar Disconnect Switch.	V2-T1-70
316-Grade Stainless Steel Safety Switches	V2-T1-72
Mill-Duty Rated, Heavy-Duty, Fusible, Non-Fusible, Single-Throw.	V2-T1-76
Heavy-Duty Fusible Safety Switches Accepting	
Cube Fuses	V2-T1-78
Elevator Control Switch.	V2-T1-81
Auxiliary Power Heavy-Duty Safety Switch.	V2-T1-83
Left-Handed Safety Switch	V2-T1-86
200\% Neutral Safety Switches.	V2-T1-87
Pringle Bolted Pressure Switch.	V2-T1-88
Type DS, Fusible and Non-Fusible.	V2-T1-91
Type Visi-Flex DE-ION .	V2-T1-94
Flange Mounted-Variable Depth	V2-T1-98
Flange Mounted-Fixed Depth.	V2-T1-102

EnviroLine-Upper and Lower Window Switches

Product Description

The new enlarged window on 30-100A ratings allows visual blade position verification and blown fuse indication without opening the door. Higher ampere ratings continue to use the upper and lower window design. The upper window switch provides visual verification of ON/OFF status (blade position), while the lower window design shows fuse status on fuses with blown fuse indicators. Overall ratings are $30-800 \mathrm{~A}$, $240-600 \mathrm{Vac}$, fusible and nonfusible. Available in NEMA 12/3R, 4X stainless steel enclosures.

Features

Upper Window

- 30-800A
- Blade visibility when door closed
- 240 V and 600 V , fusible and non-fusible
- Suitable for service entrance use
- NEMA 12, 4 and 4 X enclosures

Lower Window

- 30-600A
- Power plugs not supplied with the receptacle
- Lower viewing window over fuses to allow visual verification of blown fuse indicators for Littelfuse, Inc. fuses
- 240 V and 600 V , fusible
- Suitable for service entrance use

Standards and Certifications

- Upper and lower window UL listed and NEMA approved
- UL 98
- UL listed under Section 508
- UL listed File No. E165150 and E5239
- NEMA 12, 4 and 4X enclosures

Safety Switches

Product Selection

240 Vac Heavy-Duty, Fusible Single-Throw with Upper Viewing Window

System	Ampere Rating	Fuse Class Provision	Maximum Horsepower Ratings with Time Delay Fuses						NEMA 4 Enclosure Watertight, Painted Steel Catalog Number	NEMA 4X Enclosure Corrosion- Resistant, Stainless Steel Catalog Number
			AC Standar	use	Time De			NEMA 12 Enclosure Industrial,		
			Single- Phase	ThreePhase	Single- Phase	ThreePhase	$\begin{aligned} & \text { DC } \\ & \text { 250V } \end{aligned}$	Dust-Tight Catalog Number		
Four-Wire (Three Blades, Three Fuses, S/N), $\mathbf{2 4 0}$ Vac-250 Vdc ${ }^{(1)}$										
$\begin{array}{ll} 1 & 1 \\ 0 & 0 \\ 1 & 9 \\ 9 & 9 \\ 0 & 9 \end{array}$	30	H	-	3	-	7-1/2	-	DH321NDKW ${ }^{2}$	-	DH321NWKW
	≥ 60	H	-	7-1/2	-	15	-	DH322NDKW ${ }^{2}$	-	DH322NWKW
	cs 100	H	-	15	-	30	20	DH323NDKW ${ }^{2}$	-	DH323NWKW
	200	H	-	25	-	60	-	DH324NDKW ${ }^{2}$	-	DH324NWKW
	400	H	-	50	-	125	50	DH325NDKW ${ }^{2}$	DH325NPKW	DH325NWKW
	600	H	-	75	-	200	-	DH326NDKW ${ }^{2}$	DH326NPKW	DH326NWKW
	800	L	-	100	-	250	-	DH327NDKW ${ }^{2}$	DH327NPKW	DH327NWKW

600 Vac Heavy-Duty, Fusible Single-Throw with Upper Viewing Window

600 Vac Heavy-Duty, Non-Fusible Single-Throw with Upper Viewing Window

System	Ampere Rating	Maximum Horsepower Ratings Single-Phase AC Three-Phase AC DC						NEMA 12 Enclosure Industrial, Dust-Tight Catalog Number	NEMA 4 Enclosure Watertight, Painted Steel Catalog Number	NEMA 4X Enclosure Corrosion-Resistant, Stainless Steel Catalog Number
Three-Pole-600 Vac, $\mathbf{2 5 0}$ Vdc ${ }^{(1)}$ (Suitable for Service Entrance Use with a Neutral or Ground Lug Kit Installed)										
${ }_{1}^{1}, 0,1$	30	7-1/2	10	20	30	5	-	DH361UDKW ${ }^{(2)}$	-	DH361UWKW
	60	20	25	50	60	10	-	DH362UDKW ${ }^{2}$	-	DH362UWKW
	100	40	50	75	100	20	-	DH363UDKW ${ }^{2}$	-	DH363UWKW
	200	50	50	125	150	40	-	DH364UDKW ${ }^{2}$	-	DH364UWKW
	400	-	-	250	350	50	-	DH365UDKW (2)	DH365UPKW	DH365UWKW
	600	-	-	400	500	-	-	DH366UDKW ${ }^{(2)}$	DH366UPKW	DH366UWKW
	800	-	-	500	500	-	-	DH367UDKW ${ }^{2}$	DH367UPKW	DH367UWKW

Notes

(1) For two-pole applications, use outside poles of three-pole switch.
(2) NEMA 12 enclosures (30-800A) can be field modified to meet NEMA 3 R rainproof requirements when a factory provided drain hole is opened.

30A heavy-duty switches with Type J fuse provisions are available from the factory only. See table on Page V2-T1-18 for catalog numbers.
Effective August 2003, 30-100A window switches offer visible blade verification and blown fuse indication in a single design as shown in the photos. The window is replaceable. Higher ampere ratings will continue to be manufactured with a non-replaceable epoxy affixed design with visible blade verification only.

Safety Switches

240 Vac Heavy-Duty, Fusible, Single-Throw with Lower Viewing Window

600 Vac Heavy-Duty, Fusible, Single-Throw with Lower Viewing Window

Notes

(1) For two-pole applications, use outside poles of three-pole switch.
(2) NEMA 12 enclosures $(30-600 A)$ can be field modified to meet NEMA 3 r rainproof requirements when a factory provided drain hole is opened.

Effective August 2003, 30-100A window switches are replaced by a full view window that allows blade position verification and blown fuse indication. See table on Page V2-T1-18 for catalog numbers.

Safety Switches

Contents

Description	Page
Product Overview	V2-T1-3
General Duty	V2-T1-26
Heavy-Duty	V2-T1-31
Six-Pole Switches	V2-T1-43
Double-Throw Switches	V2-T1-45
EnviroLine-Stainless Steel Switch	V2-T1-53
EnviroLine-Upper and Lower Window Switches.	V2-T1-56
EnviroLine-Receptacle Switches	
Product Selection.	V2-T1-60
EnviroLine-Non-Metalic KRYDON Switch	V2-T1-61
Shunt Trip Safety SwitchShunt Trip Safety Switch.	V2-T1-63
NEMA 7/9-Hazardous Location Disconnect Switch	V2-T1-66
Quick Connect Switches	V2-T1-68
Solar Disconnect Switch	V2-T1-70
316-Grade Stainless Steel Safety Switches	V2-T1-72
Mill-Duty Rated, Heavy-Duty, Fusible, Non-Fusible, Single-Throw	V2-T1-76
Heavy-Duty Fusible Safety Switches Accepting	
Cube Fuses	V2-T1-78
Elevator Control Switch	V2-T1-81
Auxiliary Power Heavy-Duty Safety Switch	V2-T1-83
Left-Handed Safety Switch	V2-T1-86
200\% Neutral Safety Switches	V2-T1-87
Pringle Bolted Pressure Switch	V2-T1-88
Type DS, Fusible and Non-Fusible	V2-T1-91
Type Visi-Flex DE-ION	V2-T1-94
Flange Mounted-Variable Depth	V2-T1-98
Flange Mounted-Fixed Depth	V2-T1-102

Standards and Certifications

- Upper and lower window UL listed and NEMA approved
- UL 98
- UL listed under Section 508
- UL listed File No. E165150 and E5239

Switching Devices

Safety Switches

Product Selection

600 Vac Heavy-Duty, Single-Throw with Receptacle, Fusible, Non-Fusible

DH362FDK2WR	Safety Switch with Receptacle K-Series, Three-Pole, 600 Volt Fuse Clips - Fusible				
	Ampere Rating			NEMA 12/3R Enclosure	NEMA 4X Enclosure
	Switch	Receptacle	Power Plug	Catalog Number	Catalog Number
	Crouse-Hinds ARKTITE ${ }^{\circledR}$ Receptacle				
	30	30	Accepts Crouse-Hinds ${ }^{\circledR}$ APJ3485	DH361FDK2WR	DH361FWK2WR
	60	60	APJ6485	DH362FDK2WR	DH362FWK2WR
	100	100	APJ10487	DH363FDK2WR	DH363FWK2WR
	M-R-S (Russellstoll) MAX-GARD ${ }^{\circledR}$ Receptacle				
	30	30	Accepts Russellstoll DS3404MP	DH361FD3WRK	DH361FW3WRK
	60	60	DS6404MP	DH362FD3WRK	DH362FW3WRK
	100	100	DS1404MP	DH363FD3WRK	DH363FW3WRK
	Appleton POWERTITE ${ }^{\circledR}$ Receptacle				
	30	30	Accepts Appleton ACP3034BC	DH361FD5WRK	DH361FW5WRK
	60	60	ACP6034BC	DH362FD5WRK	DH362FW5WRK
	100	100	ACP1034CD	DH363FD5WRK	DH363FW5WRK

Safety Switch with Receptacle K-Series, Three-Pole, 600 Volt Fuse Clips - Non-Fusible

| Ampere Rating
 Switch Receptacle Power Plug | NEMA 12/3R Enclosure
 Catalog Number | NEMA 4X Enclosure |
| :--- | :--- | :--- | :--- |
| Crouse-Hinds ARKTITE Receptacle | | Catalog Number |

Notes
Contact the Safety Switch Flex Center (1-888-329-9272 or FlexSwitches@eaton.com) for additional options including viewing windows and other receptacle manufacturers. Power plugs are not available through Eaton.

Safety Switches

EnviroLine/Non-Metallic KRYDON Switch

Contents

Description	Page
Product Overview	V2-T1-3
General Duty	V2-T1-26
Heavy-Duty	V2-T1-31
Six-Pole Switches	V2-T1-43
Double-Throw Switches	V2-T1-45
EnviroLine-Stainless Steel Switch	V2-T1-53
EnviroLine-Upper and Lower Window Switches	V2-T1-56
EnviroLine-Receptacle Switches.	V2-T1-59
EnviroLine-Non-Metallic KRYDON Switch	
Product Selection	V2-T1-62
Shunt Trip Safety SwitchShunt Trip Safety Switch	V2-T1-63
NEMA 7/9-Hazardous Location Disconnect Switch	V2-T1-66
Quick Connect Switches	V2-T1-68
Solar Disconnect Switch	V2-T1-70
316-Grade Stainless Steel Safety Switches.	V2-T1-72
Mill-Duty Rated, Heavy-Duty, Fusible, Non-Fusible, Single-Throw	V2-T1-76
Heavy-Duty Fusible Safety Switches Accepting	
Cube Fuses	V2-T1-78
Elevator Control Switch	V2-T1-81
Auxiliary Power Heavy-Duty Safety Switch	V2-T1-83
Left-Handed Safety Switch	V2-T1-86
200\% Neutral Safety Switches	V2-T1-87
Pringle Bolted Pressure Switch	V2-T1-88
Type DS, Fusible and Non-Fusible	V2-T1-91
Type Visi-Flex DE-ION	V2-T1-94
Flange Mounted-Variable Depth	V2-T1-98
Flange Mounted-Fixed Depth	V2-T1-102

Standards and Certifications

- Upper and lower window UL listed and NEMA approved
- UL 98
- UL listed under Section 508
- UL listed File No. E165150 and E5239

1.1
 Switching Devices

Safety Switches

Product Selection

DH361UCK

240 Vac Heavy-Duty Non-Metallic Fusible

System	Ampere Rating	Fuse Class Provision	Maximum Horsepower Ratings					
			AC					NEMA 4X Enclosure
			Standard Fuse Single-Phase	Three-Phase	Time Delay Single-Phase	Three-Phase	DC $250 \mathrm{~V}$	Non-Metallic Catalog Number
Three-Pole, $\mathbf{2 4 0}$ Vac-250 Vdc (Suitable for Service Entrance Use with a Neutral Kit Installed)								
	30	H	1-1/2	3	-	7-1/2	-	DH321FCK
	60	H	3	7-1/2	-	15	-	DH322FCK
	100	H	7-1/2	15	-	30	20	DH323FCK
	200	H	15	25	-	60	40	DH324FCK
Four-Wire (Three Blades, Three Fuses, S/N), $\mathbf{2 4 0} \mathbf{V a c - 2 5 0 ~ V d c ~}$								
	30	H	-	3	-	7-1/2	-	DH321NCK
	60	H	-	7-1/2	-	15	-	DH322NCK
	100	H	-	15	-	30	20	DH323NCK
	200	H	-	25	-	60	-	DH324NCK

240 Vac Heavy-Duty Non-Metallic Fusible

System	Ampere Rating	Fuse Class Provision	Maximum Horsepower Ratings with Time Delay Fuses						NEMA 4X Enclosure Corrosion-Resistant, Non-Metallic Catalog Number
			Singl	se AC	Three	se AC	DC		
			480V	600 V	480V	600V	250 V	600 V	

Three-Pole, $\mathbf{4 8 0}$ Vac-600 Vac, $\mathbf{2 5 0}$ Vdc (Suitable for Service Entrance Use with a Neutral Kit Installed)

1	1	1	30	H	$7-1 / 2$	10	15	20	-	-
0	0	60	H	20	25	30	50	-	-	DH361FCK
0	0	0	100	H	30	30	60	75	-	-
0	0	0	200	H	50	50	125	150	-	-
DH362FCK										

Four-Wire (Three Blades, Three Fuses, S/N), 480 Vac-600 Vac, 250 Vdc

	30	H	7-1/2	10	15	20	-	-	DH361NCK
	60	H	20	25	30	50	-	-	DH362NCK
	100	H	30	30	60	75	-	-	DH363NCK
	200	H	50	50	125	150	-	-	DH364NCK

240 Vac Heavy-Duty Non-Metallic Non-Fusible 277/480-600V

System	Ampere Rating	Maximum Horsepower Ratings with Time Delay Fuses								NEMA 4X Enclosure Corrosion-Resistant, Non-Metallic Catalog Number
		Single-Phase AC			Three-Phase AC			DC		
		240V	480V	600 V	240V	480V	600V	250 V	600 V	
Three-Pole, 480 Vac -600 Vac, 250 Vdc (Suitable for Service Entrance Use with a Neutral Kit Installed)										
o, o, o,	30	3	7-1/2	10	10	20	30	5	-	DH361UCK
	60	10	20	25	20	50	60	10	-	DH362UCK
	100	20	40	50	40	75	100	20	-	DH363UCK
	200	15	50	50	60	125	150	40	-	DH364UCK

Note
30A heavy-duty switches with Type J fuse provisions are available from the factory only. See table on Page V2-T1-18 for catalog numbers.

Safety Switches

Shunt Trip Safety Switch

Product Description

Eaton's tried and true heavyduty safety switch line expands to include shunt trip capability-remote switching and visible means of disconnect for commercial and industrial applications.

The shunt trip technology enhances safety by providing a means to open a safety switch electronically. When using an emergency stop, safety interlock or similar means, the remote operation capability of the shunt trip switch no longer requires personnel to manually open the switch with the handle, enhancing safety and improving productivity.

The shunt trip safety switch builds on Eaton's extensive portfolio of safety switch solutions, incorporating a side-handle operation mechanism and visible blade indication that have decades of successful installation and operation.

Contents

Description	Page
Product Overview	V2-T1-3
General Duty	V2-T1-26
Heavy-Duty	V2-T1-31
Six-Pole Switches	V2-T1-43
Double-Throw Switches	V2-T1-45
EnviroLine-Stainless Steel Switch.	V2-T1-53
EnviroLine-Upper and Lower Window Switches.	V2-T1-56
EnviroLine-Receptacle Switches	V2-T1-59
EnviroLine-Non-Metallic KRYDON Switch Product Selection.	V2-T1-62
Shunt Trip Safety SwitchShunt Trip Safety Switch	
Features	V2-T1-64
Options	V2-T1-64
Standards and Certifications	V2-T1-64
Catalog Number Selection.	V2-T1-64
Technical Data and Specifications	V2-T1-65
Dimensions	V2-T1-65
NEMA 7/9—Hazardous Location Disconnect Switch	V2-T1-66
Quick Connect Switches	V2-T1-68
Solar Disconnect Switch	V2-T1-70
316-Grade Stainless Steel Safety Switches	V2-T1-72
Mill-Duty Rated, Heavy-Duty, Fusible, Non-Fusible, Single-Throw	V2-T1-76
Heavy-Duty Fusible Safety Switches Accepting	
Cube Fuses	V2-T1-78
Elevator Control Switch	V2-T1-81
Auxiliary Power Heavy-Duty Safety Switch	V2-T1-83
Left-Handed Safety Switch	V2-T1-86
200\% Neutral Safety Switches	V2-T1-87
Pringle Bolted Pressure Switch	V2-T1-88
Type DS, Fusible and Non-Fusible	V2-T1-91
Type Visi-Flex DE-ION	V2-T1-94
Flange Mounted-Variable Depth	V2-T1-98
Flange Mounted-Fixed Depth .	V2-T1-102

Application Description

The shunt trip safety switch can be configured to meet the needs of safety applications in industrial and commercial environments. The switches can be signaled to electronically operate the trip mechanism and interrupt the flow of power when a defined electrical condition is detected via protection relay (for example, ground fault, undervoltage, blown fuse shutdown).

Application Examples

- E-stop
- Safety interlocking
- Machinery OEM interlocking
- Remote opening (distant from switch)
- Cost-effective solution for high-interrupt applications
- Ground fault ©
- Phase reversal / phase loss (1)
- Blown fuse shutdown (1)
- Undervoltage release ©

Note

(1) Shunt trip switch provides solenoid/coil to facilitate shunt trip, specific relay and applicable power supply provided by others.

Safety Switches

Features

- Variety of coil voltages available
- Visible means of disconnect
- Standard heavy-duty safety switch design with integrated shunt trip module
- Passes Class 1 ground fault testing (1200\% opening)
- 30-800 A (240-600 Vac) ©
- Horsepower ratings are the same as Eaton's standard heavy-duty safety switches
- Fusible devices have shortcircuit ratings of up to 200 kAIC

Options

Flex Center modifications available, such as viewing windows, pilot lights and more.

Standards and Certifications

- UL 98 file number E5239 (600 Vac maximum)
- CSA C22.2 No. 4, file number LL69743 (600 Vac maximum)
- Enclosure ratings: NEMA 12/3R, 4 (painted steel), 4X (stainless steel)
(UL) SA

Catalog Number Selection

Shunt Trip Safety Switch

Note

(1) Contact factory for availability of 1200 A switch.

Safety Switches

Technical Data and Specifications

Shunt Trip Safety Switch-240 Vac and 600 Vac-Ratings

Ampere Rating	Fuse Class ${ }^{(1)}$	Number of Poles
Fusible		
30	H	2,3 or 4 (2)
60	H	2,3 or 4 ${ }^{2}$
100	H	2,3 or 4 (2)
200	H	2,3 or 4
400	H	2,3 or 4
600	H	2,3
800	L	2,3
Non-Fusible		
30	-	2,3 or 4 (2)
60	-	2,3 or 4 (2)
100	-	2,3 or 4 (2)
200	-	2,3 or 4
400	-	2,3 or 4
600	-	2,3
800	-	2,3

Terminal/Lug Wire Range

Ampere Rating	Minimum-Maximum	Wire Type
30	$\# 14-\# 2$	$\mathrm{Cu} / \mathrm{Al}$
60	$\# 14-\# 2$	$\mathrm{Cu} / \mathrm{Al}$
100	$\# 14-1 / 0$	$\mathrm{Cu} / \mathrm{Al}$
200	$\# 6-300$ kcmil	$\mathrm{Cu} / \mathrm{Al}$
400	(2) $1 / 0-300$ kcmil or (1) $1 / 0-750 \mathrm{kcmil}$	$\mathrm{Cu} / \mathrm{Al}$
600	(1) \#2-600 kcmil and (1) $1 / 0-750 \mathrm{kcmil}$	$\mathrm{Cu} / \mathrm{Al}$
800	(4) $1 / 0-750$ kcmil	$\mathrm{Cu} / \mathrm{Al}$

Dimensions

Approximate Dimensions in Inches (mm)
Shunt Trip Safety Switch-240 Vac and 600 Vac

Ampere Rating	Enclosure Dimensions (3), Exterior			
Height (H)	Width (W)	Depth ($\mathbf{D}_{\mathbf{1}}$)	Depth ($\mathbf{D}_{\mathbf{2}}$)	
Fusible				
30	$21.58(548.1)$	$11.58(294.1)$	$11.43(290.3)$	$5.58(141.7)$
60	$21.58(548.1)$	$11.58(294.1)$	$11.43(290.3)$	$5.58(141.7)$
100	$24.95(633.7)$	$14.89(378.2)$	$11.51(282.4)$	$5.58(141.7)$
200	$35.38(898.7)$	$20.11(510.8)$	$11.61(294.9)$	$6.45(163.8)$
400	$57.47(1459.7)$	$27.29(693.2)$	$12.43(315.7)$	$7.42(188.5)$
600	$62.97(1599.4)$	$28.29(718.6)$	$12.43(315.7)$	$7.42(188.5)$
800	$71.72(1821.7)$	$29.54(750.3)$	$12.43(315.7)$	$7.42(188.5)$
Non-Fusible				
30	$21.58(548.1)$	$11.58(294.1)$	$11.43(290.3)$	$5.58(141.7)$
60	$21.58(548.1)$	$11.58(294.1)$	$11.43(290.3)$	$5.58(141.7)$
100	$24.95(633.7)$	$14.89(378.2)$	$11.51(282.4)$	$5.58(141.7)$
200	$35.38(898.7)$	$20.11(510.8)$	$11.61(294.9)$	$6.45(163.8)$
400	$57.47(1459.7)$	$27.29(693.2)$	$12.43(315.7)$	$7.42(188.5)$
600	$62.97(1599.4)$	$28.29(718.6)$	$12.43(315.7)$	$7.42(188.5)$
800	$71.72(1821.7)$	$29.54(750.3)$	$12.43(315.7)$	$7.42(188.5)$

Notes

(1) Class H fuse clips supplied as standard on fusible devices $30-600 \mathrm{~A}$, Class L for 800 A ; Class R, J, T fuse clips available.
(2) Four-pole devices are wider than dimension for 30,60 and 100 A devices. Consult factory for details.
(3) Accurate for all enclosure NEMA type ratings-12/3R, 4, 4X stainless steel.

For additional technical information, please refer to Technical Data TD008003EN.

Contents

Description	Page
Product Overview	V2-T1-3
General Duty.	V2-T1-26
Heavy-Duty	V2-T1-31
Six-Pole Switches	V2-T1-43
Double-Throw Switches	V2-T1-45
EnviroLine-Stainless Steel Switch	V2-T1-53
EnviroLine-Upper and Lower Window Switches	V2-T1-56
EnviroLine-Receptacle Switches	V2-T1-59
EnviroLine-Non-Metallic KRYDON Switch	V2-T1-61
Shunt Trip Safety SwitchShunt Trip Safety Switch	V2-T1-63
NEMA 7/9—Hazardous Location Disconnect Switch	
Product Selection	V2-T1-67
Dimensions	V2-T1-67
Quick Connect Switches.	V2-T1-68
Solar Disconnect Switch	V2-T1-70
316-Grade Stainless Steel Safety Switches	V2-T1-72
Mill-Duty Rated, Heavy-Duty, Fusible, Non-Fusible, Single-Throw.	V2-T1-76
Heavy-Duty Fusible Safety Switches Accepting	
Cube Fuses	V2-T1-78
Elevator Control Switch.	V2-T1-81
Auxiliary Power Heavy-Duty Safety Switch	V2-T1-83
Left-Handed Safety Switch . . .	V2-T1-86
200\% Neutral Safety Switches.	V2-T1-87
Pringle Bolted Pressure Switch.	V2-T1-88
Type DS, Fusible and Non-Fusible.	V2-T1-91
Type Visi-Flex DE-ION.	V2-T1-94
Flange Mounted-Variable Depth.	V2-T1-98
Flange Mounted-Fixed Depth.	V2-T1-102

Standards and Certifications

- Upper and lower window UL listed and NEMA approved
- UL 98
- UL listed under Section 508
- UL listed File No. E165150 and E5239

Compliances

UL Classified- Standard 886 File No. E84577	CSA Certified- Standard C22.2 File No. LR 42131-6
Class I, Division 1 and 2, Groups B, C and D	Class I, Division 1 and 2, Groups B, C and D
Class II, Division 1 and 2, Groups E, F and G	Class II, Division 1 and 2, Groups E, F and G
Class III, Division 1 and 2	Class III, Division 1 and 2
NEMA 7/9	NEMA 7/9
Zone 1, IIB $+\mathrm{H}_{2}$	Zone 1, IIB $+\mathrm{H}_{2}$

Product Selection

DS361UX	NEMA 7/9 Enclosure Sizes-Fusible								
	Maximum Horsepower Ratings								
	Ampere	Three		DC	Fuse Class	Number		Enclosure	Catalog
	Rating	480V	600V	250 V	Provision	of Poles	Voltage	Number	Number
	30	15	20	5	J	3	$600 \mathrm{Vac}, 125 / 250 \mathrm{Vdc}$	1	DS361FX
	60	30	50	10	J	3	$600 \mathrm{Vac}, 125 / 250 \mathrm{Vdc}$	2	DS362FX
	100	60	75	20	J	3	$600 \mathrm{Vac}, 125 / 250 \mathrm{Vdc}$	3	DS363FX
	NEMA 7/9 Enclosure Sizes-Non-Fusible								
	Maximum Horsepower Ratings								
	Ampere	Three-Phase AC		DC	Fuse Class Provision	Number of Poles	Voltage	Enclosure Number	Catalog Number
	Rating	480 V	600V	250V					
	30	15	20	5	-	3	$600 \mathrm{Vac}, 125 / 250 \mathrm{Vdc}$	1	DS361UX
	60	30	50	10	-	3	$600 \mathrm{Vac}, 125 / 250 \mathrm{Vdc}$	1	DS362UX
	100	60	75	20	-	3	$600 \mathrm{Vac}, 125 / 250 \mathrm{Vdc}$	2	DS363UX

Dimensions

Approximate Dimensions in Inches (mm)
NEMA 7/9 Enclosure Sizes

Catalog Number	Standard Conduit Size
DS361FX	$1.50(38.1)$
DS362FX	$2.00(50.8)$
$\mathbf{D S 3 6 3 F X}$	$2.50(63.5)$
DS361UX	$1.50(38.1)$
DS362UX	$1.50(38.1)$
DS363UX	$2.00(50.8)$

NEMA 7/9 ©

Enclosure Number	Mounting Dimensions			Inside Dimensions		Outside Dimensions			Number of Outlets	Dimension K	Approximate Weight Lbs (kg)
	A	B	J	C	D	F	G	H			
1	5.50 (139.7)	13.13 (333.5)	14.13 (358.9)	5.94 (150.9)	10.75 (273.1)	10.63 (270.0)	15.25 (387.4)	8.84 (224.5)	2	2.00 (50.8)	38 (17)
2	6.00 (152.4)	18.00 (457.2)	19.00 (482.6)	6.50 (165.1)	16.00 (406.4)	11.00 (279.4)	20.50 (520.7)	8.97 (227.8)	2	2.31 (58.6)	57 (26)
3	10.25 (260.4)	22.63 (574.8)	-	11.75 (298.4)	20.00 (508.0)	16.38 (416.1)	25.13 (638.3)	9.59 (243.6)	2	3.50 (88.9)	104 (47)

NEMA 7/9-30-100A ©

[^2]Safety Switches

Quick Connect Switches

Product Description

240V, 600 Vac Heavy-Duty, Single-Throw with Cam-Lok or Posi-Lok Receptacles, Fusible, Non-Fusible

- 30-800A
- NEMA 1 or 3R enclosures
- Provision for 200% neutral
- Non-magnetic metal mounting plate
- Crouse-Hinds "J" Power Series E1015, E1016, E1017 cam connectors
- Crouse-Hinds E200, E400 Posi-Lok panels
- Connector plugs are typically not provided, but may be special ordered

Features

Eaton's individual cable connector receptacle switches provide a convenient and safe way to quickly connect and disconnect portable equipment. The load side terminals are factory wired to individual receptacles located behind an interlocked door for added safety. The switch cannot be turned to the ON position without first closing the receptacle compartment door.
A spring-loaded flap door in the receptacle compartment allows the cables to exit the compartment, but seals the compartment when the switch is not in use. For outdoor applications, this will reduce the possibility of insects building nests in the receptacle compartment.

Contents	
Description	Page
Product Overview .	V2-T1-3
General Duty.	V2-T1-26
Heavy-Duty.	V2-T1-31
Six-Pole Switches	V2-T1-43
Double-Throw Switches	V2-T1-45
EnviroLine-Stainless Steel Switch	V2-T1-53
EnviroLine-Upper and Lower Window Switches	V2-T1-56
EnviroLine-Receptacle Switches	V2-T1-59
EnviroLine-Non-Metallic KRYDON Switch	V2-T1-61
Shunt Trip Safety SwitchShunt Trip Safety Switch	V2-T1-63
NEMA 7/9-Hazardous Location Disconnect Switch .	V2-T1-66
Quick Connect Switches	
Catalog Number Selection	V2-T1-69
316-Grade Stainless Steel Safety Switches	V2-T1-72
Mill-Duty Rated, Heavy-Duty, Fusible, Non-Fusible, Single-Throw.	V2-T1-76
Heavy-Duty Fusible Safety Switches Accepting	
Cube Fuses	V2-T1-78
Elevator Control Switch.	V2-T1-81
Auxiliary Power Heavy-Duty Safety Switch.	V2-T1-83
Left-Handed Safety Switch	V2-T1-86
200\% Neutral Safety Switches.	V2-T1-87
Pringle Bolted Pressure Switch.	V2-T1-88
Type DS, Fusible and Non-Fusible.	V2-T1-91
Type Visi-Flex DE-ION.	V2-T1-94
Flange Mounted-Variable Depth.	V2-T1-98
Flange Mounted-Fixed Depth.	V2-T1-102

Standards and Certifications

- UL listed File No. E5239
- UL listed short-circuit rating of $10,000 \mathrm{~A}$ rms symmetrical

Product Selection

For price and availability, contact the Switching
Device Flex Center at
1-888-329-9272 or
FlexSwitches@eaton.com.

Quick Connect Double-Throw

Notes

(1) When upper and lower switches are the same, the switch configuration is consolidated in one letter (e.g., " U " not " $U U^{\prime \prime}$). Also, a switch with a neutral will have either a solid neutral or a switched neutral, not both. Lastly, a switched neutral pole is never fused.
(2) This field is only used when a switch is completely non-fused.

This table is intended for use in breaking down existing catalog numbers. It is not intended for building new catalog numbers.

Contents

Description	Page
Product Overview.	V2-T1-3
General Duty.	V2-T1-26
Heavy-Duty	V2-T1-31
Six-Pole Switches	V2-T1-43
Double-Throw Switches	V2-T1-45
EnviroLine-Stainless Steel Switch	V2-T1-53
EnviroLine-Upper and Lower Window Switches	V2-T1-56
EnviroLine-Receptacle Switches	V2-T1-59
EnviroLine-Non-Metallic KRYDON Switch	V2-T1-61
NEMA 7/9-Hazardous Location Disconnect Switch	V2-T1-66
Quick Connect Switches.	V2-T1-68
Solar Disconnect Switch	
Standards and Certifications	V2-T1-71
Product Selection	V2-T1-71
316-Grade Stainless Steel Safety Switches	V2-T1-72
Mill-Duty Rated, Heavy-Duty, Fusible, Non-Fusible, Single-Throw.	V2-T1-76
Heavy-Duty Fusible Safety Switches Accepting	
Cube Fuses	V2-T1-78
Elevator Control Switch.	V2-T1-81
Auxiliary Power Heavy-Duty Safety Switch	V2-T1-83
Left-Handed Safety Switch	V2-T1-86
200\% Neutral Safety Switches.	V2-T1-87
Pringle Bolted Pressure Switch.	V2-T1-88
Type DS, Fusible and Non-Fusible.	V2-T1-91
Type Visi-Flex DE-ION.	V2-T1-94
Flange Mounted-Variable Depth.	V2-T1-98
Flange Mounted-Fixed Depth.	V2-T1-102

Solar Disconnect Switch

Product Description

600 Vdc Heavy-Duty Fusible and Non-Fusible

- 30-600A
- Single-pole switch capable of switching $1-600 \mathrm{Vdc}$ circuit

Features

- Clear line-shield covering all live parts
- For factory modifications, refer to Pages V2-T1-16 through V2-T1-19

600 Vdc Heavy-Duty Fusible and Non-Fusible

Standards and Certifications

- UL 98 listed, File No. E5239 and marked suitable for NEC Article 690 applications to UL 1741

(H) $C \epsilon$

Product Selection

NEMA 3R

Ampere Rating	Catalog Number	Fuse Class
30	DH161NRK	R
30	DH161URKN	R
60	DH162NRK	R
60	DH162URKN	R
100	DH163NRK	R
100	DH163URKN	R
200	DH164NRK	R
200	DH164URKN	R
400	DH165NRK	R
400	DH165URKN	R
600	DH166NRK	R
600	DH166URKN	R

NEMA 12

Ampere Rating	Catalog Number	Fuse Class
30	DH161NDK	R
30	DH161UDKN	R
60	DH162NDK	R
60	DH162UDKN	R
100	DH163NDK	R
100	DH163UDKN	R
200	DH164NDK	R
200	DH164UDKN	R
400	DH165NDK	R
400	DH165UDKN	R
600	DH166NDK	R
600	DH166UDKN	R

NEMA 4X

Ampere Rating	Catalog Number	Fuse Class
30	DH161NWK	R
30	DH161UWKN	R
60	DH162NWK	R
60	DH162UWKN	R
100	DH163NWK	R
100	DH163UWKN	R
200	DH164NWK	R
200	DH164UWKN	R
400	DH165NWK	R
400	DH165UWKN	R
600	DH166NWK	R
600	DH166UWKN	R

1.1
 Switching Devices
 Safety Switches

Contents	
Description	Page
Product Overview.	V2-T1-3
General Duty.	V2-T1-26
Heavy-Duty.	V2-T1-31
Six-Pole Switches	V2-T1-43
Double-Throw Switches	V2-T1-45
EnviroLine-Stainless Steel Switch	V2-T1-53
EnviroLine-Upper and Lower Window Switches	V2-T1-56
EnviroLine-Receptacle Switches	V2-T1-59
EnviroLine-Non-Metallic KRYDON Switch	V2-T1-61
Shunt Trip Safety SwitchShunt Trip Safety Switch	V2-T1-63
NEMA 7/9-Hazardous Location Disconnect Switch	V2-T1-66
Quick Connect Switches.	V2-T1-68
Solar Disconnect Switch.	V2-T1-70
316-Grade Stainless Steel Safety Switches Product Selection	V2-T1-73
Mill-Duty Rated, Heavy-Duty, Fusible, Non-Fusible,	
Single-Throw	V2-T1-76
Heavy-Duty Fusible Safety Switches Accepting	
Cube Fuses	V2-T1-78
Elevator Control Switch.	V2-T1-81
Auxiliary Power Heavy-Duty Safety Switch	V2-T1-83
Left-Handed Safety Switch	V2-T1-86
200\% Neutral Safety Switches.	V2-T1-87
Pringle Bolted Pressure Switch.	V2-T1-88
Type DS, Fusible and Non-Fusible	V2-T1-91
Type Visi-Flex DE-ION .	V2-T1-94
Flange Mounted-Variable Depth	V2-T1-98
Flange Mounted-Fixed Depth.	V2-T1-102

Standards and Certifications

- UL listed File No. E5239

Safety Switches

Product Selection

240 Vac Fusible-316 Grade Stainless Steel NEMA 4X

System	Ampere Rating	Fuse Type Provision	Maximum Horsepower Ratings					
								NEMA 4X Enclosure
			Standard Fuse Single-Phase	Three-Phase	Time Delay Single-Phase	Three-Phase	$\begin{aligned} & \text { DC } \\ & \text { 250V } \end{aligned}$	Corrosion-Resistant, Stainless Steel Catalog Number
Three-Wire (Two Blades, Two Fuses, S/N) -240 Vac, 250 Vdc								
$\begin{array}{lll} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 1 \\ 0 & 6 & 0 \\ 0 & 1 & i \end{array}$	30	H	1-1/2	3 (1)	3	7-1/2 (1)	5	DH221NWK316
	60	H	3	7-1/2 (1)	10	151	10	DH222NWK316
	100	H	7-1/2	15 (1)	15	30 (1)	20	DH223NWK316
	200	H	15	25 (1)	15	60 (1)	40	DH224NWK316
	400	H	-	50 (1)	15	125 (1)	50	DH225NWK316
	600	H	-	75 (1)	-	200 (1)	-	DH226NWK316
	800	L	-	100 (1)	-	-	-	DH227NWK316
Three-Pole-240 Vac, 250 Vdc (Suitable for Service Entrance Use with a Neutral Kit Installed)								
$\begin{array}{lll} \hline 1 & 1 & d \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 9 & 9 & 9 \\ 0 & 0 & 6 \end{array}$	30	H	1-1/2	3	-	7-1/2	-	DH321FWK316
	60	H	3	7-1/2	-	15	-	DH322FWK316
	100	H	7-1/2	15	-	30	20	(2)
	200	H	15	25	-	60	40	DH324FWK316
	400	H	-	50	-	125	50	DH325FWK316
	600	H	-	75	-	200	-	DH326FWK316
	800	L	-	100	-	250	-	DH327FWK316
	1200	L	-	-	-	-	-	DH328FWK316
Four-Wire (Three Blades, Three Fuses, S/N) -240 Vac, 250 Vdc								
$\begin{array}{llll} 1 & d & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 9 & 9 & z \\ 0 & 0 & 0 & 1 \end{array}$	30	H	-	3	-	7-1/2	-	DH321NWK316
	60	H	-	7-1/2	-	15	-	DH322NWK316
	100	H	-	15	-	30	20	DH323NWK316
	200	H	-	25	-	60	-	DH324NWK316
	400	H	-	50	-	125	50	DH325NWK316
	600	H	-	75	-	200	-	DH326NWK316
	800	L	-	100	-	250	-	(2)
	1200	L	-	-	-	-	-	DH328NWK316

Notes

(1) Grounded B phase ratings, UL listed.
(2) Contact the Safety Switch Flex Center (1-888-329-9272 or FlexSwitches@eaton.com) for availability of this product.

Operating mechanism is standard plated steel. For type 304 stainless steel operating mechanism, contact the Safety Switch Flex Center (1-888-329-9272 or FlexSwitches@eaton.com).

1.1
 Switching Devices

Safety Switches

600 Vac Fusible-316 Grade Stainless Steel NEMA 4X

			Maximum Horsepower Ratings with Time Delay Fuses						NEMA 4X Enclosure Corrosion-Resistant,
	Ampere	Fuse Class	Single	e AC	Three	AC	DC		
System	Rating	Provision	480V	600V	480 V	600 V	250V	600 V	Catalog Number

Two-Pole-480 Vac-600 Vac or DC ${ }^{~}$ (Suitable for Service Entrance Use with a Neutral Kit Installed)

| 1 | | | | | | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 30 | H | $7-1 / 2$ | 10 | - | - | - | 15 | DH261FWK316 |

Three-Pole-480 Vac-600 Vac, $\mathbf{2 5 0}$ Vdc (Suitable for Service Entrance Use with a Neutral Kit Installed)

$\begin{array}{lll} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 \\ 0 & 1 & 9 \\ 0 & 0 & 0 \end{array}$	30	H	7-1/2	10	15	20	-	-	DH361FWK316
	60	H	20	25	30	50	-	-	DH362FWK316
	100	H	30	40	60	75	-	-	DH363FWK316
	200	H	50	50	125	150	-	-	DH364FWK316
	400	H	-	-	250	350	-	-	DH365FWK316
	600	H	-	-	400	500	-	-	DH366FWK316
	800	L	-	-	500	500	-	-	DH367FWK316
	1200	L	-	-	-	-	-	-	DH368FWK316
Four-Wire (Three Blades, Three Fuses, S/N) 480 Vac-600 Vac, 250 Vdc									
$\begin{array}{llll} 1 & d & 1 & d \\ 0 & 0 & 0 & \\ 0 & 1 & \mathbf{z} \\ 9 & 9 & 9 & 0 \\ 9 & 1 & 1 & 1 \end{array}$	30	H	7-1/2	10	15	20	-	-	DH361NWK316
	60	H	20	25	30	50	-	-	DH362NWK316
	100	H	30	40	60	75	-	-	DH363NWK316
	200	H	50	50	125	150	-	-	DH364NWK316
	400	H	-	-	250	350	-	-	DH365NWK316
	600	H	-	-	400	500	-	-	DH366NWK316
	800	L	-	-	500	500	-	-	(3)
	1200	L	-	-	-	-	-	-	DH368NWK316

Notes

(1) DC rating for $400-800 \mathrm{~A}$ switches is 250 V .
(2) Use three-pole catalog numbers below for $600 \mathrm{Vac}, 250 \mathrm{Vdc}$ maximum applications. For 600 Vdc , see note ${ }^{3}$.
(3) Contact the Safety Switch Flex Center (1-888-329-9272 or FlexSwitches@eaton.com) for availability of this product.

600 Vac Non-Fusible Three-Pole-316 Grade Stainless Steel NEMA 4X

600 Vac Non-Fusible Four-Pole-316 Grade Stainless Steel NEMA 4X

System	Ampere Rating	Maximum Horsepower Ratings Two-Phase AC			Three-Phase AC		600V	$\begin{aligned} & \text { DC } \\ & \text { 250V } \end{aligned}$	600 V	NEMA 4X Enclosure Corrosion-Resistant, Stainless Steel Catalog Number
		240V	480V	600V	240V	480V				
Four-Pole-480 Vac-600 Vac, 250 Vdc										
o, o, o, o	30	10	20	25	10	20	30	5	-	DH461UWK316
	60	20	40	50	20	50	60	10	-	(1)
	100	40	50	50	40	75	100	20	-	(1)
	200	50	50	50	60	125	150	40	-	(1)
	400	50	-	-	125	250	350	-	-	(1)
	600	-	-	-	200	400	500	-	-	(1)
	800	-	-	-	-	-	-	-	-	(1)

Note
(1) Contact the Safety Switch Flex Center (1-888-329-9272 or FlexSwitches@eaton.com) for availability of this product.

1.1
 Switching Devices
 Safety Switches

Contents	
Description	Page
Product Overview	V2-T1-3
General Duty.	V2-T1-26
Heavy-Duty	V2-T1-31
Six-Pole Switches	V2-T1-43
Double-Throw Switches	V2-T1-45
EnviroLine-Stainless Steel Switch	V2-T1-53
EnviroLine-Upper and Lower Window Switches	V2-T1-56
EnviroLine-Receptacle Switches	V2-T1-59
EnviroLine-Non-Metallic KRYDON Switch	V2-T1-61
Shunt Trip Safety SwitchShunt Trip Safety Switch	V2-T1-63
NEMA 7/9—Hazardous Location Disconnect Switch	V2-T1-66
Quick Connect Switches.	V2-T1-68
Solar Disconnect Switch	V2-T1-70
316-Grade Stainless Steel Safety Switches	V2-T1-72
Mill-Duty Rated, Heavy-Duty, Fusible, Non-Fusible,	
Single-Throw Product Selection	V2-T1-77
Heavy-Duty Fusible Safety Switches Accepting	
Cube Fuses	V2-T1-78
Elevator Control Switch.	V2-T1-81
Auxiliary Power Heavy-Duty Safety Switch.	V2-T1-83
Left-Handed Safety Switch	V2-T1-86
200\% Neutral Safety Switches	V2-T1-87
Pringle Bolted Pressure Switch.	
Type DS, Fusible and Non-Fusible	V2-T1-91
Type Visi-Flex DE-ION .	V2-T1-94
Flange Mounted-Variable Depth.	V2-T1-98
Flange Mounted-Fixed Depth.	V2-T1-102

Mill-Duty Rated, Heavy-Duty, Fusible, Non-Fusible, Single-Throw

Product Description

240V, 600 Vac Heavy-Duty,
Fusible, Non-Fusible,
Single-Throw

- 30-600A
- Horsepower rated
- Suitable for service entrance use
- Factory-installed copper ground lug
- Copper terminal lugs
- Fuse pullers through 200A
- For factory modifications, refer to Pages V2-T1-16 through V2-T1-19

Standards and Certifications

- UL listed File No. E5239

Safety Switches

Product Selection

Fusible

Maximum Horsepower Ratings with Time Delay Fuses

			AC							
		Fuse	Standar		Time De		DC		NEMA 12 Enclos	NEMA 4X Enclosure Corrosion-Resistant,
System	Ampere Rating	Class Provision	Single- Phase	ThreePhase	Single- Phase	ThreePhase	250V	600V	Industrial, Dust-Tight Catalog Number	Stainless Steel Catalog Number

Three-Pole-240 Vac, $\mathbf{2 5 0}$ Vdc (Suitable for Service Entrance Use with a Neutral Kit Installed) ${ }^{1}$

Two-Pole-480 Vac-600 Vac or DC ${ }^{(5)}$ (Suitable for Service Entrance Use with a Neutral Kit Installed) (1)

	30	H	7-1/2	10	-	-	-	15	DH261FDK-GCL ${ }^{(2)}$	DH261FWK-GCL
0	60	H	20	25	-	-	-	25	DH262FDK-GCL ${ }^{(2)}$	(3) or ${ }^{4}$
60	100	H	30	40	-	-	-	25	DH263FDK-GCL ${ }^{2}{ }^{\text {2 }}$	(3) or ${ }^{4}$
	200	H	50	50	-	-	-	50	DH264FDK-GCL ${ }^{(2)}$	DH264FWK-GCL

Three-Pole-480 Vac-600 Vac, $\mathbf{2 5 0}$ Vdc (Suitable for Service Entrance Use with a Neutral Kit Installed) (1)

$\begin{array}{lll} 1 & d & 1 \\ 0 & 0 & 0 \\ 0 & 0 \\ 0 & 9 & 9 \\ 0 & 6 & 9 \end{array}$	30	H	7-1/2	10	15	20	-	-	DH361FDK-GCL ${ }^{2}$	DH361FWK-GCL
	60	H	20	25	30	50	-	-	DH362FDK-GCL ${ }^{(2)}$	DH362FWK-GCL
	100	H	30	40	60	75	-	-	DH363FDK-GCL ${ }^{\text {2 }}$	DH363FWK-GCL
	200	H	50	50	125	150	-	-	DH364FDK-GCL ${ }^{2}$	DH364FWK-GCL
	400	H	-	-	250	350	-	-	DH365FDK-GCL ${ }^{2}$	DH365FWK-GCL
	600	H	-	-	400	500	-	-	DH366FDK-GCL ${ }^{2}$	DH366FWK-GCL

Non-Fusible 277/480-600V
Maximum Horsepower Ratings
AC

System	Ampere Rating	Fuse Class Provision	Standard Fuse		Time Delay		DC		NEMA 12 Enclosure Industrial, Dust-Tight Catalog Number	NEMA 4X Enclosure Corrosion-Resistant, Stainless Steel Catalog Number
			Single- Phase	ThreePhase	Single- Phase	ThreePhase	250V	600V		
Three-Pole-480 Vac-600 Vac, $\mathbf{2 5 0 ~ V d c ~}{ }^{\text {® }}$ (Suitable for Service Entrance use with a Neutral Kit Installed) ${ }^{(1)}$										
$\begin{array}{lll} 1 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	30	-	7-1/2	10	20	30	5	-	DH361UDK-GCL ${ }^{2}$	DH361UWK-GCL
	60	-	20	25	50	60	10	-	DH362UDK-GCL ${ }^{2}$	DH362UWK-GCL
	100	-	40	50	75	100	20	-	DH363UDK-GCL ${ }^{2}$	DH363UWK-GCL
	200	-	50	50	125	150	40	-	DH364UDK-GCL ${ }^{2}$	DH364UWK-GCL
	400	-	-	-	250	350	50	-	DH365UDK-GCL ${ }^{(2)}$	DH365UWK-GCL
	600	-	-	-	400	500	-	-	DH366UDK-GCL ${ }^{2}$	DH366UWK-GCL

Notes

(1) Contact the Safety Switch Flex Center (1-888-329-9272 or FlexSwitches@eaton.com) for copper neutrals.
(2) NEMA 12 enclosures ($30-600 \mathrm{~A}$) can be field modified to meet NEMA 3 R rainproof requirements when a factory provided drain hole is opened.
(3) Contact the Safety Switch Flex Center (1-888-329-9272 or FlexSwitches@eaton.com) for availability of this product.
(4) Use three-pole catalog numbers below for $600 \mathrm{Vac}, 250 \mathrm{Vdc}$ maximum applications. For 600 Vdc , see note ${ }^{3}$.
(5) DC rating for $400-600 \mathrm{~A}$ switches is 250 V .
(6) For two-pole applications, use outside poles of three-pole switch.

Switching Devices
Safety Switches

Contents	
Description	Page
Product Overview	V2-T1-3
General Duty.	V2-T1-26
Heavy-Duty	V2-T1-31
Six-Pole Switches	V2-T1-43
Double-Throw Switches	V2-T1-45
EnviroLine-Stainless Steel Switch	V2-T1-53
EnviroLine-Upper and Lower Window Switches	V2-T1-56
EnviroLine-Receptacle Switches	V2-T1-59
EnviroLine-Non-Metallic KRYDON Switch	V2-T1-61
Shunt Trip Safety SwitchShunt Trip Safety Switch	V2-T1-63
NEMA 7/9—Hazardous Location Disconnect Switch	V2-T1-66
Quick Connect Switches	V2-T1-68
Solar Disconnect Switch	V2-T1-70
316-Grade Stainless Steel Safety Switches	V2-T1-72
Mill-Duty Rated, Heavy-Duty, Fusible, Non-Fusible, Single-Throw	V2-T1-76
Heavy-Duty Fusible Safety Switches Accepting	
Cube Fuses	
Product Selection	V2-T1-79
Elevator Control Switch.	V2-T1-81
Auxiliary Power Heavy-Duty Safety Switch.	V2-T1-83
Left-Handed Safety Switch	V2-T1-86
200\% Neutral Safety Switches	V2-T1-87
Pringle Bolted Pressure Switch.	V2-T1-88
Type DS, Fusible and Non-Fusible	V2-T1-91
Type Visi-Flex DE-ION .	V2-T1-94
Flange Mounted-Variable Depth.	V2-T1-98
Flange Mounted-Fixed Depth.	V2-T1-102

Heavy-Duty Fusible Safety Switches Accepting Cube Fuses

Product Description

600 Vac Heavy-Duty,

Fusible, Single-Throw

Cube fuses installed in a safety switch provide fingersafe protection, Class J time delay electrical performance with a smaller footprint than Class J or CC fusing, and blown fuse indication.

- 30-100A
- Horsepower rated
- For factory modifications, refer to Pages V2-T1-16 through V2-T1-19

Standards and Certifications

- UL listed File No. E5239

Safety Switches

Product Selection

System	Ampere Rating	Fuse Class Provision	Maximum Horsepower Ratings								NEMA 4X Enclosure CorrosionResistant, Stainless Steel Catalog Number
			Single- Phase AC		Three- Phase AC		DC	NEMA 1 Enclosure Indoor	NEMA 3R Enclosure Rainproof	NEMA 12 Enclosure Industrial, Dust-Tight	
			480V	600V	480V	600V	250V	Catalog Number	Catalog Number	Catalog Number	
Three-Pole-480 Vac-600 Vac, $\mathbf{2 5 0 ~ V d c ~ (S u i t a b l e ~ f o r ~ S e r v i c e ~ E n t r a n c e ~ U s e ~ w i t h ~ a ~ N e u t r a l ~ K i t ~ I n s t a l l e d) ~}$											
$\begin{array}{ll} 1 & 1 \\ 0 & 0 \\ 1 & 9 \\ 9 & 9 \\ 0 & 9 \end{array}$	30	Cube	7-1/2	10	15	20	-	DH361FGKCB	DH361FRKCB	DH361FDKCB ${ }^{1}$	DH361FWKCB
	60	Cube	20	25	30	50	-	DH362FGKCB	DH362FRKCB	DH362FDKCB ${ }^{(1)}$	DH362FWKCB
	100	Cube	30	40	60	75	-	DH363FGKCB	DH363FRKCB	DH363FDKCB ${ }^{(1)}$	DH363FWKCB

Fusible 277/480-600V

Fusible 277/480-600V

System	Ampere Rating	Maximum Horsepower Ratings								Vac-600 Vac, 250 Vac	
		Fuse Class Provision	TwoPhase 480V	600V	Three Phase 480V	AC 600 V	DC 250V	NEMA 1 Enclosure Indoor Catalog Number	NEMA 3R Enclosure Rainproof Catalog Number	NEMA 12 Enclosure Industrial, Dust-Tight Catalog Number	NEMA 4X Enclosure Corrosion- Resistant, Stainless Steel Catalog Number
Four-Pole-480 Vac-600 Vac, 250 Vdc											
	30	Cube	20	25	15	20	-	DH461FGKCB	(1)	(1)2	(2)
	60	Cube	40	50	30	50	-	DH462FGKCB	(1)	(1) 2	(2)
	100	Cube	50	50	60	75	-	DH463FGKCB	(1)	DH463FDKCB ${ }^{1}$	(2)

[^3]
1.1
 Switching Devices

Safety Switches

1
Fusible with Window 277/480-600V

System	Ampere Rating	Fuse Class Provision	Maximum Horsepower Ratings				DC 250V/600V	NEMA 12 Enclosure Industrial, Dust-Tight Catalog Number	NEMA 4X Enclosure Corrosion-Resistant, Stainless Steel Catalog Number
			Single-Phase AC		Three-Phase AC				
			480V	600V	480V	600V			
Four-Wire (Three Blades, Three Fuses, S/N), 600 Vac-250 Vdc ${ }^{(1)}$									
$\begin{array}{llll} 1 & d & 1 & 1 \\ 0 & 0 & 0 & \\ 0 & 0 \\ 1 & 9 & 9 & z \\ 0 & 6 & 0 & 0 \end{array}$	30	Cube	7-1/2	10	15	20	-	DH361NDKWCB ${ }^{1}$	DH361NWKWCB
	60	Cube	20	25	30	50	-	DH362NDKWCB ${ }^{(1)}$	DH362NWKWCB
	100	Cube	30	40	60	75	-	DH363NDKWCB ${ }^{(1)}$	DH363NWKWCB

Notes
(1) NEMA 12 enclosures ($30-100 \mathrm{~A}$) can be field modified to meet NEMA 3 R rainproof requirements when a factory provided drain hole is opened.

Fuses are supplied as separate items.

Safety Switches

Elevator Control Switch

Contents

Description	Page
Product Overview	V2-T1-3
General Duty	V2-T1-26
Heavy-Duty	V2-T1-31
Six-Pole Switches.	V2-T1-43
Double-Throw Switches	V2-T1-45
EnviroLine-Stainless Steel Switch.	V2-T1-53
EnviroLine-Upper and Lower Window Switches	V2-T1-56
EnviroLine-Receptacle Switches	V2-T1-59
EnviroLine-Non-Metallic KRYDON Switch	V2-T1-61
Shunt Trip Safety SwitchShunt Trip Safety Switch.	V2-T1-63
NEMA 7/9—Hazardous Location Disconnect Switch	V2-T1-66
Quick Connect Switches	V2-T1-68
Solar Disconnect Switch	V2-T1-70
316-Grade Stainless Steel Safety Switches.	V2-T1-72
Mill-Duty Rated, Heavy-Duty, Fusible, Non-Fusible, Single-Throw	V2-T1-76
Heavy-Duty Fusible Safety Switches Accepting	
Cube Fuses	V2-T1-78
Elevator Control Switch	
Catalog Number Selection	V2-T1-82
Technical Data and Specifications	V2-T1-82
Dimensions	V2-T1-82
Auxiliary Power Heavy-Duty Safety Switch	V2-T1-83
Left-Handed Safety Switch	V2-T1-86
200\% Neutral Safety Switches	V2-T1-87
Pringle Bolted Pressure Switch	V2-T1-88
Type DS, Fusible and Non-Fusible	V2-T1-91
Type Visi-Flex DE-ION	V2-T1-94
Flange Mounted-Variable Depth	V2-T1-98
Flange Mounted-Fixed Depth	V2-T1-102

Elevator Control Switch

Features, Benefits and Functions

Standard Features

- 30-400A, 600 Vac threephase fused power switch
- 200,000A rms short-circuit current rating
- Shunt trip 120 V
- Control power terminal block
- Ground lug per NEC
- Class J Fuse mounting only (Class J Fuses not included)
- Key to test switch 120 V
- Mechanically interlocked auxiliary contact for hydraulic elevators with automatic recall (5A, 120 Vac rated) 1NO, 1NC

Optional Features

- Control power transformer with fuses and blocks
- Fire safety interface relay
- Pilot light—ON
- Isolated neutral lug (oversized 200\% rated neutral option available where required by excessive nonlinear loads)
- Fire alarm voltage monitoring relay (to monitor shunt trip voltage)
- NEMA 3R, 4 and 12 enclosures available through 200A
- Phase failure and undervoltage relay available, consult factory
- For added protection, use Eaton fuse covers to improve maintenance personnel protection, through 200A (OSHA 1910.333, Paragraph C)

Standards and Certifications

- UL 98 Enclosed and

Deadfront Switch
Guide 96NK3917,
File No. E182262

- NEMA 1, UL 50, listed enclosure
- cUL ${ }^{\circledR}$ per Canadian

Standards C22.2,
No. 0-M91-CAN/CSA ${ }^{\circledR}$
C22.2, No. 4-M89
Enclosed Switch

Catalog Number Selection

Elevator Control Switch

Catalog Number Example: ES3T1R1GF3

- 100A S.T. switch 480V-3P—ES3
- 480-120V CPT-T1
- 120 Vac coil fire safety interface relay-R1
- Pilot light—ON (Green)—G
- Fire alarm voltage monitoring relay (three-pole)-F3

Technical Data and Specifications

Elevator Control Switch Maximum hp Rating-Sizing Based on Motor Type

Voltage Rating (Vac Three-Phase)	Ampere Rating														
		B	C	A	B	C	A	B	C		B	C	A	B	C
208	5	5	3	10	10	10	20	15	15	40	40	30	-	-	-
240	5	5	5	10	10	10	20	20	15	50	40	30	-	-	-
280	10	10	10	30	25	20	50	40	30	100	75	75	-	-	-
600	15	15	10	30	30	25	60	50	40	125	100	100	-	-	-

Dimensions

Approximate Dimensions in Inches (mm)
Elevator Control Switch Dimensions and Lug Data

Ampere Rating	NEMA $1{ }^{(1)}$		Depth	NEMA 3R, $12{ }^{(2)}$		Depth	Lug Size ${ }^{(3)}$	Catalog Number
	Height	Width		Height	Width			
30	20.00 (508.0)	16.00 (406.4)	8.63 (219.2)	20.00 (508.0)	20.00 (508.0)	8.00 (203.2)	\#14-\#8 Al or Cu	ES1
60	20.00 (508.0)	16.00 (406.4)	8.63 (219.2)	20.00 (508.0)	20.00 (508.0)	8.00 (203.2)	\#14-\#2 Al or Cu	ES2
100	20.00 (508.0)	16.00 (406.4)	8.63 (219.2)	20.00 (508.0)	20.00 (508.0)	8.00 (203.2)	\#8-1/0 Al or Cu	ES3
200	30.00 (762.0)	20.00 (508.0)	8.63 (219.2)	30.00 (762.0)	24.00 (609.6)	8.00 (203.2)	\#6-250 kcmil Al or Cu	ES4
400	52.00 (320.8)	25.00 (635.0)	8.00 (203.2)	52.00 (1320.8)	25.00 (635.0)	8.00 (203.2)	(2) I/0-(1) 750	ES5

Notes

(1) Standard oversize enclosure to mount control power transformer fire safety interface relay and control terminal blocks.
(2) Contact factory for dimensions for NEMA 4 enclosure.
(3) Optional neutral lug size same as line and load.

Safety Switches

DH323FRKA1240

Contents

Standards and Certifications

- UL listed File No. E5239
- Horsepower rated
- NEMA 3R outdoor enclosure standard
- 15A ground fault receptacle standard
- For factory modifications,
refer to Pages V2-T1-16
- For factory modifications
refer to Pages V2-T1-16 through V2-T1-19

Features

- 30-200A

Description	Page
Product Overview	V2-T1-3
General Duty	V2-T1-26
Heavy-Duty	V2-T1-31
Six-Pole Switches.	V2-T1-43
Double-Throw Switches	V2-T1-45
EnviroLine-Stainless Steel Switch	V2-T1-53
EnviroLine-Upper and Lower Window Switches.	V2-T1-56
EnviroLine-Receptacle Switches	V2-T1-59
EnviroLine-Non-Metallic KRYDON Switch	V2-T1-61
Shunt Trip Safety SwitchShunt Trip Safety Switch.	V2-T1-63
NEMA 7/9—Hazardous Location Disconnect Switch	V2-T1-66
Quick Connect Switches	V2-T1-68
Solar Disconnect Switch	V2-T1-70
316-Grade Stainless Steel Safety Switches	V2-T1-72
Mill-Duty Rated, Heavy-Duty, Fusible, Non-Fusible, Single-Throw	V2-T1-76
Heavy-Duty Fusible Safety Switches Accepting	
Cube Fuses	V2-T1-78
Elevator Control Switch	V2-T1-81
Auxiliary Power Heavy-Duty Safety Switch	
Product Selection.	V2-T1-84
Left-Handed Safety Switch	V2-T1-86
200\% Neutral Safety Switches	V2-T1-87
Pringle Bolted Pressure Switch	
Type DS, Fusible and Non-Fusible	V2-T1-91
Type Visi-Flex DE-ION	V2-T1-94
Flange Mounted-Variable Depth	V2-T1-98
Flange Mounted-Fixed Depth	V2-T1-102

Auxiliary Power Heavy-Duty Safety Switch

Product Description

NEC Article 210.63 requires that a 125 V , single-phase, 15 or 20A rated receptacle outlet be installed at an accessible location for the servicing of heating, airconditioning and refrigeration equipment. The receptacle must be located on the same level and within 25 ft (7.5m) of the heating, airconditioning and refrigeration equipment. Eaton's heavyduty safety switch is an ideal solution for these applications, including elimination of the need for running a separate 120 V circuit to the rooftop.

1.1
 Switching Devices

Safety Switches

Product Selection

Non-Fusible 208 Vac-240 Vac-480 Vac-600 Vac-Three-Pole
Maximum Horsepower Ratings

Ampere Rating	Maximum Horsepower Ratings						
	240V	480V	600V	240 V	480 V	600 V	Catalog Number
208 Vac							
30	-	-	-	-	-	-	DH321URKA1208
60	-	-	-	-	-	-	DH322URKA1208
100	-	-	-	-	-	-	DH323URKA1208
200	-	-	-	-	-	-	DH324URKA1208
240 Vac							
30	3	-	-	10	-	-	DH321URKA1240
60	10	-	-	20	-	-	DH322URKA1240
100	20	-	-	40	-	-	DH323URKA1240
200	15	-	-	60	-	-	DH324URKA1240
480 Vac							
30	3	7-1/2	10	10	20	30	DH361URKA1480
60	10	20	25	20	50	60	DH362URKA1480
100	20	40	50	40	75	100	DH363URKA1480
200	15	50	50	60	125	150	DH364URKA1480
600 Vac							
30	3	7-1/2	10	10	20	30	DH361URKA1600
60	10	20	25	20	50	60	DH362URKA1600
100	20	40	50	40	75	100	DH363URKA1600
200	15	50	50	60	125	150	DH364URKA1600

Fusible 208 Vac-240 Vac-Three-Pole

Ampere Rating	Fuse Type Provision	Maximum Hors AC Standard Fuse Single-Phase	power Rating Three-Phase	Time Delay Single-Phase	Three-Phase	Catalog Number
208 Vac						
30	H	-	-	-	-	DH321FRKA1208
60	H	-	-	-	-	DH322FRKA1208
100	H	-	-	-	-	DH323FRKA1208
200	H	-	-	-	-	DH324FRKA1208
240 Vac						
30	H	1-1/2	3	-	7-1/2	DH321FRKA1240
60	H	3	7-1/2	-	15	DH322FRKA1240
100	H	7-1/2	15	-	30	DH323FRKA1240
200	H	15	25	-	60	DH324FRKA1240

Note

Contact the Safety Switch Flex Center (1-888-329-9272 or FlexSwitches@eaton.com) for additional options, including 20A GFI receptacles.

Fusible 480 Vac-600 Vac-Three-Pole

		Max	we	Tim		
Ampere	Fuse Type	Single		Three		
Rating	Provision	480V	600V	480V	600V	Catalog Number
480 Vac						
30	H	7-1/2	10	15	20	DH361FRKA1480
60	H	20	25	30	50	DH362FRKA1480
100	H	30	40	60	75	DH363FRKA1480
200	H	50	50	125	150	DH364FRKA1480
600 Vac						
30	H	7-1/2	10	15	20	DH361FRKA1600
60	H	20	25	30	50	DH362FRKA1600
100	H	30	40	60	75	DH363FRKA1600
200	H	50	50	125	150	DH364FRKA1600

Fusible 208 Vac-240 Vac-Three-Pole

Ampere Rating	Fuse Type Provision	Maximum Hors AC Standard Fuse Single-Phase	ower Ratings Three-Phase	Time Delay Single-Phase	Three-Phase	Catalog Number
208 Vac						
30	H	-	-	-	-	DH321NRKA1208
60	H	-	-	-	-	DH322NRKA1208
100	H	-	-	-	-	DH323NRKA1208
200	H	-	-	-	-	DH324NRKA1208
240 Vac						
30	H	1-1/2	3	-	7-1/2	DH321NRKA1240
60	H	3	7-1/2	-	15	DH322NRKA1240
100	H	7-1/2	15	-	30	DH323NRKA1240
200	H	15	25	-	60	DH324NRKA1240

Fusible 480 Vac-600 Vac-Three-Pole
Maximum Horsepower Ratings with Time Delay Fuses

Ampere Rating	Fuse Type Provision	Maximum Horsepower Ratings with Time Delay Fuses				
		Single-Phase AC		Three-Phase AC		Catalog Number
		480V	600V	480V	600V	
480 Vac						
30	H	7-1/2	10	15	20	DH361NRKA1480
60	H	20	25	30	50	DH362NRKA1480
100	H	30	40	60	75	DH363NRKA1480
200	H	50	50	125	150	DH364NRKA1480
600 Vac						
30	H	7-1/2	10	15	20	DH361NRKA1600
60	H	20	25	30	50	DH362NRKA1600
100	H	30	40	60	75	DH363NRKA1600
200	H	50	50	125	150	DH364NRKA1600

Note
Contact the Safety Switch Flex Center (1-888-329-9272 or FlexSwitches@eaton.com) for additional options, including 20A GFI receptacles.

1.1 Switching Devices
 Safety Switches

Left-Handed Safety Switch

Product Selection

Ordering Information

Step One: Left-handed safety switches are available from 30-200A for applications requiring an operating handle on the left side of the enclosure. Select the standard safety switch from the catalog and add Suffix LH to the catalog number.

Step Two: Contact the Safety Switch Flex Center for complete pricing and delivery information. The Flex Center will provide a list price. An authorized negotiation (TSP) number will be provided to track your order.

Safety Switch Flex Center Phone: 1-888-329-9272 or FlexSwitches@eaton.com Fax: 1-423-478-0270

Step Three: Enter the order on VISTALINE by description (with catalog number as applicable) and reference the authorized negotiation (TSP) number.

Vista suffix will be "ETS." Product code will be "BE90."

For order entry assistance, contact CSC at: Phone: 1-800-356-1243 Fax: 1-800-752-8602

Note: Left-handed safety switches are supplied with a C361H1 handle.

Contents

Description	Page
Product Overview	V2-T1-3
General Duty.	V2-T1-26
Heavy-Duty	V2-T1-31
Six-Pole Switches	V2-T1-43
Double-Throw Switches	V2-T1-45
EnviroLine-Stainless Steel Switch	V2-T1-53
EnviroLine-Upper and Lower Window Switches	V2-T1-56
EnviroLine-Receptacle Switches	V2-T1-59
EnviroLine-Non-Metallic KRYDON Switch	V2-T1-61
Shunt Trip Safety SwitchShunt Trip Safety Switch	V2-T1-63
NEMA 7/9—Hazardous Location Disconnect Switch	V2-T1-66
Quick Connect Switches.	V2-T1-68
Solar Disconnect Switch	V2-T1-70
316-Grade Stainless Steel Safety Switches	V2-T1-72
Mill-Duty Rated, Heavy-Duty, Fusible, Non-Fusible, Single-Throw	V2-T1-76
Heavy-Duty Fusible Safety Switches Accepting	
Cube Fuses	V2-T1-78
Elevator Control Switch.	V2-T1-81
Auxiliary Power Heavy-Duty Safety Switch.	V2-T1-83
Left-Handed Safety Switch	
200\% Neutral Safety Switches.	V2-T1-87
Pringle Bolted Pressure Switch.	V2-T1-88
Type DS, Fusible and Non-Fusible	V2-T1-91
Type Visi-Flex DE-ION	V2-T1-94
Flange Mounted-Variable Depth.	V2-T1-98
Flange Mounted-Fixed Depth.	V2-T1-102

Safety Switches

Contents	
Description	Page
Product Overview	V2-T1-3
General Duty	V2-T1-26
Heavy-Duty	V2-T1-31
Six-Pole Switches.	V2-T1-43
Double-Throw Switches	V2-T1-45
EnviroLine-Stainless Steel Switch.	V2-T1-53
EnviroLine-Upper and Lower Window Switches.	V2-T1-56
EnviroLine-Receptacle Switches.	V2-T1-59
EnviroLine-Non-Metallic KRYDON Switch	V2-T1-61
Shunt Trip Safety SwitchShunt Trip Safety Switch	V2-T1-63
NEMA 7/9—Hazardous Location Disconnect Switch	V2-T1-66
Quick Connect Switches	V2-T1-68
Solar Disconnect Switch	V2-T1-70
316-Grade Stainless Steel Safety Switches.	V2-T1-72
Mill-Duty Rated, Heavy-Duty, Fusible, Non-Fusible, Single-Throw	V2-T1-76
Heavy-Duty Fusible Safety Switches Accepting	
Cube Fuses	V2-T1-78
Elevator Control Switch	V2-T1-81
Auxiliary Power Heavy-Duty Safety Switch	V2-T1-83
Left-Handed Safety Switch	V2-T1-86
200\% Neutral Safety Switches	
Pringle Bolted Pressure Switch	V2-T1-88
Type DS, Fusible and Non-Fusible	V2-T1-91
Type Visi-Flex DE-ION	V2-T1-94
Flange Mounted-Variable Depth	V2-T1-98
Flange Mounted-Fixed Depth .	V2-T1-102

200\% Neutral Safety Switches

Product Selection

Ordering Information

Step One: Safety switches with 200% neutrals are available from 30-600A. Select the standard safety switch from the catalog and add Suffix 200 to the catalog number.

Step Two: Contact the Safety Switch Flex Center for complete pricing and delivery information. The Flex Center will provide a list price and specifications for the 200\% neutral. An authorized negotiation (TSP) number will be provided to track your order.

Safety Switch Flex Center Phone: 1-888-329-9272 or FlexSwitches@eaton.com Fax: 1-423-478-0270

Step Three: Enter the order on VISTALINE by description (with catalog number as applicable) and reference the authorized negotiation (TSP) number.
Vista suffix will be "ETS." Product code will be "BE90."

For order entry assistance, contact CSC at: Phone: 1-800-356-1243 Fax: 1-800-752-8602

Pringle Bolted Pressure Switch

Product Description

Eaton Pringle ${ }^{\circledR}$ switches have helped pioneer development of high-quality electrical products for commercial and industrial applications since 1891. Eaton's commitment to engineering excellence and reputation for quality have made us a recolonized leader in the electrical industry, and today you'll find our electrical products in use throughout the U.S., Canada and most of the world's major markets. Eaton Pringle bolted contact switches were the first in the industry and are a worldwide standard in high-current switching applications. They are custom-built and used in many heavy-duty applications, and are suitable for use in UL 891 switchboards.

Bolted Pressure Contacts

All Pringle switches feature bolted pressure contacts. The result: blade contact surfaces are bolted closed at a pressure of 600 PSI -at both the hinge and jaw ends. The benefit: current conducting efficiency is the equivalent of a bolted bus bar connection.

Features

- 480 V UL
- 600 V CSA
- 800-4000 Amperes
- 5000-6000 Amperes (not UL listed)
- 200 kAIC and 100% rated with Class "L" fuses
- Top or bottom feed
- Two, three- or four-pole
- Optional blown fuse detection and protection
- Quick-positive switching action
- Manual or electrically operated mechanism
- 6X Make/12X Break contact rating
- Pringle Flex Center can offer custom assemblies; for quotes, call 1-888-3299272 option 2
- Many options available, see following page

Spring Mechanism

All quick action switches use a unique spring mechanism for improved reliability over traditional coil springs. The unique spring design is created by a series of concave-convex washers. The paired-washer spring design provides a higher force/distance ratio, making it easier to operate the mechanism.

Should any pair of washers become inoperable for any reason, the entire spring assembly will still be operable by means of the remaining pairs. This is unlike the situation if a coil spring were to fracture or fatigue.

Sample Spring Configuration

Standards and Certifications

- 480 V UL
- 600 V CSA

Safety Switches

Catalog Number Selection

Pringle Bolted Pressure Switch

Pringle Mill Switch (2)
(NEMA 1/3R/12 Enclosed)

Notes

(1) Not UL listed. A separate control box may be required when adding accessories.
2) Does not carry UL listing.
(3) Not an option with QA type switches. GF option includes control power transformer.
(4) 110 Vdc and 125 Vdc also available. Please contact the Cleveland, TN plant.
(5) For different system voltage requirements, please contact the Cleveland, TN plant.
(6) For QA switches, use 480 V system catalog number when referencing a 208 V system.
(7) Only applicable if ordering a CPT only, without ground fault.
(8) Only available with QA switches and in a top-feed configuration.
(9) 250 Vdc.
(10) 480 Vac.
(11) Additional available accessories/options-door interlock, special nameplates, custom dimensions, special paint and auxiliary contacts. Please inquire with the Cleveland, TN plant.

Product Selection

Manually Operated (OA)UL Listed

Manually operated contact switch with quick positive switching action. Can be top or bottom fed.

Electrical Trip (CBC)—UL Listed
Contact switch with charge-before-close mechanism. Can be manually or electrically tripped. Optional blown fuse detector and phase failure relay with capacitor trip available.

Fault Protector Electrical Trip

 (FP)-UL ListedThe FP combines the features of a CBC switch but includes an integrated zero-sequence sensor and ground fault.

Electrically Operated Electric Trip (EO)-Not UL Listed

The EO combines the features of a CBC switch, but includes an operator with a linear motor that electrically closes the switch while charging the stored energy mechanism for stored energy trip.

Pringle Mill Switch (PMS)-

 Not UL ListedManually operated contact switch with quick-positive switching action. Comes in a NEMA 1/3R/12 enclosure with a side-operated mechanism. Can be fusible or non-fusible, two- or threepole configurations.

Service

Eaton's Pringle switches have always been manufactured with precisionmade parts, and, like any mechanical device, they do require routine maintenance in order to operate at the optimal level. Over time, contact surfaces may be exposed to dirt and other contaminants, which could result in improper mechanical and/or electrical operation of the switch.
Eaton maintains a dedicated service team that has over 100 years of combined experience in the exclusive service and repair of Pringle switches. A service call performed by a certified technician ensures that your equipment is cleaned, lubed, adjusted and repaired, and a one-year extended warranty is granted. General maintenance, repair/ refurbishment and troubleshooting are just some of the services provided.

In-House Service

Eaton also offers in-house inspection, service and repair at our manufacturing facility in Cleveland, TN.

Aftermarket Parts

Eaton has a full line of factoryspecified aftermarket parts for Pringle switches, as well as complete, form, fit, function, drop-in replacement switches. Aftermarket part information can be found in publication TD00808001E.

'Flex' Custom Capabilities

Custom solutions are standard throughout Eaton's switching device product line and bolted pressure contact switches are no exception. When a standard product will not meet the customer's need, Eaton's engineering and marketing teams can develop and offer solutions built to the customer's expectation.

Engineered-to-Order, or

 'Flex', Non-Load-Break switch solutions with bolted pressure contact technology vary as noted below.- Motor operated: 800 to 6000A
- High current: 6000 to 35,000 A+
- Medium voltage: $5 \mathrm{kV}, 15 \mathrm{kV}+$
- DC voltages: 250 Vdc to 3000 Vdc+
- Transit applications: single-, two-or three-pole DC rated
- Manual transfer switches
- Live front switches

Reference Information

For service questions, or to schedule service: 1.888.329.9272, option 2 pringle@eaton.com

For aftermarket replacement parts: 1.877.ETN.CARE, option 2, option 1 , 1.877.386.2273, option 2, option 1, TRC@eaton.com for existing in the field.

Product brochures available via Eaton.com

- Pringle Product BrochureBR00808001E
- Pringle Mill SwitchPA00808001E
- Pringle Replacement Parts Guide-TD00808001E
- Pringle ServiceDM00808002E
Technical Data and Specifications
- 800-4000A
- 5000 and 6000 A available (not UL listed)
- 200 kAIC and 100% rated with Class L fuses

Safety Switches

Contents	
Description	Page
Product Overview	V2-T1-3
General Duty	V2-T1-26
Heavy-Duty	V2-T1-31
Six-Pole Switches.	V2-T1-43
Double-Throw Switches	V2-T1-45
EnviroLine-Stainless Steel Switch.	V2-T1-53
EnviroLine-Upper and Lower Window Switches.	V2-T1-56
EnviroLine-Receptacle Switches.	V2-T1-59
EnviroLine-Non-Metallic KRYDON Switch	V2-T1-61
Shunt Trip Safety SwitchShunt Trip Safety Switch.	V2-T1-63
NEMA 7/9—Hazardous Location Disconnect Switch	V2-T1-66
Quick Connect Switches	V2-T1-68
Solar Disconnect Switch	V2-T1-70
316-Grade Stainless Steel Safety Switches.	V2-T1-72
Mill-Duty Rated, Heavy-Duty, Fusible, Non-Fusible, Single-Throw	V2-T1-76
Heavy-Duty Fusible Safety Switches Accepting	
Cube Fuses	V2-T1-78
Elevator Control Switch	V2-T1-81
Auxiliary Power Heavy-Duty Safety Switch	V2-T1-83
Left-Handed Safety Switch	V2-T1-86
200\% Neutral Safety Switches	V2-T1-87
Pringle Bolted Pressure Switch	V2-T1-88
Type DS, Fusible and Non-Fusible	
Product Selection.	V2-T1-92
Options and Accessories	V2-T1-92
Technical Data and Specifications	V2-T1-93
Type Visi-Flex DE-ION	V2-T1-94
Flange Mounted-Variable Depth	V2-T1-98
Flange Mounted-Fixed Depth	V2-T1-102

Type DS, Fusible and Non-Fusible

Product Description

Type DS disconnect is a compact load break switch using the DE-ION arc-quenching principle and quick make/quick break over center toggle mechanism. It has visible contacts, is UL listed and is available either as a fusible or non-fusible switch.

Note: Switches through 200A are UL listed as miscellaneous switches; 400 and 600A switches are recognized under the component program of Underwriters Laboratories.

Application Description		
Maximum switch-fuse application based on shortcircuit current withstand (symmetrical amperes).		
Short-Circuit Ratings		
Switch	Maximum at 240, 48	Application 0 or 600 Vac
Rating Amperes	Class R Fuses	Current Limiting Fuse Class J
30	200,000	200,000
60	200,000	200,000
100	200,000	200,000
400	100,000 (1)	200,000
600	100,000 (1)	200,000

Standards and Certifications

- UL 98
- CSA (see table on Page V2-T1-92)

Safety Switches

Product Selection

DS Type Switch

Switch Ordering Information

Switch Rating	Fuse Clip Rating Ampere	Type Volts ${ }^{1}$	Catalog Number ${ }^{(2)(3)}$
30	No fuse ${ }^{4}$	-	DS16U
30	30	NEC 250	DS121R
30	30	NEC 600	DS161R
30	60	NEC 250	DS122
30	60	NEC 600	DS162
60	No fuse ${ }^{(4)}$	-	DS26U
60	60	NEC 250	DS222R
60	60	NEC 600	DS262R
60	100	NEC 250/600	DS263
100	No fuse ${ }^{(4)}$	-	DS36U
100	100	NEC 250/600	DS363R
$100{ }^{5}$	200	NEC 250/600	DS364
400	No fuse ${ }^{4}$	-	DS56U
400	400	NEC 250/600	DS565R
600	No fuse ${ }^{4}$	-	DS66U
600	600	NEC 250/600	DS666R

Options and Accessories

Base Mounting Hardware

Note: Order separately when required. No charge when ordered with switch.

Base Mounting Hardware

Description	Catalog Number
$30,60,100 \mathrm{~A}$ non-fusible	$\mathbf{6 2 4 B 3 7 5 G 1 7}$
$30,60,100 \mathrm{~A}$ fusible	$\mathbf{6 2 4 B 3 7 5 G 1 7}$
400 or 600 A non-fusible	$\mathbf{6 7 3 B 1 2 5 G 0 4}$
400 or 600 A Fusible	$\mathbf{6 7 3 B 1 2 5 G 0 5}$

Auxiliary Switch Kits

Note: Permits field mounting of an auxiliary switch for separate control circuit applications. Each switch includes three soldered, identified leads. Rated 250V maximum.

Auxiliary Switch Kits

Switch Used With	Contact Arrangement	Kit Catalog Number
$30,60,100 \mathrm{~A}$	$1 \mathrm{~A}-1 \mathrm{~B}$	178C265G05
$30,60,100 \mathrm{~A}$	$2 \mathrm{As}-2 \mathrm{Bs}$	$\mathbf{1 7 8 C 2 6 5 G 0 6}$

Class R Fuse Clip Conversion Kits for Type DS Switches

Switch Rating Amperes	Volts	Kit Catalog Number
30	250	RFK121
30	600	RFK161
60	250	RFK222
60	600	RFK262
100	$250 / 600$	RFK464
400	$250 / 600$	RFK666
600	$250 / 600$	RFK666

Notes

(1) 600 V ratings are suitable for Class J fuses.
(2) Switches with Catalog Number Suffix \mathbf{R} are UL listed for use with Class R fuses when fuse clip conversion kits shown on this page are used.
(3) Switches with Catalog Number Suffix \mathbf{R} or \mathbf{U} are CSA listed.
(4) Rated 600 V .
(5) Supplied as unfused switch with separate fuse blocks.

Safety Switches

Technical Data and Specifications

Maximum Horsepower
Maximum Horsepower Ratings

Type Switch	120 Vac Standard	Time Delay	240 Vac Standard	Time Delay	480 Vac Standard	Time Delay	600 Vac Standard	Time Delay	250 Vdc
DS16U	5	-	10	-	20	-	25	-	7-1/2
DS121R	1-1/2	3	3	7-1/2	-	-	-	-	5
DS122	3	-	7-1/2	-	-	-	-	-	5
DS161R	-	-	-	-	5	15	7-1/2	20	5
DS162	-	-	-	-	15	-	15	-	5
DS26U	10	-	20	-	40	-	60	-	15
DS222R	3	7-1/2	7-1/2	15	-	-	-	-	10
DS262R	-	-	-	-	15	30	15	50	10
DS263	-	-	15	-	25	-	30	-	10
DS36U	15	-	30	-	75	-	75	-	25
DS363R	-	-	15	30	25	60	30	75	20
DS364	-	-	25	-	50	-	60	-	20
DS56U	-	-	100	-	250	-	350	-	-
DS565R	-	-	50	100	100	250	125	350	-
DS66U	-	-	100	-	400	-	500	-	-
DS666R	-	-	75	100	150	400	200	500	-

Terminal Data

Switch Rating	Wire Range Copper	Aluminum
30	$\# 14-\# 2$	$\# 12-\# 2$
60	$\# 14-\# 2$	$\# 12-\# 2$
100	$\# 14-1 / 0$	$\# 12-1 / 0$
400	$(1) \# 4-600$ kcmil or (2) 1/0-3/0	(1) \#4-600 kcmil or (2) 1/0-250 kcmil
600	Same as 400A except two terminals per pole	-

Terminals are suitable for either copper or aluminum cable.

Contents	
Description	Page
Product Overview .	V2-T1-3
General Duty.	V2-T1-26
Heavy-Duty.	V2-T1-31
Six-Pole Switches	V2-T1-43
Double-Throw Switches	V2-T1-45
EnviroLine-Stainless Steel Switch	V2-T1-53
EnviroLine-Upper and Lower Window Switches	V2-T1-56
EnviroLine-Receptacle Switches	V2-T1-59
EnviroLine-Non-Metallic KRYDON Switch	V2-T1-61
Shunt Trip Safety SwitchShunt Trip Safety Switch	V2-T1-63
NEMA 7/9-Hazardous Location Disconnect Switch .	V2-T1-66
Quick Connect Switches.	V2-T1-68
Solar Disconnect Switch.	V2-T1-70
316-Grade Stainless Steel Safety Switches	V2-T1-72
Mill-Duty Rated, Heavy-Duty, Fusible, Non-Fusible, Single-Throw.	V2-T1-76
Heavy-Duty Fusible Safety Switches Accepting	
Cube Fuses	V2-T1-78
Elevator Control Switch.	V2-T1-81
Auxiliary Power Heavy-Duty Safety Switch	V2-T1-83
Left-Handed Safety Switch	V2-T1-86
200\% Neutral Safety Switches.	V2-T1-87
Pringle Bolted Pressure Switch.	V2-T1-88
Type DS, Fusible and Non-Fusible	V2-T1-91
Type Visi-Flex DE-ION	
Product Selection	V2-T1-95
Options and Accessories	V2-T1-96
Technical Data and Specifications	V2-T1-97
Flange Mounted-Variable Depth.	V2-T1-98
Flange Mounted-Fixed Depth.	V2-T1-102

Standards and Certifications

- UL 98

Product Description

Complete Model A switch styles with fuse or non-fuse kits mounted are UL listed. Refer to "Electrical Construction Materials List," miscellaneous switches. Switches only, no fuse, fuse clip kit and all Model T switches are recognized under the component program of Underwriters Laboratories. The external operating handle of Model A can be padlocked in the OFF position with up to three padlocks.

Terminal Data

- 30, Spec. 60A switches: \#14-\#4 Cu cable only
- 60, 100A switches \#14-1/0 Cu cable only

Reference Information

- Technical data: 29-420
- Dimension sheet: 29-470
- 30, Special 60A Model A drilling instructions:
I.L. 15051
- 60, 100A Model A drilling instructions: I.L. 15052A
- 30, Special 60, 100A Model A and T auxiliary switch: I.L. 12641C
- 60, 100A Model A and T fuse kit: I.S. 12565C
- No fuse kit cover mounting: I.S. 12942B
- Fuse clip kits for Class R (1226C94G01-G05): I.L. 15491
- Fuse clip kits for Class R (1226C94G06-G11): I.L. 15492
- 200 ampere instruction leaflet: I.L. 12505

Product Selection

Model T

Switch Ordering Information

Continuous Ampere Rating	Fuse or No-Fuse Kit (see photos on Page V2-T1-96)	Model A, Adjustable Depth		Model T, Toggle Operated Switch Only ${ }^{3}$ Catalog Number (see fuse kit at right)	Fuse Clip Kits for Model A or T NEC and Standard Time Delay ${ }^{(4) 5}$ (No-Fuse Kit—See Below)	
		Complete Unit Catalog Number ${ }^{1}$	Switch Only ${ }^{(2)}$ Catalog Number (see handle and shaft below, fuse kit at right)		Clips for Class K or H Fuses Catalog Number	Clips for Class R Fuses Only Catalog Number
30	No fuse (7)	2607D89G01	2607D63G02	371D392G02	-	-
	30A/250V	2607D89G02	2607D63G01	371D392G01	313C590G08	1226C94G01
	60A/250V	2607D89G03	2607D63G01	371D392G01	313C590G09	1226C94G03
	100A/250V	2607D89G04	2607D63G01	371D392G01	313C590G13	1226C94G05
	30A/600V	2607D89G05	2607D63G01	371D392G01	313C590G10	1226C94G02
	60A/600V	2607D89G06	2607D63G01	371D392G01	313C590G11	1226C94G04
Special $60{ }^{\text {© }}$	No fuse ${ }^{(7)}$	2607D89G07	2607D63G06	371D392G06	-	-
	30A/250V	2607D89G08	2607D63G05	371D392G05	313C590G08	1226C94G01
	60A/250V	2607D89G09	2607D63G05	371D392G05	313C590G09	1226C94G03
	100A/250V	2607D89G10	2607D63G05	371D392G05	313C590G13	1226C94G05
	30A/600V	2607D89G11	2607D63G05	371D392G05	313C590G10	1226C94G02
	60A/600V	2607D89G12	2607D63G05	371D392G05	313C590G11	1226C94G04
60 (6)	No fuse (7)	2607D90G01	2607D66G14	657D780G12	-	-
	30A/250V	2607D90G02	2607D66G13	657D780G11	177C880G23	1226C94G06
	60A/250V	2607D90G03	2607D66G13	657D780G11	177C880G12	1226C94G08
	100A/250V	2607D90G04	2607D66G13	657D780G11	177C880G13	1226C94G10
	200A/250V	2607D90G05	2607D66G13	657D780G11	177C880G14	-
	30A/600V	2607D90G06	2607D66G13	657D780G11	177C880G24	1226C94G07
	60A/600V	2607D90G07	2607D66G13	657D780G11	177C880G15	1226C94G09
	100A/600V	2607D90G08	2607D66G13	657D780G11	177C880G16	1226C94G11
100	No fuse ${ }^{(7)}$	2607D91G07	2607D66G18	657D780G16	-	-
	60A/250V	2607D91G08	2607D66G17	-	177C880G12	1226C94G08
	100A/250V	2607D91G09	2607D66G17	657D780G15	177C880G13	1226C94G10
	20A/250V	2607D91G10	2607D66G17	657D780G15	177C880G14	-
	60A/600V	2607D91G11	2607D66G17	-	177C880G15	1226C94G09
	100A/600V	2607D91G12	2607D66G17	657D780G15	177C880G16	1226C94G11
	200A/600V	2607D91G13	2607D66G17	657D780G15	177C880G18	-

Notes

(1) Model A shipped as basic switch, operating handle, shaft and fuse or no-fuse kit. Model T shipped as basic switch and fuse or no-fuse kit.
(2) External operating handle, shaft and fuse or no-fuse kit required.
(3) Fuse or no-fuse kit required.
(4) Includes fuse clips and Micarta barriers.
(5) Will also accept non-rejection type current limiting fuses:

Bussmann: 15-60A type KTN and KTS (ferrule type), 65-200A type KTN and KTS (blade type)
Chase Shawmut: 15-60A type 1 (ferrule type), 65-200A type 3 (blade type)
Federal Pacific Electric ${ }^{\circledR}$: 15-200A types NCL and SCL
© Special 60A switch has same dimension as 30A Visi-Flex switch. Standard 60A switch has same dimension as 100A Visi-Flex switch.
(7) Rated 600 V .

1.1
 Switching Devices

Safety Switches

Special Switches and Fuse Clips

Visi-Flex Switches with Auxiliary Switch Internally Mounted Note: Basic switch only. Also order no-fuse kit, fuse kit, operating handle and shaft as required.

Ampere Rating Model A	Catalog Number (for use without fuses)	Catalog Number (for use with fuses)
30	2607D63G04	2607D63G03
Special 60	2607D63G08	2607D63G07
60	2607D66G16	2607D66G15
100	2607D66G20	2607D66G19
Model T		
30	371D392G04	371D392G03
Special 60	371D392G08	371D392G07
60	657D780G14	657D780G13
100	657D780G18	657D780G17

Options and Accessories

Fuse Kits and Shaft	
Description	Catalog Number
No fuse kits (for Models A or T)	
30, special 60A switches	313C590G14
$60,100 A$ switches	313C363G11
Model A external operating handle	
Model A Standard Shaft	$\mathbf{2 6 0 7 D 6 4 G 0 1}{ }^{1}$
30, special 60A switches	$\mathbf{2 6 0 7 D 6 5 G 0 1}{ }^{2}{ }^{2}$
$60,100 A$ switches	

(1) For use with panels $5.06-8.19$ inches ($128.5-208.0 \mathrm{~mm}$) deep.
(2) For use with panels $5.19-9.97$ inches ($131.8-253.2 \mathrm{~mm}$) deep.
(3) Order Instruction Sheet 12641.
(4) For panel depth of $8.19-9.94$ inches ($208.0-252.5 \mathrm{~mm}$), a minimum of 1.75 inch must be cut from bottom of shaft.

Special Fuse Kits

Extra Long Vari-Depth Shaft for Model A Switches
Note: Order in place of standard shaft when required.

Switch Ampere Rating	Panel Depth in Inches (mm) Long Shaft	Catalog Number
30	$8.19-13.06(208.0-331.7)^{4} 4$	$\mathbf{2 6 0 7 D 6 5 G 0 2}$
Special 60	$\left.8.19-13.06(208.0-331.7)^{4}\right)$	$\mathbf{2 6 0 7 D 6 5 G 0 2}$
60	$9.41-14.3(239.0-358.9)$	$\mathbf{2 6 0 7 D 6 5 G 0 2}$
100	$9.41-14.3(239.0-358.9)$	$\mathbf{2 6 0 7 D 6 5 G 0 2}$

Notes

Auxiliary Switch Kits for Model A and T Switches
Note: Permits field mounting of an auxiliary switch for separate control circuit applications. Provides an SPDT switch with 1A and/or 1B contacts. Includes three identified 18 -inch soldered leads.

For Use With	Complete Kit Catalog Number
30 and special 60A switch	315C293G01 ${ }^{3}$
60 and 100A switch	$\mathbf{3 1 5 C 2 9 3 G 0 1 ~}^{33}$

Safety Switches

Technical Data and Specifications

Maximum Horsepower Ratings

Fuse Clip Ratings	Maximum Horsepower Ratings								
	120 Vac Standard	Time Delay	240 Vac Standard	Time Delay	480 Vac Standard	Time Delay	600 Vac Standard	Time Delay	250 Vdc
30A Switch									
Unfused	3	-	7-1/2	-	20	-	25	-	5
30A/250V	1-1/2	3	3	7-1/2	-	-	-	-	5
60A/250V	3	-	5	-	-	-	-	-	5
100A/250V	3	-	5	-	-	-	-	-	5
30A/600V	-	-	-	-	5	15	7-1/2	20	5
60A/600V	-	-	-	-	15	-	20	-	5

60A Switch (and Special 60 Ampere Switch)

Unfused	$7-1 / 2$	-	20	-	40	-	50	-	10
$30 \mathrm{~A} / 250 \mathrm{~V}$	$1-1 / 2$	3	3	$7-1 / 2$	-	-	-	-	5
$60 \mathrm{~A} / 250 \mathrm{~V}$	3	$7-1 / 2$	$7-1 / 2$	15	-	-	-	-	10
$100 \mathrm{~A} / 250 \mathrm{~V}$	-	-	15	-	-	-	-	-	10
$200 \mathrm{~A} / 250 \mathrm{~V}$ (1)	-	-	15	-	-	-	-	-	-
$30 \mathrm{~A} / 600 \mathrm{~V}$	-	-	-	-	5	15	$7-1 / 2$	20	5
$60 \mathrm{~A} / 600 \mathrm{~V}$	-	-	-	-	15	30	15	50	10
$100 \mathrm{~A} / 600 \mathrm{~V}$ (1)	-	-	15	-	25	30	30	50	10

100A Switch

Unfused	15	-	30	-	60	-	75	-	20
$30 \mathrm{~A} / 250 \mathrm{~V}$	$1-1 / 2$	3	3	$7-1 / 2$	-	-	-	-	5
$60 \mathrm{~A} / 250 \mathrm{~V}$	3	$7-1 / 2$	$7-1 / 2$	15	-	-	-	-	10
$100 \mathrm{~A} / 250 \mathrm{~V}$	15	15	15	30	-	-	-	-	20
$200 \mathrm{~A} / 250 \mathrm{~V}$	15	15	15	30	-	-	-	-	20
$30 \mathrm{~A} / 600 \mathrm{~V}$	-	-	-	-	5	15	$7-1 / 2$	20	-
$60 \mathrm{~A} / 600 \mathrm{~V}$	-	-	-	-	15	30	15	50	-
$100 \mathrm{~A} / 600 \mathrm{~V}$	-	-	-	-	25	60	30	75	-
$200 \mathrm{~A} / 600 \mathrm{~V}$	-	-	-	-	25	60	30	75	-

Note
(1) Does not apply to special 60A switch since these fuse clips cannot be added.

1.1 Switching Devices
 Safety Switches

Contents

Description	Page
Product Overview	V2-T1-3
General Duty.	V2-T1-26
Heavy-Duty.	V2-T1-31
Six-Pole Switches	V2-T1-43
Double-Throw Switches	V2-T1-45
EnviroLine-Stainless Steel Switch	V2-T1-53
EnviroLine-Upper and Lower Window Switches	V2-T1-56
EnviroLine-Receptacle Switches	V2-T1-59
EnviroLine-Non-Metallic KRYDON Switch	V2-T1-61
Shunt Trip Safety SwitchShunt Trip Safety Switch	V2-T1-63
NEMA 7/9—Hazardous Location Disconnect Switch	V2-T1-66
Quick Connect Switches.	V2-T1-68
Solar Disconnect Switch	V2-T1-70
316-Grade Stainless Steel Safety Switches	V2-T1-72
Mill-Duty Rated, Heavy-Duty, Fusible, Non-Fusible, Single-Throw.	V2-T1-76
Heavy-Duty Fusible Safety Switches Accepting	
Cube Fuses	V2-T1-78
Elevator Control Switch.	V2-T1-81
Auxiliary Power Heavy-Duty Safety Switch.	V2-T1-83
Left-Handed Safety Switch	V2-T1-86
200\% Neutral Safety Switches.	V2-T1-87
Pringle Bolted Pressure Switch.	V2-T1-88
Type DS, Fusible and Non-Fusible	V2-T1-91
Type Visi-Flex DE-ION.	V2-T1-94
Flange Mounted-Variable Depth	
Product Selection	V2-T1-99
Accessories.	V2-T1-100
Dimensions	V2-T1-101
Flange Mounted-Fixed Depth	V2-T1-102

Flange Mounted—Variable Depth

Product Description

Type C361 disconnect switches are suitable for installation in control enclosures having a righthand flange. Fusible disconnect switches will accept R fuses as standard. Field installable rejection kits are supplied as standard on 100 and 200A clips. For 30 and 60A rejection clips, see footnote © ${ }^{\text {on }}$ next page. The switch is UL component recognized for use on systems with up to 200,000 rms symmetrical amperes available fault current when Class R clips are supplied.

Standards and Certifications

- UL-Component File E55492
- CSA-LR353-439

C361NE1
 Operating Mechanism Variable Depth with Disconnect Switch—Right-Hand Mounting

Disconnect Switch Size (Amperes)	Variable Depth Mtg. Range Min./Max. (Inches)	Maximum Horsepower Ratings ${ }^{(2)}$					Fuse Clip Rating (Amperes) NonInterchangeable Type for Class H, J, K or R Type Fuses Only		Switch and Operating Mechanism Only DOES NOT Include Handle Catalog Number	Switch and Operating Mechanism with 4-Inch Handle ${ }^{(3)}$		
		AC System Volts (Motor Volts)			DC Using 600 Two Poles (575) 250V Max.				For NEMA 1 or 12 Enclosure	For NEMA 4 Enclosure		
		$\begin{aligned} & 208 \\ & (200) \end{aligned}$	$\begin{aligned} & 240 \\ & (230) \end{aligned}$	$\begin{aligned} & 480 \\ & (460) \end{aligned}$			250V	600V		Catalog Number	Catalog Number	
30	7 to 16	7-1/2	7-1/2	15	20	5	Non-fusible			C361NC	C361NC1	C361NC2
							30	-	C361SC21	C361SC121 ${ }^{4}$	C361SC221 ${ }^{4}$	
							60	30	C361SC61	C361SC161 ${ }^{(4)}$	C361SC261 ${ }^{4}$	
60	7 to 16	15	15	30	50	10	Non-fusible		C361ND	C361ND1	C361ND2	
							60	30	C361SD22	C361SD122 ${ }^{4}$	C361SD222 ${ }^{4}$	
							-	60	C361SD62	C361SD162 ${ }^{4}$	C361SD262 ${ }^{4}$	
100	7 to 16	25	30	60	75	20	Non-fusible		C361NE	C361NE1	C361NE2	
							100	100	C361SE263	C361SE1263	C361SE2263	
200	7 to 16	40	60	125	150	40	Non-fusible		C361NF1	C361NF1	C361NF2	
							200	200	C361SF264	C361SF1264	C361SF2264	

C361H1	Handle Only			
	Application	Operating Handle Length in Inches (mm)	NEMA Type Enclosure	Catalog Number
	For use with 30,60 100 and 200A disconnect switches	4.00 (101.6)	1-12	C361H1
		4.00 (101.6)	4	C361H2
		6.00 (152.4)	1-12	C361H3
		6.00 (152.4)	4	C361H4

Notes

(1) Dimension shown is from panel to flange surface
(2) Refers to rating of switch only.
${ }^{(3)}$ Components individually boxed and shipped in overpack carton.
(4) For rejection clips, add Suffix Letter \mathbf{R} to listed Catalog Number. Example: C361SC121R.

1.1
 Switching Devices

Safety Switches

Accessories

Type C361 NEMA 12 Safety Door Hardware

Type C361 door hardware kits are designed to function with all C361 and C371 disconnect switches and circuit breaker operating mechanisms

These kits are designed for use with small enclosures up to 40 inches (1016 mm), intermediate 40-60 inches (1016-1524 mm) or larger floor cases over 60 inches $(1524 \mathrm{~mm})$ to provide enclosure sealing and protection against
unauthorized entry. These kits can be used on enclosure flanges with material thickness ranging from 16 gauge through $3 / 16$ inches with flanges on the right side only. Door hardware kits are to be installed in a commercially available enclosure. Consult the enclosure manufacturer application data for proper kit selection.

Type C361 NEMA 12 Safety Door Hardware

Handle Length (Inches)	Catalog Number ${ }^{(1)}$
4	C361KJ4
6	C361KJ6
Roller Latch ${ }^{(2)}$	C361KR

Interlocks and Connecting Rod

Electrical Interlocks

Circuit	Catalog Number
1NO-1NC	DS200EK1
2NO-2NC	DS200EK2

Connecting Rods-Increase Maximum Allowable Depth by 5 Inches

Application	Catalog Number
Disconnect switches 30, 60, 100 and 200A	C371CS1
Circuit breakers 150, 250 and 400A	C371CS2
Circuit breakers 600, 800 and 1200A	

Notes

(1) The $1 / 4$-inch $\times 1 / 2$-inch standard mill rectangular locking bar is not supplied with these kits.
(2) Third roller latch for use with 4 or 6 -inch handle when three-point latching is required.

Safety Switches

Dimensions

Approximate Dimensions in Inches (mm)
Mounting Dimension Requirements in Inches (mm)

Disconnect Switch Type	A	B	C	D	E	F	G
30A and 60A non-fusible	See dimensions below	See dimensions below	1.56 (39.6)	0.96 (24.4)	4.00 (101.6)	3.50 (88.9)	7.12 (180.8)
30 A and 60A fusible			1.56 (39.6)	0.96 (24.4)	4.00 (101.6)	3.50 (88.9)	9.75 (247.7)
100A non-fusible			1.75 (44.5)	1.10 (27.9)	5.50 (139.7)	3.38 (85.9)	7.12 (180.8)
100A fusible			1.75 (44.5)	1.10 (27.9)	5.50 (139.7)	3.38 (85.9)	11.88 (301.8)
200A non-fusible and fusible			3.34 (84.8)	0.63 (16.0)	8.50 (215.9)	1.84 (46.7)	15.50 (393.7)

Mounting Dimension Requirements

Line Lug Data

Disconnect Switch Size	Wire Size
30 A	\#2-14 Cu/Al
60 A	\#2-14 Cu/Al
100 A	$1 / 0-14 \mathrm{Cu} / \mathrm{Al}$
200 A	$250 \mathrm{kcmil}-\# 6 \mathrm{Cu} / \mathrm{Al}$

Dimension $\mathbf{A}=$ The required wire bending spacing selected from Article 430.10 of the National Electrical Code.
Dimension B = Minimum or maximum depth from inside of flange holding operating handle to panel where disconnect switch is mounted (variable 7 to 16 inches).

1.1 Switching Devices
 Safety Switches

Contents

Description	Page
Product Overview .	V2-T1-3
General Duty.	V2-T1-26
Heavy-Duty	V2-T1-31
Six-Pole Switches	V2-T1-43
Double-Throw Switches	V2-T1-45
EnviroLine-Stainless Steel Switch	V2-T1-53
EnviroLine-Upper and Lower Window Switches	V2-T1-56
EnviroLine-Receptacle Switches	V2-T1-59
EnviroLine-Non-Metallic KRYDON Switch	V2-T1-61
Shunt Trip Safety SwitchShunt Trip Safety Switch	V2-T1-63
NEMA 7/9-Hazardous Location Disconnect Switch	V2-T1-66
Quick Connect Switches.	V2-T1-68
Solar Disconnect Switch.	V2-T1-70
316-Grade Stainless Steel Safety Switches	V2-T1-72
Mill-Duty Rated, Heavy-Duty, Fusible, Non-Fusible, Single-Throw.	V2-T1-76
Heavy-Duty Fusible Safety Switches Accepting	
Cube Fuses	V2-T1-78
Elevator Control Switch.	V2-T1-81
Auxiliary Power Heavy-Duty Safety Switch.	V2-T1-83
Left-Handed Safety Switch	V2-T1-86
200\% Neutral Safety Switches.	V2-T1-87
Pringle Bolted Pressure Switch.	V2-T1-88
Type DS, Fusible and Non-Fusible.	V2-T1-91
Type Visi-Flex DE-ION .	V2-T1-94
Flange Mounted-Variable Depth.	V2-T1-98
Flange Mounted-Fixed Depth	
Accessories.	V2-T1-103
Technical Data and Specifications	V2-T1-103

Flange Mounted-Fixed Depth

Product Description

Type C361 disconnect switches are suitable for installation in control enclosures having a righthand flange. Fusible disconnect switches will
accept R fuses as standard. Field installable rejection kits are supplied as standard on 100 and 200A clips. For 30 and 60A rejection clips, see
Page V2-T1-99. The switch is

UL component recognized for use on systems for use on systems with up to 200,000 rms symmetrical amperes available fault current when Class R clips are supplied.

- Minimum depth-flange to panel
- 30-60A: 6.50 inches
- 100A: 7 inches

Product Selection

Fixed Depth Application	Operating Mechanism Fixed Depth with Disconnect Switch—Right-Hand Mounting Maximum Horsepower Ratings ${ }^{(1)}$							Switch and Operating Mechanism with 4-Inch Handle For NEMA 1 or 12 Enclosure Catalog Number
	Disconnect Switch Size (Amperes)	AC System Volts (Motor Volts)			600 (575)	DC Using Two Poles 250V Maximum	Fuse Clip Rating (Amperes) Non-Interchangeable Type for Class H, J, K or R Type Fuses Only	
		208 (200)	240 (230)	480 (460)			250V 600V	
	30	7-1/2	7-1/2	15	20	5	Non-fusible	C361FNC1
							30	C361FSC121 ${ }^{2}$
							60 30	C361FSC161 ${ }^{2}$
	60	15	15	30	50	10	Non-fusible	C361FND1
							6030	C361FSD122 ${ }^{2}$
							60	C361FSD162 ${ }^{(2)}$
	100	25	30	60	75	20	Non-fusible	C361FNE1
							100100	C361FSE1263

Notes

(1) Refers to rating of switch only.
(2) For Rejection Clips, add Suffix Letter \mathbf{R} to listed Catalog Number. Example: C361FSC121R.

Accessories

Electrical Interlocks

Circuit	Catalog Number
1NO-1NC	DS200EK1
2NO-2NC	DS200EK2

Technical Data and Specifications

Line Lug Data

Disconnect Switch Size	Wire Size
30 A	\#2-14 Cu/Al
60 A	\#2-14 Cu/Al
100 A	$1 / 0-14 \mathrm{Cu} / \mathrm{Al}$
200 A	$250 \mathrm{kcmil} \# 6 \mathrm{Cu} / \mathrm{Al}$

Dimensions

Approximate Dimensions in Inches (mm)
Frame Size

Description	A	B	C	D	E
30-60A disconnect switch	$8.63(219.2)$	$11.38(289.1)$	$6.50(165.1)$	$1.50(38.1)$	$9.50(241.3)$
150A circuit breaker	$8.63(219.2)$	$11.38(289.1)$	$6.50(165.1)$	$1.50(38.1)$	$9.50(241.3)$
100A disconnect switch	$9.88(251.0)$	$13.38(339.9)$	$7.00(177.8)$	$1.25(31.8)$	$11.75(298.5)$
$250 A$ circuit breaker	$9.88(251.0)$	$13.38(339.9)$	$7.00(177.8)$	$1.25(31.8)$	$11.75(298.5)$
400A circuit breaker	$9.88(251.0)$	$13.38(339.9)$	$7.00(177.8)$	$1.25(31.8)$	$11.75(298.5)$

Approximate Dimensions

0.38 (9.7) Dia. Holes
for Panel Support
if Necessary

Product Description

- 15-1200A
- Enclosed device used to open and close a circuit

Application Description

NEMA 1 General Purpose

Surface or Flush Mounting

 15-1200A, 600 Vac, 500 VdcNEMA 1 enclosed breakers are designed for indoor use in commercial buildings, apartment buildings and other areas where a general purpose enclosure is applicable. The breaker is front operable and is capable of being padlocked in the OFF position. Ratings through 1200A are listed with Underwriters Laboratories as suitable for service entrance application. Both surface and flush mounted enclosures are available.

NEMA 1 General Purpose

NEMA 3R Rainproof Surface Mounting ${ }^{\text {a }}$

Interchangeable Hubs (through

 400A) 15-1200A, 600 Vac, 500 VdcThis general purpose outdoor service center employs a circuit breaker inside a weatherproof sheet steel enclosure to serve as a main disconnect and protective device for feeder circuits. The breaker is front operable and is capable of being padlocked in the OFF position. Ratings through 1200A are listed by Underwriters Laboratories as suitable for service entrance application.

NEMA 3R Rainproof Surface Mounting

Note

(1) SFDN enclosed breakers do not have a door interlock to prevent door from being opened when breaker is "ON."

NEMA 4/4X, 5 Water and Dustproof

Stainless Steel-Type 304 Surface Mounting 15-1200A, 600 Vac, 500 Vdc

This enclosure meets NEMA 4/4X and 5 requirements for water and dustproof applications and has no knockouts or other openings. It is particularly well suited for use in dairies, borax mines, breweries, paper mills and other process industries. The operating handle can be padlocked in the OFF position, and is interlocked to prevent the door from opening when the breaker is ON. Ratings through 1200A are Underwriters Laboratories listed as suitable for service entrance application.

NEMA 4/4X Water and Dustproof

NEMA 12 Dustproof Surface Mounting

No Knockouts or Other Openings 15-1200A, 600 Vac, 500 Vdc
The Type 12 enclosure is designed in line with specifications for special industry application where unusually severe conditions involving oil, coolant, dust and other foreign materials exist in the operating atmosphere. The handle padlocks in the OFF position and the cover is interlocked with the handle mechanism to prevent opening the cover with the circuit breaker in the ON position. Ratings through 1200A are UL listed as suitable for service entrance application. A NEMA 12 semi-dust-tight design that includes knockouts is available. These units are rated 15-400A, 600 Vac, 500 Vdc.

NEMA 12 Dustproof Surface Mounting

NEMA 7/9 Hazardous Location

Cast Aluminum, Explosion-proof Surface Mounting 15-1200A, 600 Vac, 250 Vdc
Hazardous location, Type 7: Class I, Groups B, C, D; Type 9: Class II, Groups E, F, G. This special service cast aluminum enclosure is supplied with a wide, machined flanged cover to prevent igniting outside atmospheres by arcing from inside the enclosure. Front operable, the handle padlocks in the OFF position. Enclosures rated 600A and above have lift-off hinges for ease of assembly.

Note: XFDN050B is not Group B compliant.

NEMA 7/9 Hazardous Location

Features, Benefits and Functions

- Side-opening door on NEMA 3R enclosures
- Padlockable in the OFF position
- Surface or flush mounted enclosures available through 400A on NEMA 1 enclosures
- Interlocked handle on NEMA 3R, 4/4X, 5 and 12 enclosures to prevent opening when the breaker is in the ON position
- Interchangeable hubs
- Numerous factory options

Standards and Certifications

- UL 489
- CSA 22.2
- NEMA 250

NEMA 1 General Purpose

- UL File No. E7819
- CSA File No. LR84319

NEMA 3R Rainproof Surface Mounting

- UL File No. E7819
- CSA File No. LR84319

NEMA 4/4X, 5 Water and Dustproof

- UL File No. E7819
- CSA File No. LR84319

NEMA 12 Dustproof Surface Mounting

- UL File No. E7819
- CSA File No. LR84319

NEMA 7/9 Hazardous Location

- UL File No. E84577
- CSA File No. LR42131-6

Cross-Reference

Enclosed Circuit Breaker Competitive Catalog Numbers

NEMA Rating	Catalog Number							
							General Electric	
	Enclosure	Breaker	Enclosure	Breaker	Enclosure	Breaker	Enclosure	Breaker
1 surface	SGDN100	GHC3100	EHB125NS	EHB34100	-	-	-	-
1 flush	-	-	EHB125NF	EHB34100	-	-	-	-
3R	RGDN100	GHC3100	EHB125NRB	EHB34100	-	-	-	-
12	JGDN100	GHC3100	-	-	-	-	-	-
4/4X	WGDN100	GHC3100	-	-	-	-	-	-
1 surface	SFDN100	EHD3100L	FA100S	FAL34100	E2N1S	ED43B100	TE100S	TED134100WL
1 flush	FFDN100	EHD3100L	FA100F	FAL34100	E2N1F	ED43B100	TE100F	TED134100WL
3R	RFDN100	EHD3100L	FA100RB	FAL34100	E2N3R	ED43B100	TE100R	TED134100WL
12/3R	-	-	FA100AWK	FAL34100	-	-	-	-
12	JFDN100	EHD3100L	-	-	E2N12	ED43B100	TE100J/SE100J	TED134100WL
4/4X	WFDN100	EHD3100L	FA100DS	FAL34100	ED6SS4	ED43B100	TE100CS/SE100CS	TED134100WL
7/9	XFDN050	EHD3050L	FA060X	FAL34060	EA	ED43B100	-	-
9	-	-	FA060Y	FAL34060	-	-	-	-
7/9	XFDN225B ${ }^{1}$	FD3225L	FA100X	FAL34100	EB	ED43B100	-	-
9	-	-	FA100Y	FAL34100	-	-	-	-
1 surface	SFDN225 ${ }^{1}$	FDB3150L	-	-	E2N1S	ED43B125	TE150S	TED134150WL
1 flush	FFDN225 ${ }^{(1)}$	FDB3150L	-	-	E2N1F	ED43B125	TE150F	TED134150WL
3R	RFDN225 ${ }^{(1)}$	FDB3150L	-	-	E2N3R	ED43B125	TE150R	TED134150WL
12	JFDN225 ${ }^{1}$	FDB3150L	-	-	E2N12	ED43B125	-	-
4/4X	WFDN225 ${ }^{1}$	FDB3150L	-	-	ED6SS4	ED43B125	-	-
7/9	XFDN225B ${ }^{1}$	FDB3150L	-	-	-	-	-	-
1 surface	SFDN225 ${ }^{\text {(1) }}$	FD3225L	-	-	-	-	-	-
1 flush	FFDN225 ${ }^{(1)}$	FD3225L	-	-	-	-	-	-
3R	RFDN225 ${ }^{(1)}$	FD3225L	-	-	-	-	-	-
12	JFDN225 ${ }^{1}$	FD3225L	-	-	-	-	-	-
4/4X	WFDN225 ${ }^{(1)}$	FD3225L	-	-	-	-	-	-
7/9	XFDN225B ${ }^{1}$	FD3225L	-	-	-	-	-	-
1 surface	SJDN250	JDB3250	KA225S	KAL36250	F6N1S	FXD63B250	TF225S	TFJ236225WL
1 flush	FJDN250	JDB3250	KA225F	KAL36250	F6N1F	FXD63B250	TF225F	TFJ236225WL
3R	RJDN250	JDB3250	KA225RB	KAL36250	F6N3R	FXD63B250	TF225R	TFJ236225WL
12/3R	-	JDB3250	KA225AWK	KAL36250	-	-	-	-
12	JJDN250	JDB3250	-	-	F6N12	FXD63B250	TF225J/SF250J	TFJ236225WL
4/4X	WJDN250	JDB3250	KA225DS	KAL36250	FD6SS4	FXD63B250	TF225CS/SF250CS	TFJ236225WL
7/9	XJDN250B	-	KA225X	KAL36250	EC2	FXD63B250	-	-
9	-	-	KA225Y	KAL36250	-	-	-	-

Note

(1) Maximum wire size $4 / 0$.

Switching Devices

Enclosed Circuit Breakers

NEMA Rating	Catalog Number Eaton Enclosure	Breaker	Square D Enclosure	Breaker	Siemens Enclosure	Breaker	General Electric Enclosure	Breaker
1 surface	SKDN400 ${ }^{1}$	KDB3400	LA400S	LAL36400	J6N1	JXD63B400	TJ400S/SG400S	TJK436400WL
1 flush	FKDN400 ${ }^{(1)}$	KDB3400	LA400F	LAL36400	-	-	TJ400F/SG400F	TJK436400WL
3R	RKDN400 ${ }^{(1)}$	KDB3400	LA400R	LAL36400	J6N3R	JXD63B400	TJ400R/SG400R	TJK436400WL
12/3R	-	-	LA400AWK	LAL36400	-	-	-	-
12	JKDN400 ${ }^{(1)}$	KDB3400	-	-	J6N12	JXD63B400	TJ400J/SG400J	TJK436400WL
4/4X	WKDN400 ${ }^{(1)}$	KDB3400	LA400DS	LAL36400	-	-	TJ400CS/SG400CS	TJK436400WL
7/9	XKDN400B ${ }^{\text {(12) }}$	KDB3400	-	-	EE	JXD63B400	-	-
1 surface	SLDN600	LDB3600	MA1000S	MAL36600	LD6N1	LXD63B600	TJ600S/SG600S	TJK636600WL
1 flush	-	-	MA1000F	MAL36600	-	-	TJ600F/SG600F	TJK636600WL
3R	RLDN600	LDB3600	-	-	LD6N3R	LXD63B600	TJ600R/SG600R	TJK636600WL
12/3R	-	-	MA1000AWK	MAL36600	-	-	-	-
12	JLDN600	LDB3600	-	-	LD6N12	LXD638600	TJ600J/SG600J	TJK636600WL
4/4X	WLDN600	LDB3600	MA1000DS	MAL36600	LD6SS4	LXD63B600	TJ600CS	TJK636600WL
7/9	XMCN800B	LDB3600	-	-	ED6	LXD63B600	-	-
1 surface	SNDN1200	MDL3800	MA1000S	MAL36800	LMD1	MXD63B800	TK4V1200S	TKMA836800WL
1 flush	-	-	MA1000F	MAL36800	-	-	TK4V1200F	TKMA836800WL
3R	RNDN1200	MDL3800	-	-	LMD3R	MXD63B800	TKV41200R	TKMA836800WL
12/3R	-	-	MA1000AWK	MAL36800	-	-	-	-
12	JNDN1200	MDL3800	-	-	LMD12	MXD63B800	TK4V1200J/SK1200	TKMA836800WL
4/4X	WNDN1200	MDL3800	MA1000DS	MAL36800	-	-	-	-
7/9	XMCN800B	MDL3800	-	-	-	-	-	-
1 surface	SNDN1200	ND312T33W	MA1000S	MAL361000	-	-	-	-
1 flush	-	-	MA1000F	MAL361000	-	-	-	-
3R	RNDN1200	ND312T33W	-	-	-	-	-	-
12/3R	-	-	MA1000AWK	MAL361000	-	-	-	-
12	JNDN1200	ND312T33W	-	-	-	-	-	-
4/4X	WNDN1200	ND312T33W	MA1000DS	MAL361000	-	-	-	-
1 surface	SNDN1200	ND312T33W	-	-	MND61	NXD63B120	TK4V1200S	TKMA31200WL
12	-	-	-	-	-	-	TK4V1200F	TKMA31200WL
3R	RNDN1200	ND312T33W	-	-	MND63	NXD63B120	TKV41200R	TKMA31200WL
1 surface	-	-	NA1200AWK	NAL361200	-	-	-	-
12	JNDN1200	ND312T33W	-	-	MND612	NXD63B120	TK4V1200J/SK1200	TKMA31200WL
4/4X	WNDN1200	ND312T33W	-	-	-	-	-	-
7/9	XNDN1200B ${ }^{2}$ 2	ND312T33W	-	-	-	-	-	-

Notes

[^4]
Enclosed Circuit Breakers

Product Selection

1. Use the data on Page V2-T1-119 to determine type of enclosure required.
2. Use the data on Page V2-T1-113 and V2-T1-114 to determine circuit breaker required.
3. Pages V2-T1-115 through V2-T1-121 include rough-in dimensional information.

Enclosure Only-Series C Breakers			
		Enclosure	
Breaker Frame	Breaker Ampere Range	NEMA Class	Catalog Number
Series C Breakers			
GHC, GD (two- and three-pole only) GHCGFEP (single-pole only)	15-100	1 surface	SGDN100 ${ }^{1}$
		3R	RGDN100
		12	JGDN100
		4/4X, 5 stainless steel	WGDN100
EHD, FD, FDB, HFD, ED, EDH, EDB, EDS, FDC, FDE, HFDE, HFDDC	15-100	1 surface	SFDN100
		1 flush	FFDN100
		3R	RFDN100
		12	JFDN100
		4/4X, 5 stainless steel	WFDN100
EHD, FD, FDB	15-50	7/9 cast aluminum	XFDN050B
HFD, FDC	60-225 ${ }^{2}$	7/9 cast aluminum	XFDN225B
FD, FDB, HFD, ED, EDH, EDC, FDC ($15-225$ A) EDB, EDS, FDE, HFDE, FDCE, HFDDC	125-225	1 surface	SFDN225
		1 flush	FFDN225
		3R	RFDN225
		12	JFDN225
		4/4X, 5 stainless steel	WFDN225
$\overline{J D, ~ J D B, ~ H J D, ~ J D C ~}$	125-250	1 surface	SJDN250
		1 flush	FJDN250
		3R	RJDN250
		12	JJDN250
		4/4X, 5 stainless steel	WJDN250
JD, JDB, HJD, JDC	125-250	7/9 cast aluminum	XJDN250B
KD, KDB, HKD, KDC, DK HKDB (3, CKD, CHKD, KDB, HKDDC	125-400	1 surface	SKDN400
		1 flush	FKDN400
		3R	RKDN400
		12	JKDN400
		4/4X, 5 stainless steel	WKDN400

Enclosure Only-Series C Breakers, continued			
		Enclosure	
Breaker Frame	Breaker Ampere Range	NEMA Class	Catalog Number
Series C Breakers, continued			
KD, KDB, HKD, KDC, DK	125-400	7/9 cast aluminum	XKDN400B
LGE, LGS, LGH	250-600	1 surface	SLG630
		3R	RLG630
		12	JLG630 (5)
		4/4X, 5 stainless steel	WLG630
$\begin{aligned} & \text { LD, LDB, HLD © }{ }^{(4} \text {, } \\ & \text { HLDB, LDCB } \end{aligned}$	300-600	1 surface	SLDN600
		3R	RLDN600
		12	JLDN600
		4/4X, 5 stainless steel	WLDN600
		7/9 cast aluminum	XLDN600B
LD, LDB, HLD	300-600	7/9 cast aluminum	XMCN800B
MDL, HMDL	400-800		
MDL, HMDL, ND, HND (4) MPS, MPH, HMDL, MDLB, HMDLDC, HMDLB, MDLPV Molded Case Switches (w/ WK suffix) MDL, MDLB, HMDL, HLDLC, ND, HND, HMDLDC Molded Case Switches (w/K suffix)MPS Molded Case Switches (w/ SE suffix)NGK	400-1200	1 surface	SNDN1200
		3R	RNDN1200
		12	JNDN1200
		4/4X, 5 stainless steel	WNDN1200
ND, HND	-	7/9 cast aluminum	XNDN1200B
Notes			
(1) Suitable for use with single-pole breaker. Base mounting plate kit. OCCBP required. (2) Maximum wire size: $4 / 0$.			
(3) Not applicable for XKDN400B.			
(4) Short-circuit ratings are limited for high interrupting rated breakers. Refer to Page V2-T1-113.			
(5) Can be field converted to NEMA Type 3R.			

Enclosed Circuit Breakers

Enclosure Only-Series G Breakers

Breaker Frame	Breaker Ampere Range	Enclosure NEMA Class	Catalog Number
Series G Breakers			
LGE, LGS, LGH	250-600	1 surface	SLG630 ${ }^{(1)}$
		3R	RLG630 ${ }^{(1)}$
		12	JLG630 ${ }^{1}$
		4/4X, 5 st. steel	WLG630 ${ }^{(1)}$
$\overline{\text { NG, NGS, NGH }}$	320-1200	1 surface	SNDN1200
		3R	RNDN1200
		12	JNDN1200
		4/4X, 5 st. steel	WNDN1200

Enclosure Only - Earth Leakage Breakers

Breaker Frame	Breaker Ampere Range	Enclosure NEMA Class	Catalog Number
Earth Leakage Breakers			
ELFD, ELHFD and ELFDC (three-pole only)	15-100	1 surface	SFD100E
		1 flush	FFD100E
		3R	RFDN100E
		12	JFDN100E
		4/4X	WFDN100E
LGE, LGS, LGH used with ELLBN	250-600	1 surface	SLG630E
		3R	RLG630
		12	JLG630 ${ }^{(2)}$
		4/4X, 5 st. steel	WLG630

Enclosure Only Catalog Numbers for 100\% Rated Circuit Breakers

Breaker Frame	Breaker Ampere Range	Enclosure NEMA Class	Catalog Number
CKD, CHKD	125-400	1 surface	SKDN400
		1 flush	FKDN400
		3R	RKDN400
		12	JKDN400
		12K	DKDN400
		4/4X, 5 st. steel	WKDN400
		7/9 cast alum.	XKDN400B
LGE...C © ${ }^{(4)}$ LGS...C (4) LGH...C ${ }^{4}$	250-600	1 surface	SLG630
		3R	RLG630
		12	JLG630
		4/4X, 5 st. steel	WLG630
$\overline{C M D L, ~ C H M D L ~}$	400-800	1 surface	SCNDN1200
		3R	RCNDN1200
$\begin{aligned} & \hline \text { CND (5), CHND (5), } \\ & \text { CNDC (5®, NGH...C ©(6) } \end{aligned}$	1200	1 surface	SCNDN1200
		3R	RCNDN1200
Notes			
(1) Three- or four-pole.			
(2) Can be field converted to NEMA Type 3R.			
(3) Breaker frames include both thermal magnetic and electronic trip versions. (4) Cu conductors only.			
(5) Cu conductors only, $90^{\circ} \mathrm{C}$ wire sized at $75^{\circ} \mathrm{C}$ ampacity. Conductor extensions and barriers required.			
(6) Maximum interruption ratings as follows, 100 kAIC at $240 \mathrm{Vac}, 65 \mathrm{kAIC}$ at $480 \mathrm{Vac}, 35 \mathrm{kA}$ $600 \mathrm{Vac}, 30 \mathrm{kAIC}$ at $250 \mathrm{Vdc}, 30 \mathrm{kAIC}$ at 500 Vdc .			

Switching Devices

Enclosed Circuit Breakers

Accessories

Nameplates Applied
Customer must provide nameplate legend at the time of order.

Key Interlock Systems
Interlocks are used to prevent an authorized operation. Before system construction can begin, the following information must be known:

1. User-name, address and telephone number.
2. Complete lock scheme required.

Neutral Assemblies Installed

Ampere ratings: 100, 250, $400,600,800$ and 1200.

Separate Ground Lug

 InstalledAmpere ratings: 100, 250, 400, 600 and 1200.
Special Paint Finish
Contact the Safety Switch Flex Center (1-888-329-9272) or FlexSwitches@eaton.com.
Pilot Light On NEMA 1 Enclosure
Pilot light
Stainless Steel Flush Covers
Frames: P, J and K.

Assembled Enclosed Circuit Breakers

Accessories	Modifications	Breaker Frame	Description
Auxiliary switches (specify voltage and Hz)		G, F, J, K, L, M, N	1A, 1B
		G, F, J, K, L, M, N	2A, 2B
		K, L, M, N	3A, 3B
		R	1A, 1B
Shunt trips (specify voltage and Hz)		G, F, J, K, L, M, N, R	-
Alarm switches	Make	G, F, J, K, L, M, N	1 Make, 1 Break
(specify voltage and Hz		F, K, L, M, N	2 Make, 2 Break
Undervoltage release (specify voltage and Hz)		G, F, J, K, L, M, N, R	-

Electronic Trip Options

Frame Type	Number of Poles	Description
KD, HKD	3	RMS 310 LS
		RMS 310 LSI
		RMS 310 LSG (1)
		RMS 310 LSIG (1)
LD, HLD	3	RMS 310 LS
		RMS 310 LSI
		RMS 310 LSG (1)
		RMS 310 LSIG (1)
MDL, HMDL	3	RMS 310 LS
		RMS 310 LSI
		RMS 310 LSG (1)
		RMS 310 LSIG (1)
ND	3	RMS 310 LS
		RMS 310 LSI
		RMS 310 LSG (1)
		RMS 310 LSIG ${ }^{(1)}$
RD	3	RMS 310 LS
		RMS 310 LSI
		RMS 310 LSG
		RMS 310 LSIG
		RMS 510 LS ${ }^{(2)}$
		RMS 610 LS (2)
		RMS 810 LS (2)
		RMS 910 LS (2)

Notes

(1) Ground fault application not available with NEMA 7/9. Contact Eaton's Customer Support Center.
(2) Add to the appropriate RD RMS 310 adder.

Raintight Hubs

All rainproof enclosures 30-400A are shipped with plate over cutout. Hubs are not supplied with screws on 30-400A enclosures. Use screws from plate.

Breather and Drain, Hazardous Enclosures

A Universal Breather/Drain Fitting is installed in the top of an enclosure to provide ventilation to minimize condensation and in the bottom to allow drainage of accumulated condensation while maintaining explosion-proof integrity.

Type	Compliance NEMA 7	NEMA 9	Conduit Opening	Catalog Number
BD	Class I, Groups C, D; Class I, Zone 1, Group IIB	Class II, Groups F, G	1/2	XPBD2
DBB	Class I, Groups B, C, D; Class I, Zone 1, Group IIB + Hydrogen	Class II, Groups E, F, G	1/2	XPDBB50

Neutral Kits, Insulated and Groundable

Maximum Enclosure Rating (A)	Main Lug Size Cu/AI	Catalog Number
100	SFDN100	(1) $14-1 / 0$
RFDN100	(1) $14-1 / 0$	DH100NK
100	(all others)	(1) $4-350$ kcmil

Note

(1) For use with 800 A and 1200 AM and N frame, and 100% rated.

Modifications

Allowable accessory combinations can be reviewed in Eaton's Circuit Breaker Product Guide: PG.74.A.01.T.E. Verify final application with the Customer Support Center.

Special RD Modifications and Accessories

Description

1600A neutral assembly (aluminum)
2000 A neutral assembly (aluminum)
2500A neutral assembly (aluminum)
1600A neutral assembly (copper)
2000A neutral assembly (copper)
2500A neutral assembly (copper)
Adjustable rating plug
Lockoff, padlockable
Key interlock
Phase failure protection (includes shunt trip)
Zero sequence gfp (including shunt trip and test panel)
NEMA 3R flat roof
Heater package (includes cpt, heater, thermostat and disconnect)
Special sized enclosures
Standard is 90 -inch $\mathrm{H} \times 30$-inch W $\times 30$-inch D (2286 x $762 \times 762 \mathrm{~mm}$)
I0 metering
Non-standard terminations

Switching Devices
Enclosed Circuit Breakers

Flex Center

Introduction

The Safety Switch Flex Center is a special facility at the site of our Cleveland, Tennessee, plant that is dedicated to providing customized enclosed circuit breakers that meet customers' challenging applications.

The Flex Center is a solutions center that provides real value:

- A dedicated and knowledgeable engineering/ manufacturing/customer service team to meet your needs
- A production facility stocked with a full arsenal of equipment to get the job done
- The industry's shortest lead-time
- Easy ordering through our distributors
- Factory-installed modifications include (but are not limited to) the following:
- Special size enclosure
- Special nameplates
- Stainless steel flush cover
- Special paint
- Lock-on provisions
- Neutral assembliesfactory installed
- Equipment ground lugs-factory installed
- Cover control (pilot lights, pushbuttons, selector switches, etc.)
- Factory-installed G-Frame breakers
- For application, availability or pricing questions, contact the Safety Switch Flex Center at 1-888-329-9272 or FlexSwitches@eaton.com

Satellite Plants

Atlanta

7000 Highlands Parkway SE \#102
Smyrna, GA 30082
Fax (770) 433-1863
Phone (678) 309-4260

Baltimore

6671 Santa Barbara Court Suite A
Elk Ridge, MD 21075
Fax (410) 796-7755
Phone (410) 796-7777

Chicago

959 AEC Drive
Wood Dale, IL 60191
Fax (630) 860-3569
Phone (630) 860-3500

Cleveland

5565 Venture Drive
Unit B
Parma, OH 44130
Fax (216) 433-0545
Phone (216) 433-0616

Dallas

631 Westport Pkwy
Suite 100
Grapevine, TX 76051
Fax (817) 251-6249
Phone (817) 251-6797

Denver

14101 East 33rd Place
Suite F
Aurora, CO 80011
Fax (303) 371-4175
Phone (303) 371-7844

Hartford

625 Day Hill Road
Windsor, CT 06095
Fax (860) 688-4982
Phone (860) 688-5330

Houston

10810 West Little York
Suite 100
Houston, TX 77041
Fax (713) 688-3764
Phone (713) 688-8430

Los Angeles

5590 Jurupa Street
Ontario, CA 91761
Fax (909) 390-8884
Phone (909) 390-8853

New Jersey

96 Stemmers Lane
Westampton, NJ 08060
Fax (609) 835-4777
Phone (609) 835-4230

Orlando

3827 St. Valentine Way
Orlando, FL 32811
Fax (407) 841-9135
Phone (407) 843-3863

Phoenix

921 South Park Lane
Suite 1
Tempe, AZ 85281-5119
Fax (480) 449-4223
Phone (480) 449-4222

Raleigh

2933 S. Miami BIvd.
Suite 111
Durham, NC 27703
Fax (919) 572-9751
Phone (919) 544-7074

St. Louis

12947 Gravois Road
St. Louis, MO 63127
Fax (314) 842-2552
Phone (314) 842-7797

San Francisco

20923 Cabot Boulevard
Hayward, CA 94545
Fax (510) 784-8980
Phone (510) 784-8981

Seattle

18657 72nd Avenue S.
Kent, WA 98032
Fax (425) 251-0079
Phone (425) 251-9081

Satellite Service Locations

Switching Devices

Enclosed Circuit Breakers

Industrial Circuit Breaker Selection

Circuit Breaker Type	Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Number of Poles	Vac	Vdc	Type of Trip	Federal Spec. W-C-375b	UL List Vac Ra	Interrupti ngs	g Rating	is Symme	trical Amp		Vdc R	ngs ${ }^{(2)}$	
							120	120/240	240	277	480	600	125	250	125/250
G-Frame															
GHC	15-100	1	120	125	N.I.T.U.	12c, 13a	65,000	-	-	-	-	-	14,000	-	-
GHC	15-100	2,3	240	125/250	N.I.T.U.	13b	-	-	65,000	-	-	-	-	-	14,000
GHC	15-100	1	277	125	N.I.T.U.	12c, 13a	-	-	-	14,000	-	-	14,000	-	-
GHC	15-100	2,3	277/480	215/250	N.I.T.U.	13b	-	-	-	14,000	14,000	-	-	-	14,000
GD	15-100	3	480	250	N.I.T.U.	13b	-	-	65,000	-	22,000	-	-	10,000	-
F-Frame															
ED	100-225	2,3	240	125	N.I.T.U.	12b	-	-	65,000	-	-	-	10,000	-	-
EDH	100-225	2,3	240	125	N.I.T.U.	14b	-	-	100,000	-	-	-	10,000	-	-
EDC	100-225	2,3	240	125	N.I.T.U.	1	-	-	200,000	-	-	-	10,000	-	-
EHD	15-100	1	277	125	N.I.T.U.	13a	-	-	-	14,000	-	-	10,000	-	-
EHD	15-100	2,3	480	250	N.I.T.U.	13b	-	-	18,000	-	14,000	-	-	10,000	-
FDB	15-150	2,3	600	250	N.I.T.U.	18a	-	-	18,000	-	14,000	14,000	-	10,000	-
FDB	15-150	4	600	250	N.I.T.U.	(3)	-	-	18,000	-	14,000	14,000	-	10,000	-
FD	15-225	1	277	125	N.I.T.U.	13a	-	-	-	25,000	-	-	10,000	-	-
FD	15-225	2,3	600	250	N.I.T.U.	22a	-	-	65,000	-	25,000	18,000	-	10,000	-
FD	15-225	4	600	250	N.I.T.U.	(3)	-	-	65,000	-	25,000	18,000	-	10,000	-
HFD	15-225	1	277	125	N.I.T.U.	13a	-	-	-	65,000	-	-	10,000	-	-
HFD	15-225	2,3	600	250	N.I.T.U.	22a	-	-	100,000	-	65,000	25,000	-	20,000	-
HFD	15-225	4	600	250	N.I.T.U.	(3)	-	-	100,000	-	65,000	25,000	-	20,000	-
FDC	15-225 (4)	2,3	600	250	N.I.T.U.	24a	-	-	200,000	-	100,000	35,000	-	20,000	-
FDC	15-225	4	600	250	N.I.T.U.	(3)	-	-	200,000	-	100,000	35,000	-	20,000	-
J-Frame															
JDB	70-250	2,3	600	250	N.I.T.U.	22a	-	-	65,000	-	35,000	18,000	-	10,000	-
JD	70-250	2,3,4	600	250	I.T.U.	22a	-	-	65,000	-	35,000	18,000	-	10,000	-
HJD	70-250	2, 3, 4	600	250	I.T.U.	22a	-	-	100,000	-	65,000	25,000	-	22,000	-
JDC	70-250	2,3,4	600	250	I.T.U.	22a	-	-	200,000	-	100,000	35,000	-	22,000	-
K-Frame															
DK	250-400	2,3	240	250	N.I.T.U.	14 b	-	-	65,000	-	-	-	-	10,000	-
KDB	100-400	2,3	600	250	N.I.T.U.	23a	-	-	65,000	-	35,000	25,000	-	10,000	-
KD	100-400	2,3,4	600	250	I.T.U.	23a	-	-	65,000	-	35,000	25,000	-	10,000	-
HKD	100-400	2,3,4	600	250	I.T.U.	23a	-	-	100,000	-	65,000	35,000	-	22,000	-
KDC	100-400	2,3,4	600	250	I.T.U.	23a	-	-	200,000	-	100,000	50,000	-	22,000	-
LG-Frame															
LGE	250-600	3,4	600	250	I.T.U.	23a	-	-	65,000	-	35,000	18,000	-	22,000	-
LGS	250-600	3,4	600	250	I.T.U.	23a	-	-	85,000	-	50,000	25,000	-	22,000	-
LGH	250-600	3,4	600	250	I.T.U.	23a	-	-	100,000	-	65,000	35,000	-	42,000	-

Notes

(1) N.I.T.U. is non-interchangeable trip unit and I.T.U. is interchangeable trip unit.
(2) Two-pole circuit breaker, or two poles of three-pole circuit breaker at 250 Vdc .
${ }^{3}$ Not defined in W-C-375b.
(4) Not suitable for use with 100A enclosures.

Enclosed Circuit Breakers

Industrial Circuit Breaker Selection, continued

Notes
(1) N.I.T.U. is non-interchangeable trip unit and I.T.U. is interchangeable trip unit.
(2) Two-pole circuit breaker, or two poles of three-pole circuit breaker at 250 Vdc .
(3) HLD: NEMA 1 enclosed: $240 \mathrm{Vac}=100 \mathrm{kA}, 480 \mathrm{Vac}=65 \mathrm{kA}, 600 \mathrm{Vac}=35 \mathrm{kA}, 250 \mathrm{Vdc}=20 \mathrm{kA}, 500 \mathrm{Vdc}=25 \mathrm{kA}$.

NEMA 3R enclosed: $240 \mathrm{Vac}=65 \mathrm{kA}, 480 \mathrm{Vac}=50 \mathrm{kA}, 600 \mathrm{Vac}=25 \mathrm{kA}, 250 \mathrm{Vdc}=20 \mathrm{kA}, 500 \mathrm{Vdc}=25 \mathrm{kA}$.
(4) HMDL and HND: NEMA 1 and 3 R enclosed: $240 \mathrm{Vac}=100 \mathrm{kA}, 480 \mathrm{Vac}=65 \mathrm{kA}, 600 \mathrm{Vac}=35 \mathrm{kA}, 250 \mathrm{Vdc}=30 \mathrm{kA}, 500 \mathrm{Vdc}=30 \mathrm{kA}$.

Enclosed Circuit Breakers

Dimensions

Approximate Dimensions in Inches (mm)

NEMA 1, 12, 3R

Note: Not to be used for construction purposes unless approved.

NEMA 1 Surface Mounted

Frame	Maximum Amperes	A	B	C	D	E	F	Approximate Weight in Lbs (kg)
G	100	17.50 (444.5)	8.56 (217.4)	6.28 (159.5)	13.03 (331.0)	1.20 (30.5)	17.19 (436.6)	12 (5)
F ${ }^{(1)}$	100	19.13 (485.9)	9.13 (231.9) ${ }^{3}$	5.20 (132.1)	17.00 (431.8)	N/A ${ }^{4}$	18.81 (477.8)	13 (6)
Earth leakage	100	23.25 (590.6)	8.56 (217.4)	6.28 (159.5)	18.75 (476.3)	1.20 (30.5)	22.94 (582.7)	15 (7)
F ${ }^{2}$	225	23.25 (590.6)	8.56 (217.4)	6.28 (159.5)	18.75 (476.3)	1.20 (30.5)	22.94 (582.7)	15 (7)
J	250	34.70 (881.4)	10.92 (277.4)	7.20 (182.9)	30.00 (762.0)	1.88 (47.8)	34.39 (873.5)	31 (14)
$K{ }^{5}$	400	38.81 (985.8)	11.06 (280.9)	10.94 (277.9)	34.00 (863.6)	1.25 (31.8)	38.50 (977.9)	53 (24)
LG	600	51.06 (1296.9)	21.87 (555.5)	9.96 (253.0)	51.63 (1311.5)	1.94 (49.3)	50.13 (1273.3)	90 (41)
Earth leakage	600	51.06 (1296.9)	21.87 (555.5)	9.96 (253.0)	51.63 (1311.5)	1.94 (49.3)	50.13 (1273.3)	90 (41)
L	600	45.88 (1165.4)	14.31 (363.5)	12.38 (314.5)	46.56 (1182.6)	1.91 (48.5)	45.56 (1157.2)	81 (37)
M, N	1200	61.22 (1555.0)	21.44 (544.6)	15.41 (391.4)	61.84 (1570.7)	1.97 (50.0)	60.91 (1547.1)	178 (81)
M, N (${ }^{\text {c }}$	400-1200	67.82 (1722.6)	21.41 (543.8)	15.53 (394.5)	69.32 (1760.7)	1.97 (50.0)	68.69 (1744.7)	128 (58)

NEMA 1 Surface Mounted

Notes
(1) SFDN100 Series "B" released 9/15/01.
(2) Maximum wire size: $4 / 0$.
(3) Total width, including door clip is 9.95 inches (253 mm)
(4) Single centered mounting hole provided.
(5) Maximum wire size: 500 kcmil .
(6) 100% rated breakers.

1.2
 Switching Devices
 Enclosed Circuit Breakers

Approximate Dimensions in Inches (mm)
NEMA 1 Flush Mounted

Frame	Maximum Amperes	A	B	C	D	E	Approximate Weight in Lbs ($\mathbf{k g})$	
F	100	$18.81(477.8)$	$9.72(246.9)$	$6.28(159.5)$	$13.03(331.0)$	$1.86(47.2)$	$18.50(469.9)$	$12(5)$
Earth leakage	100	$24.56(623.8)$	$9.72(246.9)$	$6.28(159.5)$	$18.75(476.3)$	$1.86(47.2)$	$24.25(616.0)$	$15(7)$
F (1)	225	$24.56(623.8)$	$9.72(246.9)$	$6.28(159.5)$	$18.75(476.3)$	$1.86(47.2)$	$24.25(616.0)$	$15(7)$
J	250	$36.02(914.9)$	$12.23(310.6)$	$7.20(182.9)$	$30.00(762.0)$	$1.88(47.8)$	$35.70(906.8)$	$32(15)$
K (2)	400	$40.13(1019.3)$	$12.38(314.5)$	$10.94(277.9)$	$34.00(863.6)$	$2.94(74.7)$	$39.81(1011.2)$	$53(24)$

NEMA 1 Flush Mounted

NEMA 1 Surface Mounted SFDN100 Series "B"

Notes
(1) Maximum wire size: $4 / 0$.
(2) Maximum wire size: 500 kcmil .

Enclosed Circuit Breakers

Approximate Dimensions in Inches (mm)
NEMA 12 Dustproof

Frame	Maximum Amperes	A	B	C	D	E	Approximate Weight in Lbs (kg)
G, F	100	19.91 (505.7)	9.16 (232.7)	9.31 (236.5)	18.53 (470.7)	1.70 (43.2)	16 (7)
Earth leakage	100	19.91 (505.7)	9.16 (232.7)	9.31 (236.5)	18.53 (470.7)	1.70 (43.2)	19 (9)
FBP, FCL	100	25.66 (651.8)	9.16 (232.7)	9.31 (236.5)	24.28 (616.7)	1.70 (43.2)	19 (9)
F ${ }^{\text {(1) }}$	225	25.66 (651.8)	9.16 (232.7)	9.31 (236.5)	24.28 (616.7)	1.70 (43.2)	19 (9)
J	250	37.53 (953.3)	11.88 (301.8)	10.22 (259.6)	35.77 (908.6)	1.94 (49.3)	37 (17)
K(2)	400	41.69 (1058.9)	12.31 (312.7)	14.06 (357.1)	39.94 (1014.5)	1.97 (50.0)	58 (26)
LG	600	53.37 (1355.6)	23.06 (585.7)	14.10 (358.1)	51.63 (1311.4)	1.94 (49.3)	94 (43)
Earth leakage	600	53.37 (1355.6)	23.06 (585.7)	14.10 (358.1)	51.63 (1311.4)	1.94 (49.3)	94 (43)
L	600	48.31 (1227.1)	15.56 (395.2)	15.50 (393.7)	46.56 (1182.6)	1.92 (48.8)	84 (38)
NBP	800	63.59 (1615.2)	22.63 (574.8)	17.63 (447.8)	-	-	110 (50)
M, N	1200	63.59 (1615.2)	22.63 (574.8)	17.63 (447.8)	61.84 (1570.7)	1.97 (50.0)	175 (80)
G, F	100	19.91 (505.7)	9.16 (232.7)	9.31 (236.5)	-	-	16 (7)
Earth leakage	100	19.91 (505.7)	9.16 (232.7)	9.31 (236.5)	-	-	19 (9)
FBP, FCL	100	25.66 (651.8)	9.16 (232.7)	9.31 (236.5)	-	-	19 (9)
F(1)	225	25.66 (651.8)	9.16 (232.7)	9.31 (236.5)	-	-	19 (9)
J	250	37.53 (953.3)	11.88 (301.8)	10.22 (259.6)	-	-	37 (17)
K ${ }^{2}$	400	41.69 (1058.9)	12.31 (312.7)	14.06 (357.1)	-	-	58 (26)

NEMA 12 Dustproof

Notes

(1) Maximum wire size: $4 / 0$.
(2) Maximum wire size: 500 kcmil .
1.2
Switching Devices
Enclosed Circuit Breakers

Approximate Dimensions in Inches (mm)
NEMA 3R Rainproof

Frame	Maximum Amperes	A	B	C	D	E	Approximate Weight in Lbs (kg)
G, F ${ }^{(1)}$	100	19.91 (505.7)	9.16 (232.7)	9.31 (236.5)	18.53 (470.7)	1.70 (43.2) ${ }^{(2)}$	16 (7)
Earth leakage	100	19.91 (505.7)	9.19 (232.7)	9.31 (236.5)	18.53 (470.7)	1.70 (43.2)	19 (9)
$\overline{\text { FBP, FCL }}$	100	25.66 (651.8)	9.16 (232.7)	9.31 (236.5)	24.28 (616.7)	1.70 (43.2)	19 (9)
F ${ }^{3}$	225	25.66 (651.8)	9.16 (232.7)	9.31 (236.5)	24.28 (616.7)	1.70 (43.2)	19 (9)
J	250	37.50 (952.5)	11.88 (301.8)	10.22 (259.6)	35.77 (908.6)	1.94 (49.3)	37 (17)
K(4)	400	41.69 (1058.9)	12.31 (312.7)	14.06 (357.1)	39.94 (1014.5)	1.97 (50.0)	58 (26)
LG	600	53.37 (1355.6)	23.06 (585.7)	14.10 (358.1)	51.63 (1311.4)	1.94 (49.3)	94 (43)
Earth leakage	600	53.37 (1355.6)	23.06 (585.7)	14.10 (358.1)	51.63 (1311.4)	1.94 (49.3)	94 (43)
L	600	48.31 (1227.1)	15.56 (395.2)	15.50 (393.7)	46.56 (1182.6)	1.92 (48.8)	84 (38)
M, N	1200	63.59 (1615.2)	22.63 (574.8)	17.63 (447.8)	61.84 (1570.7)	1.97 (50.0)	175 (80)
M, N (${ }^{\text {] }}$	400-1200	71.06 (1804.9)	32.40 (823.0)	17.65 (448.3)	69.32 (1760.7)	8.04 (204.2)	214 (97)

NEMA 3R Rainproof ©

Catalog Number RCNDN1200

NEMA 3R Rainproof RFDN100 Series "B"

Notes
(1) RFDN100 Series "B" released 9/15/01.
(2) Single centered mounting hole provided on RFDN100, Series "B."
(3) Maximum wire size: $4 / 0$.
(4) Maximum wire size: 500 kcmil .
(5) 100% rated breakers.
(6) All NEMA 3R except RFDN100.

Enclosed Circuit Breakers

Approximate Dimensions in Inches (mm)

NEMA 4/4X, 5, 7/9

Note: Not to be used for construction purposes unless approved.

NEMA 4/4X, 5 Stainless Steel

Frame	Maximum Amperes	A	B	C	D	Approximate Weight in Lbs (kg)	
G, F	100	$19.91(505.7)$	$8.84(224.5)$	$9.31(236.5)$	$18.53(470.7)$	$1.70(43.2)$	$16(7)$
Earth leakage	100	$19.91(505.7)$	$8.84(224.5)$	$9.31(236.5)$	$18.53(470.7)$	$1.70(43.2)$	$20(9)$
FBP, FCL	100	$25.66(651.8)$	$8.84(224.5)$	$9.31(236.5)$	$24.28(616.7)$	$1.70(43.2)$	$20(9)$
F(1)	225	$25.66(651.8)$	$8.84(224.5)$	$9.31(236.5)$	$24.28(616.7)$	$1.70(43.2)$	$20(9)$
J	250	$37.50(952.5)$	$11.56(293.6)$	$10.22(259.6)$	$35.77(908.6)$	$1.94(49.3)$	$39(18)$
K (2)	400	$41.69(1058.9)$	$11.75(298.5)$	$14.06(357.1)$	$39.94(1014.5)$	$1.97(50.0)$	$60(27)$
LG	600	$53.38(1355.9)$	$23.06(585.7)$	$14.11(358.4)$	$51.64(1311.7)$	$1.94(49.3)$	$96(44)$
Earth leakage	600	$53.38(1355.9)$	$23.06(585.7)$	$14.11(358.4)$	$51.64(1311.7)$	$1.94(49.3)$	$96(44)$
L	600	$48.31(1227.1)$	$14.91(378.7)$	$15.50(393.7)$	$46.56(1182.6)$	$1.92(48.8)$	$88(40)$
M, N	1200	$63.59(1615.2)$	$22.00(558.8)$	$17.63(447.8)$	$61.84(1570.7)$	$1.97(50.0)$	$185(84)$

NEMA 4/4X, 5 Stainless Steel

Notes

(1) Maximum wire size: $4 / 0$.
(2) Maximum wire size: 500 kcmil .

1.2
 Switching Devices
 Enclosed Circuit Breakers

NEMA 7/9 Cast Aluminum with Weather-Resistant Seals - 15-250A

NEMA 7/9 Cast Aluminum with Weather-Resistant Seals-Dual Three- and Four-Point Mounting Available as Standard on F-Frame 100A and Below

Note

(1) Maximum wire size: $4 / 0$.

Enclosed Circuit Breakers

Approximate Dimensions in Inches (mm)

7/9 Cast Aluminum with Weather-Resistant Seals-400-1200A

		Overall Enclosure				Enclosure Mounting			Conduit		Hinged Cover	Standard Conduit		
Breaker Frame	Size Amperes	A	B	C	D	E	F	G	H	1		Size	Location	Weight Lbs (kg)
K (1) XKDN400B	400	$\begin{aligned} & 35.00 \\ & (889.0) \end{aligned}$	$\begin{aligned} & 16.38 \\ & (416.1) \end{aligned}$	$\begin{aligned} & 12.63 \\ & (320.8) \end{aligned}$	$\begin{aligned} & 7.13 \\ & \text { (181.1) } \end{aligned}$	$\begin{aligned} & 9.50 \\ & (241.3) \end{aligned}$	$\begin{aligned} & 27.25 \\ & (692.2) \end{aligned}$	$\begin{aligned} & .50 \\ & (12.7) \end{aligned}$	$\begin{aligned} & 3.00 \\ & (76.2) \end{aligned}$	$\begin{aligned} & 4.19 \\ & (106.4) \end{aligned}$	$\begin{aligned} & 5.50 \\ & (139.7) \end{aligned}$	$\begin{aligned} & 4.00 \\ & (101.6) \end{aligned}$	$\begin{aligned} & 1,3 \text { and } \\ & 6,8 \end{aligned}$	170 (77)
$\begin{aligned} & \mathrm{L} \\ & \text { XLDN600B } \end{aligned}$	600	$\begin{aligned} & 37.88 \\ & (962.2) \end{aligned}$	$\begin{aligned} & 23.88 \\ & (606.6) \end{aligned}$	$\begin{aligned} & 14.25 \\ & (362.0) \end{aligned}$	$\begin{aligned} & 8.25 \\ & (209.6) \end{aligned}$	$\begin{aligned} & 16.00 \\ & (406.4) \end{aligned}$	$\begin{aligned} & 45.38 \\ & (1152.7) \end{aligned}$	$\begin{aligned} & .50 \\ & (12.7) \end{aligned}$	$\begin{aligned} & 4.00 \\ & (101.6) \end{aligned}$	$\begin{aligned} & 5.00 \\ & (127.0) \end{aligned}$	$\begin{aligned} & 6.00 \\ & (152.4) \end{aligned}$	$\begin{aligned} & 4.00 \\ & (101.6) \end{aligned}$	$\begin{aligned} & 1,3 \text { and } \\ & 6,8 \end{aligned}$	419 (190)
M XMCN800B	800	$\begin{aligned} & \hline 47.88 \\ & (1216.2) \end{aligned}$	$\begin{aligned} & 13.63 \\ & (346.2) \end{aligned}$	$\begin{aligned} & 12.81 \\ & (325.4) \end{aligned}$	$\begin{aligned} & \hline 6.81 \\ & (173.0) \end{aligned}$	$\begin{aligned} & 16.13 \\ & (409.7) \end{aligned}$	$\begin{aligned} & \hline 40.75 \\ & (1035.1) \end{aligned}$	$\begin{aligned} & \hline .50 \\ & (12.7) \end{aligned}$	$\begin{aligned} & 4.00 \\ & (101.6) \end{aligned}$	$\begin{aligned} & 4.00 \\ & (101.6) \end{aligned}$	$\begin{aligned} & 6.00 \\ & (152.4) \end{aligned}$	$\begin{aligned} & 4.00 \\ & (101.6) \end{aligned}$	$\begin{aligned} & 1,3 \text { and } \\ & 6,8 \end{aligned}$	228 (104)
N (2) XNDN1200B	1200	$\begin{aligned} & \hline 64.00 \\ & (1625.6) \end{aligned}$	$\begin{aligned} & 26.00 \\ & (660.4) \end{aligned}$	$\begin{aligned} & \hline 21.38 \\ & (543.1) \end{aligned}$	$\begin{aligned} & \hline 14.38 \\ & (365.3) \end{aligned}$	$\begin{aligned} & 27.56 \\ & (700.0) \end{aligned}$	$\begin{aligned} & 38.63 \\ & \text { (981.2) } \end{aligned}$	$\begin{aligned} & .50 \\ & (12.7) \end{aligned}$	$\begin{aligned} & \hline 6.50 \\ & (165.1) \end{aligned}$	$\begin{aligned} & \hline 4.38 \\ & (111.3) \end{aligned}$	$\begin{aligned} & 7.00 \\ & (177.8) \end{aligned}$	$\begin{aligned} & 4.00 \\ & (101.6) \end{aligned}$	$\begin{aligned} & 1,3 \text { and } \\ & 6,8 \end{aligned}$	567 (257)

NEMA 7/9 Cast Aluminum with Weather-Resistant Seals

Conduit Openings

Refer to outline dimensions for size and location of standard conduit openings. In addition, 1/2-inch (12.7 mm) openings are drilled and tapped for breather and drain. Unless ordered with breather and drain, these openings are plugged. Refer to Eaton for price of breather and drain.

Notes

(1) Maximum wire size: 500 kcmil .
(2) Power cables must enter and leave from opposite ends (through-feed).

Contents

Description

Page
Product Overview
V2-T1-122
Features, Benefits and Functions V2-T1-122
Standards and Certifications
V2-T1-122
Product Selection
V2-T1-123
Dimensions V2-T1-124

Product Overview

Provide users with the ability to lock directly wired motor loads in the OFF position to comply with OSHA lockout/ tagout regulations. Also for machine applications that require compact, economical disconnect switches.

Enclosed rotary disconnect switches allow safe control and safe disconnect of any motor application.

Features, Benefits and Functions

- Padlockable in the OFF position (up to three padlocks) to meet OSHA lockout requirements
- Available in 16-80A ratings
- 600 Vac, three- and fourpole non-fusible device
- Rated for making and breaking loads
- Accepts auxiliary contacts; capability to signal PLC controllers
- Ground lug connection provided
- Possibility of adding one power pole and one auxiliary contact
- NEMA ${ }^{\circledR}$ Type $1,3 R, 12$, 4, 4X

Open rotary disconnects can be found in Volume 5, Tab 3 titled: NEMA Manual Starters.

Standards and Certifications

- Meets NEC ${ }^{\circledR}$ Article 430 requirements for a separate disconnect means within sight of all motor loads
- UL® ${ }^{\circledR}$ listed under Section 508
- UL listed File No. E165150
- CSA® listed under 22.2

No. 14, File 162136

Product Selection

Enclosed Rotary Non-Fusible

Accessories for Enclosed Rotary Disconnects ©6

Disconnect Ampere Rating	Switched Fourth Pole	Unswitched Neutral Pole	Auxiliary Contacts (Choose one)	Terminal Shrouds
16	S4PR516	UNMR5A	1N0 + 1NC	Single-pole
25	S4PR525		AC1NONC	TS1R5A

[^5]Switching Devices
Enclosed Rotary Disconnects

Dimensions

Approximate Dimensions in Inches (mm)

NEMA Type 1 (16-40A)

Note:
Wire range of switch lugs for $16-25 A$ is \#6-\#10 copper, and for $30-40 \mathrm{~A}$ is \#8-\#14.
Wire range of ground lugs is \#2-\#14 copper or aluminum.

NEMA Type 1 (60-80A)

Wire range of ground lugs is \#2-\#14 copper or aluminum.

NEMA Type 12/3R (16-40A)

NEMA Type 12/3R (60-80A)

Wire range of switch lugs is \#1-\#14 copper.
Wire range of ground lugs is \#2-\#14 copper or aluminum.
1.3
Switching Devices
Enclosed Rotary Disconnects

NEMA Type 4X Stainless (16-40A)

Notes:

Wire range of switch lugs for $16-25 A$ is \#6-\#10 copper, and for 30-40A is \#8-\#14. Wire range of ground lugs is \#2-\#14 copper or aluminum.

NEMA Type 4X Stainless (60-80A)

Notes:
Wire range of switch lugs is \#4-\#14 copper. Wire range of ground lugs is \#2-\#14 copper or aluminum.

NEMA Type 4X Thermoset Polyester (16-40A)

NEMA Type 4X Thermoset Polyester (60-80A)

1.3

Switching Devices
Enclosed Rotary Disconnects

NEMA Type 4X - Polycarbonate (30A)

NEMA Type 4X - Polycarbonate (60A)

2.1 NEMA TP-1 Energy-Efficient Transformers
Product Description V2-T2-2
Application Description V2-T2-2
Features, Benefits and Functions V2-T2-3
Standards and Certifications V2-T2-3
Catalog Number Selection V2-T2-4
Product Selection V2-T2-4
Accessories V2-T2-50
Technical Data and Specifications V2-T2-50
2.2 NEMA Premium and E3 Super Efficient Transformers NEMA Premium ${ }^{\circledR}$ Efficient Transformers V2-T2-61
E3 Super Efficient Transformers V2-T2-66
2.3 Energy-Efficient Harmonic Mitigating Transformers Product Description. V2-T2-71
Features and Benefits V2-T2-71
Standards and Certifications V2-T2-72
Catalog Number Selection V2-T2-72
Product Selection V2-T2-73
Accessories V2-T2-89
Technical Data and Specifications V2-T2-89
2.4 General-Purpose Encapsulated Transformers
Product Description V2-T2-93
Application Description V2-T2-93
Features, Benefits and Functions V2-T2-93
Standards and Certifications V2-T2-93
Catalog Number Selection V2-T2-94
Product Selection V2-T2-94
Accessories V2-T2-109
Technical Data and Specifications V2-T2-109
2.5 Distribution Transformers
Motor Drive Isolation Transformers V2-T2-111
Mini-Power Centers V2-T2-119
Totally Enclosed Non-Ventilated Transformers V2-T2-124
Class I, Division 2, Hazardous Location Transformers V2-T2-127
Open-Type Core and Coil Assembly Transformers V2-T2-130
Marine Duty Transformers. V2-T2-133
Buck-Boost and Low Voltage Lighting Transformers V2-T2-144
Medium Voltage Distribution Transformers V2-T2-173
2.6 Transformer Standards, Technical Data and Accessories
V2-T2-186 Standards and Certifications
Catalog Number Selection V2-T2-187
Product Selection V2-T2-189
Options and Accessories V2-T2-191
Technical Data and Specifications V2-T2-195
Glossary of Transformer Terms V2-T2-211
Frequently Asked Questions About Transformers V2-T2-214
2.7 DimensionsDimensionsV2-T2-216

Type DT-3

Contents

Description	Page
NEMA TP-1 Energy-Efficient Transformers	
Features, Benefits and Functions.	V2-T2-3
Standards and Certifications	V2-T2-3
Catalog Number Selection.	V2-T2-4
Product Selection.	V2-T2-4
Single-Phase Aluminum	V2-T2-4
Single-Phase Copper.	V2-T2-6
Single-Phase Shielded Aluminum	V2-T2-8
Single-Phase Shielded Copper	V2-T2-10
Three-Phase Aluminum	V2-T2-12
Three-Phase Copper	V2-T2-23
Three-Phase Shielded Aluminum	V2-T2-34
Three-Phase Shielded Copper .	V2-T2-42
Accessories	V2-T2-50
Technical Data and Specifications	V2-T2-50
K-Factor	V2-T2-51
Aluminum	V2-T2-52
Copper.	V2-T2-57

Product Description

Note: The following pages provide listings for most standard transformer ratings and catalog numbers. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton

Types DS-3, DT-3

- Ventilated, NEMA 2 enclosure standard
- Suitable for indoor applications, outdoors when weathershields are also installed
- Upright mounting only
- $220^{\circ} \mathrm{C}$ insulation system
- $150^{\circ} \mathrm{C}$ rise standard; $115^{\circ} \mathrm{C}$ or $80^{\circ} \mathrm{C}$ rise optional
- Available in single-phase ratings $15-167 \mathrm{kVA}$, 600 volts primary (DS-3)
- Available in three-phase ratings $15-1500 \mathrm{kVA}$ and up to 600 volts primary (DT-3)

Application Description

NEMA TP-1-2002 compliant energy-efficient transformers are specifically designed to meet the energy efficiency standards set forth in NEMA Standards publication, TP-12002, "Guide for Determining Energy Efficiency for Distribution Transformers." Surveys have shown that the average loading of low voltage dry-type distribution transformers, over a 24 -hour period, is approximately 35\%. NEMA TP-1 compliant transformers are optimized to offer maximum efficiency at 35% of nameplate rating.
The range of products covered by NEMA TP-1-2002 are:

NEMA TP-1-2002
Product Range

	Voltage Rating Class	Voltage
	Primary voltage	34.5 kV and below
	Secondary voltage	600 V and below
Dry-Type Rating	Single-phase	$10-833 \mathrm{kVA}$ Three-phase
Liquid Rating	Single-phase	$10-833 \mathrm{kVA}$

Transformers that are currently specifically excluded from the scope of NEMA Standard TP-1-2002 include:

- Liquid-filled transformers below 10 kVA
- Dry-type transformers below 15 kVA
- $A C$ and DC drives transformers
- Rectifier transformers designed for high harmonics
- Autotransformers
- Non-distribution transformers, such as UPS transformers
- Special impedance or regulation transformers
- Regulating transformers
- Sealed and non-ventilated transformers
- Machine tool transformers
- Welding transformers
- Transformers with tap ranges greater than 15\%
- Transformers with a frequency other than 60 Hz
- Grounding transformers
- Testing transformers

Features, Benefits and Functions

- 60 Hz operation (except as noted)
- Short-term overload capability as required by ANSI
- Meet NEMA ST-20 sound levels
- Meet federal energy efficiency requirements for low voltage dry-type distribution transformers effective as of January 1, 2007

Standards and
Certifications

- UL® listed

Industry Standards

All Eaton dry-type distribution and control transformers are built and tested in accordance with applicable NEMA, ANSI and IEEE Standards. All 600 volt class transformers are UL listed unless otherwise noted.

Seismically Qualified

Eaton manufactured dry-type distribution transformers are seismically qualified and exceed requirements of the Uniform Building Code (UBC), International Building Code (IBC) and California Code Title 24.

Catalog Number Selection

Product Selection

Additional Product Selection information begins on Page V2-T2-189

Single-Phase-Type DS-3 60 Hz NEMA TP-1 Energy-Efficient-Aluminum Windings

208 Volts to 120/240 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	816	260A	226 (103)	WS11	T29M11S15EE
25	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	818	260A	346 (157)	WS11	T29M11S25EE
37.5	2 at $+2.5 \%$	4 at -2.5	DS-3	150	818	260A	374 (170)	WS11	T29M11S37EE
50	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	819	260A	545 (247)	WS16	T29M11S50EE
75	1 at $+5 \%$	2 at -5%	DS-3	150	819	551A	568 (258)	WS16	T29R11S75EE
100	1 at $+5 \%$	2 at -5%	DS-3	150	814E	449A	1178 (535)	WS13	T29R11S99EE

240×480 Volts to $120 / 240$ Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	(2)	(2)	DS-3	150	842	3XA	196 (89)	WS45	T20P11S15AEE
25	(2)	(2)	DS-3	150	842	3XA	261 (118)	WS45	T20P11S25AEE
37.5	(2)	(2)	DS-3	150	843	3XA	304 (138)	WS43	T20P11S37AEE
50	(2)	(2)	DS-3	150	843	3XA	396 (180)	WS43	T20P11S50AEE
75	(2)	(2)	DS-3	150	844	3XA	688 (312)	WS44	T20P11S75AEE
100	(2)	(2)	DS-3	150	844	3XA	699 (317)	WS44	T20P11S99AEE
167	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	814E	288A	1294 (587)	WS13	T48M11S67EE ${ }^{(3)}$
15	(2)	(2)	DS-3	115	816	3XA	246 (112)	WS11	T20P11F15EE
25	(2)	(2)	DS-3	115	818	3XA	373 (169)	WS11	T20P11F25EE
37.5	(2)	(2)	DS-3	115	818	3XA	380 (173)	WS11	T20P11F37EE
50	(2)	(2)	DS-3	115	819	3XA	590 (268)	WS16	T20P11F50EE
75	(2)	(2)	DS-3	115	820	3XA	691 (314)	WS16	T20P11F75EE
100	(2)	(2)	DS-3	115	821	3XA	844 (383)	WS13	T20P11F99EE
15	(2)	(2)	DS-3	80	818	3XA	360 (163)	WS11	T20P11B15EE
25	(2)	(2)	DS-3	80	818	3XA	370 (168)	WS11	T20P11B25EE
37.5	(2)	(2)	DS-3	80	819	3XA	565 (257)	WS16	T20P11B37EE
50	(2)	(2)	DS-3	80	820	3XA	680 (309)	WS16	T20P11B50EE
75	(2)	(2)	DS-3	80	821	3XA	900 (409)	WS13	T20P11B75EE

Notes
(1) Weights subject to change.
(2) 1 at $+5 \%, 2$ at -5% at 240 volts primary; 2 at $+2.5 \%, 4$ at -2.5% at 480 volts primary.
(3) 480 volt primary only.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Single-Phase—Type DS-3 60 Hz NEMA TP-1 Energy-Efficient—Aluminum Windings

277 Volts to 120/240 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	816	262 C	220 (100)	WS11	T27M11S15EE
25	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	818	262 C	346 (157)	WS11	T27M11S25EE
37.5	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	818	262 C	391 (178)	WS11	T27M11S37EE
50	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	819	262 C	555 (252)	WS16	T27M11S50EE
75	1 at $+5 \%$	2 at -5%	DS-3	150	819	(2)	568 (258)	WS16	T27R11S75EE
100	1 at $+5 \%$	2 at -5\%	DS-3	150	814E	(2)	1178 (535)	WS13	T27R11S99EE

208×416 Volts to $120 / 240$ Volts

kVA	Full C FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	(3)	(3)	DS-3	150	816	3XF	246 (112)	WS11	T18P11S15EE
25	(3)	(3)	DS-3	150	818	3XF	359 (163)	WS11	T18P11S25EE
37.5	(3)	(3)	DS-3	150	818	3XF	374 (170)	WS11	T18P11S37EE
50	(3)	(3)	DS-3	150	819	3XF	555 (252)	WS16	T18P11S50EE
75	(3)	(3)	DS-3	150	820	3XF	665 (302)	WS16	T18P11S75EE
100	(3)	(3)	DS-3	150	821	3XF	841 (382)	WS13	T18P11S99EE

600 Volts to $120 / 240$ Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	816	262B	243 (110)	WS11	T60M11S15EE
25	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	818	262B	355 (161)	WS11	T60M11S25EE
37.5	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	818	262B	375 (170)	WS11	T60M11S37EE
50	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	819	262B	594 (270)	WS16	T60M11S50EE
75	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	820	262B	755 (343)	WS16	T60M11S75EE
100	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	821	262B	865 (393)	WS13	T60M11S99EE

Notes

(1) Weights subject to change.
(2) Contact your local Eaton sales office for these details,
(3) 1 at $+5 \%, 2$ at -5% at 208 volts primary; 2 at $+2.5 \%, 4$ at -2.5% at 416 volts primary.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Single-Phase—Type DS-3 60 Hz NEMA TP-1 Energy-Efficient—Copper Windings

208 Volts to $120 / 240$ Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	816	260A	275 (125)	WS11	T29M11S15CUEE
25	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	818	260A	390 (177)	WS11	T29M11S25CUEE
37.5	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	818	260A	440 (200)	WS11	T29M11S37CUEE
50	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	819	260A	661 (300)	WS16	T29M11S50CUEE
75	1 at $+5 \%$	2 at -5\%	DS-3	150	820	551A	805 (365)	WS16	T29R11S75CUEE
100	1 at $+5 \%$	2 at -5\%	DS-3	150	821	449A	970 (440)	WS13	T29R11S99CUEE

240×480 Volts to $120 / 240$ Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	(2)	(2)	DS-3	150	816	3XA	270 (123)	WS11	T20P11S15CUEE
25	(2)	(2)	DS-3	150	818	3XA	406 (184)	WS11	T20P11S25CUEE
37.5	(2)	(2)	DS-3	150	818	3XA	453 (206)	WS11	T20P11S37CUEE
50	(2)	(2)	DS-3	150	819	3XA	657 (298)	WS16	T20P11S50CUEE
75	(2)	(2)	DS-3	150	820	3XA	803 (365)	WS16	T20P11S75CUEE
100	(2)	(2)	DS-3	150	821	3XA	960 (436)	WS13	T20P11S99CUEE
167	2 at $+2.5 \%$	4 at - 2.5%	DS-3	150	814E	288A	1665 (756)	WS13	T48M11S67CUEE ${ }^{3}$
15	(2)	(2)	DS-3	115	816	3XA	264 (120)	WS11	T20P11F15CUEE
25	(2)	(2)	DS-3	115	818	3XA	420 (191)	WS11	T20P11F25CUEE
37.5	(2)	(2)	DS-3	115	818	3XA	450 (204)	WS11	T20P11F37CUEE
50	(2)	(2)	DS-3	115	819	3XA	703 (319)	WS16	T20P11F50CUEE
75	(2)	(2)	DS-3	115	820	3XA	793 (360)	WS16	T20P11F75CUEE
100	(2)	(2)	DS-3	115	821	3XA	1085 (493)	WS13	T20P11F99CUEE
15	(2)	(2)	DS-3	80	818	3XA	407 (185)	WS11	T20P11B15CUEE
25	(2)	(2)	DS-3	80	818	3XA	430 (195)	WS11	T20P11B25CUEE
37.5	(2)	(2)	DS-3	80	819	3XA	685 (311)	WS16	T20P11B37CUEE
50	(2)	(2)	DS-3	80	820	3XA	799 (363)	WS16	T20P11B50CUEE
75	(2)	(2)	DS-3	80	821	3XA	1056 (479)	WS13	T20P11B75CUEE

277 Volts to 120/240 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	816	262 C	275 (125)	WS11	T27M11S15CUEE
25	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	818	262 C	390 (177)	WS11	T27M11S25CUEE
37.5	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	818	262 C	440 (200)	WS11	T27M11S37CUEE
50	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	819	262 C	661 (300)	WS16	T27M11S50CUEE
75	1 at $+5 \%$	2 at -5%	DS-3	150	820	(4)	805 (365)	WS16	T27R11S75CUEE
100	1 at $+5 \%$	2 at -5\%	DS-3	150	821	(4)	970 (440)	WS13	T27R11S99CUEE

Notes

(1) Weights subject to change.
(2) 1 at $+5 \%, 2$ at -5% at 240 volts primary; 2 at $+2.5 \%, 4$ at -2.5% at 480 volts primary.
(3) 480 volt primary only.
(4) Contact your local Eaton sales office for these details.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Single-Phase—Type DS-3 60 Hz NEMA TP-1 Energy-Efficient—Copper Windings

208×416 Volts to $120 / 240$ Volts

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp.		Wiring Diagram Number	Weight Lbs (kg) (2)	Weathershield	Catalog Number
	FCAN	FCBN	Type	Rise	Frame				
15	(1)	(1)	DS-3	150	816	3XF	275 (125)	WS11	T18P11S15CUEE
25	(1)	(1)	DS-3	150	818	3XF	390 (177)	WS11	T18P11S25CUEE
37.5	(1)	(1)	DS-3	150	818	3XF	440 (200)	WS11	T18P11S37CUEE
50	(1)	(1)	DS-3	150	819	3XF	661 (300)	WS16	T18P11S50CUEE
75	(1)	(1)	DS-3	150	820	3XF	805 (365)	WS16	T18P11S75CUEE
100	(1)	(1)	DS-3	150	821	3XF	970 (440)	WS13	T18P11S99CUEE

600 Volts to $120 / 240$ Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) (2)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	816	262B	290 (132)	WS11	T60M11S15CUEE
25	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	818	262B	465 (211)	WS11	T60M11S25CUEE
37.5	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	818	262B	495 (225)	WS11	T60M11S37CUEE
50	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	819	262B	775 (352)	WS16	T60M11S50CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	820	262B	900 (409)	WS16	T60M11S75CUEE
100	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	821	262B	1195 (543)	WS13	T60M11S99CUEE

Notes

(1) 1 at $+5 \%, 2$ at -5% at 208 volts primary; 2 at $+2.5 \%, 4$ at -2.5% at 416 volts primary.
(2) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Single-Phase—Type DS-3 60 Hz NEMA TP-1 Energy-Efficient Electrostatically Shielded—Aluminum Windings

208 Volts to 120/240 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	816	264A	275 (125)	WS11	T29M11E15EE
25	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	818	264A	390 (177)	WS11	T29M11E25EE
37.5	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	818	264A	440 (200)	WS11	T29M11E37EE
50	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	819	264 A	661 (300)	WS16	T29M11E50EE
75	1 at $+5 \%$	2 at -5%	DS-3	150	820	450A	805 (366)	WS16	T29R11E75EE
100	1 at $+5 \%$	2 at -5%	DS-3	150	821	450A	970 (440)	WS13	T29R11E99EE

240×480 Volts to 120/240 Volts

kVA	Full Capa FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{1}$	Weathershield	Catalog Number
15	(2)	(2)	DS-3	150	816	261A	246 (112)	WS11	T20P11E15EE
25	(2)	(2)	DS-3	150	818	261A	359 (163)	WS11	T20P11E25EE
37.5	(2)	(2)	DS-3	150	818	261A	374 (170)	WS11	T20P11E37EE
50	(2)	(2)	DS-3	150	819	261A	555 (252)	WS16	T20P11E50EE
75	(2)	(2)	DS-3	150	820	261A	740 (336)	WS16	T20P11E75EE
100	(2)	(2)	DS-3	150	821	261A	841 (382)	WS13	T20P11E99EE
167	2 at $+2.5 \%$	4 at - 2.5%	DS-3	150	814E	227A	1294 (587)	WS13	T48M11E67EE ${ }^{3}$
15	(2)	(2)	DS-3	115	816	261A	246 (112)	WS11	T20P11F15EEES
25	(2)	(2)	DS-3	115	818	261A	373 (169)	WS11	T20P11F25EEES
37.5	(2)	(2)	DS-3	115	818	261A	380 (173)	WS11	T20P11F37EEES
50	(2)	(2)	DS-3	115	819	261A	590 (268)	WS16	T20P11F50EEES
75	(2)	(2)	DS-3	115	820	261A	691 (314)	WS16	T20P11F75EEES
100	(2)	(2)	DS-3	115	821	261A	844 (383)	WS13	T20P11F99EEES
15	(2)	(2)	DS-3	80	818	261A	360 (163)	WS11	T20P11B15EEES
25	(2)	(2)	DS-3	80	818	261A	370 (168)	WS11	T20P11B25EEES
37.5	(2)	(2)	DS-3	80	819	261A	565 (257)	WS16	T20P11B37EEES
50	(2)	(2)	DS-3	80	820	261A	680 (309)	WS16	T20P11B50EEES
75	(2)	(2)	DS-3	80	821	261A	900 (409)	WS13	T20P11B75EEES

277 Volts to 120/240 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	816	(4)	275 (125)	WS11	T27M11E15EE
25	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	818	(4)	390 (177)	WS11	T27M11E25EE
37.5	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	818	(4)	440 (200)	WS11	T27M11E37EE
50	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	819	(4)	661 (300)	WS16	T27M11E50EE
75	1 at $+5 \%$	2 at -5%	DS-3	150	820	(4)	805 (366)	WS16	T27R11E75EE
100	1 at $+5 \%$	2 at -5%	DS-3	150	821	(4)	970 (440)	WS13	T27R11E99EE

Notes

(1) Weights subject to change.
(2) 1 at $+5 \%, 2$ at -5% at 240 volts primary; 2 at $+2.5 \%, 4$ at -2.5% at 480 volts primary.
(3) 480 volt primary only.
(4) Contact your local Eaton sales office for these details.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Single-Phase—Type DS-3 60 Hz NEMA TP-1 Energy-Efficient Electrostatically Shielded—Aluminum Windings

208×416 Volts to $120 / 240$ Volts

kVA	Full C FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(2)}$	Weathershield	Catalog Number
15	(1)	(1)	DS-3	150	816	243H	275 (125)	WS11	T43P11E15EE
25	(1)	(1)	DS-3	150	818	243 H	390 (177)	WS11	T43P11E25EE
37.5	(1)	(1)	DS-3	150	818	243H	440 (200)	WS11	T43P11E37EE
50	(1)	(1)	DS-3	150	819	243 H	661 (300)	WS16	T43P11E50EE
75	(1)	(1)	DS-3	150	820	(3)	805 (366)	WS16	T43P11E75EE
100	(1)	(1)	DS-3	150	821	(3)	970 (440)	WS13	T43P11E99EE

600 Volts to $120 / 240$ Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) (2)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	816	259A	275 (125)	WS11	T60M11E15EE
25	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	818	259A	390 (177)	WS11	T60M11E25EE
37.5	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	818	259A	440 (200)	WS11	T60M11E37EE
50	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	819	259A	661 (300)	WS16	T60M11E50EE
75	1 at $+5 \%$	2 at -5%	DS-3	150	820	(3)	805 (366)	WS16	T60R11E75EE
100	1 at $+5 \%$	2 at -5%	DS-3	150	821	(3)	970 (440)	WS13	T60R11E99EE

Notes

(1) 1 at $+5 \%, 2$ at -5% at 208 volts primary; 2 at $+2.5 \%, 4$ at -2.5% at 416 volts primary.
(2) Weights subject to change.
(3) Contact your local Eaton sales office for these details.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Single-Phase—Type DS-3 60 Hz NEMA TP-1 Energy-Efficient Electrostatically Shielded—Copper Windings

208 Volts to 120/240 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	$2 \mathrm{at}+2.5 \%$	4 at -2.5\%	DS-3	150	816	264A	270 (123)	WS11	T29M11E15CUEE
25	2 at +2.5\%	4 at -2.5\%	DS-3	150	818	264A	423 (192)	WS11	T29M11E25CUEE
37.5	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	818	264A	437 (198)	WS11	T29M11E37CUEE
50	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	819	264A	620 (281)	WS16	T29M11E50CUEE
75	1 at $+5 \%$	2 at -5%	DS-3	150	820	450A	810 (368)	WS16	T29R11E75CUEE
100	1 at $+5 \%$	2 at -5%	DS-3	150	821	450A	980 (445)	WS13	T29R11E99CUEE

240×480 Volts to $120 / 240$ Volts

kVA	Full C FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	(2)	(2)	DS-3	150	816	261A	270 (123)	WS11	T20P11E15CUEE
25	(2)	(2)	DS-3	150	818	261A	423 (192)	WS11	T20P11E25CUEE
37.5	(2)	(2)	DS-3	150	818	261A	437 (198)	WS11	T20P11E37CUEE
50	(2)	(2)	DS-3	150	819	261A	620 (281)	WS16	T20P11E50CUEE
75	(2)	(2)	DS-3	150	820	261A	810 (368)	WS16	T20P11E75CUEE
100	(2)	(2)	DS-3	150	821	261A	980 (445)	WS13	T20P11E99CUEE
15	(2)	(2)	DS-3	115	816	261A	254 (115)	WS11	T20P11F15CUEEES
25	(2)	(2)	DS-3	115	818	261A	453 (206)	WS11	T20P11F25CUEEES
37.5	(2)	(2)	DS-3	115	818	261A	480 (218)	WS11	T20P11F37CUEEES
50	(2)	(2)	DS-3	115	819	261A	718 (326)	WS16	T20P11F50CUEEES
75	(2)	(2)	DS-3	115	820	261A	793 (360)	WS16	T20P11F75CUEEES
100	(2)	(2)	DS-3	115	821	261A	1000 (454)	WS13	T20P11F99CUEEES
15	(2)	(2)	DS-3	80	818	261A	240 (109)	WS11	T20P11B15CUEEES
25	(2)	(2)	DS-3	80	818	261A	430 (195)	WS11	T20P11B25CUEEES
37.5	(2)	(2)	DS-3	80	819	261A	700 (318)	WS16	T20P11B37CUEEES
50	(2)	(2)	DS-3	80	820	261A	738 (335)	WS16	T20P11B50CUEEES
75	(2)	(2)	DS-3	80	821	261A	960 (436)	WS13	T20P11B75CUEEES

277 Volts to $120 / 240$ Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at +2.5\%	4 at -2.5\%	DS-3	150	816	(3)	270 (123)	WS11	T27M11E15CUEE
25	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	818	(3)	423 (192)	WS11	T27M11E25CUEE
37.5	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	818	(3)	437 (198)	WS11	T27M11E37CUEE
50	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	819	(3)	620 (281)	WS16	T27M11E50CUEE
75	1 at $+5 \%$	2 at -5%	DS-3	150	820	(3)	810 (368)	WS16	T27R11E75CUEE
100	1 at $+5 \%$	2 at -5\%	DS-3	150	821	(3)	980 (445)	WS13	T27R11E99CUEE

Notes

(1) Weights subject to change.
(2) 1 at $+5 \%, 2$ at -5% at 240 volts primary; 2 at $+2.5 \%, 4$ at -2.5% at 480 volts primary.
(3) Contact your local Eaton sales office for these details.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Single-Phase—Type DS-3 60 Hz NEMA TP-1 Energy-Efficient Electrostatically Shielded—Copper Windings

208×416 Volts to $120 / 240$ Volts

| | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| kVA | Full Capacity Taps
 FCAN | FCBN |

600 Volts to 120/240 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) (2)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	816	259A	270 (123)	WS11	T60M11E15CUEE
25	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	818	259A	423 (192)	WS11	T60M11E25CUEE
37.5	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	818	259A	437 (198)	WS11	T60M11E37CUEE
50	2 at $+2.5 \%$	4 at -2.5\%	DS-3	150	819	259 A	620 (281)	WS16	T60M11E50CUEE
75	1 at $+5 \%$	2 at -5%	DS-3	150	820	(3)	810 (368)	WS16	T60R11E75CUEE
100	1 at $+5 \%$	2 at -5%	DS-3	150	821	(3)	980 (445)	WS13	T60R11E99CUEE

Notes

(1) 1 at $+5 \%, 2$ at -5% at 208 volts primary; 2 at $+2.5 \%, 4$ at -2.5% at 416 volts primary.
(2) Weights subject to change.
(3) Contact your local Eaton sales office for these details.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase-Type DT-3 60 Hz NEMA TP-1 Energy-Efficient—Aluminum Windings

2
208 Delta Volts to 208Y/120 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280E	218 (99)	WS38	V29M28T15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280E	299 (136)	WS38	V29M28T30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912 D	280E	376 (171)	WS38	V29M28T45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	280E	564 (256)	WS39	V29M28T75EE
112.5	1 at $+5 \%$	2 at -5\%	DT-3	150	916A	324A	930 (422)	WS19	V29R28T12EE
150	1 at $+5 \%$	2 at -5\%	DT-3	150	916A	324A	1013 (460)	WS19	V29R28T49EE
225	1 at $+5 \%$	2 at -5\%	DT-3	150	918A	324 A	1443 (655)	WS34	V29R28T22EE
300	1 at $+5 \%$	2 at -5\%	DT-3	150	919E	289D	1697 (770)	WS35	V29R28T33EE
500	1 at $+5 \%$	2 at -5\%	DT-3	150	920E	289D	2690 (1221)	WS35	V29R28T55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280E	240 (109)	WS38	V29M28F15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280E	320 (145)	WS38	V29M28F30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280E	396 (180)	WS38	V29M28F45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	280E	607 (276)	WS39	V29M28F75EE
112.5	1 at $+5 \%$	2 at -5\%	DT-3	115	916A	324A	960 (436)	WS19	V29R28F12EE
150	1 at $+5 \%$	2 at -5\%	DT-3	115	916A	324A	1060 (481)	WS19	V29R28F49EE
225	1 at $+5 \%$	2 at -5%	DT-3	115	918A	324A	1500 (681)	WS34	V29R28F22EE
300	1 at $+5 \%$	2 at -5\%	DT-3	115	919E	289D	1800 (817)	WS35	V29R28F33EE
500	1 at $+5 \%$	2 at -5\%	DT-3	115	920E	289 D	2900 (1317)	WS35	V29R28F55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280E	280 (127)	WS38	V29M28B15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280E	350 (159)	WS38	V29M28B30EE
45	2 at $+2.5 \%$	4 at -2.5%	DT-3	80	914F	280E	560 (254)	WS39	V29M28B45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	280E	810 (368)	WS19	V29M28B75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	280E	950 (431)	WS19	V29M28B12EE
150	1 at $+5 \%$	2 at -5\%	DT-3	80	918A	324A	1430 (649)	WS34	V29R28B49EE
225	1 at $+5 \%$	2 at -5\%	DT-3	80	919E	289 D	1750 (795)	WS35	V29R28B22EE
300	1 at $+5 \%$	2 at -5\%	DT-3	80	920E	289D	2400 (1090)	WS35	V29R28B33EE

Notes

(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216

Three-Phase-Type DT-3 60 Hz NEMA TP-1 Energy-Efficient—Aluminum Windings

208 Delta Volts to 480Y/277 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	342B	196 (89)	WS38	V29M47T15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	342B	296 (134)	WS38	V29M47T30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	342B	385 (175)	WS38	V29M47T45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	342B	590 (268)	WS39	V29M47T75EE
112.5	1 at $+5 \%$	2 at -5\%	DT-3	150	916A	351A	784 (356)	WS19	V29R47T12EE
150	1 at $+5 \%$	2 at -5\%	DT-3	150	916A	351A	931 (423)	WS19	V29R47T49EE
225	1 at $+5 \%$	2 at -5\%	DT-3	150	918A	333B	1550 (704)	WS34	V29R47T22EE
300	1 at $+5 \%$	2 at -5\%	DT-3	150	919E	333B	2274 (1032)	WS35	V29R47T33EE
500	1 at $+5 \%$	2 at -5\%	DT-3	150	919E	333B	2869 (1303)	WS35	V29R47T55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	342B	215 (98)	WS38	V29M47F15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	342 B	380 (173)	WS38	V29M47F30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	342 B	400 (182)	WS38	V29M47F45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	342B	585 (266)	WS39	V29M47F75EE
112.5	1 at $+5 \%$	2 at -5\%	DT-3	115	916A	351A	800 (363)	WS19	V29R47F12EE
150	1 at $+5 \%$	2 at -5\%	DT-3	115	916A	351A	950 (431)	WS19	V29R47F49EE
225	1 at $+5 \%$	2 at -5\%	DT-3	115	918A	333 B	1591 (722)	WS34	V29R47F22EE
300	1 at $+5 \%$	2 at -5\%	DT-3	115	919E	333B	2320 (1053)	WS35	V29R47F33EE
500	1 at $+5 \%$	2 at -5\%	DT-3	115	919E	333B	2950 (1339)	WS35	V29R47F55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	342B	300 (136)	WS38	V29M47B15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	342B	390 (177)	WS38	V29M47B30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	914F	342B	550 (249)	WS39	V29M47B45EE
75	1 at $+5 \%$	2 at -5\%	DT-3	80	916A	351A	757 (344)	WS19	V29R47B75EE
112.5	1 at $+5 \%$	2 at -5\%	DT-3	80	916A	351A	930 (422)	WS19	V29R47B12EE
150	1 at $+5 \%$	2 at -5%	DT-3	80	918A	333B	1550 (704)	WS34	V29R47B49EE
225	1 at $+5 \%$	2 at -5\%	DT-3	80	919E	333B	2275 (1033)	WS35	V29R47B22EE
300	1 at $+5 \%$	2 at -5%	DT-3	80	920E	333B	2870 (1303)	WS35	V29R47B33EE

Notes

(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase-Type DT-3 60 Hz NEMA TP-1 Energy-Efficient—Aluminum Windings

2
240 Delta Volts to 208Y/120 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{1}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280C	206 (94)	WS38	V24M28T15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280C	297 (135)	WS38	V24M28T30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280C	332 (151)	WS38	V24M28T45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	280C	562 (255)	WS39	V24M28T75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	280C	760 (345)	WS19	V24M28T12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	280C	974 (442)	WS19	V24M28T49EE
225	1 at $+5 \%$	2 at -5%	DT-3	150	917	289A	1460 (663)	WS34	V24R28T22EE
300	1 at $+5 \%$	2 at -5%	DT-3	150	918A	289A	1652 (750)	WS34	V24R28T33EE
500	1 at $+5 \%$	2 at -5\%	DT-3	150	919 E	289A	2690 (1221)	WS35	V24R28T55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280C	240 (109)	WS38	V24M28F15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280C	389 (177)	WS38	V24M28F30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280C	396 (180)	WS38	V24M28F45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	280C	593 (269)	WS39	V24M28F75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	280 C	941 (427)	WS19	V24M28F12EE
150	1 at $+5 \%$	2 at -5%	DT-3	115	916A	280 C	1060 (481)	WS19	V24R28F49EE
225	1 at $+5 \%$	2 at -5\%	DT-3	115	917	289A	1500 (681)	WS34	V24R28F22EE
300	1 at $+5 \%$	2 at -5\%	DT-3	115	918A	289A	1800 (817)	WS34	V24R28F33EE
500	1 at $+5 \%$	2 at -5\%	DT-3	115	919E	289A	2900 (1317)	WS35	V24R28F55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280C	280 (127)	WS38	V24M28B15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280C	350 (159)	WS38	V24M28B30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	914F	280C	560 (254)	WS39	V24M28B45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	280C	883 (401)	WS19	V24M28B75EE
112.5	1 at $+5 \%$	2 at -5\%	DT-3	80	916A	280 C	950 (431)	WS19	V24R28B12EE
150	1 at $+5 \%$	2 at -5\%	DT-3	80	917	289A	1430 (649)	WS34	V24R28B49EE
225	1 at $+5 \%$	2 at -5\%	DT-3	80	918A	289A	1750 (795)	WS34	V24R28B22EE
300	1 at $+5 \%$	2 at -5\%	DT-3	80	919E	289A	2400 (1090)	WS35	V24R28B33EE

Notes
(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase-Type DT-3 60 Hz NEMA TP-1 Energy-Efficient—Aluminum Windings

240 Delta Volts to 480Y/277 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at +2.5\%	4 at -2.5\%	DT-3	150	912D	342L	227 (103)	WS38	V24M47T15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	342L	306 (139)	WS38	V24M47T30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	342L	380 (173)	WS38	V24M47T45EE
75	2 at +2.5\%	4 at -2.5\%	DT-3	150	914 F	342L	573 (260)	WS39	V24M47T75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	342 L	800 (363)	WS19	V24M47T12EE
150	2 at +2.5\%	4 at -2.5\%	DT-3	150	916A	342L	885 (402)	WS19	V24M47T49EE
225	1 at $+5 \%$	2 at -5%	DT-3	150	918A	333A	1612 (732)	WS34	V24R47T22EE
300	1 at $+5 \%$	2 at -5%	DT-3	150	919E	333A	1652 (750)	WS35	V24R47T33EE
500	1 at $+5 \%$	2 at -5%	DT-3	150	919E	333A	2695 (1224)	WS35	V24R47T55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	342L	240 (109)	WS38	V24M47F15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	342L	389 (177)	WS38	V24M47F30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	342L	396 (180)	WS38	V24M47F45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	342 L	593 (269)	WS39	V24M47F75EE
112.5	1 at $+5 \%$	2 at -5%	DT-3	115	916A	342 L	941 (427)	WS19	V24R47F12EE
150	1 at $+5 \%$	2 at -5%	DT-3	115	916A	342 L	1060 (481)	WS19	V24R47F49EE
225	1 at $+5 \%$	2 at -5%	DT-3	115	918A	333A	1500 (681)	WS34	V24R47F22EE
300	1 at $+5 \%$	2 at -5%	DT-3	115	919E	333A	1800 (817)	WS35	V24R47F33EE
500	1 at $+5 \%$	2 at -5%	DT-3	115	919E	333A	2900 (1317)	WS35	V24R47F55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	342 L	280 (127)	WS38	V24M47B15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	342L	350 (159)	WS38	V24M47B30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	914F	342L	560 (254)	WS39	V24M47B45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	342 L	883 (401)	WS19	V24M47B75EE
112.5	1 at $+5 \%$	2 at -5%	DT-3	80	916A	342 L	950 (431)	WS19	V24R47B12EE
150	1 at $+5 \%$	2 at -5%	DT-3	80	918A	333A	1430 (649)	WS34	V24R47B49EE
225	1 at $+5 \%$	2 at -5%	DT-3	80	919E	333A	1750 (795)	WS35	V24R47B22EE
300	1 at $+5 \%$	2 at -5%	DT-3	80	919E	333A	2400 (1090)	WS35	V24R47B33EE

Notes

(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase-Type DT-3 60 Hz NEMA TP-1 Energy-Efficient—Aluminum Windings

2
440 Delta Volts to 220Y/127 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280J	204 (93)	WS38	V44M31T15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280J	291 (132)	WS38	V44M31T30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280J	351 (159)	WS38	V44M31T45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	280J	553 (251)	WS39	V44M31T75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	280J	793 (360)	WS19	V44M31T12EE
150	2 at $+2.5 \%$	4 at -2.5%	DT-3	150	916A	280J	913 (415)	WS19	V44M31T49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	280J	1343 (610)	WS34	V44M31T22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	918A	275F	1597 (725)	WS34	V44M31T33EE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919E	275F	2590 (1176)	WS35	V44M31T55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280J	202 (92)	WS38	V44M31F15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280 J	311 (141)	WS38	V44M31F30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280J	418 (190)	WS38	V44M31F45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	280J	581 (264)	WS39	V44M31F75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	280J	829 (376)	WS19	V44M31F12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	280J	996 (452)	WS19	V44M31F49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	918A	280 J	1569 (712)	WS34	V44M31F22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	923	280J	1908 (866)	WS37	V44M31F33EE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	920E	275F	3117 (1415)	WS35	V44M31F55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280J	276 (125)	WS38	V44M31B15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280J	350 (159)	WS38	V44M31B30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	914F	280J	560 (254)	WS39	V44M31B45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	280J	810 (368)	WS19	V44M31B75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	280 J	944 (429)	WS19	V44M31B12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	280J	1438 (653)	WS34	V44M31B49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	923	280J	1746 (793)	WS37	V44M31B22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	275F	2400 (1090)	WS35	V44M31B33EE

Notes

(1) Weights subject to change.

Additional voltage combinations are available. Contact your local Eaton sales office for assistance if the voltage you require is not included in this catalog. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216

Three-Phase-Type DT-3 60 Hz NEMA TP-1 Energy-Efficient—Aluminum Windings

480 Delta Volts to 208Y/120 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280B	204 (93)	WS38	V48M28T15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280B	291 (132)	WS38	V48M28T30EE
37.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280B	381 (173)	WS38	V48M28T37EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280B	351 (159)	WS38	V48M28T45EE
50	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	280B	531 (241)	WS39	V48M28T50EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	280B	553 (251)	WS39	V48M28T75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	280B	793 (360)	WS19	V48M28T12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	280B	913 (415)	WS19	V48M28T49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	928	657B	1160 (527)	WS41	V48M28T22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	929	657B	1415 (642)	WS42	V48M28T33EE
500	2 at $+2.5 \%$	2 at -2.5\%	DT-3	150	924	428B	2415 (1097)	WS40	V48D28T55EE
750	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	920E	275A	3340 (1516)	WS35	V48M28T77EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280B	202 (92)	WS38	V48M28F15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280B	311 (141)	WS38	V48M28F30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280B	418 (190)	WS38	V48M28F45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	280B	581 (264)	WS39	V48M28F75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	280B	829 (376)	WS19	V48M28F12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	280B	996 (452)	WS19	V48M28F49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	918A	280B	1569 (712)	WS34	V48M28F22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	923	280B	1908 (866)	WS37	V48M28F33EE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	920E	275A	3117 (1415)	WS35	V48M28F55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280B	276 (125)	WS38	V48M28B15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280B	350 (159)	WS38	V48M28B30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	914F	280B	560 (254)	WS39	V48M28B45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	280B	810 (368)	WS19	V48M28B75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	280B	944 (429)	WS19	V48M28B12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	280B	1438 (653)	WS34	V48M28B49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	923	280B	1746 (793)	WS37	V48M28B22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	275A	2400 (1090)	WS35	V48M28B33EE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	920E	275A	3418 (1552)	WS35	V48M28B55EE

Notes

(1) Weights subject to change.

Additional voltage combinations are available. Contact your local Eaton sales office for assistance if the voltage you require is not included in this catalog. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase-Type DT-3 60 Hz NEMA TP-1 Energy-Efficient—Aluminum Windings

2
480 Delta Volts to 240 Delta Volts with 120 Volt Lighting Tap on Phase B ©

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(2)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	282B	206 (94)	WS38	V48M22T15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912 D	282B	291 (132)	WS38	V48M22T30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	282B	378 (172)	WS38	V48M22T45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	282B	577 (262)	WS39	V48M22T75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	282B	790 (359)	WS19	V48M22T12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	282B	930 (422)	WS19	V48M22T49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	291A	1476 (670)	WS34	V48M22T22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	923	291A	1898 (862)	WS37	V48M22T33EE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919E	291A	2590 (1176)	WS35	V48M22T55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	282B	206 (94)	WS38	V48M22F15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	282B	311 (141)	WS38	V48M22F30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	282B	418 (190)	WS38	V48M22F45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914 F	282B	581 (264)	WS39	V48M22F75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	282B	829 (376)	WS19	V48M22F12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	282B	1022 (464)	WS19	V48M22F49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	918A	282B	1565 (711)	WS34	V48M22F22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	923	282B	1795 (815)	WS37	V48M22F33EE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	920E	291A	3120 (1416)	WS35	V48M22F55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	282B	278 (126)	WS38	V48M22B15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	282B	383 (174)	WS38	V48M22B30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	914F	282B	560 (254)	WS39	V48M22B45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	282B	810 (368)	WS19	V48M22B75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	282B	959 (435)	WS19	V48M22B12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	282B	1287 (584)	WS34	V48M22B49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	923	282B	1746 (793)	WS37	V48M22B22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	291A	2400 (1090)	WS35	V48M22B33EE

Notes

(1) Lighting tap limited to 5% of nameplate full load capacity.
(2) Weights subject to change.

Additional voltage combinations are available. Contact your local Eaton sales office for assistance if the voltage you require is not included in this catalog. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216

Three-Phase-Type DT-3 60 Hz NEMA TP-1 Energy-Efficient—Aluminum Windings

480 Delta Volts to 480Y/277 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280B	206 (94)	WS38	V48M47T15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280B	281 (128)	WS38	V48M47T30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280B	380 (173)	WS38	V48M47T45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914 F	280B	565 (257)	WS39	V48M47T75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	280B	783 (355)	WS19	V48M47T12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	280B	945 (429)	WS19	V48M47T49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	280B	1413 (642)	WS34	V48M47T22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	918A	275A	1910 (867)	WS34	V48M47T33EE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919E	275A	2673 (1214)	WS35	V48M47T55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280B	240 (109)	WS38	V48M47F15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280B	316 (143)	WS38	V48M47F30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280B	384 (174)	WS38	V48M47F45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	280B	670 (304)	WS39	V48M47F75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	280B	853 (387)	WS19	V48M47F12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	280B	982 (446)	WS19	V48M47F49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	918A	280B	1559 (708)	WS34	V48M47F22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	923	280B	1795 (815)	WS37	V48M47F33EE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	920E	275A	3120 (1416)	WS35	V48M47F55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280B	271 (123)	WS38	V48M47B15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280B	360 (163)	WS38	V48M47B30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	914F	280B	563 (256)	WS39	V48M47B45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	280B	773 (351)	WS19	V48M47B75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	280B	954 (433)	WS19	V48M47B12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	280B	1330 (604)	WS34	V48M47B49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	923	280B	1827 (829)	WS37	V48M47B22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	275A	2540 (1153)	WS35	V48M47B33EE

Notes

(1) Weights subject to change.

Additional voltage combinations are available. Contact your local Eaton sales office for assistance if the voltage you require is not included in this catalog. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase-Type DT-3 60 Hz NEMA TP-1 Energy-Efficient—Aluminum Windings

2
600 Delta Volts to 208Y/120 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280A	231 (105)	WS38	V60M28T15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280A	309 (140)	WS38	V60M28T30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280A	375 (170)	WS38	V60M28T45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	280A	572 (260)	WS39	V60M28T75EE
112.5	$2 \mathrm{at}+2.5 \%$	4 at -2.5\%	DT-3	150	916A	280A	801 (364)	WS19	V60M28T12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	280A	1013 (460)	WS34	V60M28T49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	918A	280A	1523 (691)	WS34	V60M28T22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919E	280A	1697 (770)	WS35	V60M28T33EE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	920E	280A	2690 (1221)	WS35	V60M28T55EE
15	$2 \mathrm{at}+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280A	240 (109)	WS38	V60M28F15EE
30	$2 \mathrm{at}+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280A	320 (145)	WS38	V60M28F30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280A	396 (180)	WS38	V60M28F45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	280A	607 (276)	WS39	V60M28F75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	280A	960 (436)	WS19	V60M28F12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	280A	1060 (481)	WS19	V60M28F49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	918A	280A	1500 (681)	WS34	V60M28F22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919E	280A	1800 (817)	WS35	V60M28F33EE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	920E	280A	2900 (1317)	WS35	V60M28F55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280A	280 (127)	WS38	V60M28B15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280A	350 (159)	WS38	V60M28B30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	914F	280A	560 (254)	WS39	V60M28B45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	280A	810 (368)	WS19	V60M28B75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	280A	950 (431)	WS19	V60M28B12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	280A	1430 (649)	WS34	V60M28B49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	280A	1750 (795)	WS35	V60M28B22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	280A	2400 (1090)	WS35	V60M28B33EE

Notes

(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase-Type DT-3 60 Hz NEMA TP-1 Energy-Efficient—Aluminum Windings

600 Delta Volts to 240 Delta Volts with 120 Volt Lighting Tap on Phase B ©

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(2)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	282A	245 (111)	WS38	V60M22T15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912 D	282A	313 (142)	WS38	V60M22T30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	282A	403 (183)	WS38	V60M22T45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	282A	577 (262)	WS39	V60M22T75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	282A	790 (359)	WS19	V60M22T12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	282A	1001 (454)	WS34	V60M22T49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	918A	282A	1476 (670)	WS34	V60M22T22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919E	282A	1898 (862)	WS35	V60M22T33EE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	920E	282A	2590 (1176)	WS35	V60M22T55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	282A	206 (94)	WS38	V60M22F15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912 D	282A	311 (141)	WS38	V60M22F30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	282A	418 (190)	WS38	V60M22F45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	282A	581 (264)	WS39	V60M22F75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	282A	829 (376)	WS19	V60M22F12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	282A	1022 (464)	WS19	V60M22F49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	918A	282A	1565 (711)	WS34	V60M22F22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919E	282A	1795 (815)	WS35	V60M22F33EE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	920E	282A	3120 (1416)	WS35	V60M22F55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	282A	278 (126)	WS38	V60M22B15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	282A	383 (174)	WS38	V60M22B30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	914F	282A	560 (254)	WS39	V60M22B45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	282A	810 (368)	WS19	V60M22B75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	282A	959 (435)	WS19	V60M22B12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	282A	1287 (584)	WS34	V60M22B49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	282A	1746 (793)	WS35	V60M22B22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	282A	2400 (1090)	WS35	V60M22B33EE

Notes

(1) Lighting tap limited to 5% of nameplate full load capacity.
(2) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase-Type DT-3 60 Hz NEMA TP-1 Energy-Efficient—Aluminum Windings

2
600 Delta Volts to 480Y/277 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280A	206 (94)	WS38	V60M47T15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912 D	280A	291 (132)	WS38	V60M47T30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280A	382 (173)	WS38	V60M47T45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	280A	578 (262)	WS39	V60M47T75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	280A	811 (368)	WS19	V60M47T12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	280A	934 (424)	WS19	V60M47T49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	280A	1569 (712)	WS34	V60M47T22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	923	280A	1997 (907)	WS37	V60M47T33EE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919E	275 C	2641 (1199)	WS35	V60M47T55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280A	206 (94)	WS38	V60M47F15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912 D	280A	311 (141)	WS38	V60M47F30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280A	418 (190)	WS38	V60M47F45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	280A	581 (264)	WS39	V60M47F75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	280A	829 (376)	WS19	V60M47F12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	280A	1022 (464)	WS19	V60M47F49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	280A	1565 (7101)	WS34	V60M47F22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	923	280A	1795 (815)	WS37	V60M47F33EE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919E	275 C	3120 (1416)	WS35	V60M47F55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912 D	280A	278 (126)	WS38	V60M47B15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280A	383 (174)	WS38	V60M47B30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	914F	280A	560 (254)	WS39	V60M47B45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	280A	810 (368)	WS19	V60M47B75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	280A	959 (435)	WS19	V60M47B12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	280A	1287 (584)	WS34	V60M47B49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	923	280A	1746 (793)	WS37	V60M47B22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	$275 C$	2650 (1203)	WS35	V60M47B33EE

Notes

(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase—Type DT-3 60 Hz NEMA TP-1 Energy-Efficient—Copper Windings

208 Delta Volts to 208Y/120 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at +2.5\%	4 at -2.5\%	DT-3	150	912D	-	236 (107)	WS38	V29M28T15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912 D	-	351 (159)	WS38	V29M28T30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	-	453 (206)	WS38	V29M28T45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	-	687 (312)	WS39	V29M28T75CUEE
112.5	1 at $+5 \%$	2 at -5%	DT-3	150	916A	-	930 (422)	WS19	V29R28T12CUEE
150	1 at $+5 \%$	2 at -5%	DT-3	150	916A	-	1242 (564)	WS19	V29R28T49CUEE
225	1 at $+5 \%$	2 at -5%	DT-3	150	917	-	1763 (800)	WS34	V29R28T22CUEE
300	1 at $+5 \%$	2 at -5%	DT-3	150	918A	-	2300 (1044)	WS34	V29R28T33CUEE
500	1 at $+5 \%$	2 at -5%	DT-3	150	919E	-	3590 (1630)	WS35	V29R28T55CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	-	265 (120)	WS38	V29M28F15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912 D	-	475 (215)	WS38	V29M28F30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	-	475 (216)	WS38	V29M28F45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	-	700 (318)	WS39	V29M28F75CUEE
112.5	1 at $+5 \%$	2 at -5%	DT-3	115	916A	-	935 (424)	WS19	V29R28F12CUEE
150	1 at $+5 \%$	2 at -5%	DT-3	115	916A	-	1274 (578)	WS19	V29R28F49CUEE
225	1 at $+5 \%$	2 at -5%	DT-3	115	917	-	1743 (791)	WS34	V29R28F22CUEE
300	1 at $+5 \%$	2 at -5%	DT-3	115	919E	-	2350 (1067)	WS35	V29R28F33CUEE
500	1 at $+5 \%$	2 at -5\%	DT-3	115	920E	-	3690 (1675)	WS35	V29R28F55CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	-	381 (173)	WS38	V29M28B15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	-	420 (191)	WS38	V29M28B30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	-	510 (232)	WS38	V29M28B45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	914F	-	940 (427)	WS39	V29M28B75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	-	1300 (590)	WS19	V29M28B12CUEE
150	1 at $+5 \%$	2 at -5%	DT-3	80	918A	-	1800 (817)	WS34	V29R28B49CUEE
225	1 at $+5 \%$	2 at -5%	DT-3	80	919E	-	2400 (1090)	WS35	V29R28B22CUEE
300	1 at $+5 \%$	2 at -5%	DT-3	80	920E	-	3800 (1725)	WS35	V29R28B33CUEE

Notes

(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase-Type DT-3 60 Hz NEMA TP-1 Energy-Efficient—Copper Windings

2
208 Delta Volts to 480Y/277 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at +2.5\%	4 at -2.5\%	DT-3	150	912D	342B	236 (107)	WS38	V29M47T15CUEE
30	2 at +2.5\%	4 at -2.5\%	DT-3	150	912 D	342B	351 (159)	WS38	V29M47T30CUEE
45	2 at +2.5\%	4 at -2.5\%	DT-3	150	912D	342B	453 (206)	WS38	V29M47T45CUEE
75	2 at +2.5\%	4 at -2.5\%	DT-3	150	914F	342B	687 (312)	WS39	V29M47T75CUEE
112.5	2 at +2.5\%	4 at -2.5\%	DT-3	150	916A	351A	930 (422)	WS19	V29R47T12CUEE
150	1 at $+5 \%$	2 at -5\%	DT-3	150	916A	351A	1242 (564)	WS19	V29R47T49CUEE
225	1 at $+5 \%$	2 at -5%	DT-3	150	917	333B	1763 (800)	WS34	V29R47T22CUEE
300	1 at $+5 \%$	2 at -5\%	DT-3	150	918A	333B	2300 (1044	WS34	V29R47T33CUEE
500	1 at $+5 \%$	2 at -5\%	DT-3	150	919E	333B	3590 (1630)	WS35	V29R47T55CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	342B	265 (120)	WS38	V29M47F15CUEE
30	2 at +2.5\%	4 at -2.5\%	DT-3	115	912D	342 B	474.6 (215)	WS38	V29M47F30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	342B	475 (216)	WS38	V29M47F45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	342 B	700 (318)	WS39	V29M47F75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	342B	935 (424)	WS19	V29M47F12CUEE
150	1 at $+5 \%$	2 at -5%	DT-3	115	916A	351A	1274 (578)	WS19	V29R47F49CUEE
225	1 at $+5 \%$	2 at -5\%	DT-3	115	917	333B	1743 (791)	WS34	V29R47F22CUEE
300	1 at $+5 \%$	2 at -5%	DT-3	115	919E	333B	2350 (1067)	WS35	V29R47F33CUEE
500	1 at $+5 \%$	2 at -5\%	DT-3	115	920E	333B	3690 (1675)	WS35	V29R47F55CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	342B	381 (173)	WS38	V29M47B15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	342B	420 (191)	WS38	V29M47B30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	342 B	510 (232)	WS38	V29M47B45CUEE
75	1 at $+5 \%$	2 at -5%	DT-3	80	914F	342B	940 (427)	WS39	V29R47B75CUEE
112.5	1 at $+5 \%$	2 at -5%	DT-3	80	916A	342B	1300 (590)	WS19	V29R47B12CUEE
150	1 at $+5 \%$	2 at -5\%	DT-3	80	918A	342 B	1800 (817)	WS34	V29R47B49CUEE
225	1 at $+5 \%$	2 at -5\%	DT-3	80	919E	333B	2400 (1090)	WS35	V29R47B22CUEE
300	1 at $+5 \%$	2 at -5%	DT-3	80	920E	333B	3800 (1725)	WS35	V29R47B33CUEE

Notes

(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase—Type DT-3 60 Hz NEMA TP-1 Energy-Efficient—Copper Windings

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{1}$	Weathershield	Catalog Number
	FCAN	FCBN	Type						
15	2 at +2.5\%	4 at -2.5\%	DT-3	150	912D	280C	246 (112)	-	V24M28T15CUEE
30	2 at +2.5\%	4 at -2.5\%	DT-3	150	912 D	280C	331 (150)	-	V24M28T30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280C	289 (131)	-	V24M28T45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	280C	664 (301)	-	V24M28T75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	280C	-	-	V24M28T12CUEE
150	2 at +2.5\%	4 at -2.5\%	DT-3	150	916A	280C	1130 (513)	-	V24M28T49CUEE
225	1 at $+5 \%$	2 at -5\%	DT-3	150	-	-	-	-	V24R28T22CUEE
300	1 at $+5 \%$	2 at -5\%	DT-3	150	-	-	-	-	V24R28T33CUEE
500	1 at $+5 \%$	2 at -5\%	DT-3	150	-	-	-	-	V24R28T55CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	-	-	-	V24M28F15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	-	-	-	V24M28F30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	-	-	-	V24M28F45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	280C	680 (308)	-	V24M28F75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	-	-	-	V24M28F12CUEE
150	1 at $+5 \%$	2 at -5\%	DT-3	115	-	-	-	-	V24R28F49CUEE
225	1 at $+5 \%$	2 at -5\%	DT-3	115	-	-	-	-	V24R28F22CUEE
300	1 at $+5 \%$	2 at -5\%	DT-3	115	-	-	-	-	V24R28F33CUEE
500	1 at $+5 \%$	2 at -5\%	DT-3	115	-	-	-	-	V24R28F55CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280C	346 (157)	-	V24M28B15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	-	-	-	V24M28B30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	-	-	-	V24M28B45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	-	-	-	V24M28B75CUEE
112.5	1 at $+5 \%$	2 at -5\%	DT-3	80	-	-	-	-	V24R28B12CUEE
150	1 at $+5 \%$	2 at -5\%	DT-3	80	917	289A	1774 (805)	-	V24R28B49CUEE
225	1 at $+5 \%$	2 at -5\%	DT-3	80	-	-	-	-	V24R28B22CUEE
300	1 at $+5 \%$	2 at -5\%	DT-3	80	-	-	-	-	V24R28B33CUEE

Notes

(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase-Type DT-3 60 Hz NEMA TP-1 Energy-Efficient—Copper Windings

2
240 Delta Volts to 480Y/277 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	342L	341 (155)	-	V24M47T15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	342L	436 (198)	-	V24M47T30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	342L	685 (311)	-	V24M47T45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	342L	-	-	V24M47T75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	-	-	-	V24M47T12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	-	-	-	V24M47T49CUEE
225	1 at $+5 \%$	2 at -5\%	DT-3	150	-	-	-	-	V24R47T22CUEE
300	1 at $+5 \%$	2 at -5\%	DT-3	150	-	-	-	-	V24R47T33CUEE
500	1 at $+5 \%$	2 at -5\%	DT-3	150	-	-	-	-	V24R47T55CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	-	-	-	V24M47F15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	-	-	-	V24M47F30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	-	-	-	V24M47F45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	-	-	-	V24M47F75CUEE
112.5	1 at $+5 \%$	2 at -5%	DT-3	115	916A	351C	1009 (458)	-	V24R47F12CUEE
150	1 at $+5 \%$	2 at -5\%	DT-3	115	-	-	-	-	V24R47F49CUEE
225	1 at $+5 \%$	2 at -5\%	DT-3	115	-	-	-	-	V24R47F22CUEE
300	1 at $+5 \%$	2 at -5\%	DT-3	115	-	-	-	-	V24R47F33CUEE
500	1 at $+5 \%$	2 at -5\%	DT-3	115	-	-	-	-	V24R47F55CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	-	-	-	V24M47B15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	-	-	-	V24M47B30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	-	-	-	V24M47B45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	-	-	-	V24M47B75CUEE
112.5	1 at $+5 \%$	2 at -5\%	DT-3	80	-	-	-	-	V24R47B12CUEE
150	1 at $+5 \%$	2 at -5\%	DT-3	80	-	-	-	-	V24R47B49CUEE
225	1 at $+5 \%$	2 at -5\%	DT-3	80	-	-	-	-	V24R47B22CUEE
300	1 at $+5 \%$	2 at -5\%	DT-3	80	-	-	-	-	V24R47B33CUEE

Notes

(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase—Type DT-3 60 Hz NEMA TP-1 Energy-Efficient—Copper Windings

440 Delta Volts to 220Y/127 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280J	250 (114)	WS38	V44M31T15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280 J	350 (159)	WS38	V44M31T30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280J	416 (189)	WS38	V44M31T45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	280J	643 (292)	WS39	V44M31T75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	280 J	876 (398)	WS19	V44M31T12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	280J	1064 (483)	WS19	V44M31T49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	280J	1545 (701)	WS34	V44M31T22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	923	275F	2050 (931)	WS37	V44M31T33CUEE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919E	275F	3681 (1671)	WS35	V44M31T55CUEE
15	$2 \mathrm{at}+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280J	256 (116)	WS38	V44M31F15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280 J	337 (153)	WS38	V44M31F30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280J	446 (202)	WS38	V44M31F45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	280J	662 (301)	WS39	V44M31F75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	280 J	914 (415)	WS19	V44M31F12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	280J	1132 (514)	WS19	V44M31F49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	280J	2036 (924)	WS34	V44M31F22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	923	275F	2325 (1056)	WS37	V44M31F33CUEE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919E	275F	3681 (1671)	WS35	V44M31F55CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280J	349 (158)	WS38	V44M31B15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280J	410 (186)	WS38	V44M31B30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280J	504 (229)	WS38	V44M31B45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	280J	818 (371)	WS19	V44M31B75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	280J	1065 (484)	WS19	V44M31B12CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	280J	1410 (640)	WS34	V44M31B49CUEE
22	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	923	280J	2030 (922)	WS37	V44M31B22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	275F	3041 (1381)	WS35	V44M31B33CUEE

Notes

(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase-Type DT-3 60 Hz NEMA TP-1 Energy-Efficient—Copper Windings

2
480 Delta Volts to 208Y/120 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280B	250 (114)	WS38	V48M28T15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280B	350 (159)	WS38	V48M28T30CUEE
37.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280B	415 (188)	WS38	V48M28T37CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280B	416 (189)	WS38	V48M28T45CUEE
50	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	280B	647 (294)	WS39	V48M28T50CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	280B	643 (292)	WS39	V48M28T75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	280B	876 (398)	WS19	V48M28T12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	280B	1064 (483)	WS19	V48M28T49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	928	657B	1371 (622)	WS41	V48M28T22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	929	657B	1622 (736)	WS42	V48M28T33CUEE
500	2 at $+2.5 \%$	2 at -2.5\%	DT-3	150	924	428B	3681 (1671)	WS40	V48D28T55CUEE
750	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	920E	275A	4891 (2221)	WS35	V48M28T77CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280B	256 (116)	WS38	V48M28F15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280B	337 (153)	WS38	V48M28F30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280B	446 (202)	WS38	V48M28F45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	280B	662 (301)	WS39	V48M28F75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	280B	914 (415)	WS19	V48M28F12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	280B	1132 (514)	WS19	V48M28F49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	275A	2036 (924)	WS34	V48M28F22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	923	275A	2325 (1056)	WS37	V48M28F33CUEE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919	275A	3681 (1671)	WS35	V48M28F55CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280B	349 (158)	WS38	V48M28B15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280B	410 (186)	WS38	V48M28B30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280B	504 (229)	WS38	V48M28B45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	280B	818 (371)	WS19	V48M28B75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	280B	1065 (484)	WS19	V48M28B12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	280B	1410 (640)	WS34	V48M28B49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	923	275A	2030 (922)	WS37	V48M28B22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	275A	3041 (1381)	WS35	V48M28B33CUEE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	920E	275A	4696 (2132)	WS35	V48M28B55CUEE

Notes

(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase—Type DT-3 60 Hz NEMA TP-1 Energy-Efficient—Copper Windings

480 Delta Volts to 240 Delta Volts with 120 Volt Lighting Tap on Phase B ©

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) (2)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	282B	253 (115)	WS38	V48M22T15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912 D	282B	352 (160)	WS38	V48M22T30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	282B	415 (188)	WS38	V48M22T45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	282B	703 (319)	WS39	V48M22T75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	282B	935 (424)	WS19	V48M22T12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	282B	1134 (515)	WS19	V48M22T49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	282B	1955 (888)	WS34	V48M22T22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	923	282B	2450 (1112)	WS37	V48M22T33CUEE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919E	291A	3547 (1610)	WS35	V48M22T55CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	282B	248 (113)	WS38	V48M22F15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	282B	410 (186)	WS38	V48M22F30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	282B	445 (202)	WS38	V48M22F45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	282B	750 (341)	WS39	V48M22F75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	282B	963 (437)	WS19	V48M22F12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	282B	1236 (561)	WS19	V48M22F49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	282B	2100 (953)	WS34	V48M22F22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	923	282B	2600 (1180)	WS37	V48M22F33CUEE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919E	291A	3700 (1680)	WS35	V48M22F55CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	282B	301 (137)	WS38	V48M22B15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	282B	460 (209)	WS38	V48M22B30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	282B	505 (229)	WS38	V48M22B45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	282B	835 (379)	WS19	V48M22B75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	282B	1050 (477)	WS19	V48M22B12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	282B	2250 (1022)	WS34	V48M22B49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	923	291A	2900 (1317)	WS37	V48M22B22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	291A	4000 (1816)	WS35	V48M22B33CUEE

Notes

(1) Lighting tap limited to 5% of nameplate full load capacity.
(2) Weight subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase—Type DT-3 60 Hz NEMA TP-1 Energy-Efficient—Copper Windings

2
480 Delta Volts to 480Y/277 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280B	257 (117)	WS38	V48M47T15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912 D	280B	330 (150)	WS38	V48M47T30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280B	430 (195)	WS38	V48M47T45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	280B	675 (306)	WS39	V48M47T75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	280B	900 (409)	WS19	V48M47T12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	280B	1126 (511)	WS19	V48M47T49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	280B	2038 (925)	WS34	V48M47T22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	923	280B	2550 (1158)	WS37	V48M47T33CUEE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919E	275A	3412 (1549)	WS35	V48M47T55CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280B	258 (117)	WS38	V48M47F15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280B	401 (182)	WS38	V48M47F30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280B	455 (207)	WS38	V48M47F45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	280B	678 (308)	WS39	V48M47F75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	280B	676 (307)	WS19	V48M47F12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	280B	1249 (567)	WS19	V48M47F49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	280B	2107 (957)	WS34	V48M47F22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	923	280B	2418 (1098)	WS37	V48M47F33CUEE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919E	275A	3800 (1725)	WS35	V48M47F55CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280B	369 (168)	WS38	V48M47B15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280B	423 (192)	WS38	V48M47B30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280B	552 (251)	WS38	V48M47B45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	280B	920 (418)	WS19	V48M47B75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	280B	1100 (499)	WS19	V48M47B12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	280B	1702 (773)	WS34	V48M47B49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	923	280B	2313 (1050)	WS37	V48M47B22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	275A	3100 (1407)	WS35	V48M47B33CUEE

Notes

(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216

Three-Phase—Type DT-3 60 Hz NEMA TP-1 Energy-Efficient—Copper Windings

600 Delta Volts to 208Y/120 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280A	263 (119)	WS38	V60M28T15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280A	368 (167)	WS38	V60M28T30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280A	437 (198)	WS38	V60M28T45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	280A	675 (307)	WS39	V60M28T75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	280A	920 (418)	WS19	V60M28T12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	280A	1117 (507)	WS19	V60M28T49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	280A	1622 (737)	WS34	V60M28T22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	923	280A	2153 (977)	WS37	V60M28T33CUEE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919E	280A	3865 (1755)	WS35	V60M28T55CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280A	269 (122)	WS38	V60M28F15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912 D	280A	354 (161)	WS38	V60M28F30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280A	468 (213)	WS38	V60M28F45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	280A	695 (316)	WS39	V60M28F75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	280A	960 (436)	WS19	V60M28F12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	280A	1189 (540)	WS19	V60M28F49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	280A	2138 (971)	WS34	V60M28F22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	923	280A	2441 (1108)	WS37	V60M28F33CUEE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919E	280A	3865 (1755)	WS35	V60M28F55CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280A	367 (166)	WS38	V60M28B15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280A	431 (195)	WS38	V60M28B30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280A	529 (240)	WS38	V60M28B45CUEE
75	$2 \mathrm{at}+2.5 \%$	4 at -2.5\%	DT-3	80	916A	280A	859 (390)	WS19	V60M28B75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	280A	1118 (508)	WS19	V60M28B12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	280A	1481 (672)	WS34	V60M28B49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	923	280A	2132 (968)	WS37	V60M28B22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	280A	3193 (1450)	WS35	V60M28B33CUEE

Notes

(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase-Type DT-3 60 Hz NEMA TP-1 Energy-Efficient—Copper Windings

2
600 Delta Volts to 240 Delta Volts with 120 Volt Lighting Tap on Phase B ©

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(2)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	282B	263 (119)	WS38	V60M22T15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912 D	282B	368 (167)	WS38	V60M22T30CUEE
45	2 at +2.5\%	4 at -2.5\%	DT-3	150	912 D	282B	437 (198)	WS38	V60M22T45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	282B	675 (307)	WS39	V60M22T75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	282B	920 (418)	WS19	V60M22T12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	282B	1117 (507)	WS19	V60M22T49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	282B	1622 (737)	WS34	V60M22T22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	923	282B	2153 (977)	WS37	V60M22T33CUEE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919E	282B	3865 (1755)	WS35	V60M22T55CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	282B	269 (122)	WS38	V60M22F15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912 D	282B	354 (161)	WS38	V60M22F30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	282B	468 (213)	WS38	V60M22F45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	282B	695 (316)	WS39	V60M22F75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	282B	960 (436)	WS19	V60M22F12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	282B	1189 (540)	WS19	V60M22F49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	282B	2138 (971)	WS34	V60M22F22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	923	282B	2441 (1108)	WS37	V60M22F33CUEE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919E	282B	3865 (1755)	WS35	V60M22F55CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	282B	367 (166)	WS38	V60M22B15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912 D	282B	431 (195)	WS38	V60M22B30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	282B	529 (240)	WS38	V60M22B45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	282B	859 (390)	WS19	V60M22B75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	282B	1119 (508)	WS19	V60M22B12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	282B	1481 (672)	WS34	V60M22B49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	923	282B	2132 (968)	WS37	V60M22B22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	282B	3193 (1450)	WS35	V60M22B33CUEE

Notes

(1) Lighting tap limited to 5% of nameplate full load capacity
(2) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase—Type DT-3 60 Hz NEMA TP-1 Energy-Efficient—Copper Windings

600 Delta Volts to 480Y/277 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280A	283 (128)	WS38	V60M47T15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280A	363 (165)	WS38	V60M47T30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	280A	473 (215)	WS38	V60M47T45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	280A	743 (337)	WS39	V60M47T75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	280A	990 (449)	WS19	V60M47T12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	280A	1239 (562)	WS19	V60M47T49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	280A	2242 (1018)	WS34	V60M47T22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	923	280A	2805 (1273)	WS37	V60M47T33CUEE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919E	275C	3753 (1704)	WS35	V60M47T55CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280A	284 (129)	WS38	V60M47F15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280A	441 (200)	WS38	V60M47F30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	280A	501 (227)	WS38	V60M47F45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	280A	746 (339)	WS39	V60M47F75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	280A	744 (338)	WS19	V60M47F12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	280A	1374 (624)	WS19	V60M47F49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	280A	2318 (1052)	WS34	V60M47F22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	923	280A	2660 (1208)	WS37	V60M47F33CUEE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919E	275 C	4180 (1898)	WS35	V60M47F55CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280A	406 (184)	WS38	V60M47B15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280A	465 (211)	WS38	V60M47B30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	280A	607 (276)	WS38	V60M47B45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	280A	1012 (459)	WS19	V60M47B75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	280A	1210 (549)	WS19	V60M47B12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	280A	1872 (850)	WS34	V60M47B49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	923	280A	2544 (1155)	WS37	V60M47B22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	275C	3410 (1548)	WS35	V60M47B33CUEE

Notes

[^6]
Three-Phase-Type DT-3 60 Hz NEMA TP-1 Energy-Efficient Electrostatically Shielded—Aluminum Windings

2
208 Delta Volts to 208Y/120 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283A	220 (100)	WS38	V29M28E15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283A	289 (131)	WS38	V29M28E30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283A	365 (166)	WS38	V29M28E45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	283A	570 (259)	WS39	V29M28E75EE
112.5	1 at $+5 \%$	2 at -5\%	DT-3	150	916A	287A	930 (422)	WS19	V29R28E12EE
150	1 at $+5 \%$	2 at -5\%	DT-3	150	916A	287A	1013 (460)	WS19	V29R28E49EE
225	1 at $+5 \%$	2 at -5%	DT-3	150	918A	287A	1639 (744)	WS34	V29R28E22EE
300	1 at $+5 \%$	2 at -5%	DT-3	150	919E	287A	1697 (770)	WS35	V29R28E33EE
500	1 at $+5 \%$	2 at -5%	DT-3	150	920E	287A	2690 (1221)	WS35	V29R28E55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283A	240 (109)	WS38	V29M28F15EEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283A	365 (166)	WS38	V29M28F30EEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283A	401 (182)	WS38	V29M28F45EEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	283A	606 (275)	WS39	V29M28F75EEES
112.5	1 at $+5 \%$	2 at -5%	DT-3	115	916A	287A	960 (436)	WS19	V29R28F12EEES
150	1 at $+5 \%$	2 at -5\%	DT-3	115	916A	287A	1060 (481)	WS19	V29R28F49EEES
225	1 at $+5 \%$	2 at -5%	DT-3	115	918A	287A	1500 (681)	WS34	V29R28F22EEES
300	1 at $+5 \%$	2 at -5%	DT-3	115	919E	287A	1800 (817)	WS35	V29R28F33EEES
500	1 at $+5 \%$	2 at -5%	DT-3	115	920E	287A	2900 (1317)	WS35	V29R28F55EEES
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283A	280 (127)	WS38	V29M28B15EEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283A	370 (168)	WS38	V29M28B30EEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	914F	283A	563 (256)	WS39	V29M28B45EEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	283A	965 (438)	WS19	V29M28B75EEES
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	283A	950 (431)	WS19	V29M28B12EEES
150	1 at $+5 \%$	2 at -5\%	DT-3	80	918A	287A	1430 (649)	WS34	V29R28B49EEES
225	1 at $+5 \%$	2 at -5%	DT-3	80	919E	287A	1750 (795)	WS35	V29R28B22EEES
300	1 at $+5 \%$	2 at -5\%	DT-3	80	920E	287A	2400 (1090)	WS35	V29R28B33EEES

Notes

(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216

Three-Phase—Type DT-3 60 Hz NEMA TP-1 Energy-Efficient Electrostatically Shielded—Aluminum Windings

208 Delta Volts to 480Y/277 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	345A	196 (89)	WS38	V29M47E15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	345A	296 (134)	WS38	V29M47E30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	345A	410 (186)	WS38	V29M47E45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	345A	590 (268)	WS39	V29M47E75EE
112.5	1 at $+5 \%$	2 at -5%	DT-3	150	916A	315A	784 (356)	WS19	V29R47E12EE
150	1 at $+5 \%$	2 at -5%	DT-3	150	916A	315A	931 (423)	WS19	V29R47E49EE
225	1 at $+5 \%$	2 at -5%	DT-3	150	918A	315A	1550 (704)	WS34	V29R47E22EE
300	1 at $+5 \%$	2 at -5%	DT-3	150	919E	315A	2274 (1032)	WS35	V29R47E33EE
500	1 at $+5 \%$	2 at -5\%	DT-3	150	919E	315A	2869 (1303)	WS35	V29R47E55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	345A	215 (98)	WS38	V29M47F15EEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	345A	380 (173)	WS38	V29M47F30EEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	345A	400 (182)	WS38	V29M47F45EEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	345A	585 (266)	WS39	V29M47F75EEES
112.5	1 at $+5 \%$	2 at -5%	DT-3	115	916A	315A	800 (363)	WS19	V29R47F12EEES
150	1 at $+5 \%$	2 at -5%	DT-3	115	916A	315A	950 (431)	WS19	V29R47F49EEES
225	1 at $+5 \%$	2 at -5%	DT-3	115	918A	315A	1591 (722)	WS34	V29R47F22EEES
300	1 at $+5 \%$	2 at -5%	DT-3	115	919E	315A	2320 (1053)	WS35	V29R47F33EEES
500	1 at $+5 \%$	2 at -5%	DT-3	115	919E	315A	2950 (1339)	WS35	V29R47F55EEES
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	345A	300 (136)	WS38	V29M47B15EEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	345A	390 (177)	WS38	V29M47B30EEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	914F	345A	550 (250)	WS39	V29M47B45EEES
75	1 at $+5 \%$	2 at -5%	DT-3	80	916A	315A	757 (344)	WS19	V29R47B75EEES
112.5	1 at $+5 \%$	2 at -5%	DT-3	80	916A	315A	930 (422)	WS19	V29R47B12EEES
150	1 at $+5 \%$	2 at -5%	DT-3	80	918A	315A	1550 (704)	WS34	V29R47B49EEES
225	1 at $+5 \%$	2 at -5%	DT-3	80	919E	315A	2275 (1033)	WS35	V29R47B22EEES
300	1 at $+5 \%$	2 at -5%	DT-3	80	920E	315A	2870 (1303)	WS35	V29R47B33EEES

Notes

[^7]
Three-Phase—Type DT-3 60 Hz NEMA TP-1 Energy-Efficient Electrostatically Shielded—Aluminum Windings

2
240 Delta Volts to 208Y/120 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283G	206 (94)	WS38	V24M28E15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283G	297 (135)	WS38	V24M28E30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283G	332 (151)	WS38	V24M28E45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	283G	562 (255)	WS39	V24M28E75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	283G	760 (345)	WS19	V24M28E12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	283G	974 (442)	WS19	V24M28E49EE
225	1 at $+5 \%$	2 at -5%	DT-3	150	917	287B	1460 (663)	WS34	V24R28E22EE
300	1 at $+5 \%$	2 at -5%	DT-3	150	918A	287B	1652 (750)	WS34	V24R28E33EE
500	1 at $+5 \%$	2 at -5%	DT-3	150	919E	287B	2690 (1221)	WS35	V24R28E55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283G	240 (109)	WS38	V24M28F15EEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283G	389 (177)	WS38	V24M28F30EEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283G	396 (180)	WS38	V24M28F45EEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	283G	593 (269)	WS39	V24M28F75EEES
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	283G	941 (427)	WS19	V24M28F12EEES
150	1 at $+5 \%$	2 at -5%	DT-3	115	916A	287B	1060 (481)	WS19	V24R28F49EEES
225	1 at $+5 \%$	2 at -5%	DT-3	115	917	287B	1500 (681)	WS34	V24R28F22EEES
300	1 at $+5 \%$	2 at -5%	DT-3	115	918A	287B	1800 (817)	WS34	V24R28F33EEES
500	1 at $+5 \%$	2 at -5%	DT-3	115	919E	287B	2900 (1317)	WS35	V24R28F55EEES
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283G	280 (127)	WS38	V24M28B15EEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283G	350 (159)	WS38	V24M28B30EEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	914F	283G	560 (254)	WS39	V24M28B45EEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	283G	883 (401)	WS19	V24M28B75EEES
112.5	1 at $+5 \%$	2 at -5%	DT-3	80	916A	287B	950 (431)	WS19	V24R28B12EEES
150	1 at $+5 \%$	2 at -5\%	DT-3	80	917	287B	1430 (649)	WS34	V24R28B49EEES
225	1 at $+5 \%$	2 at -5%	DT-3	80	918A	287B	1750 (795)	WS34	V24R28B22EEES
300	1 at $+5 \%$	2 at -5%	DT-3	80	919E	287B	2400 (1090)	WS35	V24R28B33EEES

Notes

(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216

Three-Phase—Type DT-3 60 Hz NEMA TP-1 Energy-Efficient Electrostatically Shielded—Aluminum Windings

240 Delta Volts to 480Y/277 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at +2.5\%	4 at -2.5\%	DT-3	150	912D	345 C	227 (103)	WS38	V24M47E15EE
30	2 at +2.5\%	4 at -2.5\%	DT-3	150	912D	345C	312 (142)	WS38	V24M47E30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	345 C	380 (173)	WS38	V24M47E45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	345 C	573 (260)	WS39	V24M47E75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	$345 C$	800 (363)	WS19	V24M47E12EE
150	2 at +2.5\%	4 at -2.5\%	DT-3	150	916A	345C	885 (402)	WS19	V24M47E49EE
225	1 at $+5 \%$	2 at -5%	DT-3	150	918A	-	1612 (732)	WS34	V24R47E22EE
300	1 at $+5 \%$	2 at -5\%	DT-3	150	919E	-	1652 (750)	WS35	V24R47E33EE
500	1 at $+5 \%$	2 at -5\%	DT-3	150	919E	-	2695 (1224)	WS35	V24R47E55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	345 C	240 (109)	WS38	V24M47F15EEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	345C	389 (177)	WS38	V24M47F30EEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	345C	396 (180)	WS38	V24M47F45EEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	345C	593 (269)	WS39	V24M47F75EEES
112.5	1 at $+5 \%$	2 at -5%	DT-3	115	916A	-	941 (427)	WS19	V24R47F12EEES
150	1 at $+5 \%$	2 at -5\%	DT-3	115	916A	-	1060 (481)	WS19	V24R47F49EEES
225	1 at $+5 \%$	2 at -5%	DT-3	115	918A	-	1500 (681)	WS34	V24R47F22EEES
300	1 at $+5 \%$	2 at -5%	DT-3	115	919E	-	1800 (817)	WS35	V24R47F33EEES
500	1 at $+5 \%$	2 at -5%	DT-3	115	919E	-	2900 (1317)	WS35	V24R47F55EEES
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	345C	280 (127)	WS38	V24M47B15EEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	345 C	350 (159)	WS38	V24M47B30EEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	914F	345 C	560 (254)	WS39	V24M47B45EEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	345 C	883 (401)	WS19	V24M47B75EEES
112.5	1 at $+5 \%$	2 at -5%	DT-3	80	916A	-	950 (431)	WS19	V24R47B12EEES
150	1 at $+5 \%$	2 at -5%	DT-3	80	918A	-	1430 (649)	WS34	V24R47B49EEES
225	1 at $+5 \%$	2 at -5%	DT-3	80	919E	-	1750 (795)	WS35	V24R47B22EEES
300	1 at $+5 \%$	2 at -5%	DT-3	80	919E	-	2400 (1090)	WS35	V24R47B33EEES

Notes

[^8]
Three-Phase-Type DT-3 60 Hz NEMA TP-1 Energy-Efficient Electrostatically Shielded—Aluminum Windings

2
440 Delta Volts to 220Y/127 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	2830	213 (97)	WS38	V44M31E15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	2830	300 (136)	WS38	V44M31E30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	2830	348 (158)	WS38	V44M31E45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	2830	583 (265)	WS39	V44M31E75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	2830	807 (366)	WS19	V44M31E12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	2830	950 (431)	WS19	V44M31E49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	2830	1364 (619)	WS34	V44M31E22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	918A	2830	1719 (780)	WS34	V44M31E33EE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919E	2830	2560 (1162)	WS35	V44M31E55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	2830	204 (93)	WS38	V44M31F15EEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	2830	326 (148)	WS38	V44M31F30EEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	2830	419 (190)	WS38	V44M31F45EEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	2830	560 (254)	WS39	V44M31F75EEES
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	2830	805 (365)	WS19	V44M31F12EEES
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	2830	1012 (459)	WS19	V44M31F49EEES
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	918A	2830	1589 (721)	WS34	V44M31F22EEES
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	923	2830	1782 (809)	WS37	V44M31F33EEES
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	920E	2830	3117 (1415)	WS35	V44M31F55EEES
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	2830	294 (133)	WS38	V44M31B15EEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	2830	374 (170)	WS38	V44M31B30EEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	914F	2830	586 (266)	WS39	V44M31B45EEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	2830	807 (366)	WS19	V44M31B75EEES
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	2830	1005 (456)	WS19	V44M31B12EEES
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	2830	1170 (531)	WS34	V44M31B49EEES
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	923	2830	1764 (801)	WS37	V44M31B22EEES
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	2830	2317 (1052)	WS35	V44M31B33EEES

Notes

(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase—Type DT-3 60 Hz NEMA TP-1 Energy-Efficient Electrostatically Shielded—Aluminum Windings

480 Delta Volts to 208Y/120 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{\text {(1) }}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283B	213 (97)	WS38	V48M28E15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912 D	283B	300 (136)	WS38	V48M28E30EE
37.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283B	345 (157)	WS38	V48M28E37EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283B	348 (158)	WS38	V48M28E45EE
50	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	283B	550 (250)	WS39	V48M28E50EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	283B	583 (265)	WS39	V48M28E75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	283B	807 (366)	WS19	V48M28E12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	283B	950 (431)	WS19	V48M28E49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	928	658B	1371 (622)	WS41	V48M28E22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	929	658B	1719 (780)	WS42	V48M28E33EE
500	2 at $+2.5 \%$	2 at -2.5%	DT-3	150	924	487A	2560 (1162)	WS40	V48D28E55EE
750	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	920E	292A	3370 (1530)	WS35	V48M28E77EE
15	2 at $+2.5 \%$	4 at -2.5%	DT-3	115	912D	283B	204 (93)	WS38	V48M28F15EEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283B	326 (148)	WS38	V48M28F30EEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283B	419 (190)	WS38	V48M28F45EEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	283B	560 (254)	WS39	V48M28F75EEES
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	283B	805 (365)	WS19	V48M28F12EEES
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	283B	1012 (459)	WS19	V48M28F49EEES
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	918A	283B	1589 (721)	WS34	V48M28F22EEES
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	923	283B	1782 (809)	WS37	V48M28F33EEES
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	920E	292A	3117 (1415)	WS35	V48M28F55EEES
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283B	294 (133)	WS38	V48M28B15EEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283B	374 (170)	WS38	V48M28B30EEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	914F	283B	586 (266)	WS39	V48M28B45EEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	283B	807 (366)	WS19	V48M28B75EEES
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	283B	1005 (456)	WS19	V48M28B12EEES
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	283B	1170 (531)	WS34	V48M28B49EEES
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	923	283B	1764 (801)	WS37	V48M28B22EEES
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	292A	2317 (1052)	WS35	V48M28B33EEES
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	920E	292A	3379 (1534)	WS35	V48M28B55EEES

Notes

(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase-Type DT-3 60 Hz NEMA TP-1 Energy-Efficient Electrostatically Shielded—Aluminum Windings

2
480 Delta Volts to 240 Delta Volts with 120 Volt Lighting Tap on Phase B ©

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(2)}$	Weathershield	Catalog Number
15	2 at +2.5\%	4 at -2.5\%	DT-3	150	912D	284B	220 (100)	WS38	V48M22E15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912 D	284B	293 (133)	WS38	V48M22E30EE
45	2 at +2.5\%	4 at -2.5\%	DT-3	150	912D	284B	348 (158)	WS38	V48M22E45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	284B	554 (252)	WS39	V48M22E75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	284B	820 (372)	WS19	V48M22E12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	284B	940 (427)	WS19	V48M22E49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	284B	1421 (645)	WS34	V48M22E22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	923	284B	1787 (811)	WS37	V48M22E33EE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919E	293A	2504 (1137)	WS35	V48M22E55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	284B	231 (105)	WS38	V48M22F15EEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	284B	326 (148)	WS38	V48M22F30EEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	284B	397 (180)	WS38	V48M22F45EEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	284B	615 (279)	WS39	V48M22F75EEES
112.5	2 at +2.5\%	4 at -2.5\%	DT-3	115	916A	284B	805 (365)	WS19	V48M22F12EEES
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	284B	1012 (459)	WS19	V48M22F49EEES
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	918A	284B	1589 (721)	WS34	V48M22F22EEES
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	923	284B	1782 (809)	WS37	V48M22F33EEES
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	920 E	293A	3117 (1415)	WS35	V48M22F55EEES
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	284B	294 (133)	WS38	V48M22B15EEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	284B	374 (170)	WS38	V48M22B30EEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	914F	284B	586 (266)	WS39	V48M22B45EEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	284B	807 (366)	WS19	V48M22B75EEES
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	284B	1005 (456)	WS19	V48M22B12EEES
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	284B	1170 (531)	WS34	V48M22B49EEES
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	923	284B	1764 (801)	WS37	V48M22B22EEES
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	293A	2317 (1052)	WS35	V48M22B33EEES

Notes

(1) Lighting tap limited to 5% of nameplate full load capacity
(2) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase-Type DT-3 60 Hz NEMA TP-1 Energy-Efficient Electrostatically Shielded—Aluminum Windings

480 Delta Volts to 480Y/277 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283B	220 (100)	WS38	V48M47E15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912 D	283B	293 (133)	WS38	V48M47E30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283B	398 (181)	WS38	V48M47E45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	283B	554 (252)	WS39	V48M47E75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	283B	820 (372)	WS19	V48M47E12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	283B	940 (427)	WS19	V48M47E49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	283B	1421 (645)	WS34	V48M47E22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	923	283B	1735 (788)	WS34	V48M47E33EE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919E	292A	2504 (1137)	WS35	V48M47E55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283B	231 (105)	WS38	V48M47F15EEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283B	326 (148)	WS38	V48M47F30EEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283B	397 (180)	WS38	V48M47F45EEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	283B	615 (279)	WS39	V48M47F75EEES
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	283B	805 (365)	WS19	V48M47F12EEES
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	283B	1012 (459)	WS19	V48M47F49EEES
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	918A	283B	1589 (721)	WS34	V48M47F22EEES
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	923	283B	1782 (809)	WS37	V48M47F33EEES
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	920E	292A	3117 (1415)	WS35	V48M47F55EEES
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283B	294 (133)	WS38	V48M47B15EEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283B	374 (170)	WS38	V48M47B30EEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	914F	283B	586 (266)	WS39	V48M47B45EEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	283B	807 (366)	WS19	V48M47B75EEES
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	283B	1005 (456)	WS19	V48M47B12EEES
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	283B	1170 (531)	WS34	V48M47B49EEES
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	923	283B	1764 (801)	WS37	V48M47B22EEES
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	292A	2317 (1052)	WS35	V48M47B33EEES

Notes

[^9]
Three-Phase—Type DT-3 60 Hz NEMA TP-1 Energy-Efficient Electrostatically Shielded—Copper Windings

2
208 Delta Volts to 208Y/120 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283A	262 (119)	WS38	V29M28E15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912 D	283A	351 (159)	WS38	V29M28E30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283A	453 (206)	WS38	V29M28E45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	283A	526 (239)	WS39	V29M28E75CUEE
112.5	1 at $+5 \%$	2 at -5%	DT-3	150	916A	287A	930 (422)	WS19	V29R28E12CUEE
150	1 at $+5 \%$	2 at -5%	DT-3	150	916A	287A	1242 (564)	WS19	V29R28E49CUEE
225	1 at $+5 \%$	2 at -5%	DT-3	150	917	287A	1900 (863)	WS34	V29R28E22CUEE
300	1 at $+5 \%$	2 at -5%	DT-3	150	918A	287A	2300 (1044)	WS34	V29R28E33CUEE
500	1 at $+5 \%$	2 at -5\%	DT-3	150	919E	287A	3590 (1630)	WS35	V29R28E55CUEE
15	$2 \mathrm{at}+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283A	266 (121)	WS38	V29M28F15CUEEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283A	476 (215)	WS38	V29M28F30CUEEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283A	475 (216)	WS38	V29M28F45CUEEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	287A	700 (318)	WS39	V29M28F75CUEEES
112.5	1 at $+5 \%$	2 at -5%	DT-3	115	916A	287A	935 (424)	WS19	V29R28F12CUEEES
150	1 at $+5 \%$	2 at -5%	DT-3	115	916A	287A	1274 (578)	WS19	V29R28F49CUEEES
225	1 at $+5 \%$	2 at -5%	DT-3	115	917	287A	1743 (791)	WS34	V29R28F22CUEEES
300	1 at $+5 \%$	2 at -5%	DT-3	115	919E	287A	2350 (1067)	WS35	V29R28F33CUEEES
500	1 at $+5 \%$	2 at -5%	DT-3	115	920E	287A	3690 (1675)	WS35	V29R28F55CUEEES
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283A	381 (173)	WS38	V29M28B15CUEEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283A	420 (191)	WS38	V29M28B30CUEEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283A	510 (232)	WS38	V29M28B45CUEEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	914F	283A	940 (427)	WS39	V29M28B75CUEEES
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	283A	1300 (590)	WS19	V29M28B12CUEEES
150	1 at $+5 \%$	2 at -5%	DT-3	80	918A	287A	1800 (817)	WS34	V29R28B49CUEEES
225	1 at $+5 \%$	2 at -5\%	DT-3	80	919E	287A	2400 (1090)	WS35	V29R28B22CUEEES
300	1 at $+5 \%$	2 at -5%	DT-3	80	920E	287A	3800 (1725)	WS35	V29R28B33CUEEES

Notes

(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase—Type DT-3 60 Hz NEMA TP-1 Energy-Efficient Electrostatically Shielded—Copper Windings

208 Delta Volts to 480Y/277 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	345A	236 (107)	WS38	V29M47E15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912 D	345A	351 (159)	WS38	V29M47E30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	345A	453 (206)	WS38	V29M47E45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	345A	687 (312)	WS39	V29M47E75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	315A	930 (422)	WS19	V29R47E12CUEE
150	1 at $+5 \%$	2 at -5\%	DT-3	150	916A	315A	1242 (564)	WS19	V29R47E49CUEE
225	1 at $+5 \%$	2 at -5%	DT-3	150	917	315A	1763 (800)	WS34	V29R47E22CUEE
300	1 at $+5 \%$	2 at -5%	DT-3	150	918A	315A	2300 (1044)	WS34	V29R47E33CUEE
500	1 at $+5 \%$	2 at -5\%	DT-3	150	919E	315A	3590 (1630)	WS35	V29R47E55CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	345A	265 (120)	WS38	V29M47F15CUEEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	345A	475 (215)	WS38	V29M47F30CUEEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	345A	475 (216)	WS38	V29M47F45CUEEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	345A	768 (349)	WS39	V29M47F75CUEEES
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	345A	935 (424)	WS19	V29M47F12CUEEES
150	1 at $+5 \%$	2 at -5%	DT-3	115	916A	315A	1274 (578)	WS19	V29R47F49CUEEES
225	1 at $+5 \%$	2 at -5\%	DT-3	115	917	315A	1743 (791)	WS34	V29R47F22CUEEES
300	1 at $+5 \%$	2 at -5\%	DT-3	115	919E	315A	2350 (1067)	WS35	V29R47F33CUEEES
500	1 at $+5 \%$	2 at -5\%	DT-3	115	920E	315A	3690 (1675)	WS35	V29R47F55CUEEES
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	345A	381 (173)	WS38	V29M47B15CUEEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	345A	420 (191)	WS38	V29M47B30CUEEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	345A	510 (232)	WS38	V29M47B45CUEEES
75	1 at $+5 \%$	2 at -5\%	DT-3	80	914F	315A	940 (427)	WS39	V29R47B75CUEEES
112.5	1 at $+5 \%$	2 at -5%	DT-3	80	916A	315A	1300 (590)	WS19	V29R47B12CUEEES
150	1 at $+5 \%$	2 at -5\%	DT-3	80	918A	315A	1800 (817)	WS34	V29R47B49CUEEES
225	1at +5\%	2 at -5\%	DT-3	80	919E	315A	2400 (1090)	WS35	V29R47B22CUEEES
300	1 at $+5 \%$	2 at -5%	DT-3	80	920E	315A	3800 (1725)	WS35	V29R47B33CUEEES

Notes

(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase—Type DT-3 60 Hz NEMA TP-1 Energy-Efficient Electrostatically Shielded—Copper Windings

2
240 Delta Volts to 208Y/120 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283G	262 (119)	WS38	V24M28E15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283G	351 (159)	WS38	V24M28E30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283G	453 (206)	WS38	V24M28E45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	283G	526 (239)	WS39	V24M28E75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	283G	930 (422)	WS19	V24M28E12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	283G	1242 (564)	WS19	V24M28E49CUEE
225	1 at $+5 \%$	2 at -5%	DT-3	150	917	287B	1900 (863)	WS34	V24R28E22CUEE
300	1 at $+5 \%$	2 at -5%	DT-3	150	918A	287B	2300 (1044)	WS34	V24R28E33CUEE
500	1 at $+5 \%$	2 at -5\%	DT-3	150	919E	287B	3590 (1630)	WS35	V24R28E55CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283G	266 (121)	WS38	V24M28F15CUEEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912 D	283G	475 (215)	WS38	V24M28F30CUEEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283G	475 (216)	WS38	V24M28F45CUEEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	283G	700 (318)	WS39	V24M28F75CUEEES
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	283G	935 (424)	WS19	V24M28F12CUEEES
150	1 at $+5 \%$	2 at -5%	DT-3	115	916A	287B	1274 (578)	WS19	V24R28F49CUEEES
225	1 at $+5 \%$	2 at -5\%	DT-3	115	917	287B	1743 (791)	WS34	V24R28F22CUEEES
300	1 at $+5 \%$	2 at -5%	DT-3	115	918A	287B	2350 (1067)	WS34	V24R28F33CUEEES
500	1 at $+5 \%$	2 at -5\%	DT-3	115	919E	287B	3690 (1675)	WS35	V24R28F55CUEEES
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283G	381 (173)	WS38	V24M28B15CUEEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283G	420 (191)	WS38	V24M28B30CUEEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	914F	283G	510 (232)	WS39	V24M28B45CUEEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	283G	940 (427)	WS19	V24M28B75CUEEES
112.5	1 at $+5 \%$	2 at -5%	DT-3	80	916A	287B	1300 (590)	WS19	V24R28B12CUEEES
150	1 at $+5 \%$	2 at -5%	DT-3	80	917	287B	1800 (817)	WS34	V24R28B49CUEEES
225	1 at $+5 \%$	2 at -5\%	DT-3	80	918A	287B	2400 (1090)	WS34	V24R28B22CUEEES
300	1 at $+5 \%$	2 at -5%	DT-3	80	919E	287B	3800 (1725)	WS35	V24R28B33CUEEES

Notes

(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase—Type DT-3 60 Hz NEMA TP-1 Energy-Efficient Electrostatically Shielded—Copper Windings

240 Delta Volts to 480Y/277 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	345C	262 (119)	WS38	V24M47E15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	345C	351 (159)	WS38	V24M47E30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	345C	453 (206)	WS38	V24M47E45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	345C	526 (239)	WS39	V24M47E75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	345C	930 (422)	WS19	V24M47E12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	345C	1242 (564)	WS19	V24M47E49CUEE
225	1 at $+5 \%$	2 at -5\%	DT-3	150	918A	-	1900 (863)	WS34	V24R47E22CUEE
300	1 at $+5 \%$	2 at -5\%	DT-3	150	919E	-	2300 (1044)	WS35	V24R47E33CUEE
500	1 at $+5 \%$	2 at -5\%	DT-3	150	919E	-	3590 (1630)	WS35	V24R47E55CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	$345 C$	266 (121)	WS38	V24M47F15CUEEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912 D	345 C	475 (215)	WS38	V24M47F30CUEEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	345C	475 (216)	WS38	V24M47F45CUEEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	345C	700 (318)	WS39	V24M47F75CUEEES
112.5	1 at $+5 \%$	2 at -5\%	DT-3	115	916A	-	935 (424)	WS19	V24R47F12CUEEES
150	1 at $+5 \%$	2 at -5%	DT-3	115	916A	-	1274 (578)	WS19	V24R47F49CUEEES
225	1 at $+5 \%$	2 at -5\%	DT-3	115	918A	-	1743 (791)	WS34	V24R47F22CUEEES
300	1 at $+5 \%$	2 at -5\%	DT-3	115	919E	-	2350 (1067)	WS35	V24R47F33CUEEES
500	1 at $+5 \%$	2 at -5\%	DT-3	115	919E	-	3690 (1675)	WS35	V24R47F55CUEEES
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	$345 C$	381 (173)	WS38	V24M47B15CUEEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	$345 C$	420 (191)	WS38	V24M47B30CUEEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	914F	345 C	510 (232)	WS39	V24M47B45CUEEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	345C	940 (427)	WS19	V24M47B75CUEEES
112.5	1 at $+5 \%$	2 at -5\%	DT-3	80	916A	-	1300 (590)	WS19	V24R47B12CUEEES
150	1 at $+5 \%$	2 at -5\%	DT-3	80	918A	-	1800 (817)	WS34	V24R47B49CUEEES
225	1 at $+5 \%$	2 at -5\%	DT-3	80	919E	-	2400 (1090)	WS35	V24R47B22CUEEES
300	1 at $+5 \%$	2 at -5\%	DT-3	80	919E	-	3800 (1725)	WS35	V24R47B33CUEEES

Notes

[^10]
Three-Phase—Type DT-3 60 Hz NEMA TP-1 Energy-Efficient Electrostatically Shielded—Copper Windings

2
440 Delta Volts to 220Y/127 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	2830	251 (114)	WS38	V44M31E15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	2830	353 (160)	WS38	V44M31E30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	2830	421 (191)	WS38	V44M31E45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	2830	648 (294)	WS39	V44M31E75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	2830	910 (413)	WS19	V44M31E12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	2830	1052 (478)	WS19	V44M31E49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	2830	1548 (703)	WS34	V44M31E22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	923	2830	2029 (921)	WS37	V44M31E33CUEE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919E	2830	3680 (1671)	WS35	V44M31E55CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	2830	239 (109)	WS38	V44M31F15CUEEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912 D	2830	363 (165)	WS38	V44M31F30CUEEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	2830	442 (201)	WS38	V44M31F45CUEEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	2830	676 (307)	WS39	V44M31F75CUEEES
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	2830	926 (420)	WS19	V44M31F12CUEEES
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	2830	1246 (566)	WS19	V44M31F49CUEEES
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	2830	1692 (768)	WS34	V44M31F22CUEEES
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	923	2830	2325 (1056)	WS37	V44M31F33CUEEES
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919E	2830	3646 (1655)	WS35	V44M31F55CUEEES
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	2830	331 (150)	WS38	V44M31B15CUEEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	2830	390 (177)	WS38	V44M31B30CUEEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912 D	2830	545 (247)	WS38	V44M31B45CUEEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	2830	956 (434)	WS19	V44M31B75CUEEES
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	2830	1045 (474)	WS19	V44M31B12CUEEES
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	2830	1425 (647)	WS34	V44M31B49CUEEES
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	923	2830	2082 (945)	WS37	V44M31B22CUEEES
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	2830	3283 (1490)	WS35	V44M31B33CUEEES

Notes

(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase—Type DT-3 60 Hz NEMA TP-1 Energy-Efficient Electrostatically Shielded—Copper Windings

480 Delta Volts to 208Y/120 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283B	251 (114)	WS38	V48M28E15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283B	353 (160)	WS38	V48M28E30CUEE
37.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283B	415 (188)	WS38	V48M28E37CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283B	421 (191)	WS38	V48M28E45CUEE
50	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	283B	647 (294)	WS39	V48M28E50CUEE
75	2 at $+2.5 \%$	4 at -2.5%	DT-3	150	914F	283B	648 (294)	WS39	V48M28E75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	283B	910 (413)	WS19	V48M28E12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	283B	1052 (478)	WS19	V48M28E49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	928	658B	1548 (703)	WS41	V48M28E22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	929	658B	1622 (737)	WS42	V48M28E33CUEE
500	2 at $+2.5 \%$	2 at -2.5%	DT-3	150	924	292A	3680 (1671)	WS40	V48D28E55CUEE
750	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	920E	292A	4890 (2220)	WS35	V48M28E77CUEE
15	2 at $+2.5 \%$	4 at -2.5%	DT-3	115	912D	283B	239 (109)	WS38	V48M28F15CUEEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283B	363 (165)	WS38	V48M28F30CUEEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283B	442 (201)	WS38	V48M28F45CUEEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	283B	676 (307)	WS39	V48M28F75CUEEES
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	283B	926 (420)	WS19	V48M28F12CUEEES
150	2 at $+2.5 \%$	4 at -2.5%	DT-3	115	916A	283B	1246 (566)	WS19	V48M28F49CUEEES
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	292A	1692 (768)	WS34	V48M28F22CUEEES
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	923	292A	2325 (1056)	WS37	V48M28F33CUEEES
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919E	292A	3646 (1655)	WS35	V48M28F55CUEEES
15	2 at $+2.5 \%$	4 at -2.5%	DT-3	80	912D	283B	331 (150)	WS38	V48M28B15CUEEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283B	390 (177)	WS38	V48M28B30CUEEES
45	2 at $+2.5 \%$	4 at -2.5%	DT-3	80	912D	283B	545 (248)	WS38	V48M28B45CUEEES
75	2 at $+2.5 \%$	4 at -2.5%	DT-3	80	916A	283B	956 (434)	WS19	V48M28B75CUEEES
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	283B	1045 (474)	WS19	V48M28B12CUEEES
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	292A	1425 (647)	WS34	V48M28B49CUEEES
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	923	292A	2082 (945)	WS37	V48M28B22CUEEES
300	2 at $+2.5 \%$	4 at-2.5\%	DT-3	80	919E	292A	3283 (1490)	WS35	V48M28B33CUEEES
500	2 at $+2.5 \%$	4 at -2.5%	DT-3	80	920E	292A	4800 (2179)	WS35	V48M28B55CUEEES

Notes

(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase—Type DT-3 60 Hz NEMA TP-1 Energy-Efficient Electrostatically Shielded—Copper Windings

2
480 Delta Volts to 240 Delta Volts with 120 Volt Lighting Tap on Phase B ©

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(2)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	284B	253 (115)	WS38	V48M22E15CUEE
30	$2 \mathrm{at}+2.5 \%$	4 at -2.5\%	DT-3	150	912D	284B	352 (160)	WS38	V48M22E30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	284B	415 (188)	WS38	V48M22E45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	284B	703 (319)	WS39	V48M22E75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	284B	935 (424)	WS19	V48M22E12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	284B	1134 (515)	WS19	V48M22E49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	284B	1955 (888)	WS34	V48M22E22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	923	284B	2450 (1112)	WS37	V48M22E33CUEE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919E	293A	3547 (1610)	WS35	V48M22E55CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	284B	248 (113)	WS38	V48M22F15CUEEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	284B	410 (186)	WS38	V48M22F30CUEEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	284B	445 (202)	WS38	V48M22F45CUEEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	284B	750 (341)	WS39	V48M22F75CUEEES
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	284B	963 (437)	WS19	V48M22F12CUEEES
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	284B	1236 (561)	WS19	V48M22F49CUEEES
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	284B	2100 (953)	WS34	V48M22F22CUEEES
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	923	284B	2600 (1180)	WS37	V48M22F33CUEEES
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919E	293A	3700 (1680)	WS35	V48M22F55CUEEES
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	284B	247 (113)	WS38	V48M22B15CUEEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	284B	460 (209)	WS38	V48M22B30CUEEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	284B	505 (229)	WS38	V48M22B45CUEEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	284B	835 (379)	WS19	V48M22B75CUEEES
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	284B	1050 (477)	WS19	V48M22B12CUEEES
150	$2 \mathrm{at}+2.5 \%$	4 at -2.5\%	DT-3	80	917	284B	2250 (1022)	WS34	V48M22B49CUEEES
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	923	284B	2900 (1317)	WS37	V48M22B22CUEEES
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	293A	4000 (1816)	WS35	V48M22B33CUEEES

Notes

(1) Lighting tap limited to 5% of nameplate full load capacity
(2) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase—Type DT-3 60 Hz NEMA TP-1 Energy-Efficient Electrostatically Shielded—Copper Windings

480 Delta Volts to 480Y/277 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at +2.5\%	4 at -2.5\%	DT-3	150	912D	283B	340 (154)	WS38	V48M47E15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283B	340 (154)	WS38	V48M47E30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283B	430 (195)	WS38	V48M47E45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	283B	677 (307)	WS39	V48M47E75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	283B	900 (409)	WS19	V48M47E12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	283B	1132 (514)	WS19	V48M47E49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	283B	1550 (704)	WS34	V48M47E22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	923	283B	2550 (1158)	WS37	V48M47E33CUEE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919E	292A	3412 (1549)	WS35	V48M47E55CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283B	258 (117)	WS38	V48M47F15CUEEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283B	426 (193)	WS38	V48M47F30CUEEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283B	446 (202)	WS38	V48M47F45CUEEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	283B	666 (302)	WS39	V48M47F75CUEEES
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	283B	912 (414)	WS19	V48M47F12CUEEES
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	283B	1600 (726)	WS19	V48M47F49CUEEES
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	283B	2107 (957)	WS34	V48M47F22CUEEES
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	923	283B	2418 (1098)	WS37	V48M47F33CUEEES
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919E	292A	3800 (1725)	WS35	V48M47F55CUEEES
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283B	369 (168)	WS38	V48M47B15CUEEES
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283B	430 (195)	WS38	V48M47B30CUEEES
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283B	552 (251)	WS38	V48M47B45CUEEES
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	283B	920 (418)	WS19	V48M47B75CUEEES
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	283B	1210 (549)	WS19	V48M47B12CUEEES
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	283B	1702 (773)	WS34	V48M47B49CUEEES
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	923	283B	2313 (1050)	WS37	V48M47B22CUEEES
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	292A	3100 (1407)	WS35	V48M47B22CUEEES

Notes

[^11]
Accessories

Technical Data and Specifications

Frequency

Eaton standard dry-type distribution transformers are designed for 60 Hz operation. Transformers required for other frequencies are available and must be specifically designed.

Overload Capability

Short-term overload is designed into transformers as required by ANSI. Dry-type distribution transformers will deliver 200\% nameplate load for one-half hour, 150% load for one hour and 125% load for four hours without being damaged, provided that a constant 50\% load precedes and follows the overload. See ANSI C57.96-01.250 for additional limitations.

Continuous overload capacity is not deliberately designed into a transformer because the design objective is to be within the allowed winding temperature rise with nameplate loading.

Insulation System and Temperature Rise

Industry standards classify insulation systems and rise as shown below:

Insulation System
Classification

	+ Winding Rise	+ Hot Spot	$=$ Temp. Class
$40^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$105^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
$25^{\circ} \mathrm{C}$	$135^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$185^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

The design life of transformers having different insulation systems is the same-the lower-temperature systems are designed for the same life as the higher-temperature systems.

Enclosures

Eaton's ventilated transformers, Types DS-3 and DT-3, use a NEMA 2 rated (drip-proof) enclosure as standard, and are rated NEMA 3R with the addition of weathershields.

Winding Terminations

Primary and secondary windings are terminated in the wiring compartment Encapsulated units have copper leads or stabs brought out for connections. Ventilated transformers have leads brought out to terminals that are pre-drilled to accept Cu/Al lugs. Aluminum-wound transformers have aluminum terminals; copper-wound models have copper terminals. Lugs are not supplied with these transformers. Eaton recommends external cables be rated $90^{\circ} \mathrm{C}$ (sized at $75^{\circ} \mathrm{C}$ ampacity) for encapsulated designs and $75^{\circ} \mathrm{C}$ for ventilated designs.

Series-Multiple Windings

Series-multiple windings consist of two similar coils in each winding that can be connected in series or parallel (multiple). Transformers with series-multiple windings are designated with an " x " or "/" between the voltage ratings, such as voltages of " $120 / 240$ " or " 240×480." If the series-multiple winding is designated by an " x," the winding can be connected only for a series or parallel. With the "/" designation, a mid-point also becomes available in addition to the series or parallel connection. As an example, a 120×240 winding can be connected for either 120 (parallel) or 240 (series), but a 120/240 winding can be connected for 120 (parallel), or 240 (series), or 240 with a 120 mid-point.

For additional information, please refer to Section 2.7
Page V2-T2-191

Sound Levels

All Eaton 600 volt class general-purpose dry-type distribution transformers are designed to meet NEMA ST-20 sound levels listed here. These are the sound levels measured in a soundproof environment Actual sound levels measured at an installation
will likely be higher (as much as 15 dB greater) due to electrical connections and environmental conditions. Lower sound levels are available and should be specified when the transformer is going to be installed in an area where sound may be a concern

Average Sound Levels

Equivalent Winding kVA Range	Self-Cooled Ventilated (up to 1.2 kV)		Encapsulated (up to 1.2 kV)
	K-Factor 1, 4, 9	K-Factor 13, 20	
3.00 and below	40	40	45
3.01 to 9.00	40	40	45
9.01 to 15.00	45	45	50
15.01 to 30.00	45	45	50
30.01 to 50.00	45	48	50
50.01 to 75.00	50	53	55
75.01 to 112.50	50	53	55
112.51 to 150.00	50	53	55
150.01 to 225.00	55	58	57
225.01 to 300.00	55	58	57
300.01 to 500.00	60	63	59
500.01 to 700.00	62	65	61
700.01 to 1000.00	64	67	63
Greater than 1000	Consult factory	Consult factory	Consult factory

Note
For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton

K-Factor

Product Description

A common industry term for the amount of harmonics produced by a given load is the K-factor. The larger the K-factor, the more harmonics are present. Linear loads, for example, have a K-factor of 1 . Transformers may carry a K-factor rating to define the transformer's ability to withstand the additional heating generated by harmonic currents.

Calculating the K-Factor

All nonlinear waveforms can be broken down mathematically into a fundamental frequency and its harmonics. IEEE C57.110 establishes a direct relationship between these harmonics and transformer heating. Underwriters Laboratories has established a similar relationship, the K -factor, which is derived by summing the square of the percentage current at a given harmonic level multiplied by the square of the harmonic order.
$K={ }^{2}(\mathrm{~h})^{2}(\mathrm{~h})^{2}$
lh $=$ Percent Current at Harmonic h
h = Harmonic Order, i.e., 3rd, 5th, 7th

For example, a load that is 90% of the fundamental, 30% of the third harmonic, and 20% of the fifth harmonic would yield $(.9)^{2}(1)^{2}+(.3)^{2}(3)^{2}$ $+(.2)^{2}(5)^{2}$ or a K-factor of 2.62. This load would require an Eaton KT-4 transformer with a K-factor rating of 4.

Transformers that carry a K-factor rating define the
transformer's ability to withstand a given harmonic load while operating within the transformer's insulation class.

An analysis of harmonic loads and a calculation of the K-factor must be made to properly apply transformers in any building or facility. Note that the calculated K-factor is not constant because nonlinear loads change throughout the day as equipment and lighting is turned off and on. These harmonic loads also change over the life of the building or facility as equipment is added or removed.

Harmonic Currents

Harmonic currents are found in nonlinear loads. These currents are generated by various types of equipment including switching mode power supplies that abruptly switch current on and off during each line cycle. Switching mode power supplies or diode-capacitor power supplies convert AC line voltage to low voltage DC. This process is accomplished by charging capacitors during each line cycle with narrow pluses of current that are timecoincident with line voltage peaks. Examples of this equipment include electronic ballasts for fluorescent lighting, personal computers, printers, fax machines, electronic and medical test equipment, uninterruptible power supplies, and solid-state motor drives.

Note: Nonlinear is synonymous with the term non-sinusoidal.

Harmonic Currents Found in Nonlinear Loads Cause Wave Shape Distortion and Create Added Stresses on Transformers

Features, Benefits and Functions

- 600 volt class standard
- Three-phase, 480 delta208Y/120 volt standard
- Single-phase, 240×480 volt-120/240 volt standard
- $150^{\circ} \mathrm{C}$ rise standard, $80^{\circ} \mathrm{C}$ and $115^{\circ} \mathrm{C}$ available
- Three-phase neutrals sized for 200% of rated current
- Electrostatic shield

Note: Electrostatic shields do not reduce harmonic levels. However, because of the nature of switching mode loads, these shields do reduce transient noise in the system, which may affect sensitive computer loads.

- Aluminum windings (copper optional)
- Class $220^{\circ} \mathrm{C}$ insulation
- Reduced core flux density

Note: Reduced core flux prevents the core from saturation and overheating due to voltage distortions caused by harmonic currents.

- Indoor enclosures (weathershields optional, for outdoor applications)
- Coils designed to minimize stray losses
- K4, K13 standard
- K9, K20, K30, K40, K50 optional
- Low sound level (-3 dB, -5 dB) available as options
- Available with NEMA TP-1 efficiency levels

Standards and Certifications

- UL listed

Industry Standards

All Eaton dry-type distribution and control transformers are built and tested in accordance with applicable NEMA, ANSI and IEEE Standards. All 600 volt class transformers are UL listed unless otherwise noted.

Seismically Qualified

Eaton manufactured dry-type distribution transformers are seismically qualified and exceed requirements of the Uniform Building Code (UBC), International Building Code (IBC) and California Code Title 24.

Catalog Number Selection
Please refer to Section 2.7
Page V2-T2-187

Product Selection

Single-Phase-K-Factor Rated 60 Hz NEMA TP-1 Energy-Efficient—Aluminum Windings

K-4 240×480 Volts to $\mathbf{1 2 0 / 2 4 0}$ Volts

kVA	Full Ca fCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	(2)	(2)	DS-3	150	816	261A	222 (101)	WS11	HT20P11S15EE
25	(2)	(2)	DS-3	150	818	261A	360 (163)	WS11	HT20P11S25EE
37.5	(2)	(2)	DS-3	150	818	261A	365 (166)	WS11	HT20P11S37EE
50	(2)	(2)	DS-3	150	819	261A	560 (254)	WS16	HT20P11S50EE
75	(2)	(2)	DS-3	150	820	261A	688 (312)	WS16	HT20P11S75EE
15	(2)	(2)	DS-3	115	816	261A	229 (104)	WS11	HT20P11F15EE
25	(2)	(2)	DS-3	115	818	261A	365 (166)	WS11	HT20P11F25EE
37.5	(2)	(2)	DS-3	115	818	261A	380 (172)	WS11	HT20P11F37EE
50	(2)	(2)	DS-3	115	819	261A	580 (263)	WS16	HT20P11F50EE
75	(2)	(2)	DS-3	115	820	261A	700 (318)	WS16	HT20P11F75EE
15	(2)	(2)	DS-3	80	816	261A	-	WS11	HT20P11B15EE
25	(2)	(2)	DS-3	80	818	261A	-	WS11	HT20P11B25EE
37.5	(2)	(2)	DS-3	80	819	261A	-	WS16	HT20P11B37EE
50	(2)	(2)	DS-3	80	820	261A	-	WS16	HT20P11B50EE
75	(2)	(2)	DS-3	80	821	261A	976 (443)	WS13	HT20P11B75EE

K-13 240×480 Volts to $120 / 240$ Volts

kVA	Full Can	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	(2)	(2)	DS-3	150	816	261A	247 (112)	WS11	NT20P11S15EE
25	(2)	(2)	DS-3	150	818	261A	370 (168)	WS11	NT20P11S25EE
37.5	(2)	(2)	DS-3	150	819	261A	580 (263)	WS16	NT20P11S37EE
50	(2)	(2)	DS-3	150	820	261A	700 (318)	WS16	NT20P11S50EE
75	(2)	(2)	DS-3	150	821	261A	924 (419)	WS13	NT20P11S75EE
15	(2)	(2)	DS-3	115	816	261A	260 (118)	WS11	NT20P11F15EE
25	(2)	(2)	DS-3	115	818	261A	380 (172)	WS11	NT20P11F25EE
37.5	(2)	(2)	DS-3	115	819	261A	590 (268)	WS16	NT20P11F37EE
50	(2)	(2)	DS-3	115	820	261A	700 (318)	WS16	NT20P11F50EE
75	(2)	(2)	DS-3	115	821	261A	970 (440)	WS13	NT20P11F75EE
15	(2)	(2)	DS-3	80	816	261A	-	WS11	NT20P11B15EE
25	(2)	(2)	DS-3	80	818	261A	-	WS11	NT20P11B25EE
37.5	(2)	(2)	DS-3	80	819	261A	-	WS16	NT20P11B37EE
50	(2)	(2)	DS-3	80	820	261A	-	WS16	NT20P11B50EE
75	(2)	(2)	DS-3	80	821	261A	-	WS13	NT20P11B75EE

Notes

(1) Weights subject to change.
(2) 1 at $+5 \%, 2$ at -5% at 240 volts primary; 2 at $+2.5 \%, 4$ at -2.5% at 480 volts primary.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase-K-Factor Rated 60 Hz NEMA TP-1 Energy-Efficient—Aluminum Windings

K-4 480 Delta Volts to 208Y/120 Volts

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	FCAN	FCBN	Type						
15	2 at +2.5\%	4 at -2.5\%	DT-3	150	912D	283B	206 (94)	WS38	H48M28T15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283B	311 (141)	WS38	H48M28T30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283B	400 (182)	WS38	H48M28T45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	283B	547 (248)	WS39	H48M28T75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	283B	800 (363)	WS19	H48M28T12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	283B	1010 (459)	WS19	H48M28T49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	918A	283B	1680 (763)	WS34	H48M28T22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919E	292A	2122 (963)	WS35	H48M28T33EE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	920E	292A	3201 (1453)	WS35	H48M28T55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283B	307 (139)	WS38	H48M28F15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283B	313 (142)	WS38	H48M28F30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283B	400 (182)	WS38	H48M28F45EE
75	2 at +2.5\%	4 at -2.5\%	DT-3	115	914F	283B	587 (266)	WS39	H48M28F75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	283B	947 (430)	WS19	H48M28F12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	283B	1243 (564)	WS34	H48M28F49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	918A	283B	1680 (763)	WS34	H48M28F22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919E	292A	2480 (1126)	WS35	H48M28F33EE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	920E	292A	3280 (1489)	WS35	H48M28F55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283B	378 (172)	WS38	H48M28B15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283B	365 (166)	WS38	H48M28B30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	914F	283B	550 (250)	WS39	H48M28B45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	283B	774 (351)	WS19	H48M28B75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	283B	1380 (627)	WS34	H48M28B12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	918A	283B	1604 (728)	WS34	H48M28B49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	292A	2336 (1061)	WS35	H48M28B22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	292A	2689 (1221)	WS35	H48M28B33EE

Notes
(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Transformers
NEMA TP-1 Energy-Efficient Transformers

Three-Phase-K-Factor Rated 60 Hz NEMA TP-1 Energy-Efficient-Aluminum Windings

2
K-13 480 Delta Volts to 208Y/120 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) (1)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283B	271 (123)	WS38	N48M28T15EE
30	$2 \mathrm{at}+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283B	365 (166)	WS38	N48M28T30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	283B	545 (247)	WS39	N48M28T45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	283B	812 (369)	WS19	N48M28T75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	283B	920 (418)	WS19	N48M28T12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	283B	1221 (554)	WS34	N48M28T49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	923	283B	1960 (890)	WS37	N48M28T22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919 E	292A	2358 (1071)	WS35	N48M28T33EE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	922	292A	4799 (2179)	WS36	N48M28T55EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283B	332 (151)	WS38	N48M28F15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283B	390 (177)	WS38	N48M28F30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	283B	548 (249)	WS39	N48M28F45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	283B	808 (367)	WS19	N48M28F75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	283B	990 (449)	WS19	N48M28F12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	918A	292A	1769 (803)	WS34	N48M28F49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919E	292A	2306 (1047)	WS35	N48M28F22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919E	292A	3291 (1494)	WS35	N48M28F33EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283B	315 (143)	WS38	N48M28B15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283B	408 (185)	WS38	N48M28B30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	914F	283B	555 (252)	WS39	N48M28B45EE
75	2 at $+2.5 \%$	4 at -2.5%	DT-3	80	916A	283B	838 (380)	WS19	N48M28B75EE
112.5	$2 \mathrm{at}+2.5 \%$	4 at -2.5\%	DT-3	80	917	283B	1367 (621)	WS34	N48M28B12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	918A	292A	1607 (730)	WS34	N48M28B49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919 E	292A	2582 (1172)	WS35	N48M28B22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	920E	292A	3228 (1466)	WS35	N48M28B33EE

Notes
(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

NEMA TP-1 Energy-Efficient Transformers

Three-Phase-K-Factor Rated 60 Hz NEMA TP-1 Energy-Efficient—Aluminum Windings

K-20 480 Delta Volts to 208Y/120 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at +2.5\%	4 at -2.5\%	DT-3	150	912D	283B	295 (134)	WS38	G48M28T15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283B	367 (167)	WS38	G48M28T30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	283B	563 (256)	WS39	G48M28T45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	283B	808 (367)	WS19	G48M28T75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	283B	1379 (626)	WS34	G48M28T12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	918A	292A	1559 (708)	WS34	G48M28T49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919E	292A	2600 (1180)	WS35	G48M28T22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919E	292A	2968 (1347)	WS35	G48M28T33EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283B	300 (136)	WS38	G48M28F15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283B	403 (183)	WS38	G48M28F30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	283B	574 (261)	WS39	G48M28F45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	283B	911 (414)	WS19	G48M28F75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	283B	1379 (626)	WS34	G48M28F12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	918A	292A	-	WS34	G48M28F49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919E	292A	-	WS35	G48M28F22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919E	292A	-	WS35	G48M28F33EE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912 D	283B	340 (154)	WS38	G48M28B15EE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283B	405 (184)	WS38	G48M28B30EE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	914F	283B	580 (263)	WS39	G48M28B45EE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	283B	930 (422)	WS19	G48M28B75EE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	283B	1400 (636)	WS34	G48M28B12EE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	918A	292A	-	WS34	G48M28B49EE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	292A	-	WS35	G48M28B22EE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	292A	-	WS35	G48M28B33EE

Notes

(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Transformers
NEMA TP-1 Energy-Efficient Transformers

Single-Phase-K-Factor Rated 60 Hz NEMA TP-1 Energy-Efficient-Copper Windings

2
K-4 240×480 Volts to 120/240 Volts

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp.		Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
	FCAN	FCBN	Type	Rise	Frame				
15	(2)	(2)	DS-3	150	816	261A	280 (127)	WS11	HT20P11S15CUEE
25	(2)	(2)	DS-3	150	818	261A	431 (195)	WS11	HT20P11S25CUEE
37.5	(2)	(2)	DS-3	150	818	261A	437 (198)	WS11	HT20P11S37CUEE
50	(2)	(2)	DS-3	150	819	261A	686 (311)	WS16	HT20P11S50CUEE
75	(2)	(2)	DS-3	150	820	261A	-	WS16	HT20P11S75CUEE
15	(2)	(2)	DS-3	115	816	261A	276 (125)	WS11	HT20P11F15CUEE
25	(2)	(2)	DS-3	115	818	261A	435 (197)	WS11	HT20P11F25CUEE
37.5	(2)	(2)	DS-3	115	818	261A	440 (200)	WS11	HT20P11F37CUEE
50	(2)	(2)	DS-3	115	820	261A	700 (318)	WS16	HT20P11F50CUEE
75	(2)	(2)	DS-3	115	821	261A	-	WS13	HT20P11F75CUEE
15	(2)	(2)	DS-3	80	816	261A	-	WS11	HT20P11B15CUEE
25	(2)	(2)	DS-3	80	818	261A	-	WS11	HT20P11B25CUEE
37.5	(2)	(2)	DS-3	80	819	261A	-	WS16	HT20P11B37CUEE
50	(2)	(2)	DS-3	80	820	261A	-	WS16	HT20P11B50CUEE
75	(2)	(2)	DS-3	80	821	261A	-	WS13	HT20P11B75CUEE

K-13 240×480 Volts to 120/240 Volts

kVA	Full Ca FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	(2)	(2)	DS-3	150	816	261A	283 (128)	WS11	NT20P11S15CUEE
25	(2)	(2)	DS-3	150	818	261A	420 (191)	WS11	NT20P11S25CUEE
37.5	(2)	(2)	DS-3	150	818	261A	425 (193)	WS11	NT20P11S37CUEE
50	(2)	(2)	DS-3	150	820	261A	690 (313)	WS16	NT20P11S50CUEE
75	(2)	(2)	DS-3	150	821	261A	1056 (479)	WS13	NT20P11S75CUEE
15	(2)	(2)	DS-3	115	818	261A	411 (186)	WS11	NT20P11F15CUEE
25	(2)	(2)	DS-3	115	818	261A	427 (194)	WS11	NT20P11F25CUEE
37.5	(2)	(2)	DS-3	115	819	261A	435 (197)	WS16	NT20P11F37CUEE
50	(2)	(2)	DS-3	115	820	261A	710 (322)	WS16	NT20P11F50CUEE
75	(2)	(2)	DS-3	115	821	261A	1100 (499)	WS13	NT20P11F75CUEE
15	(2)	(2)	DS-3	80	818	261A	-	WS11	NT20P11B15CUEE
25	(2)	(2)	DS-3	80	818	261A	-	WS11	NT20P11B25CUEE
37.5	(2)	(2)	DS-3	80	819	261A	-	WS16	NT20P11B37CUEE
50	(2)	(2)	DS-3	80	820	261A	-	WS16	NT20P11B50CUEE
75	(2)	(2)	DS-3	80	821	261A	-	WS13	NT20P11B75CUEE

Notes
(1) Weights subject to change.
(2) 1 at $+5 \%, 2$ at -5% at 240 volts primary; 2 at $+2.5 \%, 4$ at -2.5% at 480 volts primary

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase-K-Factor Rated 60 Hz NEMA TP-1 Energy-Efficient—Copper Windings

K-4 480 Delta Volts to 208Y/120 Volts

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{1}$	Weathershield	Catalog Number
	FCAN	FCBN	Type						
15	$2 \mathrm{at}+2.5 \%$	4 at-2.5\%	DT-3	150	912D	283B	251 (114)	WS38	H48M28T15CUEE
30	2 at $+2.5 \%$	4 at-2.5\%	DT-3	150	912 D	283B	326 (148)	WS38	H48M28T30CUEE
45	2 at $+2.5 \%$	4 at-2.5\%	DT-3	150	912D	283B	479 (217)	WS38	H48M28T45CUEE
75	$2 \mathrm{at}+2.5 \%$	4 at-2.5\%	DT-3	150	914F	283B	463 (210)	WS39	H48M28T75CUEE
112.5	2 at $+2.5 \%$	4 at-2.5\%	DT-3	150	916A	283B	977 (444)	WS19	H48M28T12CUEE
150	$2 \mathrm{at}+2.5 \%$	4 at -2.5\%	DT-3	150	916A	283B	1212 (550)	WS19	H48M28T49CUEE
225	2 at $+2.5 \%$	4 at-2.5\%	DT-3	150	917	292A	1815 (824)	WS34	H48M28T22CUEE
300	2 at +2.5\%	4 at-2.5\%	DT-3	150	923	283B	2400 (1090)	WS37	H48M28T33CUEE
15	$2 \mathrm{at}+2.5 \%$	4 at-2.5\%	DT-3	115	912 D	283B	256 (116)	WS38	H48M28F15CUEE
30	2 at $+2.5 \%$	4 at-2.5\%	DT-3	115	912D	283B	341 (155)	WS38	H48M28F30CUEE
45	2 at $+2.5 \%$	4 at-2.5\%	DT-3	115	912 D	283B	526 (239)	WS38	H48M28F45CUEE
75	2 at $+2.5 \%$	4 at-2.5\%	DT-3	115	914 F	283B	759 (345)	WS39	H48M28F75CUEE
112.5	2 at $+2.5 \%$	4 at-2.5\%	DT-3	115	916A	283B	1030 (468)	WS19	H48M28F12CUEE
150	2 at $+2.5 \%$	4 at-2.5\%	DT-3	115	917	283B	1631 (740)	WS34	H48M28F49CUEE
225	2 at $+2.5 \%$	4 at-2.5\%	DT-3	115	918A	292A	1965 (892)	WS34	H48M28F22CUEE
300	2 at $+2.5 \%$	4 at-2.5\%	DT-3	115	923	283B	2337 (1061)	WS37	H48M28F33CUEE
15	2 at $+2.5 \%$	4 at-2.5\%	DT-3	80	912D	283B	365 (166)	WS38	H48M28B15CUEE
30	2 at $+2.5 \%$	4 at-2.5\%	DT-3	80	912D	283B	424 (192)	WS38	H48M28B30CUEE
45	2 at $+2.5 \%$	4 at-2.5\%	DT-3	80	914 F	283B	653 (296)	WS39	H48M28B45CUEE
75	2 at $+2.5 \%$	4 at-2.5\%	DT-3	80	916A	283B	640 (291)	WS19	H48M28B75CUEE
112.5	2 at $+2.5 \%$	4 at-2.5\%	DT-3	80	916A	283B	1264 (574)	WS19	H48M28B12CUEE
150	2 at $+2.5 \%$	4 at-2.5\%	DT-3	80	917	292A	1685 (765)	WS34	H48M28B49CUEE
225	2 at $+2.5 \%$	4 at-2.5\%	DT-3	80	923	292A	2096 (952)	WS37	H48M28B22CUEE
300	2 at $+2.5 \%$	4 at-2.5\%	DT-3	80	919E	292A	4600 (2087)	WS35	H48M28B33CUEE

Notes

(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase-K-Factor Rated 60 Hz NEMA TP-1 Energy-Efficient—Copper Windings

2
K-13 480 Delta Volts to 208Y/120 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283B	346 (157)	WS38	N48M28T15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283B	390 (177)	WS38	N48M28T30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	283B	623 (283)	WS39	N48M28T45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	283B	848 (385)	WS19	N48M28T75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	283B	1080 (490)	WS19	N48M28T12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	292A	1431 (650)	WS34	N48M28T49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	923	292A	2129 (967)	WS37	N48M28T22CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283B	341 (155)	WS38	N48M28F15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283B	444 (202)	WS38	N48M28F30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	283B	598 (271)	WS39	N48M28F45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	283B	894 (406)	WS19	N48M28F75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	283B	1054 (479)	WS19	N48M28F12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	292A	1399 (635)	WS34	N48M28F49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	923	292A	2088 (948)	WS37	N48M28F22CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283B	370 (168)	WS38	N48M28B15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283B	490 (222)	WS38	N48M28B30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	914F	283B	635 (288)	WS39	N48M28B45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	283B	987 (448)	WS19	N48M28B75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	283B	854 (388)	WS19	N48M28B12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	918A	283B	1134 (515)	WS34	N48M28B49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919	292A	4091 (1857)	WS35	N48M28B22CUEE

Notes
(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase-K-Factor Rated 60 Hz NEMA TP-1 Energy-Efficient—Copper Windings

K-20 480 Delta Volts to 208Y/120 Volts

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp.		Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	FCAN	FCBN	Type	Rise	Frame				
15	2 at +2.5\%	4 at -2.5\%	DT-3	150	912D	283B	390 (177)	WS38	G48M28T15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283B	431 (196)	WS38	G48M28T30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	914F	283B	639 (290)	WS39	G48M28T45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	283B	905 (411)	WS19	G48M28T75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	283B	1060 (481)	WS19	G48M28T12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	283B	1808 (821)	WS34	G48M28T49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	923	283B	2386 (1083)	WS37	G48M28T22CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283B	400 (182)	WS38	G48M28F15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283B	450 (204)	WS38	G48M28F30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	914F	283B	690 (313)	WS39	G48M28F45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	283B	1148 (521)	WS19	G48M28F75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	283B	-	WS34	G48M28F12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	923	283B	-	WS37	G48M28F49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919E	292A	-	WS35	G48M28F22CUEE
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283B	400 (182)	WS38	G48M28B15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283B	441 (200)	WS38	G48M28B30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	914F	283B	676 (307)	WS39	G48M28B45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	283B	1140 (518)	WS19	G48M28B75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	292A	-	WS34	G48M28B12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	923	292A	2417 (1097)	WS37	G48M28B49CUEE

Notes
(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Accessories

Please refer to Section 2.7 Page V2-T2-191.

Technical Data and Specifications

Frequency

Eaton standard dry-type distribution transformers are designed for 60 Hz operation. Transformers required for other frequencies are available and must be specifically designed.

Overload Capability

Short-term overload is designed into transformers as required by ANSI. Dry-type distribution transformers will deliver 200\% nameplate load for one-half hour, 150% load for one hour, and 125\% load for four hours without being damaged, provided that a constant 50% load precedes and follows the overload. See ANSI C57.96-01.250 for additional limitations.

Continuous overload capacity is not deliberately designed into a transformer because the design objective is to be within the allowed winding temperature rise with nameplate loading.

Insulation System and Temperature Rise
Industry standards classify insulation systems and rise as shown below:

Insulation System
Classification

	+ Winding	+ Hot Spot	$=$ Temp. Class
$40^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$105^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
$25^{\circ} \mathrm{C}$	$135^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$185^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

The design life of transformers having different insulation systems is the same-the lower-temperature systems are designed for the same life as the higher-temperature systems.

Enclosures

Eaton ventilated transformers, Type KT, use a NEMA 2 rated (drip-proof) enclosure as standard, and are rated NEMA 3R with the addition of weathershields.

Winding Terminations

Primary and secondary windings are terminated in the wiring compartment. Ventilated transformers have leads brought out to aluminum pads that are predrilled to accept Cu/Al lugs.
Lugs are not supplied with these transformers. Eaton recommends that external cables be rated $75^{\circ} \mathrm{C}$ for ventilated designs.

Sound Levels

All Eaton 600 volt class general-purpose dry-type distribution transformers are designed to meet NEMA ST-20 sound levels listed here. These are the sound levels measured in a soundproof environment. Actual sound levels measured at an installation will likely be higher due to electrical connections and
environmental conditions Lower sound levels are available and should be specified when the transformer is going to be installed in an area where sound may be a concern.

For additional information, please refer to Section 2.7 Page V2-T2-195.

Average Sound Levels

NEMA ST-20 Average Sound Level, dB

Equivalent Winding kVA Range	Self-Cooled Ventilated (up to $\mathbf{1 . 2} \mathbf{~ k V}$)		Encapsulated (up to 1.2 kV)
	K-Factor 1, 4, 9	K-Factor 13, 20	
3.00 and below	40	40	45
3.01 to 9.00	40	40	45
9.01 to 15.00	45	45	50
15.01 to 30.00	45	45	50
30.01 to 50.00	45	48	50
50.01 to 75.00	50	53	55
75.01 to 112.50	50	53	55
112.51 to 150.00	50	53	55
150.01 to 225.00	55	58	57
225.01 to 300.00	55	58	57
300.01 to 500.00	60	63	59
500.01 to 700.00	62	65	61
700.01 to 1000.00	64	67	63
Greater than 1000	Consult factory	Consult factory	Consult factory

Note

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton.

Contents	
Description	
NEMA Premium Efficient Transformers	Page
\quad Features, Benefits and Functions	V2-T2-62
\quad Standards and Certifications.	V2-T2-62
\quad V2-T2-63	
\quad Product Sumber Selection	V2-T2-63
E3 Super Efficient Transformers	V2-T2-66

NEMA Premium ${ }^{\circledR}$ Efficient Transformers

Product Description

Note: The following pages provide listings for most standard transformer ratings and catalog numbers. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton.

Types DS-3, DT-3

- Ventilated, NEMA 2 enclosure standard
- Suitable for indoor applications, outdoors when weathershields are also installed
- Upright mounting only
- $220^{\circ} \mathrm{C}$ insulation system
- $150^{\circ} \mathrm{C}$ rise standard; $115^{\circ} \mathrm{C}$ or $80^{\circ} \mathrm{C}$ rise optional
- Available in single-phase ratings $15-167 \mathrm{kVA}$, 600 volts primary (DS-3)
- Available in three-phase ratings $15-1000 \mathrm{kVA}$ and up to 600 volts primary (DT-3)

Application Description

NEMA Premium Efficient compliant energy-efficient transformers are specifically designed to meet the energy efficiency standards set forth in NEMA publication "NEMA Premium Efficiency Transformer Program Guidelines." Surveys have shown that the average loading of low voltage dry-type distribution transformers, over a 24 -hour period, is approximately 35%. NEMA Premium compliant transformers are optimized to offer maximum efficiency at 35% of nameplate rating.

The range of products covered by NEMA Premium Efficient are:

NEMA Premium Efficient Product Range

Rating	Voltage Class	Voltage
Dry-Type	Single-phase	$15-333$ kVA
Rating	Three-phase	$15-1000 \mathrm{kVA}$

Transformers that are currently specifically excluded from the scope of NEMA Premium Program include:

- Liquid-filled transformers below 10 kVA
- Dry-type transformers below 15 kVA
- AC and DC drives transformers
- Rectifier transformers designed for high harmonics
- Autotransformers
- Non-distribution transformers, such as UPS transformers
- Special impedance or regulation transformers
- Regulating transformers
- Sealed and non-ventilated transformers
- Machine tool transformers
- Welding transformers
- Transformers with tap ranges greater than 15\%
- Transformers with a frequency other than 60 Hz
- Grounding transformers
- Testing transformers

NEMA Premium Efficient Efficiency Levels

Singl	e-Phase	Three-	Phase
kVA	Efficiency	kVA	Efficiency
15	98.39	15	97.90
25	98.60	30	98.25
37.5	98.74	45	98.39
50	98.81	75	98.60
75	98.95	112.5	98.74
100	99.02	150	98.81
167	99.09	225	98.95
250	99.16	300	99.02
333	99.23	500	99.09
-	-	750	99.16
-	-	1000	99.23

Transformers
NEMA Premium and E3 Super Efficient Transformers

Features, Benefits
 and Functions

- 60 Hz operation (except as noted)
- Short-term overload capability as required by ANSI
- Meet NEMA ST-20 sound levels
- Exceed federal energy efficiency requirements for low voltage dry-type distribution transformers effective as of January 1, 2007

Standards and Certifications

- UL listed

UL
 Listed

Industry Standards

All Eaton dry-type distribution and control transformers are built and tested in accordance with applicable NEMA, ANSI and IEEE Standards. All 600 volt class transformers are UL listed unless otherwise noted.

Seismically Qualified

Eaton manufactured dry-type distribution transformers are seismically qualified and exceed requirements of the Uniform Building Code (UBC), International Building Code (IBC) and California Code Title 24.

Catalog Number Selection

Please refer to Section 2.7 Page V2-T2-187.

Product Selection

Additional Product Selection information begins on Page V2-T2-189
Three-Phase—Type DT-3 60 Hz NEMA Premium Efficient-Copper Windings

K-1 480 Volts to 208Y/120 Volts

kVA	Full Capacit FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at +2.5\%	4 at -2.5\%	DT-3	150	-	283B	-	-	V48M28T15CUN3
30	2 at +2.5\%	4 at -2.5\%	DT-3	150	-	283B	-	-	V48M28T30CUN3
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	V48M28T45CUN3
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	V48M28T75CUN3
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	V48M28T12CUN3
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	V48M28T49CUN3
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	V48M28T22CUN3
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	V48M28T33CUN3
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	V48M28F15CUN3
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	V48M28F30CUN3
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	V48M28F45CUN3
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	V48M28F75CUN3
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	V48M28F12CUN3
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	V48M28F49CUN3
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	V48M28F22CUN3
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	V48M28F33CUN3
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	283B	-	-	V48M28B15CUN3
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	283B	-	-	V48M28B30CUN3
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	283B	-	-	V48M28B45CUN3
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	283B	-	-	V48M28B75CUN3
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	283B	-	-	V48M28B12CUN3
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	283B	-	-	V48M28B49CUN3
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	283B	-	-	V48M28B22CUN3

Note
For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase—Type DT-3 60 Hz NEMA Premium Efficient-Copper Windings

2
K-9 480 Volts to 208Y/120 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	B48M28T15CUN3
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	B48M28T30CUN3
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	B48M28T45CUN3
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	B48M28T75CUN3
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	B48M28T12CUN3
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	B48M28T49CUN3
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	B48M28T22CUN3
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	B48M28T33CUN3
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	B48M28F15CUN3
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	B48M28F30CUN3
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	B48M28F45CUN3
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	B48M28F75CUN3
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	B48M28F12CUN3
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	B48M28F49CUN3
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	B48M28F22CUN3
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	B48M28F33CUN3
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	283B	-	-	B48M28B15CUN3
30	2 at +2.5\%	4 at -2.5\%	DT-3	80	-	283B	-	-	B48M28B30CUN3
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	283B	-	-	B48M28B45CUN3
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	283B	-	-	B48M28B75CUN3
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	283B	-	-	B48M28B12CUN3
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	283B	-	-	B48M28B49CUN3
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	283B	-	-	B48M28B22CUN3

Note
For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

NEMA Premium and E3 Super Efficient Transformers

Three-Phase—Type DT-3 60 Hz NEMA Premium Efficient—Copper Windings

K-13 480 Delta Volts to 208Y/120 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283C	-	-	N48M28T15CUN3
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	N48M28T30CUN3
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	N48M28T45CUN3
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	N48M28T75CUN3
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	N48M28T12CUN3
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	N48M28T49CUN3
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	N48M28T22CUN3
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	292A	-	-	N48M28T33CUN3
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283C	-	-	N48M28F15CUN3
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	N48M28F30CUN3
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	N48M28F45CUN3
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	N48M28F75CUN3
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	N48M28F12CUN3
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	N48M28F49CUN3
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	N48M28F22CUN3
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	292A	-	-	N48M28F33CUN3
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	283B	-	-	N48M28B15CUN3
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	283B	-	-	N48M28B30CUN3
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	283B	-	-	N48M28B45CUN3
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	283B	-	-	N48M28B75CUN3
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	283B	-	-	N48M28B12CUN3
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	283B	-	-	N48M28B49CUN3
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	292A	-	-	N48M28B22CUN3

Note
For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.
Contents

Description | Page |
| ---: |
| NEMA Premium Efficient Transformers | V2-T2-61

E3 Super Efficient Transformers

Product Description

Note: The following pages provide listings for most standard transformer ratings and catalog numbers. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton.

Types DS-3, DT-3

- Ventilated, NEMA 2 enclosure standard
- Suitable for indoor applications, outdoors when weathershields are also installed
- Upright mounting only
- $220^{\circ} \mathrm{C}$ insulation system
- $150^{\circ} \mathrm{C}$ rise standard; $115^{\circ} \mathrm{C}$ or $80^{\circ} \mathrm{C}$ rise optional
- Available in single-phase ratings 15-167 kVA, 600 volts primary (DS-3)
- Available in three-phase ratings 15-1000 kVA and up to 600 volts primary (DT-3)

Application Description

E3 CSL3-2007energy-

 efficient transformers are specifically designed to meet the energy efficiency guidelines as intended in the U.S. Department of Energy 10 CFR Parts 430 and 431, dated October 12, 2007. Surveys have shown that the average loading of low voltage dry-type distribution transformers, over a 24 -hour period, is approximately 35%. E3 Efficient transformers are optimized to offer maximum efficiency at 35% of nameplate rating.Additional clarifications regarding CSL3-2007 can be found in NEMA's whitepaper "Clarifications on the Use of Department of Energy Design-Line 6, 7 and 8 transformers contained within 10 CFR 430 and 431."
The range of products covered by E3 Efficient are:

E3 Efficient Product Range

	Voltage Rating	Voltase
Dry-Type	Single-phase	$15-333 \mathrm{kVA}$
Rating	Three-phase	$15-1000 \mathrm{kVA}$

Transformers that are excluded from the scope of E3 Efficient transformers include:

- Liquid-filled transformers below 10 kVA
- Dry-type transformers below 15 kVA
- AC and DC drives transformers
- Rectifier transformers designed for high harmonics
- Autotransformers
- Non-distribution transformers, such as UPS transformers
- Special impedance or regulation transformers
- Regulating transformers
- Sealed and non-ventilated transformers
- Machine tool transformers
- Welding transformers
- Transformers with tap ranges greater than 15\%
- Transformers with a frequency other than 60 Hz
- Grounding transformers
- Testing transformers

Features, Benefits

and Functions

- 60 Hz operation (except as noted
- Short-term overload capability as required by ANSI
- Meet NEMA ST-20 sound levels
- Meet or exceed federal energy efficiency requirements for low voltage dry-type distribution transformers as intended in U.S. DOE Document 10 CFR Parts 430 and 431, dated October 12, 2007.

Standards and Certifications

- UL listed

Industry Standards

All Eaton dry-type distribution and control transformers are built and tested in accordance with applicable NEMA, ANSI and IEEE Standards. All 600 volt class transformers are UL listed unless otherwise noted.

Seismically Qualified

Eaton manufactured dry-type distribution transformers are seismically qualified and exceed requirements of the Uniform Building Code (UBC), International Building Code (IBC) and California Code Title 24.

Transformers
NEMA Premium and E3 Super Efficient Transformers

Catalog Number Selection

Please refer to Section 2.7 Page V2-T2-187

Product Selection

Additional Product Selection information begins on Page V2-T2-189
Three-Phase—Type DT-3 60 Hz E3 Super Energy-Efficient-Copper Windings

K-1 480 Volts to 208Y/120 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	V48M28T15CUE3
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	V48M28T30CUE3
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	V48M28T45CUE3
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	V48M28T75CUE3
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	V48M28T12CUE3
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	V48M28T49CUE3
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	V48M28T22CUE3
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	283B	-	-	V48M28T33CUE3
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	V48M28F15CUE3
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	V48M28F30CUE3
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	V48M28F45CUE3
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	V48M28F75CUE3
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	V48M28F12CUE3
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	V48M28F49CUE3
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	283B	-	-	V48M28F22CUE3
300	2 at +2.5\%	4 at -2.5\%	DT-3	115	-	283B	-	-	V48M28F33CUE3
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	283B	-	-	V48M28B15CUE3
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	283B	-	-	V48M28B30CUE3
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	283B	-	-	V48M28B45CUE3
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	283B	-	-	V48M28B75CUE3
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	283B	-	-	V48M28B12CUE3
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	283B	-	-	V48M28B49CUE3
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	283B	-	-	V48M28B22CUE3

Note
For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

NEMA Premium and E3 Super Efficient Transformers

Three-Phase—Type DT-3 60 Hz E3 Super Energy-Efficient-Copper Windings

K-9 480 Volts to 208Y/120 Volts

kVA	Full Capacity FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) (1)	Weathershield	Catalog Number
15	2 at +2.5\%	4 at -2.5\%	DT-3	150	912D	283B	330 (150)	WS38	B48M28T15CUE3
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283B	400 (182)	WS38	B48M28T30CUE3
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	915F	283B	630 (286)	WS39	B48M28T45CUE3
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	915F	283B	865 (393)	WS39	B48M28T75CUE3
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	283B	1520 (690)	WS34	B48M28T12CUE3
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	283B	1650 (749)	WS34	B48M28T49CUE3
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	918A	283B	2090 (949)	WS34	B48M28T22CUE3
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919E	283B	3900 (1771)	WS35	B48M28T33CUE3
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283B	335 (152)	WS38	B48M28F15CUE3
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283B	406 (184)	WS38	B48M28F30CUE3
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	915F	283B	635 (288)	WS39	B48M28F45CUE3
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	915F	283B	870 (395)	WS39	B48M28F75CUE3
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	283B	1526 (693)	WS34	B48M28F12CUE3
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	283B	1665 (756)	WS34	B48M28F49CUE3
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	918A	283B	2094 (951)	WS34	B48M28F22CUE3
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919E	283B	3900 (1771)	WS35	B48M28F33CUE3
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283B	406 (184)	WS38	B48M28B15CUE3
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	283B	635 (288)	WS39	B48M28B30CUE3
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	283B	870 (395)	WS39	B48M28B45CUE3
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	283B	1526 (693)	WS34	B48M28B75CUE3
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	283B	1665 (756)	WS34	B48M28B12CUE3
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	918A	283B	2094 (951)	WS34	B48M28B49CUE3
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	283B	3900 (1771)	WS35	B48M28B22CUE3

Notes
(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Transformers
NEMA Premium and E3 Super Efficient Transformers

Three-Phase—Type DT-3 60 Hz E3 Super Energy-Efficient-Copper Windings

2
K-13 480 Delta Volts to 208Y/120 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg) ${ }^{(1)}$	Weathershield	Catalog Number
15	2 at +2.5\%	4 at -2.5\%	DT-3	150	912D	283C	325 (148)	WS38	N48M28T15CUE3
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	283B	370 (168)	WS38	N48M28T30CUE3
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	915F	283B	635 (288)	WS39	N48M28T45CUE3
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	915F	283B	870 (395)	WS39	N48M28T75CUE3
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	283B	1526 (693)	WS34	N48M28T12CUE3
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	283B	1665 (756)	WS34	N48M28T49CUE3
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	918A	283B	2094 (951)	WS34	N48M28T22CUE3
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919E	292A	3900 (1771)	WS35	N48M28T33CUE3
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283C	325 (148)	WS38	N48M28F15CUE3
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	283B	370 (168)	WS38	N48M28F30CUE3
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	915F	283B	635 (288)	WS39	N48M28F45CUE3
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	915F	283B	870 (395)	WS39	N48M28F75CUE3
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	283B	1526 (693)	WS34	N48M28F12CUE3
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	283B	1665 (756)	WS34	N48M28F49CUE3
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	918A	283B	2094 (951)	WS34	N48M28F22CUE3
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919E	292A	3900 (1771)	WS35	N48M28F33CUE3
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	283B	370 (168)	WS38	N48M28B15CUE3
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	283B	635 (288)	WS39	N48M28B30CUE3
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	283B	870 (395)	WS39	N48M28B45CUE3
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	283B	1526 (693)	WS34	N48M28B75CUE3
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	283B	1665 (756)	WS34	N48M28B12CUE3
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	918A	283B	2094 (951)	WS34	N48M28B49CUE3
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919E	292A	3900 (1771)	WS35	N48M28B22CUE3

Notes
(1) Weights subject to change.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Product Description

Note: The following pages provide listings for most standard transformer ratings and catalog numbers. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton.

The electrical transformer has been a staple of electrical power systems for the past $100+$ years. While the types of electrical loads that are being added to our systems today have radically changed, the transformer has stayed relatively the same in design during this time frame. Eaton's harmonic mitigating transformer (HMT) represents the evolution of the transformer into something that will best provide clean, energyefficient electricity to power the loads of today and tomorrow. The recent shift of our electrical loads from predominately AC consumers (resistive heating elements, incandescent lighting, three-phase motor load) to DC consumers (such as computers, fax machines,
printers, down to the "wall-wart" that recharges the cell phone) requires that our electrical infrastructure changes as well. These new loads now introduce other currents and frequencies into our electrical power systems-commonly known as "harmonics." Harmonic currents can cause additional heating, which may cause transformers, generators and conductors to become overloaded. Excessive heat is one of the major reasons that standard transformers and conductors fail prematurely. These harmonic currents have various other effects (such as "loss of ride-through capability," reduced lifespan and mysterious misoperation of equipment) on the components and loads of an electrical distribution system. Eaton's HMTs, when used properly within an electrical system, will help keep the loads operating the way the manufacturer designed them and keep the facility's electrical system free from voltage distortion.

Contents

Description	Page
Energy-Efficient Harmonic Mitigating Transformers	
Standards and Certifications	V2-T2-72
Catalog Number Selection	V2-T2-72
Product Selection	V2-73
NEMA TP-1 Efficient	V2-T2-81
E3 Super Efficient .	V2-T2-89
Accessories	
Technical Data and Specifications	V2-T2-89

Three-Phase, Type DT-3 HMT, 60 Hz

- Harmonic mitigating (cancellation) transformers are a cost-effective means of treating harmful harmonics in an electrical distribution system
- Reducing harmonic content in electrical systems can result in a more reliable electrical system, lower maintenance costs, less downtime, fewer equipment malfunctions, and lower cooling system capacity
- Available in a variety of phase-shift configurations that allow flexibility to target specific families of harmonics
- Harmonic treatment via electromagnetic flux cancellation
- May be installed as a stand-alone transformer, or included in IFS ${ }^{\text {TM }}$
- Available in three-phase ratings, 15-500 kVA, up to 600 volts primary

Features and Benefits

- 480 volt to $208 / 120$ volt standard. Additional voltage combinations available
- $150^{\circ} \mathrm{C}, 115^{\circ} \mathrm{C}$ or $80^{\circ} \mathrm{C}$ temperature rise available
- Copper windings and terminals standard; aluminum available
- Meet or exceed NEMA TP-1 energy-efficiency level
- 200\% rated neutral
- Single electrostatic shield for attenuation of common mode and transverse mode noise
- Approximately 98% efficient when operated in systems with 100% nonlinear load profiles
- $220^{\circ} \mathrm{C}$ insulation system
- Third-party tested for harmonic performance and energy efficiency
- Meet NEMA ST-20 sound standards
- Eliminate circulating harmonic currents in primary windings of transformers
- Enclosures are NEMA 2 drip-proof. The addition of optional weather-shields makes the enclosure NEMA 3R rainproof
- Harmonic cancellation via electromagnetic flux cancellation. Filters, capacitors or other such devices are not used
- Help meet IEEE 519 harmonic limits

Standards and Certifications

- UL listed

Industry Standards

All Eaton dry-type transformers are built and tested in accordance with applicable NEMA, ANSI and IEEE standards. Harmonic mitigating transformers are UL listed.

IEEE 519-1992

Proper use of Eaton's harmonic mitigating transformers within your electrical system will help you to meet the harmonic distortion limits as proposed by IEEE 519-1992,
"IEEE Recommended
Practices and Requirements
for Harmonic Control in Electrical Power Systems."

Seismic Qualified

Eaton dry-type distribution transformers are seismically qualified and exceed the requirements of the Uniform Building Code (UBC), International Building Code (IBC) and California Code Title 24.

Catalog Number Selection

Energy-Efficient Harmonic Mitigating Transformers

NEMA TP-1-2002 Efficiency Levels		E3 Efficient Efficiency Levels	
Tables of Energy Efficiency NEMA Class 1 Efficiency Levels Dry-Type Distribution TransformersLow Voltage (600 V and below)		Tables of Energy Efficiency E3 Efficiency Levels Dry-Type Distribution TransformersLow Voltage (600 V and below)	
Three-Phase		Three-Phase	
kVA	Efficiency	kVA	Efficiency
15	97.0	15	97.97
30	97.5	30	98.29
45	97.7	45	98.45
75	98.0	75	98.64
112.5	98.2	112.5	98.77
150	98.3	150	98.86
225	98.5	225	98.97
300	98.6	300	99.04
500	98.7	500	99.16
750	98.8	750	99.24
1000	98.9	1000	99.29

Note

(1) The most common ratings are shown. Contact Eaton for availability of additional ratings.

Product Selection

Three-Phase-Type DT-3 60 Hz NEMA TP-1 Energy-Efficient Harmonic Mitigating

	Full Capacity Taps		Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	FCAN	FCBN							
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	200X	290 (132)	WS38	X48M28T15EENON
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	200X	365 (166)	WS38	X48M28T30EENON
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	915F	200X	560 (254)	WS39	X48M28T45EENON
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	200X	800 (363)	WS19	X48M28T75EENON
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	200X	1380 (627)	WS34	X48M28T12EENON
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	918A	200X	1560 (708)	WS34	X48M28T49EENON
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919EX	201X	2400 (1090)	WS35	X48M28T22EENON
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919EX	201X	2970 (1348)	WS35	X48M28T33EENON
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	200X	360 (163)	WS38	X48M28F15EEN0N
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	200X	405 (184)	WS38	X48M28F30EENON
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	915F	200X	575 (261)	WS39	X48M28F45EENON
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	200X	900 (409)	WS19	X48M28F75EENON
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	200x	1380 (627)	WS34	X48M28F12EENON
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	918A	200X	1600 (726)	WS34	X48M28F49EENON
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919EX	201X	2600 (1180)	WS35	X48M28F22EEN0N
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919EX	201X	3100 (1407)	WS35	X48M28F33EENON
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	200X	380 (173)	WS38	X48M28B15EENON
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	200X	560 (254)	WS39	X48M28B30EENON
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	200X	800 (363)	WS39	X48M28B45EENON
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	200X	1380 (627)	WS19	X48M28B75EENON
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	200X	1560 (708)	WS34	X48M28B12EENON
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	918A	200X	2400 (1090)	WS34	X48M28B49EENON
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919EX	201X	2970 (1348)	WS35	X48M28B22EENON
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919EX	201X	3400 (1544)	WS35	X48M28B33EENON

Note
Frame drawings/dimensions information begins on Page V2-T2-216

Three-Phase-Type DT-3 60 Hz NEMA TP-1 Energy-Efficient Harmonic Mitigating

2
480 Volts to 208Y/120 Volts-Copper Windings - Type NON 0-Degree Phase Shift

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	200X	335 (152)	WS38	X48M28T15CUEENON
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	200X	430 (195)	WS38	X48M28T3OCUEENON
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	915F	200X	627 (285)	WS39	X48M28T45CUEENON
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	200x	926 (420)	WS19	X48M28T75CUEENON
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	200X	1610 (731)	WS34	X48M28T12CUEENON
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	918A	200X	1800 (817)	WS34	X48M28T49CUEENON
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919EX	201X	3580 (1625)	WS35	X48M28T22CUEENON
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919EX	201X	3500 (1589)	WS35	X48M28T33CUEENON
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	200X	362 (164)	WS38	X48M28F15CUEENON
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	200X	430 (195)	WS38	X48M28F30CUEENON
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	915F	200x	627 (285)	WS39	X48M28F45CUEENON
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	200X	926 (420)	WS19	X48M28F75CUEENON
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	200X	1628 (739)	WS34	X48M28F12CUEENON
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	918A	200X	2001 (908)	WS34	X48M28F49CUEENON
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919EX	201X	3596 (1633)	WS35	X48M28F22CUEENON
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919EX	201X	3891 (1767)	WS35	X48M28F33CUEENON
15	2 at $+2.5 \%$	4 at -2.5%	DT-3	80	912D	200X	358 (163)	WS38	X48M28B15CUEENON
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	200X	558 (253)	WS39	X48M28B30CUEENON
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	200X	630 (286)	WS39	X48M28B45CUEENON
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	200X	940 (427)	WS19	X48M28B75CUEENON
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	200X	1628 (739)	WS34	X48M28B12CUEENON
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	918A	200X	1800 (817)	WS34	X48M28B49CUEEN0N
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919EX	201X	3400 (1544)	WS35	X48M28B22CUEENON
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919EX	201X	4377 (1987)	WS35	X48M28B33CUEEN0N

Note

Frame drawings/dimensions information begins on Page V2-T2-216

Three-Phase-Type DT-3 60 Hz NEMA TP-1 Energy-Efficient Harmonic Mitigating

480 Volts to 208Y/120 Volts-Aluminum Windings - Type THR 30-Degree Phase Shift

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at +2.5\%	4 at -2.5\%	DT-3	150	912D	200X	290 (132)	WS38	X48M28T15EETHR
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	200X	365 (166)	WS38	X48M28T30EETHR
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	915F	200X	560 (254)	WS39	X48M28T45EETHR
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	200X	800 (363)	WS19	X48M28T75EETHR
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	200X	1380 (627)	WS34	X48M28T12EETHR
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	918A	200X	1560 (708)	WS34	X48M28T49EETHR
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919EX	201X	2400 (1090)	WS35	X48M28T22EETHR
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919EX	201X	2970 (1348)	WS35	X48M28T33EETHR
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	200X	360 (163)	WS38	X48M28F15EETHR
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	200X	405 (184)	WS38	X48M28F30EETHR
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	915F	200X	575 (261)	WS39	X48M28F45EETHR
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	200X	900 (409)	WS19	X48M28F75EETHR
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	200x	1380 (627)	WS34	X48M28F12EETHR
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	918A	200X	1600 (726)	WS34	X48M28F49EETHR
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919EX	201X	2600 (1180)	WS35	X48M28F22EETHR
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919EX	201X	3100 (1407)	WS35	X48M28F33EETHR
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	200X	380 (173)	WS38	X48M28B15EETHR
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	200X	560 (254)	WS39	X48M28B30EETHR
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	200x	800 (363)	WS39	X48M28B45EETHR
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	200X	1380 (627)	WS19	X48M28B75EETHR
112.5	2 at $+2.5 \%$	4 at -2.5%	DT-3	80	917	200X	1560 (708)	WS34	X48M28B12EETHR
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	918A	200X	2400 (1090)	WS34	X48M28B49EETHR
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919EX	201X	2970 (1348)	WS35	X48M28B22EETHR
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919EX	201X	3400 (1544)	WS35	X48M28B33EETHR

Note
Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase-Type DT-3 60 Hz NEMA TP-1 Energy-Efficient Harmonic Mitigating

2
480 Volts to 208Y/120 Volts-Copper Windings - Type THR 30-Degree Phase Shift

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	203X	335 (152)	WS38	X48M28T15CUEETHR
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	203X	450 (204)	WS38	X48M28T30CUEETHR
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	915F	203X	627 (285)	WS39	X48M28T45CUEETHR
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	203X	855 (388)	WS19	X48M28T75CUEETHR
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	203X	1610 (731)	WS34	X48M28T12CUEETHR
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	918A	203X	1800 (817)	WS34	X48M28T49CUEETHR
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919EX	203X	3450 (1566)	WS35	X48M28T22CUEETHR
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919EX	203X	3894 (1768)	WS35	X48M28T33CUEETHR
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	203X	362 (164)	WS38	X48M28F15CUEETHR
30	$2 \mathrm{at}+2.5 \%$	4 at -2.5\%	DT-3	115	912D	203X	450 (204)	WS38	X48M28F30CUEETHR
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	915F	203X	610 (277)	WS39	X48M28F45CUEETHR
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	203X	868 (394)	WS19	X48M28F75CUEETHR
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	203X	1643 (746)	WS34	X48M28F12CUEETHR
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	918A	203X	2001 (908)	WS34	X48M28F49CUEETHR
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919EX	203X	3370 (1530)	WS35	X48M28F22CUEETHR
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919EX	203X	3894 (1768)	WS35	X48M28F33CUEETHR
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	203X	358 (163)	WS38	X48M28B15CUEETHR
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	203X	558 (253)	WS39	X48M28B30CUEETHR
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	203X	630 (286)	WS39	X48M28B45CUEETHR
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	203X	940 (427)	WS19	X48M28B75CUEETHR
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	203X	1628 (739)	WS34	X48M28B12CUEETHR
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	918A	203X	1800 (817)	WS34	X48M28B49CUEETHR
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919EX	203X	3400 (1544)	WS35	X48M28B22CUEETHR
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919EX	203X	4417 (2005)	WS35	X48M28B33CUEETHR

Note
Frame drawings/dimensions information begins on Page V2-T2-216

Three-Phase-Type DT-3 60 Hz NEMA TP-1 Energy-Efficient Harmonic Mitigating

480 Volts to 208Y/120 Volts - Aluminum Windings - Type NEG -15-Degree Phase Shift

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	200X	290 (132)	WS38	X48M28T15EENEG
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	200X	365 (166)	WS38	X48M28T30EENEG
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	915F	200X	560 (254)	WS39	X48M28T45EENEG
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	200X	800 (363)	WS19	X48M28T75EENEG
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	200X	1380 (627)	WS34	X48M28T12EENEG
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	918A	200X	1560 (708)	WS34	X48M28T49EENEG
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919EX	201X	2400 (1090)	WS35	X48M28T22EENEG
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919EX	201X	2970 (1348)	WS35	X48M28T33EENEG
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	200X	360 (163)	WS38	X48M28F15EENEG
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	200X	405 (184)	WS38	X48M28F30EENEG
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	915F	200X	575 (261)	WS39	X48M28F45EENEG
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	200X	900 (409)	WS19	X48M28F75EENEG
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	200X	1380 (627)	WS34	X48M28F12EENEG
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	918A	200X	1600 (726)	WS34	X48M28F49EENEG
225	2 at $+2.5 \%$	4 at -2.5%	DT-3	115	919EX	201X	2600 (1180)	WS35	X48M28F22EENEG
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919EX	201X	3100 (1407)	WS35	X48M28F33EENEG
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	200X	380 (173)	WS38	X48M28B15EENEG
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	200X	560 (254)	WS39	X48M28B30EENEG
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	200X	800 (363)	WS39	X48M28B45EENEG
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	200X	1380 (627)	WS19	X48M28B75EENEG
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	200X	1560 (708)	WS34	X48M28B12EENEG
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	918A	200x	2400 (1090)	WS34	X48M28B49EENEG
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919EX	201X	2970 (1348)	WS35	X48M28B22EENEG
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919EX	201X	3400 (1544)	WS35	X48M28B33EENEG

Note
Frame drawings/dimensions information begins on Page V2-T2-216

Three-Phase-Type DT-3 60 Hz NEMA TP-1 Energy-Efficient Harmonic Mitigating

2
480 Volts to 208Y/120 Volts-Copper Windings - Type NEG -15-Degree Phase Shift

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	200X	335 (152)	WS38	X48M28T15CUEENEG
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	200X	430 (195)	WS38	X48M28T30CUEENEG
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	915F	200X	627 (285)	WS39	X48M28T45CUEENEG
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	200X	926 (420)	WS19	X48M28T75CUEENEG
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	200X	1610 (731)	WS34	X48M28T12CUEENEG
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	918A	200X	1800 (817)	WS34	X48M28T49CUEENEG
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919EX	200X	3580 (1625)	WS35	X48M28T22CUEENEG
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919EX	200X	3500 (1589)	WS35	X48M28T33CUEENEG
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	200X	353 (160)	WS38	X48M28F15CUEENEG
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	200X	430 (195)	WS38	X48M28F30CUEENEG
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	915F	200X	627 (285)	WS39	X48M28F45CUEENEG
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	200X	926 (420)	WS19	X48M28F75CUEENEG
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	200X	1628 (739)	WS34	X48M28F12CUEENEG
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	918A	200X	2001 (908)	WS34	X48M28F49CUEENEG
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919EX	200X	3596 (1633)	WS35	X48M28F22CUEENEG
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919EX	200X	3891 (1767)	WS35	X48M28F33CUEENEG
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	200X	358 (163)	WS38	X48M28B15CUEENEG
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	200X	558 (253)	WS39	X48M28B30CUEENEG
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	200X	630 (286)	WS39	X48M28B45CUEENEG
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	200X	940 (427)	WS19	X48M28B75CUEENEG
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	200X	1628 (739)	WS34	X48M28B12CUEENEG
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	918A	200X	1800 (817)	WS34	X48M28B49CUEENEG
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919EX	200X	3400 (1544)	WS35	X48M28B22CUEENEG
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	920EX	200X	4377 (1987)	WS35	X48M28B33CUEENEG

Note
Frame drawings/dimensions information begins on Page V2-T2-216

Three-Phase-Type DT-3 60 Hz NEMA TP-1 Energy-Efficient Harmonic Mitigating

480 Volts to 208Y/120 Volts - Aluminum Windings - Type POS +15-Degree Phase Shift

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	200X	290 (132)	WS38	X48M28T15EEPOS
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	200X	365 (166)	WS38	X48M28T30EEPOS
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	915F	200X	560 (254)	WS39	X48M28T45EEPOS
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	200X	800 (363)	WS19	X48M28T75EEPOS
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	200X	1380 (627)	WS34	X48M28T12EEPOS
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	918A	200X	1560 (708)	WS34	X48M28T49EEPOS
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919EX	201X	2400 (1090)	WS35	X48M28T22EEPOS
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919EX	201X	2970 (1348)	WS35	X48M28T33EEPOS
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912 D	200x	360 (163)	WS38	X48M28F15EEPOS
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	200x	405 (184)	WS38	X48M28F30EEPOS
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	915F	200X	575 (261)	WS39	X48M28F45EEPOS
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	200X	900 (409)	WS19	X48M28F75EEPOS
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	200X	1380 (627)	WS34	X48M28F12EEPOS
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	918A	200x	1600 (726)	WS34	X48M28F49EEPOS
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919EX	201X	2600 (1180)	WS35	X48M28F22EEPOS
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919EX	201X	3100 (1407)	WS35	X48M28F33EEPOS
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	200X	380 (173)	WS38	X48M28B15EEP0S
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	200X	560 (254)	WS39	X48M28B30EEP0S
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	200X	800 (363)	WS39	X48M28B45EEPOS
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	200X	1380 (627)	WS19	X48M28B75EEP0S
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	200X	1560 (708)	WS34	X48M28B12EEP0S
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	918A	200X	2400 (1090)	WS34	X48M28B49EEPOS
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919EX	201X	2970 (1348)	WS35	X48M28B22EEP0S
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919EX	201X	3400 (1544)	WS35	X48M28B33EEP0S

Note
Frame drawings/dimensions information begins on Page V2-T2-216

Three-Phase-Type DT-3 60 Hz NEMA TP-1 Energy-Efficient Harmonic Mitigating

2
480 Volts to 208Y/120 Volts - Copper Windings - Type POS +15-Degree Phase Shift

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	200X	335 (152)	WS38	X48M28T15CUEEPOS
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	200X	430 (195)	WS38	X48M28T30CUEEPOS
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	915F	200X	627 (285)	WS39	X48M28T45CUEEPOS
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	200X	926 (420)	WS19	X48M28T75CUEEPOS
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	200X	1610 (731)	WS34	X48M28T12CUEEPOS
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	918A	200X	1800 (817)	WS34	X48M28T49CUEEPOS
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919EX	201X	3580 (1625)	WS35	X48M28T22CUEEPOS
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919EX	201X	3500 (1589)	WS35	X48M28T33CUEEPOS
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	200X	362 (164)	WS38	X48M28F15CUEEPOS
30	$2 \mathrm{at}+2.5 \%$	4 at -2.5\%	DT-3	115	912D	200X	430 (195)	WS38	X48M28F30CUEEPOS
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	915F	200X	627 (285)	WS39	X48M28F45CUEEPOS
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	200X	926 (420)	WS19	X48M28F75CUEEPOS
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	200X	1628 (739)	WS34	X48M28F12CUEEPOS
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	918A	200X	2001 (908)	WS34	X48M28F49CUEEPOS
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919EX	201X	3596 (1633)	WS35	X48M28F22CUEEPOS
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919EX	201X	3891 (1767)	WS35	X48M28F33CUEEPOS
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	200X	358 (163)	WS38	X48M28B15CUEEPOS
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	200X	558 (253)	WS39	X48M28B30CUEEPOS
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	200X	630 (286)	WS39	X48M28B45CUEEPOS
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	200X	940 (427)	WS19	X48M28B75CUEEPOS
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	200x	1628 (739)	WS34	X48M28B12CUEEPOS
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	918A	200X	1800 (817)	WS34	X48M28B49CUEEP0S
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919EX	201X	3400 (1544)	WS35	X48M28B22CUEEPOS
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919EX	201X	4377 (1987)	WS35	X48M28B33CUEEPOS

Note

Frame drawings/dimensions information begins on Page V2-T2-216

Three-Phase-Type DT-3 60 Hz E3 Super Energy-Efficient Harmonic Mitigating

480 Volts to 208Y/120 Volts-Aluminum Windings-Type NON 0-Degree Phase Shift

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	200X	-	-	X48M28T15E3N0N
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	200X	-	-	X48M28T30E3N0N
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	200X	-	-	X48M28T45E3N0N
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	200X	-	-	X48M28T75E3NON
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	200X	-	-	X48M28T12E3NON
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	200X	-	-	X48M28T49E3N0N
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	201X	-	-	X48M28T22E3NON
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	201X	-	-	X48M28T33E3NON
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	200X	-	-	X48M28F15E3NON
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	200X	-	-	X48M28F30E3NON
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	200x	-	-	X48M28F45E3NON
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	200X	-	-	X48M28F75E3NON
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	200X	-	-	X48M28F12E3NON
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	200X	-	-	X48M28F49E3NON
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	201X	-	-	X48M28F22E3NON
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	201X	-	-	X48M28F33E3NON
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	200X	-	-	X48M28B15E3NON
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	200X	-	-	X48M28B30E3NON
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	200x	-	-	X48M28B45E3NON
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	200X	-	-	X48M28B75E3NON
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	200X	-	-	X48M28B12E3NON
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	200X	-	-	X48M28B49E3NON
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	201X	-	-	X48M28B22E3NON
300	2 at $+2.5 \%$	4 at -2.5%	DT-3	80	-	201X	-	-	X48M28B33E3NON

Note
Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase-Type DT-3 60 Hz E3 Super Energy-Efficient Harmonic Mitigating

2
480 Volts to 208Y/120 Volts-Copper Windings-Type NON 0-Degree Phase Shift

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at +2.5\%	4 at -2.5\%	DT-3	150	912D	200X	335 (152)	WS38	X48M28T15CUE3NON
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	200x	430 (195)	WS38	X48M28T30CUE3NON
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	915F	200X	627 (285)	WS39	X48M28T45CUE3NON
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	200X	926 (420)	WS19	X48M28T75CUE3NON
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	200X	1610 (731)	WS34	X48M28T12CUE3NON
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	918A	200X	1800 (817)	WS34	X48M28T49CUE3NON
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919EX	201X	3580 (1625)	WS35	X48M28T22CUE3NON
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919EX	201X	3500 (1589)	WS35	X48M28T33CUE3NON
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	200X	362 (164)	WS38	X48M28F15CUE3NON
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	200X	430 (195)	WS38	X48M28F30CUE3NON
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	915F	200X	627 (285)	WS39	X48M28F45CUE3NON
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	200X	926 (420)	WS19	X48M28F75CUE3NON
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	200X	1628 (739)	WS34	X48M28F12CUE3NON
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	918A	200X	2001 (908)	WS34	X48M28F49CUE3NON
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919EX	201X	3596 (1633)	WS35	X48M28F22CUE3NON
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919EX	201X	3891 (1767)	WS35	X48M28F33CUE3NON
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	200x	358 (163)	WS38	X48M28B15CUE3NON
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	200X	558 (253)	WS39	X48M28B30CUE3NON
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	200X	630 (286)	WS39	X48M28B45CUE3NON
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	200X	940 (427)	WS19	X48M28B75CUE3NON
112.5	$2 \mathrm{at}+2.5 \%$	4 at -2.5\%	DT-3	80	917	200X	1628 (739)	WS34	X48M28B12CUE3NON
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	918A	200X	1800 (817)	WS34	X48M28B49CUE3NON
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919EX	201X	3400 (1544)	WS35	X48M28B22CUE3NON
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919EX	201X	4377 (1987)	WS35	X48M28B33CUE3NON

Note

Frame drawings/dimensions information begins on Page V2-T2-216

Three-Phase-Type DT-3 60 Hz E3 Super Energy-Efficient Harmonic Mitigating

480 Volts to 208Y/120 Volts-Aluminum Windings-Type THR 30-Degree Phase Shift

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at +2.5\%	4 at -2.5\%	DT-3	150	-	200X	-	-	X48M28T15E3THR
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	200X	-	-	X48M28T30E3THR
45	2 at +2.5\%	4 at -2.5\%	DT-3	150	-	200X	-	-	X48M28T45E3THR
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	200X	-	-	X48M28T75E3THR
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	200x	-	-	X48M28T12E3THR
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	200X	-	-	X48M28T49E3THR
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	201X	-	-	X48M28T22E3THR
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	201X	-	-	X48M28T33E3THR
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	200X	-	-	X48M28F15E3THR
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	200X	-	-	X48M28F30E3THR
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	200X	-	-	X48M28F45E3THR
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	200X	-	-	X48M28F75E3THR
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	200x	-	-	X48M28F12E3THR
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	200x	-	-	X48M28F49E3THR
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	201X	-	-	X48M28F22E3THR
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	201X	-	-	X48M28F33E3THR
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	200X	-	-	X48M28B15E3THR
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	200 X	-	-	X48M28B30E3THR
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	200x	-	-	X48M28B45E3THR
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	200X	-	-	X48M28B75E3THR
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	200X	-	-	X48M28B12E3THR
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	200X	-	-	X48M28B49E3THR
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	201X	-	-	X48M28B22E3THR
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	201X	-	-	X48M28B33E3THR

Note
Frame drawings/dimensions information begins on Page V2-T2-216

Three-Phase-Type DT-3 60 Hz E3 Super Energy-Efficient Harmonic Mitigating

2
480 Volts to 208Y/120 Volts-Copper Windings-Type THR 30-Degree Phase Shift

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	203X	335 (152)	WS38	X48M28T15CUE3THR
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	203X	450 (204)	WS38	X48M28T30CUE3THR
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	915F	203X	627 (285)	WS39	X48M28T45CUE3THR
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	203X	855 (388)	WS19	X48M28T75CUE3THR
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	203X	1610 (731)	WS34	X48M28T12CUE3THR
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	918A	203X	1800 (817)	WS34	X48M28T49CUE3THR
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919EX	203X	3450 (1566)	WS35	X48M28T22CUE3THR
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919EX	203X	3894 (1768)	WS35	X48M28T33CUE3THR
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	203X	362 (164)	WS38	X48M28F15CUE3THR
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	203X	450 (204)	WS38	X48M28F30CUE3THR
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	915F	203X	610 (277)	WS39	X48M28F45CUE3THR
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	203X	868 (394)	WS19	X48M28F75CUE3THR
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	203X	1643 (746)	WS34	X48M28F12CUE3THR
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	918A	203X	2001 (908)	WS34	X48M28F49CUE3THR
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919EX	203X	3370 (1530)	WS35	X48M28F22CUE3THR
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919EX	203X	3894 (1768)	WS35	X48M28F33CUE3THR
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	203X	358 (163)	WS38	X48M28B15CUE3THR
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	203X	558 (253)	WS39	X48M28B30CUE3THR
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	203X	630 (286)	WS39	X48M28B45CUE3THR
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	203X	940 (427)	WS19	X48M28B75CUE3THR
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	203X	1628 (739)	WS34	X48M28B12CUE3THR
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	918A	203X	1800 (817)	WS34	X48M28B49CUE3THR
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919EX	203X	3400 (1544)	WS35	X48M28B22CUE3THR

Note

Frame drawings/dimensions information begins on Page V2-T2-216

Three-Phase-Type DT-3 60 Hz E3 Super Energy-Efficient Harmonic Mitigating

480 Volts to 208Y/120 Volts-Aluminum Windings - Type NEG -15-Degree Phase Shift

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	200X	-	-	X48M28T15E3NEG
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	200X	-	-	X48M28T30E3NEG
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	200X	-	-	X48M28T45E3NEG
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	200X	-	-	X48M28T75E3NEG
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	200X	-	-	X48M28T12E3NEG
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	200X	-	-	X48M28T49E3NEG
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	201X	-	-	X48M28T22E3NEG
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	201X	-	-	X48M28T33E3NEG
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	200X	-	-	X48M28F15E3NEG
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	200X	-	-	X48M28F30E3NEG
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	200X	-	-	X48M28F45E3NEG
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	200X	-	-	X48M28F75E3NEG
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	200X	-	-	X48M28F12E3NEG
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	200X	-	-	X48M28F49E3NEG
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	201X	-	-	X48M28F22E3NEG
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	201X	-	-	X48M28F33E3NEG
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	200X	-	-	X48M28B15E3NEG
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	200X	-	-	X48M28B30E3NEG
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	200X	-	-	X48M28B45E3NEG
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	200X	-	-	X48M28B75E3NEG
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	200X	-	-	X48M28B12E3NEG
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	200X	-	-	X48M28B49E3NEG
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	201X	-	-	X48M28B22E3NEG
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	201X	-	-	X48M28B33E3NEG

Note
Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase-Type DT-3 60 Hz E3 Super Energy-Efficient Harmonic Mitigating

2
480 Volts to 208Y/120 Volts-Copper Windings-Type NEG -15-Degree Phase Shift

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	200X	335 (152)	WS38	X48M28T15CUE3NEG
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	200X	430 (195)	WS38	X48M28T30CUE3NEG
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	915F	200X	627 (285)	WS39	X48M28T45CUE3NEG
75	$2 \mathrm{at}+2.5 \%$	4 at -2.5\%	DT-3	150	916A	200X	926 (420)	WS19	X48M28T75CUE3NEG
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	200X	1610 (731)	WS34	X48M28T12CUE3NEG
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	918A	200X	1800 (817)	WS34	X48M28T49CUE3NEG
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919EX	200X	3580 (1625)	WS35	X48M28T22CUE3NEG
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919EX	200X	3500 (1589)	WS35	X48M28T33CUE3NEG
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	200X	353 (160)	WS38	X48M28F15CUE3NEG
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	200X	430 (195)	WS38	X48M28F30CUE3NEG
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	915F	200X	627 (285)	WS39	X48M28F45CUE3NEG
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	200X	926 (420)	WS19	X48M28F75CUE3NEG
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	200X	1628 (739)	WS34	X48M28F12CUE3NEG
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	918A	200X	2001 (908)	WS34	X48M28F49CUE3NEG
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919EX	200X	3596 (1633)	WS35	X48M28F22CUE3NEG
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919EX	200X	3891 (1767)	WS35	X48M28F33CUE3NEG
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	200X	358 (163)	WS38	X48M28B15CUE3NEG
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	200X	558 (253)	WS39	X48M28B30CUE3NEG
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	200X	630 (286)	WS39	X48M28B45CUE3NEG
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	200X	940 (427)	WS19	X48M28B75CUE3NEG
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	200X	1628 (739)	WS34	X48M28B12CUE3NEG
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	918A	200X	1800 (817)	WS34	X48M28B49CUE3NEG
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919EX	200X	3400 (1544)	WS35	X48M28B22CUE3NEG
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	920EX	200X	4377 (1987)	WS35	X48M28B33CUE3NEG

Note

Frame drawings/dimensions information begins on Page V2-T2-216

Three-Phase-Type DT-3 60 Hz E3 Super Energy-Efficient Harmonic Mitigating

480 Volts to 208Y/120 Volts - Aluminum Windings - Type POS +15-Degree Phase Shift

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	200X	-	-	X48M28T15E3P0S
30	2 at +2.5\%	4 at -2.5\%	DT-3	150	-	200X	-	-	X48M28T30E3P0S
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	200X	-	-	X48M28T45E3P0S
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	200X	-	-	X48M28T75E3P0S
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	200X	-	-	X48M28T12E3POS
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	200X	-	-	X48M28T49E3P0S
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	201X	-	-	X48M28T22E3POS
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	-	201X	-	-	X48M28T33E3P0S
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	200X	-	-	X48M28F15E3POS
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	200X	-	-	X48M28F30E3POS
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	200X	-	-	X48M28F45E3POS
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	200X	-	-	X48M28F75E3POS
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	200X	-	-	X48M28F12E3POS
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	200x	-	-	X48M28F49E3POS
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	201X	-	-	X48M28F22E3POS
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	-	201X	-	-	X48M28F33E3POS
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	200X	-	-	X48M28B15E3POS
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	200X	-	-	X48M28B30E3POS
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	200X	-	-	X48M28B45E3POS
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	200X	-	-	X48M28B75E3POS
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	200X	-	-	X48M28B12E3POS
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	200X	-	-	X48M28B49E3POS
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	201X	-	-	X48M28B22E3POS
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	-	201X	-	-	X48M28B33E3POS

Note
Frame drawings/dimensions information begins on Page V2-T2-216

Three-Phase-Type DT-3 60 Hz E3 Super Energy-Efficient Harmonic Mitigating

2
480 Volts to 208Y/120 Volts-Copper Windings-Type POS +15-Degree Phase Shift

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	200X	335 (152)	WS38	X48M28T15CUE3POS
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	912D	200X	430 (195)	WS38	X48M28T30CUE3POS
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	915F	200X	627 (285)	WS39	X48M28T45CUE3POS
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	916A	200X	926 (420)	WS19	X48M28T75CUE3POS
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	917	200X	1610 (731)	WS34	X48M28T12CUE3POS
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	918A	200X	1800 (817)	WS34	X48M28T49CUE3POS
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919EX	201X	3580 (1625)	WS35	X48M28T22CUE3POS
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	150	919EX	201X	3500 (1589)	WS35	X48M28T33CUE3POS
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	200X	362 (164)	WS38	X48M28F15CUE3POS
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	912D	200X	430 (195)	WS38	X48M28F30CUE3POS
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	915F	200X	627 (285)	WS39	X48M28F45CUE3POS
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	916A	200X	926 (420)	WS19	X48M28F75CUE3POS
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	917	200X	1628 (739)	WS34	X48M28F12CUE3POS
150	2 at $+2.5 \%$	4 at -2.5%	DT-3	115	918A	200X	2001 (908)	WS34	X48M28F49CUE3POS
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919EX	201X	3596 (1633)	WS35	X48M28F22CUE3POS
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	115	919EX	201X	3891 (1767)	WS35	X48M28F33CUE3POS
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	912D	200X	358 (163)	WS38	X48M28B15CUE3POS
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	200X	558 (253)	WS39	X48M28B30CUE3POS
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	915F	200X	630 (286)	WS39	X48M28B45CUE3POS
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	916A	200X	940 (427)	WS19	X48M28B75CUE3POS
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	917	200X	1628 (739)	WS34	X48M28B12CUE3POS
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	918A	200X	1800 (817)	WS34	X48M28B49CUE3POS
225	2 at $+2.5 \%$	4 at -2.5%	DT-3	80	919EX	201X	3400 (1544)	WS35	X48M28B22CUE3POS
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3	80	919EX	201X	4377 (1987)	WS35	X48M28B33CUE3POS

Note

Frame drawings/dimensions information begins on Page V2-T2-216

Accessories

Harmonic mitigating transformers are available
with the same options and accessories as generalpurpose ventilated transformers. Please refer to Section 2.7
Page V2-T2-191.

Technical Data and Specifications

Frequency

Eaton standard dry-type distribution transformers are designed for 60 Hz operation. Transformers required for other frequencies are available and must be specifically designed.

Overload Capacity

Short-term overload is designed into transformers as required by ANSI. Dry-type distribution transformers will deliver 200% nameplate load for one-half hour; 150% load for one hour and 125% load for four hours without being damaged, provided that a constant 50\% load precedes and follows the overload. See ANSI C57.96-01.250 for additional limitations.

Continuous overload capacity is not deliberately designed into a transformer because the design objective is to be within the allowed winding temperature rise with nameplate loading.

Insulation System and Temperature Rise

Industry standards classify insulation systems and rise as shown below:

Insulation System
Classification

	+ Winding Rise	+ Hot Spot	$=$ Temp. Class
Ambient	$55^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$105^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$135^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$
$25^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$185^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$	
$40^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	30°	

The design life of transformers having different insulation systems is the same-the lower-temperature systems are designed for the same life as the higher-temperature systems.

Enclosures

Eaton ventilated transformers Types DS-3 and DT-3 use a NEMA 2 rated (drip-proof) enclosure as a standard, and are rated NEMA 3R with the addition of weathershields.

Sound Levels

All Eaton 600 volt class general-purpose dry-type distribution transformers are designed to meet

Average Sound Levels

NEMA ST-20 Average Sound Level, dB			
Equivalent Winding kVA Range	Self-Cooled Ve K-Factor 1, 4, 9	(up to 1.2 kV) K-Factor 13, 20	Encapsulated (up to 1.2 kV)
3.00 and below	40	40	45
3.01 to 9.00	40	40	45
9.01 to 15.00	45	45	50
15.01 to 30.00	45	45	50
30.01 to 50.00	45	48	50
50.01 to 75.00	50	53	55
75.01 to 112.50	50	53	55
112.51 to 150.00	50	53	55
150.01 to 225.00	55	58	57
225.01 to 300.00	55	58	57
300.01 to 500.00	60	63	59
500.01 to 700.00	62	65	61
700.01 to 1000.00	64	67	63
Greater than 1000	Consult factory	Consult factory	Consult factory

Note

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton.

Demystifying Harmonic Mitigating Transformer Myths

Aren't "power factor corrected" computer power supplies fixing all harmonics?

The use of power factor corrected computer power supplies is a great first start to reducing harmonic currents in your facility. These are becoming prevalent in server applications, but have not "crossed-over" into the laptop computer/business computer. Remember also that, once the computer power supply harmonics are addressed, you will still need to address the harmonic currents coming from the variety of other equipment in your facility.

Don't K-rated transformers fix harmonics?

The K-rated transformer was created to address the additional heat being produced by standard deltawye transformers when feeding nonlinear loads. The goal of the K-rated transformer is to dissipate the heat produced over a larger area, thus providing the illusion of correction. The K-rated transformer does nothing to reduce the root issue of harmonic currents or correct power quality issues. Because of their larger size, they also consume additional energy to "do the same work" and are counter-productive to an energy-efficient electrical distribution design.

Don't you need two HMTs for any correction to occur?

The design of HMTs allows them to address different families of harmonic currents in different ways. A single HMT will treat the triplen (3rd, 9th, 15th and so on) harmonic currents in its secondary winding. The 5th, 7th, 17th and 19th harmonic family is treated on a system basis through a technique known as "phase shifting."

This phase shift does occur between the Type NON and Type THR, and the Type POS and Type NEG harmonic mitigating transformers-and this can also occur between a Type NON and a standard delta-wye transformer (that is probably already existing within your facility). See our Sample HMT Applications area for additional information.

The cost of HMTs is too high!

While the initial cost of HMTs is typically 1.5 to 4 times the cost of a standard transformer (due to the additional design, materials and labor involved in creating the magnetics necessary to reduce harmonic impact)-to not use an HMT in a harmonic environment will actually cost you 250% more energy loss in the transformer. Due to the relatively long life of a transformer (20-30 years), these additional energy costs easily overshadow the initial one-time first cost increment.

If I use one HMT, don't I need to change all my transformers?

Most facilities have only a percentage (typically 20-25\%) of their electrical system that really requires the use of an HMT. This means in a typical building that only a few areas are either critical (meaning high requirements for "clean" power) or have high concentrations of electronic, nonlinear loads-requiring the use of the HMT in those specific areas. The harmonic mitigating transformer is a weapon in your arsenal in providing a complete, properly designed electrical system for today and tomorrow.

Transformer Technology Table Explanation

In understanding the product placement of the HMT, it becomes useful to have some "rule of thumb" understanding to compare products. Looking at one of the aspects of an HMT-price-you can see that, if a standard delta-wye transformer had a cost of one unit, a K-13 transformer would cost about double and an HMT would cost 1.5 to 4 times the unit cost. What's impressive to compare is the next column of information"Energy Savings." If the amount of energy used to power today's loads is compared against a standard delta-wye transformer (that was never designed to feed today's types of loads), you can easily see that the HMT is designed to meet the issue head-on! Referring to the table's information, you can see that it would take 30\% more energy to power the same computer loads with a K-13 transformer, whereas an HMT would take 25\% less energy to feed those same

Transformer Technology Comparison (1)

Transformer Type	Cost	Energy Savings	Power Quality
Standard delta-wye	if 1X	if 1X	Not designed for harmonics
K-13	$1.5-2 \mathrm{X}$	-0.3 X	Bulked up-doesn't help
HMT	2.5 X	2.5 X	Corrects root issue

Note
(1) Comparing cost, energy savings and power quality performance between the "commonly used" transformer types.

Sample HMT Applications

Typical Application of Type NON Transformer

Installation of a Type NON transformer provides an effective treatment of triplen (3rd, 9th, 15th and so on) harmonic currents that are generated by loads connected to the transformer. Triplen harmonic currents are treated in the secondary windings of the transformer due to the transformer's low zero sequence impedance. Type NON transformers do not need to be used in combination with other transformers to treat triplen harmonic currents. A single Type NON transformer may be installed, or multiple units can be applied.

Typical Application of Type NON Transformer with a Standard Delta-Wye Transformer

When a delta-wye transformer exists in an electrical distribution system, the addition of a Type NON transformer offers an economical solution for treating harmonic currents. The 30° phase-shift created between a Type NON harmonic mitigating transformer and a delta-wye transformer (standard transformer or K-Factor transformer) provides treatment of 5th, 7th, 17th and 19th harmonic currents. These harmonic currents are canceled in the common electrical bus that feeds the transformers. Additionally,
triplen (3rd, 9th, 15th and so on) harmonic currents generated by the loads connected to the Type NON transformer will be treated in the secondary windings of the Type NON transformer due to its low zero sequence impedance. When using two or more transformers to treat harmonics, it is better that the load be split equally between the transformers to receive the maximum benefit.

Note: Triplen currents will still circulate in the delta-wye transformer for additional waste. See figure on Page V2-T2-92 to correct.

Optimum Application of Type NON and Type THR Transformers

When you're searching for an optimum harmonic correction solution in an electrical distribution system, the combination of a Type NON and Type THR transformer offers a great solution. The 30° phase shift created between Type NON and type THR harmonic mitigating transformers provides treatment of 5th, 7th, 17th and 19th harmonic currents. These harmonic currents are canceled in the common electrical bus that feeds the transformers. Additionally,
triplen (3rd, 9th, 15th and so on) harmonic currents generated by the loads will be treated in the secondary windings of HMTs. This will ensure that these currents will not circulate in the primary of the transformer creating additional heat, voltage distortion and wasted energy loss. When using two or more transformers to treat harmonics, it is better that the load be split equally between the transformers to receive the maximum benefit.

Typical Application of Type NEG and Type POS Transformers

The combination of a Type POS (+ 15° phase-shift) transformer and a Type NEG (-15° phase-shift) transformer effectively treats 5th, 7th, 17th and 19th harmonic currents. These harmonic currents are canceled in the common electrical bus that feeds the transformers.
Additionally, triplen (3rd, 9th, 15th and so on) harmonic

Product Description

Note: The following pages provide listings for most standard transformer ratings and catalog numbers. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton.

Type EP and EPT

- Encapsulated design
- Suitable for indoor or outdoor applications
- Totally enclosed, nonventilated enclosures
- Enclosures are NEMA 3R rated
- Mountable in any position indoors and upright-only outdoors
- $180^{\circ} \mathrm{C}$ insulation system
- $115^{\circ} \mathrm{C}$ rise standard; $80^{\circ} \mathrm{C}$ optional
- Available in ratings through 37.5 kVA single-phase 75 kVA three-phase

Application Description
The basic purpose of a transformer is voltage transformation as near as practically possible to the load for economy and distribution of power. Typical loads for dry-type distribution transformers include lighting, heating, air conditioners, fans and machine tools. Such loads are found in commercial, institutional, industrial and residential structures.

Contents	
Description	Page
General-Purpose Encapsulated Transformers	
Catalog Number Selection	V2-T2-94
Product Selection	V2-T2-94
Single-Phase.	V2-T2-94
Three-Phase	V2-T2-100
Accessories	V2-T2-109
Technical Data and Specifications.	V2-T2-109

Features, Benefits and Functions

- 60 Hz operation (50/60 Hz optional)
- Short-term overload capability as required by ANSI
- Meet NEMA ST-20 sound levels

Standards and Certifications
 - UL listed
 - CSA certified

Industry Standards

All Eaton dry-type distribution and control transformers are built and tested in accordance with applicable NEMA, ANSI and IEEE Standards. All 600 volt class transformers are UL listed unless otherwise noted.

Seismically Qualified

Eaton manufactured dry-type distribution transformers are seismically qualified and exceed requirements of the Uniform Building Code (UBC), International Building Code (IBC), and California Code Title 24

Catalog Number Selection

Product Selection

Additional Product Selection information begins on Page V2-T2-189

Single-Phase Encapsulated-Type EP, 60 Hz

208 Volts to $120 / 240$ Volts (1)

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
0.5	-	-	EP	115	FR57P	26 A	16 (7)	Indoor-Outdoor	S29N11P51P
1	-	-	EP	115	FR67P	26A	31 (14)	Indoor-Outdoor	S29N11P01P
1.5	-	-	EP	115	FR67P	26 A	42 (19)	Indoor-Outdoor	S29N11P16P
2	-	-	EP	115	FR68P	26A	42 (19)	Indoor-Outdoor	S29N11P02P
3	-	-	EP	115	FR176	26A	65 (30)	Indoor-Outdoor	S29N11S03N
5	-	-	EP	115	FR177	26A	113 (51)	Indoor-Outdoor	S29N11S05N
7.5	-	-	EP	115	FR178	26 A	123 (56)	Indoor-Outdoor	S29N11S07N
10	-	-	EP	115	FR179	26A	193 (88)	Indoor-Outdoor	S29N11S10N
15	-	-	EP	115	FR180	26A	216 (98)	Indoor-Outdoor	S29N11S15N
25	-	-	EP	115	FR182	26 A	395 (179)	Indoor-Outdoor	S29N11S25N

Notes

(1) Contact Eaton for availability of 0.05-0.25 kVA designs.

Contact your local Eaton sales office for CE Mark transformer requirements. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216

Single-Phase Encapsulated-Type EP, 60 Hz

277 Volts to $120 / 240$ Volts (1)

| | Full Capacity Taps
 kVA | | FCAN | FCBN |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

240×480 Volts to $120 / 240$ Volts

kVA	Full Ca fCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
0.050	-	-	EP	115	FR52	3A	7 (3)	Indoor-Outdoor	S20N11S81N
0.075	-	-	EP	115	FR54	3A	7 (3)	Indoor-Outdoor	S20N11S85N
0.100	-	-	EP	115	FR54	3A	7 (3)	Indoor-Outdoor	S20N11S82N
0.150	-	-	EP	115	FR55	3A	8 (4)	Indoor-Outdoor	S20N11S83N
0.25	-	-	EP	115	FR57P	3A	12 (5)	Indoor-Outdoor	S20N11P26P
0.5	-	-	EP	115	FR57P	3 A	16 (7)	Indoor-Outdoor	S20N11P51P
0.75	-	-	EP	115	FR58AP	3A	26 (12)	Indoor-Outdoor	S20N11P76P
1	-	-	EP	115	FR67P	3A	31 (14)	Indoor-Outdoor	S20N11P01P
1.5	-	-	EP	115	FR67P	3A	42 (19)	Indoor-Outdoor	S20N11P16P
2	-	-	EP	115	FR68P	3A	42 (19)	Indoor-Outdoor	S20N11P02P
3	-	-	EP	115	FR176	3A	65 (30)	Indoor-Outdoor	S20N11S03N
3	(2)	(2)	EP	115	FR176	3A	65 (30)	Indoor-Outdoor	S20K11S03N
5	-	-	EP	115	FR177	3A	113 (51)	Indoor-Outdoor	S20N11S05N
5	(2)	(2)	EP	115	FR177	9A	105 (48)	Indoor-Outdoor	S20K11S05N
7.5	-	-	EP	115	FR178	3A	105 (48)	Indoor-Outdoor	S20N11S07N
7.5	(2)	(2)	EP	115	FR178	9A	123 (56)	Indoor-Outdoor	S20K11S07N
10	-	-	EP	115	FR179	3A	193 (88)	Indoor-Outdoor	S20N11S10N
10	(2)	(2)	EP	115	FR179	9A	193 (88)	Indoor-Outdoor	S20K11S10N
15	-	-	EP	115	FR180	3A	216 (98)	Indoor-Outdoor	S20N11S15N
15	(3)	(3)	EP	115	FR180	23A	216 (98)	Indoor-Outdoor	S20L11S15N
25	-	-	EP	115	FR182	3A	385 (175)	Indoor-Outdoor	S20N11S25N
25	(3)	(3)	EP	115	FR182	23A	375 (170)	Indoor-Outdoor	S20L11S25N
37.5	(3)	(3)	EP	115	FR300A	248A	735 (334)	Indoor-Outdoor	S20L11S37 ${ }^{4}$

Notes

(1) Contact Eaton for availability of $0.05-0.25 \mathrm{kVA}$ designs.
(2) 1 at $+10 \%$ FCBN at 240 volts; 2 at -5% FCBN at 480 volts.
(3) 2 at $+5 \%$ FCBN at 240 volts; 4 at -2.5% FCBN at 480 volts.
(4) Floor-mount only.

Contact your local Eaton sales office for CE Mark transformer requirements. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton Frame drawings/dimensions information begins on Page V2-T2-216.

Transformers
General-Purpose Encapsulated Transformers

Single-Phase Encapsulated-Type EP, 60 Hz

2

190/200/208/220 x 380/400/416/440 Volts to 110/220 Volts 50/60 Hz-Export Model IP 22 Rated

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ C Temp.	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	FCAN	FCBN	Type						
0.5	-	-	EP	115	FR67	538A	42 (19)	Indoor-Outdoor	S40N14S51CE
1	-	-	EP	115	FR67	538A	42 (19)	Indoor-Outdoor	S40N14S01CE
1.5	-	-	EP	115	FR176	538A	65 (30)	Indoor-Outdoor	S40N14S16CE
2	-	-	EP	115	FR176	538A	65 (30)	Indoor-Outdoor	S40N14SO2CE
3	-	-	EP	115	FR177	538A	113 (51)	Indoor-Outdoor	S40N14S03CE
5	-	-	EP	115	FR178	538A	140 (64)	Indoor-Outdoor	S40N14S05CE
7.5	-	-	EP	115	FR179	538A	193 (88)	Indoor-Outdoor	S40N14S07CE
10	-	-	EP	115	FR180	538A	216 (98)	Indoor-Outdoor	S40N14S10CE
15	-	-	EP	115	FR182	538A	375 (170)	Indoor-Outdoor	S40N14S15CE

120/208/240/277 Volts to 120/240 Volts 60 Hz

	Full Capacity Taps kVA							FCAN	FCBN

240×480 Volts to 120/240 Volts Stainless Steel (2)

| | Full Capacity Taps
 kVA | | | | | | | FCAN |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Notes

(1) Refer to your local Eaton sales office.
(2) NEMA 3R, 304 stainless steel enclosure; 316 stainless steel enclosure available as an option.

Contact your local Eaton sales office for CE Mark transformer requirements. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Single-Phase Encapsulated-Type EP, 60 Hz

480 Volts to $120 / 240$ Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
1	-	2 at -5\%	EP	115	FR67P	2D	31 (14)	Indoor-Outdoor	S48G11P01P
1.5	-	2 at -5%	EP	115	FR67P	2D	42 (19)	Indoor-Outdoor	S48G11P16P
2	-	2 at -5%	EP	115	FR68P	2D	42 (19)	Indoor-Outdoor	S48G11P02P
3	-	2 at -5\%	EP	115	FR176	2D	65 (30)	Indoor-Outdoor	S48G11S03N
3	2 at $+2.5 \%$	2 at -2.5\%	EP	115	FR176	16A	65 (30)	Indoor-Outdoor	S48D11S03N
5	-	2 at -5%	EP	115	FR177	2D	113 (51)	Indoor-Outdoor	S48G11S05N
5	2 at $+2.5 \%$	2 at -2.5\%	EP	115	FR177	16A	113 (51)	Indoor-Outdoor	S48D11S05N
7.5	-	2 at -5%	EP	115	FR178	2D	123 (56)	Indoor-Outdoor	S48G11S07N
7.5	2 at $+2.5 \%$	2 at -2.5\%	EP	115	FR178	16A	123 (56)	Indoor-Outdoor	S48D11S07N
10	-	2 at -5%	EP	115	FR179	2D	193 (88)	Indoor-Outdoor	S48G11S10N
10	2 at $+2.5 \%$	2 at -2.5\%	EP	115	FR179	16A	193 (88)	Indoor-Outdoor	S48D11S10N
15	-	2 at -5%	EP	115	FR180	2D	216 (98)	Indoor-Outdoor	S48G11S15N
15	2 at $+2.5 \%$	2 at -2.5%	EP	115	FR180	16A	216 (98)	Indoor-Outdoor	S48D11S15N
25	-	2 at -5%	EP	115	FR182	2D	385 (175)	Indoor-Outdoor	S48G11S25N
25	2 at $+2.5 \%$	4 at -2.5\%	EP	115	FR132	83A	410 (186)	Indoor-Outdoor	S48M11S25N

480 Volts to 120/240 Volts Stainless Steel, Copper Windings (1)

	Full Capacity Taps kVA							FCAN	FCBN

600 Volts to $120 / 240$ Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
0.5	-	2 at -5%	EP	115	FR57P	21	16 (7)	Indoor-Outdoor	S60G11P51P
0.75	-	2 at -5\%	EP	115	FR58AP	21	26 (12)	Indoor-Outdoor	S60G11P76P
1	-	2 at -5%	EP	115	FR67P	21	31 (14)	Indoor-Outdoor	S60G11P01P
1.5	-	2 at -5%	EP	115	FR67P	21	42 (19)	Indoor-Outdoor	S60G11P16P
2	-	2 at -5%	EP	115	FR68P	21	42 (19)	Indoor-Outdoor	S60G11P02P
3	-	2 at -5%	EP	115	FR176	21	65 (30)	Indoor-Outdoor	S60G11S03N
5	-	2 at -5%	EP	115	FR177	21	105 (48)	Indoor-Outdoor	S60G11S05N
7.5	-	2 at -5\%	EP	115	FR178	21	123 (56)	Indoor-Outdoor	S60G11S07N
10	-	2 at -5%	EP	115	FR179	21	193 (88)	Indoor-Outdoor	S60G11S10N
15	-	4 at -2.5\%	EP	115	FR180	527A	216 (98)	Indoor-Outdoor	S60J11S15N
25	-	4 at -2.5\%	EP	115	FR182	527A	385 (175)	Indoor-Outdoor	S60J11S25N
25	2 at $+2.5 \%$	4 at -2.5\%	EP	115	FR132	83B	395 (180)	Indoor-Outdoor	S60M11S25N

Notes

(1) NEMA 3R, 304 stainless steel enclosure; 316 stainless steel enclosure available as an option.

Contact your local Eaton sales office for CE Mark transformer requirements. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Transformers
General-Purpose Encapsulated Transformers

Single-Phase Shielded-Type EP, 60 Hz

2

120×240 Volts to $120 / 240$ Volts

	Full Capacity Taps kVA							FCAN	FCBN

120 Volts to 120 Volts

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	FCAN	FCBN	Type						
3	-	-	EP	115	FR176	77A	60 (27)	Indoor-Outdoor	S12N12E03N
5	-	-	EP	115	FR177	77A	100 (45)	Indoor-Outdoor	S12N12E05N
7.5	-	-	EP	115	FR178	77A	123 (56)	Indoor-Outdoor	S12N12E07N
10	-	-	EP	115	FR179	77A	180 (82)	Indoor-Outdoor	S12N12E10N
15	-	-	EP	115	FR180	77A	216 (98)	Indoor-Outdoor	S12N12E15N
25	-	-	EP	115	FR182	77A	375 (170)	Indoor-Outdoor	S12N12E25N

208 Volts to 120/240 Volts

| | Full Capacity Taps
 kVA | | | | | | FCAN |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

208 Volts to 208 Volts

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp.		Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	FCAN	FCBN	Type	Rise	Frame				
3	-	-	EP	115	FR176	77B	65 (30)	Indoor-Outdoor	S29N29E03N
5	-	-	EP	115	FR177	77B	113 (51)	Indoor-Outdoor	S29N29E05N
7.5	-	-	EP	115	FR178	77B	123 (56)	Indoor-Outdoor	S29N29E07N
10	-	-	EP	115	FR179	77B	195 (89)	Indoor-0utdoor	S29N29E10N
15	-	-	EP	115	FR180	77B	216 (98)	Indoor-0utdoor	S29N29E15N
25	-	-	EP	115	FR182	77B	375 (170)	Indoor-Outdoor	S29N29E25N

Note

Contact your local Eaton sales office for CE Mark transformer requirements. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Single-Phase Shielded-Type EP, 60 Hz

240 Volts to 240 Volts

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	FCAN	FCBN	Type						
3	-	-	EP	115	FR176	77 C	65 (30)	Indoor-Outdoor	S24N24E03N
5	-	-	EP	115	FR177	77 C	113 (51)	Indoor-Outdoor	S24N24E05N
7.5	-	-	EP	115	FR178	77 C	123 (56)	Indoor-Outdoor	S24N24E07N
10	-	-	EP	115	FR179	77 C	193 (88)	Indoor-Outdoor	S24N24E10N
15	-	-	EP	115	FR180	77 C	216 (98)	Indoor-Outdoor	S24N24E15N
25	-	-	EP	115	FR182	77 C	375 (170)	Indoor-Outdoor	S24N24E25N

277 Volts to 120/240 Volts

kVA	Full Ca FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
3	-	-	EP	115	FR176	513B	65 (30)	Indoor-Outdoor	S27N11E03N
5	-	-	EP	115	FR177	513B	113 (51)	Indoor-Outdoor	S27N11E05N
7.5	-	-	EP	115	FR178	513B	75 (34)	Indoor-Outdoor	S27N11E07N
10	-	-	EP	115	FR179	513B	162 (74)	Indoor-Outdoor	S27N11E10N
15	-	-	EP	115	FR180	513B	216 (98)	Indoor-Outdoor	S27N11E15N
25	-	-	EP	115	FR182	513B	375 (170)	Indoor-Outdoor	S27N11E25N

240×480 Volts to $120 / 240$ Volts

| | Full Capacity Taps
 kVA | | | | | | FCAN | FCBN |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Notes

(1) 2 at $+5 \%$ FCBN at 240 volts; 4 at -2.5% FCBN at 480 volts.

Contact your local Eaton sales office for CE Mark transformer requirements. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase Encapsulated-Type EPT, 60 Hz

2

240 Delta Volts to 208Y/120 Volts

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
9	-	2 at -5%	EPT	115	FR103	700	190 (86)	Indoor-Outdoor	Y24G28T09N ${ }^{1}$
15	-	2 at -5\%	EPT	115	FR95	70 C	275 (125)	Indoor-Outdoor	Y24G28T15N ${ }^{1}$
30	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR243	84C	422 (191)	Indoor-Outdoor	Y24M28T30N
45	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR244	84C	660 (299)	Indoor-Outdoor	Y24M28T45N

380 Delta Volts to 190Y/110 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
3	-	2 at -5%	EPT	115	FR201	70 F	116 (53)	Indoor-Outdoor	Y38G19T03A ${ }^{(1)}$
6	-	2 at -5%	EPT	115	FR200	70F	165 (75)	Indoor-Outdoor	Y38G19T06A (1)
9	-	2 at -5%	EPT	115	FR95	70 F	275 (125)	Indoor-Outdoor	Y38G19T09A (1)
15	-	2 at -5%	EPT	115	FR95	72R	275 (125)	Indoor-Outdoor	Y38G19T15A ${ }^{(1)}$
30	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR243	84AC	422 (191)	Indoor-Outdoor	Y38M19T30A
45	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR244	84AC	660 (299)	Indoor-Outdoor	Y38M19T45A
75	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR245	84AC	1275 (580)	Indoor-Outdoor	Y38M19T75A (2)

380 Delta Volts to 208Y/120 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
3	-	2 at -5\%	EPT	115	FR201	70D	116 (53)	Indoor-Outdoor	Y38G28T03A ${ }^{(1)}$
6	-	2 at -5%	EPT	115	FR200	70 F	165 (75)	Indoor-Outdoor	Y38G28T06A ${ }^{(1)}$
9	-	2 at -5%	EPT	115	FR103	70 D	185 (84)	Indoor-Outdoor	Y38G28T09A (1)
15	-	2 at -5\%	EPT	115	FR95	70 D	275 (125)	Indoor-Outdoor	Y38G28T15A ${ }^{(1)}$
30	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR243	84H	422 (191)	Indoor-Outdoor	Y38M28T30A
45	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR244	84R	660 (299)	Indoor-Outdoor	Y38M28T45A
75	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR245	84R	1275 (580)	Indoor-Outdoor	Y38M28T75A ${ }^{(2)}$

Notes

(1) T-T (Scott T) connected secondary
(2) Floor-mount only.

Contact your local Eaton sales office for CE Mark transformer requirements. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase Encapsulated—Type EPT, 60 Hz

380 Delta Volts to 220Y/127 Volts

	Full Capacity Taps kVA							FCAN	FCBN

380 Delta Volts to 220 Delta Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
3	-	2 at -5\%	EPT	115	FR201	74K	116 (53)	Indoor-Outdoor	Y38G25T03A ${ }^{(1)}$
6	-	2 at -5%	EPT	115	FR200	74 K	180 (82)	Indoor-Outdoor	Y38G25T06A (1)
9	-	2 at -5%	EPT	115	FR103	74 K	195 (89)	Indoor-Outdoor	Y38G25T09A (1)
15	-	2 at -5%	EPT	115	FR95	74 K	275 (125)	Indoor-Outdoor	Y38G25T15A (1)
30	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR243	(3)	422 (191)	Indoor-Outdoor	Y38M25T30A
45	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR244	(3)	660 (299)	Indoor-Outdoor	Y38M25T45A
75	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR245	(3)	1275 (580)	Indoor-Outdoor	Y38M25T75A ${ }^{(2)}$

380 Delta Volts to 380Y/220 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
3	-	2 at -5\%	EPT	115	FR201	700	116 (53)	Indoor-Outdoor	Y38G37T03A ${ }^{(1)}$
6	-	2 at -5%	EPT	115	FR200	700	165 (75)	Indoor-Outdoor	Y38G37T06A (1)
9	-	2 at -5%	EPT	115	FR103	700	180 (82)	Indoor-Outdoor	Y38G37T09A (1)
15	-	2 at -5\%	EPT	115	FR95	700	275 (125)	Indoor-Outdoor	Y38G37T15A ${ }^{(1)}$
30	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR243	84H	422 (191)	Indoor-Outdoor	Y38M37T30A
45	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR244	84H	660 (299)	Indoor-Outdoor	Y38M37T45A
75	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR245	84H	1275 (580)	Indoor-Outdoor	Y38M37T75A (2)

380 Delta Volts to 480Y/277 Volts

	Full Capacity Taps kVA		FCAN	FCBN	Type	${ }^{\text {C C Temp. }}$ Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)
3	-	2 at -5%	EPT	115	FR201	70F	Weathershield	Catalog Number	

Notes

(1) T-T (Scott T) connected secondary.
(2) Floor-mount only.
(3) Refer to your Eaton sales office.

Contact your local Eaton sales office for CE Mark transformer requirements. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase Encapsulated—Type EPT, 60 Hz

2

416 Delta Volts to 208Y/120 Volts

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	FCAN	FCBN	Type						
3	-	2 at -5%	EPT	115	FR201	70V	116 (53)	Indoor-Outdoor	Y43G28T03A ${ }^{(1)}$
6	-	2 at -5%	EPT	115	FR200	70 V	175 (79)	Indoor-Outdoor	Y43G28T06A ${ }^{(1)}$
9	-	2 at -5%	EPT	115	FR103	70 V	190 (86)	Indoor-Outdoor	Y43G28T09A ${ }^{(1)}$
15	-	2 at -5%	EPT	115	FR95	70 V	275 (125)	Indoor-Outdoor	Y43G28T15A ${ }^{\text {(1) }}$
30	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR243	841	422 (191)	Indoor-Outdoor	Y43M28T30A
45	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR244	841	660 (299)	Indoor-Outdoor	Y43M28T45A
75	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR245	841	1275 (580)	Indoor-Outdoor	Y43M28T75A ${ }^{(2)}$

440 Delta Volts to 220Y/127 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
3	-	2 at -5\%	EPT	115	FR201	70G	116 (53)	Indoor-Outdoor	Y44G31T03A ${ }^{(1)}$
6	-	2 at -5\%	EPT	115	FR200	70G	165 (75)	Indoor-Outdoor	Y44G31T06A ${ }^{(1)}$
9	-	2 at -5\%	EPT	115	FR103	70G	166 (75)	Indoor-Outdoor	Y44G31T09A ${ }^{(1)}$
15	-	2 at -5\%	EPT	115	FR95	70G	275 (125)	Indoor-Outdoor	Y44G31T15A ${ }^{(1)}$
30	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR243	840	422 (191)	Indoor-Outdoor	Y44M31T30A (2)
45	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR244	840	660 (299)	Indoor-Outdoor	Y44M31T45A
75	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR245	840	1275 (580)	Indoor-Outdoor	Y44M31T75A (2)

480 Delta Volts to 208Y/120 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
3	-	2 at -5%	EPT	115	FR201	70A	116 (52)	Indoor-Outdoor	Y48G28T03N ${ }^{(1)}$
6	-	2 at -5%	EPT	115	FR200	70 A	165 (75)	Indoor-Outdoor	Y48G28T06N ${ }^{(1)}$
6	2 at $+2.5 \%$	2 at -2.5\%	EPT	115	FR200	72B	165 (75)	Indoor-Outdoor	Y48D28T06N ${ }^{1}$
9	-	2 at -5%	EPT	115	FR103	70A	166 (75)	Indoor-Outdoor	Y48G28T09N ${ }^{(1)}$
9	-	4 at -2.5\%	EPT	115	FR103	503A	185 (84)	Indoor-Outdoor	Y48J28T09N ${ }^{(1)}$
9	2 at $+2.5 \%$	2 at -2.5%	EPT	115	FR103	72B	185 (84)	Indoor-Outdoor	Y48D28T09N ${ }^{(1)}$
15	-	2 at -5%	EPT	115	FR95	70 A	275 (125)	Indoor-Outdoor	Y48G28T15N ${ }^{1}$
15	-	4 at -2.5\%	EPT	115	FR95	503A	275 (125)	Indoor-Outdoor	Y48J28T15N ${ }^{(1)}$
15	2 at $+2.5 \%$	2 at -2.5%	EPT	115	FR95	72B	275 (125)	Indoor-Outdoor	Y48D28T15N ${ }^{(1)}$
30	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR243	84A	422 (191)	Indoor-Outdoor	Y48M28T30N
45	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR244	84A	720 (327)	Indoor-Outdoor	Y48M28T45N
75	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR245	84A	1275 (580)	Indoor-Outdoor	Y48M28T75N (2)

480 Delta Volts to 208Y/120 Volts-Copper Windings

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	2 at -2.5\%	EPT	115	FR95	72B	300 (136)	Indoor-Outdoor	Y48D28T15CU ${ }^{1}$
30	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR243	84A	505 (230)	Indoor-Outdoor	Y48M28T30CU
45	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR244	84A	810 (368)	Indoor-Outdoor	Y48M28T45CU
75	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR245	84A	1450 (659)	Indoor-Outdoor	Y48M28T75CU (2) ${ }^{\text {(}}$

Notes

(1) T-T (Scott T) connected secondary
(2) Floor-mount only.
(3) Not CSA certified.

Contact your local Eaton sales office for CE Mark transformer requirements. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase Encapsulated—Type EPT, 60 Hz

480 Delta Volts to 208Y/120 Volts Stainless Steel (1)

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	-	2 at -5\%	EPT	115	FR201	70 A	116 (53)	Indoor-Outdoor	Y48G28T03SS ${ }^{(2)}$
6	2 at $+2.5 \%$	2 at -2.5%	EPT	115	FR200	72 B	175 (79)	Indoor-Outdoor	Y48D28T06SS ${ }^{(2)}$
9	2 at $+2.5 \%$	2 at -2.5%	EPT	115	FR103	72 B	185 (84)	Indoor-Outdoor	Y48D28T09SS ${ }^{(2)}$
15	2 at $+2.5 \%$	2 at -2.5%	EPT	115	FR95	72 B	275 (125)	Indoor-Outdoor	Y48D28T15SS ${ }^{(2)}$
30	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR243	84A	422 (191)	Indoor-Outdoor	Y48M28T30SS
45	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR244	84A	660 (299)	Indoor-Outdoor	Y48M28T45SS
75	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR245	84A	1275 (580)	Indoor-Outdoor	Y48M28T75SS ${ }^{(3)}$

480 Delta Volts to 208Y/120 Volts Stainless Steel-Copper Windings ${ }^{(1)}$

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp.		Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	2 at -2.5\%	EPT	115	FR95	72 B	275 (125)	Indoor-Outdoor	Y48D28T15CUSS ${ }^{(2)}$
30	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR243	84A	504 (229)	Indoor-Outdoor	Y48M28T30CUSS
45	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR244	84A	810 (368)	Indoor-Outdoor	Y48M28T45CUSS

480 Delta Volts to 220Y/127 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
3	-	2 at -5%	EPT	115	FR201	70K	116 (53)	Indoor-Outdoor	Y48G31T03A (2)
6	-	2 at -5%	EPT	115	FR200	70K	175 (79)	Indoor-Outdoor	Y48G31T06A (2)
9	-	2 at -5%	EPT	115	FR103	70A	185 (84)	Indoor-Outdoor	Y48G31T09A (2)
15	-	2 at -5%	EPT	115	FR95	70A	275 (125)	Indoor-Outdoor	Y48G31T15A ${ }^{(2)}$
30	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR243	84A	422 (191)	Indoor-Outdoor	Y48M31T30A
45	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR244	84A	660 (299)	Indoor-Outdoor	Y48M31T45A
75	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR245	84K	1275 (580)	Indoor-Outdoor	Y48M31T75A (3)

480 Delta Volts to 240 Delta Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
3	-	2 at -5\%	EPT	115	FR201	74A	116 (52)	Indoor-Outdoor	Y48G24T03N (2) ${ }^{\text {4 }}$
6	-	2 at -5%	EPT	115	FR200	74 A	165 (75)	Indoor-Outdoor	Y48G24T06N (2) ${ }^{\text {(}}$
9	-	4 at -2.5\%	EPT	115	FR103	73 A	185 (84)	Indoor-Outdoor	Y48J24T09N (2)4
15	-	4 at -2.5\%	EPT	115	FR95	73 A	275 (125)	Indoor-Outdoor	Y48J24T15N (2)4
30	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR243	85A	422 (191)	Indoor-Outdoor	Y48M24T30N (4)
45	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR244	85A	660 (299)	Indoor-Outdoor	Y48M24T45N (4)

Notes

(1) NEMA 3R, 304 stainless steel enclosure; 316 stainless steel enclosure available.
(2) T-T connected secondary.
(3) Floor-mount only.
(4) Do not include 120 volt lighting tap.

Contact your local Eaton sales office for CE Mark transformer requirements. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase Encapsulated-Type EPT, 60 Hz

2

480 Delta Volts to 380Y/220 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
3	-	2 at -5%	EPT	115	FR201	70A	116 (53)	Indoor-Outdoor	Y48G37T03A ${ }^{(1)}$
6	-	2 at -5%	EPT	115	FR200	70R	165 (75)	Indoor-Outdoor	Y48G37T06A (1)
9	-	2 at -5\%	EPT	115	FR103	70R	185 (84)	Indoor-Outdoor	Y48G37T09A ${ }^{(1)}$
15	-	2 at -5%	EPT	115	FR95	70R	275 (125)	Indoor-Outdoor	Y48G37T15A ${ }^{(1)}$
30	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR243	84A	422 (191)	Indoor-Outdoor	Y48M37T30A
45	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR244	84A	660 (299)	Indoor-Outdoor	Y48M37T45A
75	2 at $+2.5 \%$	4 at -2.5%	EPT	115	FR245	84A	1275 (580)	Indoor-Outdoor	Y48M37T75A (2)

480 Delta Volts to 380 Delta Volts

	Full Capacity Taps kVA							FCAN	FCBN

480 Delta Volts to 416Y/240 Volts

	Full Capacity Taps kVA		FCAN	FCBN	Type	ºc Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)
3	-	2 at -5%	EPT	115	FR200	70A	Weathershield	Catalog Number	

480 Delta Volts to 440Y/254 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
3	-	2 at -5%	EPT	115	FR201	70A	116 (53)	Indoor-Outdoor	Y48G35T03A ${ }^{(1)}$
6	-	2 at -5%	EPT	115	FR200	70A	185 (84)	Indoor-Outdoor	Y48G35T06A ${ }^{(1)}$
9	-	2 at -5\%	EPT	115	FR103	70A	185 (84)	Indoor-Outdoor	Y48G35T09A (1)
15	-	2 at -5%	EPT	115	FR95	70A	275 (125)	Indoor-Outdoor	Y48G35T15A ${ }^{(1)}$
30	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR243	84A	422 (191)	Indoor-Outdoor	Y48M35T30A
45	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR244	84A	660 (299)	Indoor-Outdoor	Y48M35T45A
75	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR245	84A	1275 (580)	Indoor-Outdoor	Y48M35T75A ${ }^{(2)}$

Notes

(1) T-T connected secondary.
(2) Floor-mount only.

Contact your local Eaton sales office for CE Mark transformer requirements. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton Frame drawings/dimensions information begins on Page V2-T2-216

Three-Phase Encapsulated—Type EPT, 60 Hz

480 Delta Volts to 480Y/277 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
9	2 at $+2.5 \%$	2 at -2.5\%	EPT	115	FR103	72 C	190 (86)	Indoor-Outdoor	Y48D47T09N ${ }^{(1)}$
15	2 at $+2.5 \%$	2 at -2.5\%	EPT	115	FR95	72 C	275 (125)	Indoor-Outdoor	Y48D47T15N ${ }^{(1)}$
30	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR243	84A	422 (191)	Indoor-Outdoor	Y48M47T30N
45	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR244	84A	660 (299)	Indoor-Outdoor	Y48M47T45N

600 Delta Volts to 208Y/120 Volts

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp.		Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
9	-	2 at -5%	EPT	115	FR103	70B	185 (84)	Indoor-Outdoor	Y60G28T09N ${ }^{1}$
15	-	2 at -5%	EPT	115	FR95	70B	275 (125)	Indoor-Outdoor	Y60G28T15N ${ }^{(1)}$
30	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR243	84B	422 (191)	Indoor-Outdoor	Y60M28T30N
45	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR244	84B	660 (299)	Indoor-Outdoor	Y60M28T45N

Three-Phase Shielded-Type EPT, 60 Hz

480 Delta Volts to 208Y/120 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
3	2 at $+2.5 \%$	2 at -2.5\%	EPT	115	FR201	86B	116 (52)	Indoor-Outdoor	Y48D28E03A ${ }^{\text {® }}$
6	2 at $+2.5 \%$	2 at -2.5%	EPT	115	FR200	86B	165 (75)	Indoor-Outdoor	Y48D28E06A ${ }^{1}$
9	2 at $+2.5 \%$	2 at -2.5%	EPT	115	FR103	86B	190 (86)	Indoor-Outdoor	Y48D28E09N ${ }^{(1)}$
15	2 at $+2.5 \%$	2 at -2.5%	EPT	115	FR95	86B	275 (125)	Indoor-Outdoor	Y48D28E15B ${ }^{\text {(1) }}$

480 Delta Volts to 240 Delta Volts

	Full Capacity Taps kVA							FCAN	FCBN

Notes

(1) T-T connected secondary.

Contact your local Eaton sales office for CE Mark transformer requirements. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton Frame drawings/dimensions information begins on Page V2-T2-216.

NEMA Type 4X Single-Phase Encapsulated—Type EP, 60 Hz, Grade 304 Stainless Steel ©

2
240×480 Volts to $120 / 240$ Volts-Aluminum Windings

kVA	Full Ca FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
$0.100{ }^{(2)}$	-	-	EP	115	FR544X	3A	7 (3)	Indoor-Outdoor	S20N11S82SS4X
$0.015{ }^{(2)}$	-	-	EP	115	FR554X	3A	9 (4)	Indoor-Outdoor	S20N11S83SS4X
$0.250{ }^{(2)}$	-	-	EP	115	FR57P4X	3A	15 (7)	Indoor-Outdoor	S20N11P26SS4X
$0.500{ }^{(2)}$	-	-	EP	115	FR57P4X	3A	14 (6)	Indoor-Outdoor	S20N11P51SS4X
0.750 (2)	-	-	EP	115	FR58AP4X	3A	22 (10)	Indoor-Outdoor	S20N11P76SS4X
$1{ }^{(2)}$	-	-	EP	115	FR67P4X	3A	30 (14)	Indoor-Outdoor	S20N11P01SS4X
$1.5{ }^{(2)}$	-	-	EP	115	FR67P4X	3A	41 (19)	Indoor-Outdoor	S20N11P16SS4X
$2{ }^{(2)}$	-	-	EP	115	FR68P4X	3A	75 (34)	Indoor-Outdoor	S20N11P02SS4X
3	-	-	EP	115	FR1764X	3A	68 (31)	Indoor-Outdoor	S20N11S03SS4X
3	(3)	(3)	EP	115	FR1764X	9A	67 (30)	Indoor-Outdoor	S20K11S03SS4X
5	-	-	EP	115	FR1774X	3A	107 (49)	Indoor-Outdoor	S20N11S05SS4X
5	(3)	(3)	EP	115	FR1774X	9A	105 (48)	Indoor-Outdoor	S20K11S05SS4X
7.5	-	-	EP	115	FR1784X	3A	129 (58)	Indoor-Outdoor	S20N11S07SS4X
7.5	(3)	(3)	EP	115	FR1784X	9A	130 (59)	Indoor-Outdoor	S20K11S07SS4X
10	-	-	EP	115	FR1794X	3A	196 (89)	Indoor-Outdoor	S20N11S10SS4X
10	(3)	(3)	EP	115	FR1794X	9A	198 (90)	Indoor-Outdoor	S20K11S10SS4X
15	-	-	EP	115	FR1804X	3A	215 (98)	Indoor-Outdoor	S20N11S15SS4X
15	(3)	(3)	EP	115	FR1804X	23A	215 (98)	Indoor-Outdoor	S20L11S15SS4X
25	-	-	EP	115	FR1824X	3A	393 (178)	Indoor-Outdoor	S20N11S25SS4X
25	(4)	(4)	EP	115	FR1824X	23A	453 (206)	Indoor-Outdoor	S20L11S25SS4X
37.5	(4)	(4)	EP	115	FR300A4X	248A	735 (334)	Indoor-Outdoor	S20L11S37SS4X ${ }^{\text {(}}$

Notes

(1) Grade 304 stainless steel standard. Grade 316 stainless steel available as an option. Replace suffix "SS" with suffix "S6."
(2) Copper windings provided as standard
(3) 1 at $+10 \%$ FCBN at 240 volts; 2 at -5% FCBN at 480 volts.
(4) 2 at $+5 \%$ FCBN at 240 volts; 4 at -2.5% FCBN at 480 volts.
(5) Floor-mount only.

Contact your local Eaton sales office for voltage combinations not shown in the above table. Other voltages and custom features are available upon request

NEMA Type 4X Single-Phase Encapsulated—Type EP, 60 Hz, Grade 304 Stainless Steel ©

240×480 Volts to 120/240 Volts-Copper Windings

| | Full Capacity Taps
 RCAN | FCBN |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Notes

(1) Grade 304 stainless steel standard. Grade 316 stainless steel available as an option. Replace suffix "SS" with suffix "S6."
(2) Copper windings provided as standard.
(3) 1 at $+10 \%$ FCBN at 240 volts; 2 at -5% FCBN at 480 volts.
(4) 2 at $+5 \%$ FCBN at 240 volts; 4 at -2.5% FCBN at 480 volts.
(5) Floor-mount only.

Contact your local Eaton sales office for voltage combinations not shown in the above table. Other voltages and custom features are available upon request.

Transformers
General-Purpose Encapsulated Transformers

NEMA Type 4X Three-Phase Encapsulated—Type EPT, 60 Hz, Grade 304 Stainless Steel ©

2
480 Delta Volts to 208Y/120 Volts-Aluminum Windings

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
3	-	2 at -5%	EPT	115	FR2014X	70A	125 (57)	Indoor-Outdoor	Y48G28T03SS4X ${ }^{(2)}$
6	-	2 at -5\%	EPT	115	FR2004X	70A	165 (75)	Indoor-Outdoor	Y48G28T06SS4X ${ }^{(2)}$
6	2 at $+2.5 \%$	2 at -2.5\%	EPT	115	FR2004X	72B	171 (78)	Indoor-Outdoor	Y48D28T06SS4X ${ }^{(2)}$
9	-	2 at -5%	EPT	115	FR1034X	70A	180 (82)	Indoor-Outdoor	Y48G28T09SS4X ${ }^{(2)}$
9	-	4 at -2.5\%	EPT	115	FR1034X	503A	192 (87)	Indoor-Outdoor	Y48J28T09SS4X ${ }^{(2)}$
9	2 at $+2.5 \%$	2 at -2.5%	EPT	115	FR1034X	72B	196 (89)	Indoor-Outdoor	Y48D28T09SS4X ${ }^{(2)}$
15	2 at $+2.5 \%$	2 at -2.5%	EPT	115	FR954X	72B	281 (127)	Indoor-Outdoor	Y48D28T15SS4X ${ }^{(2)}$
15	-	2 at -5\%	EPT	115	FR954X	70A	269 (122)	Indoor-Outdoor	Y48G28T15SS4X ${ }^{(2)}$
15	-	4 at -2.5\%	EPT	115	FR954X	503A	268 (121)	Indoor-Outdoor	Y48J28T15SS4X ${ }^{(2)}$
30	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR2434X	84A	539 (245)	Indoor-Outdoor	Y48M28T30SS4X
45	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR2444X	84A	723 (328)	Indoor-Outdoor	Y48M28T45SS4X
75	2 at $+2.5 \%$	4 at -2.5\%	EPT	115	FR2454X	84A	1277 (580)	Indoor-Outdoor	Y48M28T75SS4X ${ }^{(3)}$

480 Delta Volts to 208Y/120 Volts-Copper Windings

| | Full Capacity Taps
 kCAN | | | | | | | FCBN |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Notes

(1) Grade 304 stainless steel standard. Grade 316 stainless steel available as an option. Replace suffix "SS" with suffix "S6."
(2) T-T connected $(\mathrm{Scott} \mathrm{T})$ secondary winding configuration.
(3) Floor-mount only.

Contact your local Eaton sales office for voltage combinations not shown in the above table. Other voltages and custom features are available upon request.

Accessories

Please refer to Section 2.7 Page V2-T2-191.

Technical Data and Specifications

Frequency

Eaton standard dry-type distribution transformers are designed for 60 Hz operation. Transformers required for other frequencies are available and must be specifically designed.

Overload Capability

Short-term overload is designed into transformers as required by ANSI. Dry-type distribution transformers will deliver 200\% nameplate load for one-half hour, 150% load for one hour and 125% load for four hours without being damaged, provided that a constant 50% load precedes and follows the overload. See ANSI C57.96-01.250 for additional limitations.

Continuous overload capacity is not deliberately designed into a transformer because the design objective is to be within the allowed winding temperature rise with nameplate loading.

Insulation System and Temperature Rise

Industry standards classify insulation systems and rise as shown below:

Insulation System
Classification

	+ Winding Rise	+ Hot Spot	$=$ Temp. Class
$40^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$105^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
$25^{\circ} \mathrm{C}$	$135^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$185^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

The design life of transformers having different insulation systems is the same-the lower-temperature systems are designed for the same life as the higher-temperature systems.

Enclosures

Eaton encapsulated transformers, Types EP and EPT, use a NEMA 3R rated enclosure as standard. NEMA 4 X enclosures (grade 304 or 316 stainless steel) are available as an option.

Winding Terminations

Primary and secondary windings are terminated in the wiring compartment Encapsulated units have copper leads or stabs brought out for connections. Ventilated transformers have leads brought out to aluminum pads that are predrilled to accept Cu/Al lugs.
Lugs are not supplied with these transformers. Eaton recommends that external cables be rated $90^{\circ} \mathrm{C}$ (sized at $75^{\circ} \mathrm{C}$ ampacity) for encapsulated designs and $75^{\circ} \mathrm{C}$ for ventilated designs.

Series-Multiple Windings

Series-multiple windings consist of two similar coils in each winding that can be connected in series or parallel (multiple). Transformers with series-multiple windings are designated with an " x " or "/" between the voltage ratings, such as voltages of " $120 / 240$ " or " 240×480." If the series-multiple winding is designated by an " x," the winding can be connected only for a series or parallel. With the "/" designation, a mid-point also becomes available in addition to the series or parallel connection. As an example, a 120×240 winding can be connected for either 120 (parallel) or 240 (series), but a 120/240 winding can be connected for 120 (parallel), 240 (series) or 240 with a 120 mid-point.

Sound Levels

All Eaton 600 volt class general-purpose dry-type distribution transformers are designed to meet NEMA ST-20 sound levels listed here. These are the sound levels measured in a soundproof environment. Actual sound levels measured at an installation will likely be higher due to
electrical connections and environmental conditions. Lower sound levels are available and should be specified when the transformer is going to be installed in an area where sound may be a concern.

For additional information, please refer to Section 2.7
Page V2-T2-195.

Average Sound Levels

Equivalent Winding kVA Range	Self-Cooled Ventilated (up to 1.2 kV)		Encapsulated (up to 1.2 kV)
	K-Factor 1, 4, 9	K-Factor 13, 20	
3.00 and below	40	40	45
3.01 to 9.00	40	40	45
9.01 to 15.00	45	45	50
15.01 to 30.00	45	45	50
30.01 to 50.00	45	48	50
50.01 to 75.00	50	53	55
75.01 to 112.50	50	53	55
112.51 to 150.00	50	53	55
150.01 to 225.00	55	58	57
225.01 to 300.00	55	58	57
300.01 to 500.00	60	63	59
500.01 to 700.00	62	65	61
700.01 to 1000.00	64	67	63
Greater than 1000	Consult factory	Consult factory	Consult factory

Note
For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton.

Contents	
Description	Page
Distribution Transformers	
Motor Drive Isolation Transformers	V2-T2-111
Mini-Power Centers	V2-T2-119
Totally Enclosed Non-Ventilated Transformers .	V2-T2-124
Class I, Division 2, Hazardous Location Transformers	V2-T2-127
Open-Type Core and Coil Assembly	
Transformers	V2-T2-130
Marine Duty Transformers	V2-T2-133
Buck-Boost and Low Voltage Lighting	
Transformers .	V2-T2-144
Medium Voltage Distribution Transformers	V2-T2-173

Distribution Transformers

Contents

Description	Page
Motor Drive Isolation Transformers	
Catalog Number Selection	V2-T2-112
Product Selection .	V2-T2-112
Accessories .	V2-T2-118
Technical Data and Specifications.	V2-T2-119
Mini-Power Centers	
Totally Enclosed Non-Ventilated Transformers. . .	V2-T2-124
Class I, Division 2, Hazardous Location Transformers	V2-T2-127
Open-Type Core and Coil Assembly Transformers	V2-T2-130
Marine Duty Transformers	V2-T2-133
Buck-Boost and Low Voltage Lighting Transformers	V2-T2-144
Medium Voltage Distribution Transformers	V2-T2-173

Motor Drive Isolation Transformers

Product Description

Note: The following pages provide listings for most standard transformer ratings and catalog numbers. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton.

- Suitable for indoor or outdoor applications (with weathershield)
- Ventilated enclosures
- $220^{\circ} \mathrm{C}$ insulation system
- $150^{\circ} \mathrm{C}$ rise standard (self extinguishing), $115^{\circ} \mathrm{C}$ or $80^{\circ} \mathrm{C}$ rise optional
- Available in ratings from 7.5 through 1500 kVA

Application Description

Drive isolation transformers are specifically designed for use with AC and DC adjustable speed drives. Two winding drive isolation transformers provide:

- Electrical isolation between the incoming line and the drive circuitry
- Voltage conversion of input line to standard drive input voltages
- Minimized line disturbances caused by SCR (silicon controlled rectifiers) firing
- Reduced short-circuit currents and voltage line transients
Drive isolation transformers are specifically sized to the drive KVA requirements and are braced to withstand the mechanical stresses of current reversals and short circuits associated with SCR drives.

Features, Benefits and Functions

- 60 Hz operation ($50 / 60 \mathrm{~Hz}$ operation available)
- Short-term overload capability as required by ANSI
- Primary and secondary terminals are front accessible for fast and easy connection
- Slotted screw mounting holes in enclosure and cover reduce installation time
- Sound dampening pads, which isolate the core and coil from the case, reduce noise levels to meet NEMA ST-20
- Core laminations of precision sheared silicon steel are hand stacked to ensure quiet operation
- Terminations are clearly marked for easy identification
- Three-phase transformers have one 5% full capacity tap above and below nominal voltage for incoming source adjustment
- Units are suitable for continuous operation in a $40^{\circ} \mathrm{C}$ ambient maximum
- Full current neutral
- Thermoguard protection embedded in coils of threephase models to indicate that high temperatures (approximately $190^{\circ} \mathrm{C}$) are present. Thermoguards consist of a set of NO dry contacts
- Three coil delta-wye configurations are used throughout the product line

Standards and Certifications

- ANSI C89.2
- NEMA ST-20
- UL 506
- UL 1561

Seismic Qualified

All Eaton manufactured drytype distribution transformers are seismically qualified and exceed requirements of the International Building Code (IBC) and California Code Title 24.

Catalog Number Selection

Please refer to Section 2.7 Page V2-T2-187

Product Selection

Additional Product Selection information begins on Page V2-T2-189

Three-Phase Drive Isolation

208 Delta Volts to 460Y/266 Volts

hp	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	kVA	FCAN	FCBN						
5	7.5	1 at $+5 \%$	1 at -5\%	150	912D	347B	158 (72)	WS38	MD075E86
7.5	11	1 at $+5 \%$	1 at -5%	150	912 D	347B	176 (80)	WS38	MD11E86
10	14	1 at $+5 \%$	1 at -5%	150	912D	347B	149 (68)	WS38	MD14E86
15	20	1 at $+5 \%$	1 at -5%	150	912D	347B	240 (19)	WS38	MD20E86
20	27	1 at $+5 \%$	1 at -5%	150	912D	347B	231 (15)	WS38	MD27E86
25	34	1 at $+5 \%$	1 at -5%	150	912D	347B	310 (141)	WS38	MD34E86
30	40	1 at $+5 \%$	1 at -5%	150	912D	347B	307 (139)	WS38	MD40E86
40	51	1 at $+5 \%$	1 at -5\%	150	914F	347B	480 (218)	WS39	MD51E86
50	63	1 at $+5 \%$	1 at -5%	150	914F	347B	485 (220)	WS39	MD63E86
60	75	1 at $+5 \%$	1 at -5%	150	914F	347B	482 (219)	WS39	MD75E86
75	93	1 at $+5 \%$	1 at -5%	150	915F	347B	600 (272)	WS39	MD93E86
100	118	1 at $+5 \%$	1 at -5%	150	916A	347B	658 (299)	WS19	MD118E86
125	145	1 at $+5 \%$	1 at -5%	150	916A	347B	770 (350)	WS19	MD145E86
150	175	1 at $+5 \%$	1 at -5%	150	918A	321B	1320 (599)	WS34	MD175E86
200	220	1 at $+5 \%$	1 at -5\%	150	918A	321B	1436 (652)	WS34	MD220E86
250	275	1 at $+5 \%$	1 at -5%	150	918A	321B	(1)	WS34	MD275E86
300	330	1 at $+5 \%$	1 at -5%	150	919E	321B	(1)	WS35	MD330E86
400	440	1 at $+5 \%$	1 at -5%	150	920E	321B	(1)	WS35	MD440E86

Notes

(1) Contact Eaton.

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Distribution Transformers

Three-Phase Drive Isolation

230 Delta Volts to 230Y/133 Volts

hp	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	kVA	FCAN	FCBN						
5	7.5	1 at $+5 \%$	1 at -5\%	150	912D	286A	158 (72)	WS38	MD075E88
7.5	11	1 at $+5 \%$	1 at -5%	150	912D	286A	156 (71)	WS38	MD11E88
10	14	1 at $+5 \%$	1 at -5%	150	912 D	286A	158 (72)	WS38	MD14E88
15	20	1 at $+5 \%$	1 at -5\%	150	912 D	286A	216 (98)	WS38	MD20E88
20	27	1 at $+5 \%$	1 at -5\%	150	912 D	286A	231 (105)	WS38	MD27E88
25	34	1 at $+5 \%$	1 at -5%	150	912D	286A	310 (141)	WS38	MD34E88
30	40	1 at $+5 \%$	1 at -5%	150	912D	286A	310 (141)	WS38	MD40E88
40	51	1 at $+5 \%$	1 at -5%	150	914F	286A	480 (218)	WS39	MD51E88
50	63	1 at $+5 \%$	1 at -5%	150	914F	286A	500 (227)	WS39	MD63E88
60	75	1 at $+5 \%$	1 at -5\%	150	914F	286A	538 (244)	WS39	MD75E88
75	93	1 at $+5 \%$	1 at -5\%	150	915F	286A	600 (272)	WS39	MD93E88
100	118	1 at $+5 \%$	1 at -5%	150	915F	286A	600 (272)	WS39	MD118E88
125	145	1 at $+5 \%$	1 at -5%	150	916A	286A	868 (394)	WS19	MD145E88
150	175	1 at $+5 \%$	1 at -5%	150	918A	318D	1320 (599)	WS34	MD175E88
200	220	1 at $+5 \%$	1 at -5%	150	918A	318D	1332 (605)	WS34	MD220E88
250	275	1 at $+5 \%$	1 at -5%	150	918A	318 D	1350 (613)	WS34	MD275E88
300	330	1 at $+5 \%$	1 at -5\%	150	919E	318D	2336 (1061)	WS35	MD330E88
400	440	1 at $+5 \%$	1 at -5\%	150	920E	318D	(1)	WS35	MD440E88

230 Delta Volts to 460Y/266 Volts

		Full Capacity Taps		${ }^{\circ} \mathrm{C}$ Temp. Rise		Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
hp	kVA	FCAN	FCBN		Frame				
5	7.5	1 at $+5 \%$	1 at -5\%	150	912D	347A	158 (72)	WS38	MD075E89
7.5	11	1 at $+5 \%$	1 at -5%	150	912D	347A	158 (72)	WS38	MD11E89
10	14	1 at $+5 \%$	1 at -5%	150	912 D	347A	158 (72)	WS38	MD14E89
15	20	1 at $+5 \%$	1 at -5%	150	912 D	347A	254 (115)	WS38	MD20E89
20	27	1 at $+5 \%$	1 at -5%	150	912 D	347A	231 (105)	WS38	MD27E89
25	34	1 at $+5 \%$	1 at -5%	150	912D	347A	310 (141)	WS38	MD34E89
30	40	1 at $+5 \%$	1 at -5%	150	912D	347 A	344 (156)	WS38	MD40E89
40	51	1 at $+5 \%$	1 at -5%	150	914F	347A	480 (218)	WS39	MD51E89
50	63	1 at $+5 \%$	1 at -5%	150	914F	347A	457 (207)	WS39	MD63E89
60	75	1 at $+5 \%$	1 at -5%	150	914F	347A	480 (218)	WS39	MD75E89
75	93	1 at $+5 \%$	1 at -5%	150	915F	347 A	600 (272)	WS39	MD93E89
100	118	1 at $+5 \%$	1 at -5%	150	916A	347A	941 (427)	WS19	MD118E89
125	145	1 at $+5 \%$	1 at -5%	150	916A	347A	770 (350)	WS19	MD145E89
150	175	1 at $+5 \%$	1 at -5%	150	917	321A	1326 (602)	WS34	MD175E89
200	220	1 at $+5 \%$	1 at -5%	150	918A	321A	1332 (605)	WS34	MD220E89
250	275	1 at $+5 \%$	1 at -5%	150	918 A	321A	1350 (613)	WS34	MD275E89
300	330	1 at $+5 \%$	1 at -5%	150	919E	321 A	2400 (1090)	WS35	MD330E89
400	440	1 at $+5 \%$	1 at -5%	150	920E	321A	(1)	WS35	MD440E89

Notes

[^12]Transformers

Distribution Transformers

Three-Phase Drive Isolation

2
460 Delta Volts to 230Y/133 Volts

hp	kVA	Full Capacity Taps		${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
		FCAN	FCBN						
5	7.5	1 at $+5 \%$	1 at -5\%	150	912D	286D	193 (88)	WS38	MD075E91
7.5	11	1 at $+5 \%$	1 at -5%	150	912D	286D	158 (72)	WS38	MD11E91
10	14	1 at $+5 \%$	1 at -5\%	150	912D	286D	158 (72)	WS38	MD14E91
15	20	1 at $+5 \%$	1 at -5\%	150	912D	286D	216 (98)	WS38	MD20E91
20	27	1 at $+5 \%$	1 at -5%	150	912 D	286D	231 (105)	WS38	MD27E91
25	34	1 at $+5 \%$	1 at -5%	150	912D	286D	340 (154)	WS38	MD34E91
30	40	1 at $+5 \%$	1 at -5%	150	912D	286D	339 (154)	WS38	MD40E91
40	51	1 at $+5 \%$	1 at -5%	150	914	286D	535 (243)	WS39	MD51E91
50	63	1 at $+5 \%$	1 at -5%	150	914F	286D	480 (218)	WS39	MD63E91
60	75	1 at $+5 \%$	1 at -5\%	150	914F	286D	469 (213)	WS39	MD75E91
75	93	1 at $+5 \%$	1 at -5\%	150	915F	286D	727 (330)	WS39	MD93E91
100	118	1 at $+5 \%$	1 at -5\%	150	916A	286D	770 (350)	WS19	MD118E91
125	145	1 at $+5 \%$	1 at -5\%	150	916A	286D	770 (350)	WS19	MD145E91
150	175	1 at $+5 \%$	1 at -5%	150	917	286D	1100 (499)	WS34	MD175E91
200	220	1 at $+5 \%$	1 at -5%	150	917	286D	1299 (590)	WS34	MD220E91
250	275	1 at $+5 \%$	1 at -5%	150	918A	286D	1596 (725)	WS34	MD275E91
300	330	1 at $+5 \%$	1 at -5\%	150	919E	318 E	2234 (1014)	WS35	MD330E91
400	440	1 at $+5 \%$	1 at -5\%	150	919E	318E	2400 (1090)	WS35	MD440E91

460 Delta Volts to 400Y/231 Volts

hp	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	kVA	FCAN	FCBN						
5	7.5	1 at $+5 \%$	1 at -5%	150	912D	286D	193 (88)	WS38	MD075E75
7.5	11	1 at $+5 \%$	1 at -5%	150	912D	286D	158 (72)	WS38	MD11E75
10	14	1 at $+5 \%$	1 at -5%	150	912D	286D	158 (72)	WS38	MD14E75
15	20	1 at +5\%	1 at -5%	150	912D	286D	216 (98)	WS38	MD20E75
20	27	1 at $+5 \%$	1 at -5\%	150	912D	286D	231 (105)	WS38	MD27E75
25	34	1 at $+5 \%$	1 at -5\%	150	912D	286D	340 (154)	WS38	MD34E75
30	40	1 at $+5 \%$	1 at -5%	150	912D	286D	339 (154)	WS38	MD40E75
40	51	1 at $+5 \%$	1 at -5%	150	914F	286D	535 (243)	WS39	MD51E75
50	63	1 at $+5 \%$	1 at -5%	150	914F	286D	480 (218)	WS39	MD63E75
60	75	1 at $+5 \%$	1 at -5%	150	914F	286D	469 (213)	WS39	MD75E75
75	93	1 at $+5 \%$	1 at -5%	150	915F	286D	727 (330)	WS39	MD93E75
100	118	1 at $+5 \%$	1 at -5%	150	916A	286D	770 (350)	WS19	MD118E75
125	145	1 at $+5 \%$	1 at -5%	150	916A	286D	770 (350)	WS19	MD145E75
150	175	1 at $+5 \%$	1 at -5%	150	917	286D	1100 (499)	WS34	MD175E75
200	220	1 at $+5 \%$	1 at -5%	150	917	286D	1299 (590)	WS34	MD220E75
250	275	1 at $+5 \%$	1 at -5%	150	918A	286D	1596 (725)	WS34	MD275E75
300	330	1 at $+5 \%$	1 at -5%	150	919E	318 E	2234 (1014)	WS35	MD330E75
400	440	1 at $+5 \%$	1 at -5%	150	919E	318 E	2400 (1090)	WS35	MD440E75

Note
For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Distribution Transformers

Three-Phase Drive Isolation

460 Delta Volts to 460Y/266 Volts

hp	kVA	Full Capacity Taps		${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
		FCAN	FCBN						
5	7.5	1 at $+5 \%$	1 at -5%	150	912D	286D	164 (74)	WS38	MD075E92
7.5	11	1 at $+5 \%$	1 at -5%	150	912 D	286D	161 (73)	WS38	MD11E92
10	14	1 at $+5 \%$	1 at -5%	150	912D	286D	173 (79)	WS38	MD14E92
15	20	1 at $+5 \%$	1 at -5%	150	912 D	286D	231 (105)	WS38	MD20E92
20	27	1 at $+5 \%$	1 at -5%	150	912 D	286D	250 (114)	WS38	MD27E92
25	34	1 at $+5 \%$	1 at -5%	150	912 D	286D	310 (141)	WS38	MD34E92
30	40	1 at $+5 \%$	1 at -5%	150	912D	286D	310 (141)	WS38	MD40E92
40	51	1 at $+5 \%$	1 at -5%	150	914F	286D	503 (228)	WS39	MD51E92
50	63	1 at $+5 \%$	1 at -5%	150	914F	286D	535 (243)	WS39	MD63E92
60	75	1 at $+5 \%$	1 at -5%	150	914F	286D	535 (243)	WS39	MD75E92
75	93	1 at $+5 \%$	1 at -5%	150	916A	286D	710 (322)	WS19	MD93E92
100	118	1 at $+5 \%$	1 at -5%	150	916A	286D	770 (350)	WS19	MD118E92
125	145	1 at $+5 \%$	1 at -5%	150	916A	286D	866 (393)	WS19	MD145E92
150	175	1 at $+5 \%$	1 at -5%	150	917	286D	1100 (499)	WS34	MD175E92
200	220	1 at $+5 \%$	1 at -5%	150	917	286D	1100 (499)	WS34	MD220E92
250	275	1 at $+5 \%$	1 at -5%	150	918A	286D	1469 (667)	WS34	MD275E92
300	330	1 at $+5 \%$	1 at -5%	150	919E	318 E	2587 (1174)	WS35	MD330E92
400	440	1 at $+5 \%$	1 at -5%	150	919E	318E	2500 (1135)	WS35	MD440E92

Note
For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Transformers

Distribution Transformers

Three-Phase Drive Isolation

2
480 Delta Volts to 240 Delta Volts

hp	kVA	Full Capacity Taps		${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
		FCAN	FCBN						
5	7.5	1 at $+5 \%$	1 at-5\%	150	912D	300A	193 (88)	WS38	MD075E77
7.5	11	1 at $+5 \%$	1 at -5%	150	912D	300A	158 (72)	WS38	MD11E77
10	14	1 at $+5 \%$	1 at -5%	150	912D	300A	158 (72)	WS38	MD14E77
15	20	1 at $+5 \%$	1 at -5%	150	912D	300A	185 (84)	WS38	MD20E77
20	27	1 at $+5 \%$	1 at -5%	150	912 D	300A	231 (105)	WS38	MD27E77
25	34	1 at $+5 \%$	1 at -5%	150	912D	300A	329 (149)	WS38	MD34E77
30	40	1 at $+5 \%$	1 at -5%	150	912D	300A	339 (154)	WS38	MD40E77
40	51	1 at $+5 \%$	1 at -5%	150	914F	300A	535 (243)	WS39	MD51E77
50	63	1 at $+5 \%$	1 at -5%	150	914F	300A	480 (218)	WS39	MD63E77
60	75	1 at $+5 \%$	1 at -5\%	150	914F	300A	469 (213)	WS39	MD75E77
75	93	1 at $+5 \%$	1 at -5\%	150	915F	300A	727 (330)	WS39	MD93E77
100	118	1 at $+5 \%$	1 at -5\%	150	916A	300A	770 (350)	WS19	MD118E77
125	145	1 at $+5 \%$	1 at -5%	150	916A	300A	770 (350)	WS19	MD145E77
150	175	1 at $+5 \%$	1 at -5%	150	917	300A	1100 (499)	WS34	MD175E77
200	220	1 at $+5 \%$	1 at -5%	150	917	300 A	1299 (590)	WS34	MD220E77
250	275	1 at $+5 \%$	1 at -5%	150	918A	300A	1596 (725)	WS34	MD275E77
300	330	1 at $+5 \%$	1 at -5\%	150	919E	348D	2234 (1014)	WS35	MD330E77
400	440	1 at $+5 \%$	1 at -5%	150	919E	348D	2400 (1090)	WS35	MD440E77

480 Delta Volts to 480 Delta Volts

hp	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	kVA	FCAN	FCBN						
5	7.5	1 at $+5 \%$	1 at -5\%	150	912D	300A	193 (88)	WS38	MD075E99
7.5	11	1 at $+5 \%$	1 at -5%	150	912D	300A	158 (72)	WS38	MD11E99
10	14	1 at $+5 \%$	1 at -5%	150	912D	300A	158 (72)	WS38	MD14E99
15	20	1 at $+5 \%$	1 at -5%	150	912D	300A	185 (84)	WS38	MD20E99
20	27	1 at $+5 \%$	1 at -5%	150	912D	300A	231 (105)	WS38	MD27E99
25	34	1 at $+5 \%$	1 at -5%	150	912D	300A	329 (149)	WS38	MD34E99
30	40	1 at $+5 \%$	1 at -5%	150	912 D	300A	339 (154)	WS38	MD40E99
40	51	1 at $+5 \%$	1 at -5\%	150	914F	300A	535 (243)	WS39	MD51E99
50	63	1 at $+5 \%$	1 at -5%	150	914F	300A	480 (218)	WS39	MD63E99
60	75	1 at $+5 \%$	1 at -5%	150	914F	300A	469 (213)	WS39	MD75E99
75	93	1 at $+5 \%$	1 at -5\%	150	915F	300A	727 (330)	WS39	MD93E99
100	118	1 at $+5 \%$	1 at -5%	150	916A	300A	770 (350)	WS19	MD118E99
125	145	1 at $+5 \%$	1 at -5%	150	916A	300A	770 (350)	WS19	MD145E99
150	175	1 at $+5 \%$	1 at -5%	150	917	300A	1100 (499)	WS34	MD175E99
200	220	1 at $+5 \%$	1 at -5%	150	917	300A	1299 (590)	WS34	MD220E99
250	275	1 at $+5 \%$	1 at -5%	150	918A	300A	1596 (725)	WS34	MD275E99
300	330	1 at $+5 \%$	1 at -5%	150	919E	348D	2234 (1014)	WS35	MD330E99
400	440	1 at $+5 \%$	1 at -5%	150	919E	348D	2400 (1090)	WS35	MD440E99

Note
For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Distribution Transformers

Three-Phase Drive Isolation

575 Delta Volts to 460Y/266 Volts

hp		Full Capacity Taps		${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	kVA	FCAN	FCBN						
5	7.5	1 at $+5 \%$	1 at -5%	150	912D	286H	158 (72)	WS38	MD075E95
7.5	11	1 at $+5 \%$	1 at -5%	150	912D	286 H	158 (72)	WS38	MD11E95
10	14	1 at $+5 \%$	1 at -5%	150	912D	286 H	158 (72)	WS38	MD14E95
15	20	1 at $+5 \%$	1 at -5%	150	912D	286H	272 (123)	WS38	MD20E95
20	27	1 at $+5 \%$	1 at -5\%	150	912D	286 H	266 (121)	WS38	MD27E95
25	34	1 at $+5 \%$	1 at -5%	150	912D	286 H	360 (163)	WS38	MD34E95
30	40	1 at $+5 \%$	1 at -5%	150	912D	286H	310 (141)	WS38	MD40E95
40	51	1 at $+5 \%$	1 at -5%	150	914F	286 H	504 (229)	WS39	MD51E95
50	63	1 at $+5 \%$	1 at -5%	150	914F	286 H	506 (230)	WS39	MD63E95
60	75	1 at $+5 \%$	1 at -5%	150	914F	286 H	524 (238)	WS39	MD75E95
75	93	1 at $+5 \%$	1 at -5%	150	916A	286 H	730 (331)	WS19	MD93E95
100	118	1 at $+5 \%$	1 at -5%	150	916A	286 H	770 (350)	WS19	MD118E95
125	145	1 at $+5 \%$	1 at -5%	150	916A	286H	770 (350)	WS19	MD145E95
150	175	1 at $+5 \%$	1 at -5%	150	917	286H	1282 (582)	WS34	MD175E95
200	220	1 at $+5 \%$	1 at -5%	150	917	286H	1201 (545)	WS34	MD220E95
250	275	1 at $+5 \%$	1 at -5%	150	923	318 F	702 (319)	WS37	MD275E95
300	330	1 at $+5 \%$	1 at -5%	150	919E	318F	2263 (1027)	WS35	MD330E95
400	440	1 at $+5 \%$	1 at -5%	150	919E	318F	2400 (1090)	WS35	MD440E95

575 Delta Volts to 575Y/332 Volts

hp	kVA	Full Capacity Taps		${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
		FCAN	FCBN						
5	7.5	1 at $+5 \%$	1 at -5%	150	912D	286H	158 (72)	WS38	MD075E96
7.5	11	1 at $+5 \%$	1 at -5%	150	912D	286H	158 (72)	WS38	MD11E96
10	14	1 at $+5 \%$	1 at -5%	150	912D	286H	231 (105)	WS38	MD14E96
15	20	1 at $+5 \%$	1 at -5%	150	912D	286H	231 (105)	WS38	MD20E96
20	27	1 at $+5 \%$	1 at -5%	150	912D	286H	231 (105)	WS38	MD27E96
25	34	1 at $+5 \%$	1 at -5%	150	912D	286H	261 (118)	WS38	MD34E96
30	40	1 at $+5 \%$	1 at -5%	150	912D	286H	310 (141)	WS38	MD40E96
40	51	1 at $+5 \%$	1 at -5%	150	914F	286H	480 (218)	WS39	MD51E96
50	63	1 at $+5 \%$	1 at -5%	150	914F	286H	500 (227)	WS39	MD63E96
60	75	1 at $+5 \%$	1 at -5%	150	914F	286H	538 (244)	WS39	MD75E96
75	93	1 at $+5 \%$	1 at -5%	150	916A	286H	600 (272)	WS19	MD93E96
100	118	1 at $+5 \%$	1 at -5%	150	916A	286H	948 (430)	WS19	MD118E96
125	145	1 at $+5 \%$	1 at -5%	150	916A	286H	868 (394)	WS19	MD145E96
150	175	1 at $+5 \%$	1 at -5%	150	917	286H	1320 (599)	WS34	MD175E96
200	220	1 at $+5 \%$	1 at -5%	150	917	286 H	1332 (605)	WS34	MD220E96
250	275	1 at $+5 \%$	1 at -5%	150	918A	318F	1350 (613)	WS34	MD275E96
300	330	1 at $+5 \%$	1 at -5%	150	919E	318 F	2336 (1061)	WS35	MD330E96
400	440	1 at $+5 \%$	1 at -5%	150	919E	318F	2500 (1137)	WS35	MD440E96

Note

[^13]
Accessories

- Copper windings
- Non-standard voltages
- $50 / 60 \mathrm{~Hz}$ designs
- Delta-delta configuration
- $80^{\circ} \mathrm{C}$ or $115^{\circ} \mathrm{C}$ rise designs
- Encapsulated designs (up to 34 kVA). Thermoguards are not available on encapsulated designs
- Totally enclosed non-ventilated
- Electrostatic shields

Please refer to Section 2.7 Page V2-T2-191.

Technical Data and Specifications

Frequency

Eaton standard dry-type distribution transformers are designed for 60 Hz operation. Transformers required for other frequencies are available and must be specifically designed.

Overload Capability

Short-term overload is designed into transformers as required by ANSI. Dry-type distribution transformers will deliver 200\% nameplate load for one-half hour, 150% load for one hour and 125% load for four hours without being damaged, provided that a constant 50% load precedes and follows the overload. See ANSI C57.96-01.250 for additional limitations.
Continuous overload capacity is not deliberately designed into a transformer because the design objective is to be within the allowed winding temperature rise with nameplate loading.

Insulation System and Temperature Rise

Industry standards classify insulation systems and rise as shown below:

Insulation System
Classification

	+ Winding Rise	+ Hot Spot	$=$ Temp. Class
$40^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$105^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
$25^{\circ} \mathrm{C}$	$135^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$185^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

The design life of transformers having different insulation systems is the same-the lower-temperature systems are designed for the same life as the higher-temperature systems.

Enclosures

Eaton ventilated transformers, Type MD, use a NEMA 2 rated (drip-proof) enclosure as standard, and are rated NEMA 3R with the addition of weathershields.

Winding Terminations

Primary and secondary windings are terminated in the wiring compartment. Ventilated transformers have leads brought out to aluminum pads that are predrilled to accept Cu/Al lugs.
Lugs are not supplied with these transformers. Eaton recommends that external cables be rated $75^{\circ} \mathrm{C}$ for ventilated designs.

Sound Levels

All Eaton 600 volt class general-purpose dry-type distribution transformers are designed to meet NEMA ST-20 sound levels listed here. These are the sound levels measured in a soundproof environment. Actual sound levels measured at an installation will likely be higher due to electrical connections and environmental conditions. Lower sound levels are available and should be specified when the transformer is going to be installed in an area where sound may be a concern.
For additional information,
please refer to Section 2.7
Page V2-T2-195.

Average Sound Levels

NEMA ST-20 Average Sound Level, dB			
Equivalent Winding kVA Range	Self-Cooled Ven K-Factor 1, 4, 9	ed (up to 1.2 kV) K-Factor 13, 20	Encapsulated (up to 1.2 kV)
3.00 and below	40	40	45
3.01 to 9.00	40	40	45
9.01 to 15.00	45	45	50
15.01 to 30.00	45	45	50
30.01 to 50.00	45	48	50
50.01 to 75.00	50	53	55
75.01 to 112.50	50	53	55
112.51 to 150.00	50	53	55
150.01 to 225.00	55	58	57
225.01 to 300.00	55	58	57
300.01 to 500.00	60	63	59
500.01 to 700.00	62	65	61
700.01 to 1000.00	64	67	63
Greater than 1000	Consult factory	Consult factory	Consult factory

Note

For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton.

Distribution Transformers

Contents	
Description	Page
Motor Drive Isolation Transformers	V2-T2-111
Mini-Power Centers	
Standards and Certifications.	V2-T2-120
Catalog Number Selection	V2-T2-121
Product Selection	V2-T2-121
Accessories	V2-T2-123
Technical Data and Specifications.	V2-T2-123
Totally Enclosed Non-Ventilated Transformers.	V2-T2-124
Class I, Division 2, Hazardous Location Transformers	V2-T2-127
Open-Type Core and Coil Assembly Transformers	V2-T2-130
Marine Duty Transformers.	V2-T2-133
Buck-Boost and Low Voltage Lighting Transformers	V2-T2-144
Medium Voltage Distribution Transformers	V2-T2-173

Application Description

A mini-power center combines three individual components into one NEMA Type 3R enclosure: a main breaker, an encapsulated single-phase (Type EP) or three-phase (EPT) dry-type transformer, and a secondary distribution loadcenter with main breaker. Interconnecting wiring is completed at the factory. Mini-power centers are used wherever there is a 480 volt or 600 volt distribution system and loads requiring 208Y/120 volt, three-phase or 120/240 volt single-phase. Typical installations include:

- Industrial plant
assembly lines
- Plant expansions
- Test equipment
- Temporary construction site power
- Sewage disposal plants
- Warehouses
- Car washes
- Parking lots
- Commercial buildings

Features, Benefits and Functions

- 60 Hz operation
- Indoor/outdoor, NEMA 3R
- Primary main breaker
- Secondary main breaker (Type BR plug-in and Type BAB bolt-on feeder breakers not included)
- All live parts enclosed for personnel safety
- Cover is hinged to prevent removal and can be padlocked
- Cores are grounded with a copper lead
- Ground bar is supplied to permit grounding of individual secondary circuits
- Neutral bar is grounded to case
- Feeder circuits can be easily added or changed using Type BR plug-in breakers and Type BR plugin and Type BAB bolt-on
- Suitable for service entrance
- Wide range of configurations available:
- Aluminum windings and plug-in loadcenter chassis standard
- Copper windings and plug-in loadcenter chassis also available
- Copper windings and bolt-on loadcenter chassis available
- Short-term overload capability as required by ANSI
- Meet NEMA ST-20 sound levels

Transformers
Distribution Transformers

Standards and Certifications

- UL listed
- $\operatorname{CSA}{ }^{\circledR}$ certified

Industry Standards

All Eaton dry-type distribution and control transformers are built and tested in accordance with applicable NEMA,
ANSI and IEEE Standards. All 600 volt class transformers are UL listed unless otherwise noted.

Seismically Qualified

Eaton manufactured dry-type distribution transformers are seismically qualified and exceed requirements of the International Building Code (IBC) and California Code Title 24.

Catalog Number Selection

Please refer to Section 2.7 Page V2-T2-187.

Product Selection

Additional Product Selection information begins on Page V2-T2-189.

Single-Phase

480 Volts to $120 / 240$ Volts

600 Volts to $120 / 240$ Volts

kVA	Full Capacity Taps FCBN	Frame	Wiring Diagram Number	Weight Lbs (kg)	Main Circuit Breaker		Feeder Breakers Max. Number ${ }^{(2)(3)}$		Max. Amp	Catalog Number
					Primary ${ }^{(1)}$	Secondary	Single-Pole	Two-Pole		
5	2 at -5\%	FR284	110B5K	110 (50)	FDB2015	BR225	12	6	20	P60G11S05P
7.5	2 at -5%	FR284	109B7K	125 (56)	FDB2030	BR230	12	6	30	P60G11S07P
10	2 at -5\%	FR285	108B10K	180 (82)	FDB2040	BR250	12	6	40	P60G11S10P
15	2 at -5\%	FR286	107B15K	215 (98)	FDB2060	BR270	20	10	60	P60G11S15P
25	2 at -5%	FR287	106B25K	373 (169)	FDB2100	BR2125	26	13	100	P60G11S25P

Three-Phase

480 Delta Volts to 208Y/120 Volts

kVA	Full Capacity Taps FCBN	Frame	Wiring Diagram Number	Weight Lbs (kg)	Main Circuit Breaker		Feeder Breakers Max. Number (2)3				
					Primary	Secondary	Single-Pole	Two-Pole	Three-Pole	Amp	Number
15	2 at -5\%	FR289A	105A15K	320 (145)	EHD3040	BR350	18	9	6	40	P48G28T15P
22.5	2 at -5%	FR290A	103A21K	565 (256)	EHD3070	BR370	18	9	6	60	P48G28T21P
30	2 at -5\%	FR291A	104A30K	635 (288)	EHD3090	BR3100	24	12	8	80	P48G28T30P

600 Delta Volts to 208Y/120 Volts

kVA	Full Capacity Taps FCBN	Frame	Wiring Diagram Number	Weight Lbs (kg)	Main Circuit Breaker		Feeder Breakers Max. Number ${ }^{(2)(3)}$			Max. Amp	Catalog Number
					Primary	Secondary	Single-Pole	Two-Pole	Three-Pole		
15	2 at -5%	FR289A	105D15K	320 (145)	FDB3030	BR350	18	9	6	40	P60G28T15P
22.5	2 at -5%	FR290A	103B21K	565 (256)	FDB3050	BR370	18	9	6	60	P60G28T21P
30	2 at -5%	FR291A	104B30K	635 (288)	FDB3070	BR3100	24	12	8	80	P60G28T30P

Notes

(1) Primary breakers with higher interrupting capacity available. For HFD breaker, add suffix "H." For FD breaker, add suffix "F." For FDC breaker, add suffix "C."

Main breakers are fixed only.
(2) Combinations can be selected.
(3) Feeder breakers not included. Use Eaton's Type BR.

For 304 grade stainless steel enclosure, replace 10th character of catalog number with an "SS" suffix, e.g., P48G11S03SS, or add "SS" suffix before the addition of "CUB."
For 316 grade stainless steel enclosure, replace 10th character of catalog number with an "S6" suffix, e.g., P48G11S03S6, or add "S6" suffix before the addition of "CUB."
For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Transformers

Distribution Transformers

All Copper, Bolt-On Breaker Designs-Single-Phase

2
480 Volts to $120 / 240$ Volts

kVA	Full Capacity Taps FCBN	Frame	Wiring Diagram Number	Weight Lbs (kg)	Main Circuit Breaker		Feeder Breakers Max. Number (2)(3)			
					Primary ${ }^{(1)}$	Secondary	Single-Pole	Two-Pole	$\begin{aligned} & \text { Max. } \\ & \text { Amp } \end{aligned}$	Catalog Number
3	2 at -5%	FR306	97A3K	105 (47)	EHD2015L	BAB2015	8	4	12	P48G11S03CUB
5	2 at -5%	FR307	110A5K	110 (50)	EHD2020L	BAB2025	12	6	20	P48G11S05CUB
7.5	2 at -5%	FR307	109A7K	110 (50)	EHD2030L	BAB2030	12	6	30	P48G11S07CUB
10	2 at -5%	FR308	108A10K	180 (82)	EHD2040L	BAB2050	12	6	40	P48G11S10CUB
15	2 at -5%	FR309	108A15K	215 (98)	EHD2060L	BAB2070	24	12	60	P48G11S15CUB
25	2 at -5%	FR310	106A25K	385 (175)	EHD2100L	BAB2125	26	13	100	P48G11S25CUB

600 Volts to $120 / 240$ Volts

kVA	Full Capacity Taps FCBN	Frame	Wiring Diagram Number	Weight Lbs (kg)	Main Circuit Breaker		Feeder Breakers Max. Number ${ }^{(2)(3)}$			
					Primary ${ }^{(1)}$	Secondary	Single-Pole	Two-Pole	Max. Amp	Catalog Number
3	2 at -5\%	FR306	97B3K	105 (47)	FDB2015L	BAB2015	8	4	12	P60G11S03CUB
5	2 at -5\%	FR307	110B5K	110 (50)	FDB2020L	BAB2025	12	6	20	P60G11S05CUB
7.5	2 at -5\%	FR307	109B7K	110 (50)	FDB2030L	BAB2030	12	6	30	P60G11S07CUB
10	2 at -5\%	FR308	108B10K	180 (82)	FDB2040L	BAB2050	12	6	40	P60G11S10CUB
15	2 at -5\%	FR309	108B15K	215 (98)	FDB2060L	BAB2070	24	12	60	P60G11S15CUB
25	2 at -5%	FR310	106B25K	385 (175)	FDB2100L	BAB2125	26	13	100	P60G11S25CUB

Three-Phase

480 Volts to 208Y/120 Volts

kVA	Full Capacity Taps FCBN	Frame	Wiring Diagram Number	Weight Lbs (kg)	Main Circuit Breaker		Feeder Breakers Max. Number ${ }^{(2)(3)}$			Max. Amp	Catalog Number
					Primary	Secondary	Single-Pole	Two-Pole	Three-Pole		
15	2 at -5\%	FR289A	105A15K	320 (145)	EHD3040L	BAB3050H	18	9	6	40	P48G28T15CUB
22.5	2 at -5\%	FR290A	103A21K	565 (257)	EHD3070L	BAB3070H	18	9	6	60	P48G28T21CUB
30	2 at -5%	FR291A	104A30K	635 (288)	EHD3090L	BAB3100H	24	12	8	80	P48G28T30CUB

600 Volts to 208Y/120 Volts

kVA	Full Capacity Taps FCBN	Frame	Wiring Diagram Number	Weight Lbs (kg)	Main Circuit Breaker		Feeder Breakers Max. Number (2)3			Max. Amp	Catalog Number
					Primary	Secondary	Single-Pole	Two-Pole	Three-Pole		
15	2 at -5%	FR289A	105D15K	320 (145)	FDB3030L	BAB3050H	18	9	6	40	P60G28T15CUB
22.5	2 at -5\%	FR290A	103B21K	565 (257)	FDB3050L	BAB3070H	18	9	6	60	P60G28T21CUB
30	2 at -5%	FR291A	104B30K	635 (288)	FDB3070L	BAB3100H	24	12	8	80	P60G28T30CUB

Notes

(1) Primary breakers with higher interrupting capacity available. For HFD breaker, add suffix "H." For FD breaker, add suffix "F." For FDC breaker, add suffix "C."

Main breakers are fixed only. UL Listed only, not CSA
(2) Combinations can be selected.
(3) Feeder breakers not included. Use Eaton's Type BAB.

For 304 grade stainless steel enclosure, replace 10th character of catalog number with an "SS" suffix, e.g., P48G11SO3SS, or add "SS" suffix before the addition of "CUB."
For 316 grade stainless steel enclosure, replace 10th character of catalog number with an "S6" suffix, e.g., P48G11S03S6, or add "S6" suffix before the addition of "CUB."
For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Distribution Transformers

Accessories

Please refer to Section 2.7

Page V2-T2-191.

Technical Data and Specifications

Frequency

Eaton standard dry-type distribution transformers are designed for 60 Hz operation. Transformers required for other frequencies must be specifically designed.

Overload Capability

Short-term overload is designed into transformers as required by ANSI. Dry-type distribution transformers will deliver 200\% nameplate load for one-half hour, 150% load for one hour and 125% load for four hours without being damaged, provided that a constant 50\% load precedes and follows the overload. See ANSI C57.96-01.250 for additional limitations.

Continuous overload capacity is not deliberately designed into a transformer because the design objective is to be within the allowed winding temperature rise with nameplate loading.

Insulation System and

Temperature Rise
Industry standards classify insulation systems and rise as shown below:

Insulation System
Classification

	+ Winding Rise	+ Hot Spot	$\boldsymbol{=}$ Temp. Class
$40^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$105^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
$25^{\circ} \mathrm{C}$	$135^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$185^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

The design life of transformers having different insulation systems is the same-the lower-temperature systems are designed for the same life as the higher-temperature systems.

Winding Terminations

Eaton recommends that external cables be rated $90^{\circ} \mathrm{C}$ (sized at $75^{\circ} \mathrm{C}$ ampacity) for encapsulated designs and $75^{\circ} \mathrm{C}$ for ventilated designs.

Sound Levels

All Eaton 600 volt class general-purpose dry-type distribution transformers are designed to meet NEMA ST-20 sound levels listed here. These are the sound levels measured in a soundproof environment. Actual sound levels measured at an installation
will likely be higher due to electrical connections and environmental conditions. Lower sound levels are available and should be specified when the transformer is going to be installed in an area where sound may be a concern.

Average Sound Levels

NEMA ST-20 Average Sound Level, dB			
Equivalent Winding kVA Range	Self-Cooled Ven K-Factor 1, 4, 9	ed (up to 1.2 kV) K-Factor 13, 20	Encapsulated (up to 1.2 kV)
3.00 and below	40	40	45
3.01 to 9.00	40	40	45
9.01 to 15.00	45	45	50
15.01 to 30.00	45	45	50
30.01 to 50.00	45	48	50
50.01 to 75.00	50	53	55
75.01 to 112.50	50	53	55
112.51 to 150.00	50	53	55
150.01 to 225.00	55	58	57
225.01 to 300.00	55	58	57
300.01 to 500.00	60	63	59
500.01 to 700.00	62	65	61
700.01 to 1000.00	64	67	63
Greater than 1000	Consult factory	Consult factory	Consult factory

Note
For other ratings or catalog numbers not shown, or for special enclosure types (including
stainless steel), refer to Eaton. The following pages provide listings for most standard
transformer ratings and styles. For all-copper and bolt-on-breaker designs, contact Eaton

Three-Phase Type DT-3E Totally Enclosed Non-Ventilated

Totally Enclosed Non-Ventilated Transformers

Product Description

Note: The following pages provide listings for most standard transformer ratings and catalog numbers. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton.

- Suitable for indoor or outdoor applications
- Totally enclosed, nonventilated enclosures rated NEMA 3R
- $220^{\circ} \mathrm{C}$ insulation system
- $150^{\circ} \mathrm{C}$ rise standard; $115^{\circ} \mathrm{C}$ or $80^{\circ} \mathrm{C}$ rise optional

Application Description

Totally enclosed nonventilated dry-type transformers are for special applications, where because of adverse atmospheric conditions it is desirable to use a dry-type non-ventilated transformer vs. the ventilated standard unit, which has openings in its enclosure to allow air to flow directly over the core and coil.

In applications where the atmosphere contains conductive, corrosive, or combustible materials, which might damage a transformer, or lint and dust flyings that might block the ventilation passages, the non-ventilated transformer is highly suited. It has no openings in the enclosure. Heat is dissipated by radiating from the surface area of the enclosure. Consequently, the enclosures are larger than those of the standard ventilated type. Non-ventilated transformers are suited for application in the textile, chemical, automotive, petrochemical, foundry, cement, food, paper and other industries.

Features, Benefits and Functions

- 60 Hz operation $(50 / 60 \mathrm{~Hz}$ operation available)
- Short-term overload capability as required by ANSI
- Meet NEMA ST-20 sound levels

Standards and Certifications

- UL listed

Industry Standards

All Eaton dry-type distribution and control transformers are built and tested in accordance with applicable NEMA, ANSI and IEEE Standards.

Seismically Qualified

Eaton manufactured dry-type distribution transformers are seismically qualified and exceed requirements of the International Building Code (IBC) and California Code Title 24.

Catalog Number Selection

Please refer to Section 2.7 Page V2-T2-187

Product Selection

Additional Product Selection information begins on Page V2-T2-189.
Single-Phase-Type DS-3E, 60 Hz ${ }^{\text {(}}$
240×480 Volts to $120 / 240$ Volts +1-5\%, $-2-5 \%$ at 240 Volts Primary; $+2-2.5 \%,-4-2.5 \%$ at 480 Volts Primary

kVA	Type	${ }^{\circ}$ C Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Catalog Number
15	DS-3E	150	FR817N	$3 X A$	$350(159)$	T20P11S15NV
25	DS-3E	150	FR818N	$3 X A$	$350(159)$	T20P11S25NV
37.5	DS-3E	150	FR820N	$3 X A$	$600(274)$	T20P11S37NV
50	DS-3E	150	FR820N	$3 X A$	$720(329)$	T20P11S50NV

Three-Phase—Type DT-3E, 60 Hz (1)

480 Delta Volts to 208Y/120 Volts +2-2.5\% FCAN, 4-2.5\% FCBN Taps

kVA	Type	C Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Catalog Number
15	DT-3E	150	FR914FN	$280 B$	$480(217)$	V48M28T15NV
30	DT-3E	150	FR914FN	$280 B$	$480(217)$	V48M28T30NV
45	DT-3E	150	FR915FN	$280 B$	$600(272)$	V48M28T45NV
75	DT-3E	150	FR916AN	$280 B$	$760(344)$	V48M28T75NV
112.5	DT-3E	150	FR917N	$280 B$	$1100(499)$	V48M28T12NV
150	DT-3E	150	FR918AN	$280 B$	$1300(589)$	V48M28T49NV
225	DT-3E	150	FR919EN	$275 A$	$2400(1088)$	V48M28T22NV
300	DT-3E	150	FR920EN	$275 A$	$2900(1315)$	V48M28T33NV

Notes

(1) Transformers Type EPT 75 kVA and smaller three-phase, and Type EP 37.5 kVA and smaller single-phase, are furnished non-ventilated normally, as standard. See general-purpose transformers. Contact your local Eaton sales office for availability of additional totally enclosed non-ventilated transformers. Contact your local Eaton sales office for CE Mark transformer requirements. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Accessories

Please refer to Section 2.7 Page V2-T2-191.

Technical Data and Specifications

Frequency

Eaton standard dry-type distribution transformers are designed for 60 Hz operation. Transformers required for other frequencies are available and must be specifically designed.

Overload Capability

Short-term overload is designed into transformers as required by ANSI. Dry-type distribution transformers will deliver 200\% nameplate load for one-half hour, 150% load for one hour and 125\% load for four hours without being damaged, provided that a constant 50\% load precedes and follows the overload. See ANSI C57.96-01.250 for additional limitations.

Continuous overload capacity is not deliberately designed into a transformer because the design objective is to be within the allowed winding temperature rise with nameplate loading.

Insulation System and Temperature Rise			
Industry standards classify insulation systems and rise as shown below:			
Insulation System Classification			
Ambient	$\stackrel{+}{\text { Winding }}$ Rise	$\begin{aligned} & + \\ & \begin{array}{l} \text { Hot } \\ \text { Spot } \end{array} \end{aligned}$	$\begin{aligned} & \overline{=} \\ & \text { Temp. } \\ & \text { Class } \end{aligned}$
$40^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$105^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
$25^{\circ} \mathrm{C}$	$135^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$115{ }^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$185^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

The design life of transformers having different insulation systems is the same-the lower-temperature systems are designed for the same life as the higher-temperature systems.

Enclosures

Eaton totally enclosed, non-ventilated transformers, Types DS-3E and DT-3E, use a NEMA 3R rated enclosure as standard.

Winding Terminations

Primary and secondary windings are terminated in the wiring compartment Totally enclosed nonventilated transformers have leads brought out to aluminum pads that are pre-drilled to accept Cu/Al lugs. Lugs are not supplied with these transformers. Eaton recommends external cables be rated $75^{\circ} \mathrm{C}$ for ventilated designs.

Series-Multiple Windings

Series-multiple windings consist of two similar coils in each winding that can be connected in series or parallel (multiple). Transformers with series-multiple windings are designated with an " x " or "/" between the voltage ratings, such as voltages of " $120 / 240$ " or " 240×480." If the series-multiple winding is designated by an " x," the winding can be connected only for a series or parallel. With the "/" designation, a mid-point also becomes available in addition to the series or parallel connection. As an example, a 120×240 winding can be connected for either 120 (parallel) or 240 (series), but a 120/240 winding can be connected for 120 (parallel), or 240 (series), or 240 with a 120 mid-point.

Note: The preceding pages provide listings for most standard transformer ratings and catalog numbers. For all-copper and bolt-on-breaker designs, contact Eaton. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton.

Distribution Transformers

Single-Phase Type EPZ Encapsulated

Class I, Division 2, Hazardous Location Transformers

Product Description

Note: The following pages provide listings for most standard transformer ratings and catalog numbers. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton.

- Encapsulated design
- Suitable for indoor or outdoor applications
- Totally enclosed, nonventilated enclosures
- $180^{\circ} \mathrm{C}$ insulation system
- $115^{\circ} \mathrm{C}$ rise standard; $80^{\circ} \mathrm{C}$ rise optional
- Mountable in any position indoors. Upright only outdoors
- Available in ratings up to 600 volts primary, 25 kVA single-phase, 75 kVA three-phase
- Available in NEMA Type 4X enclosure

Application Description

Type EPZ and EPTZ
transformers are labeled as
"Suitable for use in Class I, Division 2, Groups A, B, C and D locations, as defined by NEC Article 501, with NECrecommended installation procedures for dry-type transformers rated under 600 volts nominal operation."

A Class I, Division 2 location per Section 500 of the NEC is defined as:
6. A location in which volatile flammable liquids or gases are handled, processed or used, but that normally will be confined within closed containers or systems from which they can escape only in case of accidental rupture or breakdown of the container or system.
7. Or, a location where ignitable concentrations of gases or vapors are normally prevented by positive mechanical ventilation and that might become hazardous through failure of the ventilation equipment.

Contents	
Description	Page
Motor Drive Isolation Transformers	V2-T2-111
Mini-Power Centers	V2-T2-119
Totally Enclosed Non-Ventilated Transformers.	V2-T2-124
Class I, Division 2, Hazardous Location Transformers	
Catalog Number Selection	V2-T2-128
Product Selection	V2-T2-128
Accessories	V2-T2-129
Technical Data and Specifications.	V2-T2-129
Open-Type Core and Coil Assembly Transformers	V2-T2-130
Marine Duty Transformers.	V2-T2-133
Buck-Boost and Low Voltage Lighting Transformers	V2-T2-144
Medium Voltage Distribution Transformers	V2-T2-173

8. Or, a location that is adjacent to a Class I, Division 1 location and ignitable concentrations of gases or vapors might occasionally enter.

Atmospheres classified by NEC Section 500 as Group A includes acetylene. Group B includes gases such as hydrogen and formaldehyde. Group C may contain gases or vapors such as ethyl ether, ethylene, or the equivalent. Atmospheres classified as Group D may contain gases or vapors such as acetone, ammonia, benzene, butane, cyclopropane, ethanol, gasoline, hexane, methanol, methane, natural gas, naphtha, propane or the equivalent.

Features, Benefits and Functions

- NEMA 3R enclosure
- 60 Hz operation
- Aluminum windings (copper optional)
- Short-term overload capability as required by ANSI
- Meet NEMA ST-20 sound levels

Standards and Certifications

- UL listed

Industry Standards

All Eaton dry-type distribution and control transformers are built and tested in accordance with applicable NEMA, ANSI and IEEE Standards.

Seismically Qualified

Eaton manufactured dry-type distribution transformers are seismically qualified and exceed requirements of the International Building Code (IBC) and California Code Title 24.

Catalog Number Selection

Please refer to Section 2.7 Page V2-T2-187.

Product Selection

Additional Product Selection information begins on Page V2-T2-189.
Single-Phase-Type EPZ, 60 Hz

480 Volts to $120 / 240$ Volts

	Full Capacity Taps kVA						
FCAN	FCBN						

Three-Phase-Type EPTZ, 60 Hz

480 Delta Volts to 208Y/120 Volts Three-Phase

	Full Capacity Taps kVA							FCAN

480 Delta Volts to 240 Delta Volts with 120 Volt Lighting Tap on B Phase (2)

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp.		Wiring Diagram Number	Weight Lbs (kg)	Catalog Number
	FCAN	FCBN	Type	Rise	Frame			
6	-	2 at -5\%	EPTZ	115	FR102H	95A	115 (52)	Z48G22T06A
9	-	2 at -5\%	EPTZ	115	FR97H	95A	160 (73)	Z48G22T09A
15	-	2 at -5\%	EPTZ	115	FR195H	95A	340 (155)	Z48G22T15A
30	-	2 at -5\%	EPTZ	115	FR243H	62A	422 (191)	Z48G22T30A
45	-	2 at -5\%	EPTZ	115	FR244H	62A	660 (299)	Z48G22T45A

Notes

(1) Floor-mount only.

(2) Center Tap capacity limited to 5% of rated kVA.

For 316 grade stainless steel enclosure, replace 10th character of catalog number with an "SS" suffix. Contact your local Eaton sales office for CE Mark transformer requirements. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Distribution Transformers

Accessories

Please refer to Section 2.7 Page V2-T2-191.

Technical Data and Specifications

Frequency

Eaton standard dry-type distribution transformers are designed for 60 Hz operation. Transformers required for other frequencies are available and must be specifically designed.

Overload Capability

Short-term overload is designed into transformers as required by ANSI. Dry-type distribution transformers will deliver 200\% nameplate load for one-half hour, 150\% load for one hour, and 125% load for four hours without being damaged, provided that a constant 50\% load precedes and follows the overload. See ANSI C57.96-01.250 for additional limitations.

Continuous overload capacity is not deliberately designed into a transformer because the design objective is to be within the allowed winding temperature rise with nameplate loading.

Insulation System and Temperature Rise			
Industry standards classify insulation systems and rise as shown below:			
Insulation System Classification			
Ambient	$\stackrel{+}{\text { Winding }}$ Rise	$\stackrel{+}{\text { Hot }}$ Spot	$\begin{aligned} & \overline{=} \\ & \text { Temp. } \\ & \text { Class. } \end{aligned}$
$40^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$105^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
$25^{\circ} \mathrm{C}$	$135^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$115{ }^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$185^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

The design life of transformers having different insulation systems is the same-the lower-temperature systems are designed for the same life as the higher-temperature systems.

Enclosures

Eaton encapsulated transformers, Types EPZ and EPTZ, use a NEMA 3R rated enclosure.

Sound Levels

All Eaton 600 volt class general-purpose dry-type distribution transformers are designed to meet NEMA ST-20 sound levels listed here. These are the sound levels measured in a soundproof environment. Actual sound levels measured at an installation will likely be higher due to electrical connections and environmental conditions. Lower sound levels are available and should be specified when the transformer is going to be installed in an area where sound may be a concern.

Winding Terminations

Lugs are not supplied with these transformers. Eaton recommends that external cables be rated $90^{\circ} \mathrm{C}$ sized at $75^{\circ} \mathrm{C}$ ampacity) for encapsulated designs and $75^{\circ} \mathrm{C}$ for ventilated designs.

Nominal and tap leads come out of the transformer through pipe elbows. Connections should be made to an adjacent explosion-proof junction box. Unused tap leads must be properly insulated prior to energization. EPZ and EPTZ transformers are UL and cUL listed.

Series-Multiple Windings

Series-multiple windings consist of two similar coils in each winding that can be connected in series or parallel (multiple). Transformers with series-multiple windings are designated with an "x" or "/" between the voltage ratings, such as voltages of " $120 / 240$ " or " 240×480." If the series-multiple winding is designated by an " x," the winding can be connected only for a series or parallel. With the "/" designation, a mid-point also becomes available in addition to the series or parallel connection. As an example, a 120×240 winding can be connected for either 120 (parallel) or 240 (series), but a 120/240 winding can be connected for 120 (parallel), 240 (series) or 240 with a 120 mid-point.

Contents	
Description	Page
Motor Drive Isolation Transformers.	V2-T2-111
Mini-Power Centers	V2-T2-119
Totally Enclosed Non-Ventilated Transformers	V2-T2-124
Class I, Division 2, Hazardous Location Transformers	V2-T2-127
Open-Type Core and Coil Assembly Transformers	
Catalog Number Selection	V2-T2-131
Product Selection.	V2-T2-131
Accessories	V2-T2-132
Technical Data and Specifications	V2-T2-132
Marine Duty Transformers	V2-T2-133
Buck-Boost and Low Voltage Lighting Transformers	V2-T2-144
Medium Voltage Distribution Transformers.	V2-T2-1

Features, Benefits and Functions

- 60 Hz operation standard, $50 / 60 \mathrm{~Hz}$ operation available
- Short-term overload capability as required by ANSI
- Meet NEMA ST-20 sound levels

Standards and Certifications

- UL recognized

IN

Industry Standards

All Eaton dry-type distribution and control transformers are built and tested in accordance with applicable NEMA, ANSI and IEEE Standards.

Seismically Qualified

All Eaton manufactured drytype distribution transformers are seismically qualified and exceed requirements of the International Building Code and California Code Title 24.

Distribution Transformers

Catalog Number Selection

Please refer to Section 2.7 Page V2-T2-187

Product Selection

Additional Product Selection information begins on Page V2-T2-189.
Single-Phase-Type DS-3C, 60 Hz
240×480 Volts to $120 / 240$ Volts

kVA	Full Ca fCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Catalog Number
15	(1)	(1)	DS-3C	150	CS15G103	3XA	246 (112)	T20P11S15EEZZ
25	(1)	(1)	DS-3C	150	CS25E103	3XA	359 (163)	T20P11S25EEZZ
37.5	(1)	(1)	DS-3C	150	CS37C103	3XA	374 (170)	T20P11S37EEZZ
50	(1)	(1)	DS-3C	150	CS50G103	3XA	555 (252)	T20P11S50EEZZ

Three-Phase—Type DT-3C, 60 Hz

480 Delta Volts to 208Y/120 Volts

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3C	150	CT15H103	280B	191 (87)	V48M28T15EEZZ
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3C	150	СТ30E103	280B	251 (114)	V48M28T30EEZZ
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3C	150	CT45E103	280B	367 (167)	V48M28T45EEZZ
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3C	150	CT75E103	280B	491 (223)	V48M28T75EEZZ
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3C	150	-	280B	676 (307)	V48M28T12EEZZ
150	2 at +2.5\%	4 at -2.5%	DT-3C	150	-	280B	796 (362)	V48M28T49EEZZ

Notes
(1) 1 at $+5 \%, 2$ at -5% at 240 volts primary; 2 at $+2.5 \%, 4$ at -2.5% at 480 volts primary.

Contact your local Eaton sales office for availability of additional open-type core and coil assemblies. Contact your local Eaton sales office for CE Mark transformer requirements. For other ratings or catalog numbers not shown, refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Accessories

Please refer to Section 2.7 Page V2-T2-191.

Technical Data and Specifications

Frequency

Eaton standard dry-type distribution transformers are designed for 60 Hz operation. Transformers required for other frequencies are available and must be specifically designed.

Overload Capability

Short-term overload is designed into transformers as required by ANSI. Dry-type distribution transformers will deliver 200\% nameplate load for one-half hour, 150\% load for one hour, and 125% load for four hours without being damaged, provided that a constant 50\% load precedes and follows the overload. See ANSI C57.96-01.250 for additional limitations.

Continuous overload capacity is not deliberately designed into a transformer because the design objective is to be within the allowed winding temperature rise with nameplate loading.

Insulation System and Temperature Rise			
Industry standards classify insulation systems and rise as shown below:			
Insulation System Classification			
Ambient	$\stackrel{+}{\text { Winding }}$ Rise	$\begin{aligned} & + \\ & \begin{array}{l} \text { Hot } \\ \text { Spot } \end{array} \end{aligned}$	$\begin{aligned} & \overline{=} \\ & \text { Temp. } \\ & \text { Class } \end{aligned}$
$40^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$105^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
$25^{\circ} \mathrm{C}$	$135^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$115{ }^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$185^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

The design life of transformers having different insulation systems is the same-the lower-temperature systems are designed for the same life as the higher-temperature systems.

Winding Terminations

Lugs are not supplied with these transformers. Eaton recommends that external cables be rated $90^{\circ} \mathrm{C}$ (sized at $75^{\circ} \mathrm{C}$ ampacity) for encapsulated designs and $75^{\circ} \mathrm{C}$ for ventilated designs.

Series-Multiple Windings

Series-multiple windings consist of two similar coils in each winding that can be connected in series or parallel (multiple). Transformers with series-multiple windings are designated with an " x " or "/" between the voltage ratings, such as voltages of "120/240" or " 240×480." If the seriesmultiple winding is designated by an "x," the winding can be connected only for a series or parallel. With the "/" designation, a mid-point also becomes available in addition to the series or parallel connection. As an example, a 120×240 winding can be connected for either 120 (parallel) or 240 (series), but a 120/240 winding can be connected for 120 (parallel), 240 (series) or 240 with a 120 mid-point.

Sound Levels

All Eaton 600 volt class general-purpose dry-type distribution transformers are designed to meet NEMA ST-20 sound levels listed here. These are the sound levels measured in a soundproof environment. Actual sound levels measured at an installation will likely be higher due to electrical connections and environmental conditions. Lower sound levels are available and should be specified when the transformer is going to be installed in an area where sound may be a concern.

For additional information, please refer to Section 2.7

Page V2-T2-195

Average Sound Levels

Equivalent Winding kVA Range	Self-Cooled Ventilated (up to 1.2 kV)		Encapsulated (up to 1.2 kV)
	K-Factor 1, 4, 9	K-Factor 13, 20	
3.00 and below	40	40	45
3.01 to 9.00	40	40	45
9.01 to 15.00	45	45	50
15.01 to 30.00	45	45	50
30.01 to 50.00	45	48	50
50.01 to 75.00	50	53	55
75.01 to 112.50	50	53	55
112.51 to 150.00	50	53	55
150.01 to 225.00	55	58	57
225.01 to 300.00	55	58	57
300.01 to 500.00	60	63	59
500.01 to 700.00	62	65	61
700.01 to 1000.00	64	67	63
Greater than 1000	Consult factory	Consult factory	Consult factory

Contents	
Description	Page
Motor Drive Isolation Transformers	V2-T2-111
Mini-Power Centers	V2-T2-119
Totally Enclosed Non-Ventilated Transformers.	V2-T2-124
Class I, Division 2, Hazardous Location Transformers	V2-T2-127
Open-Type Core and Coil Assembly Transformers	V2-T2-130
Marine Duty Transformers	
Catalog Number Selection	V2-T2-134
Product Selection	V2-T2-134
Accessories	V2-T2-143
Technical Data and Specifications.	V2-T2-143
Buck-Boost and Low Voltage Lighting Transformers	V2-T2-144
Medium Voltage Distribution Transformers	V2-T2-173

Types DS-3, DT-3

- Ventilated, NEMA 2 enclosure standard
- Suitable for indoor applications; outdoors when weathershields are also installed
- Upright mounting only
- $220^{\circ} \mathrm{C}$ insulation system
- $115^{\circ} \mathrm{C}$ rise standard; $150^{\circ} \mathrm{C}$ or $80^{\circ} \mathrm{C}$ rise optional
- Copper windings standard
- Available in single-phase ratings 15-167 kVA and up to 4160 volts primary (DS-3)
- Available in three-phase ratings 15-1500 kVA and up to 4160 volts primary (DT-3)

Application Description

The basic purpose of a transformer is voltage transformation as near as practically possible to the load for economy and distribution of power. Typical loads for dry-type distribution transformers include lighting, heating, air conditioners, fans and machine tools. Such loads are found in commercial, institutional, industrial and residential structures.

Features, Benefits and Functions

- Meets ABS (American Bureau of Shipping) specification
- ABS Type Approval Certificate Number 04-TP517621-X
- 60 Hz operation
- $115^{\circ} \mathrm{C}$ temperature rise standard
- Copper windings standard
- Short-term overload capability as required by ANSI
- Meet NEMA ST-20 sound levels

Standards and Certifications

- UL listed

Industry Standards

All Eaton dry-type distribution and control transformers are built and tested in accordance with applicable NEMA, ANSI and IEEE Standards. All 600 volt class transformers are UL listed unless otherwise noted.

Catalog Number Selection

Please refer to Section 2.7 Page V2-T2-187

Product Selection

Additional Product Selection information begins on Page V2-T2-189
Single-Phase—Type EPM Marine Duty Encapsulated NEMA 3R, 60 Hz
240×480 Volts to $\mathbf{1 2 0 / 2 4 0}$ Volts-Copper Windings

kVA	Full Ca FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
0.05	None	None	EPM	115	FR52	340500	7 (3)	-	OS20N11S81CU
0.075	None	None	EPM	115	FR54	3 A0750	7 (3)	-	OS20N11S85CU
0.1	None	None	EPM	115	FR54	3 A1000	7 (3)	-	OS20N11S82CU
0.15	None	None	EPM	115	FR55	3 A 1500	8 (4)	-	OS20N11S83CU
0.25	None	None	EPM	115	FR56	3 A2500	12 (5)	-	OS20N11S26CU
0.5	None	None	EPM	115	FR57	3A5000	13 (6)	-	OS20N11S51CU
0.75	None	None	EPM	115	FR58A	3 37500	21 (10)	-	OS20N11S76CU
1	None	None	EPM	115	FR59A	$3 \mathrm{A10}$	31 (14)	-	OS20N11S01CU
1.5	None	None	EPM	115	FR67	$3 \mathrm{A160}$	40 (18)	-	OS20N11S16CU
2	None	None	EPM	115	FR68	3 A20	40 (18)	-	OS20N11S02CU
3	None	None	EPM	115	FR176	3 A30	72 (33)	-	OS20N11S03CU
5	None	None	EPM	115	FR177	3 A50	125 (57)	-	OS20N11S05CU
7.5	None	None	EPM	115	FR178	3 370	135 (61)	-	OS20N11S07CU
10	None	None	EPM	115	FR179	3A100	203 (92)	-	OS20N11S10CU
15	None	None	EPM	115	FR182	$3 \mathrm{A150}$	231 (105)	-	OS20N11S15CU
25	None	None	EPM	115	FR300A	128 A 250	380 (173)	-	OS20N11S25CU
37.5	None	None	EPM	115	FR300A	248A370	856 (389)	-	OS20L11S37CU

Frame drawings/dimensions information begins on Page V2-T2-216.

Distribution Transformers

Single-Phase—Type DS-3M Marine Duty 60 Hz NEMA TP-1 Energy-Efficient ${ }^{~}$

120 Volts to 120 Volts-Copper Windings

	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
kVA	FCAN	FCBN	Type						
15	2 at $+2.5 \%$	4 at -2.5\%	DS-3M	115	816	56D15R	275 (125)	WS11	RT12M12F15CUEE
25	2 at $+2.5 \%$	4 at -2.5\%	DS-3M	115	818	56D25R	440 (200)	WS11	RT12M12F25CUEE
37.5	2 at $+2.5 \%$	4 at -2.5\%	DS-3M	115	818	56D37R	480 (218)	WS11	RT12M12F37CUEE
50	2 at $+2.5 \%$	4 at -2.5\%	DS-3M	115	819	56D50R	725 (329)	WS16	RT12M12F50CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DS-3M	115	820	56D75R	820 (372)	WS16	RT12M11F75CUEE
100	2 at $+2.5 \%$	4 at -2.5\%	DS-3M	115	821	56D100R	1150 (522)	WS13	RT12M11F99CUEE

208 Volts to 120/240 Volts-Copper Windings

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	FCAN	FCBN	Type						
15	2 at $+2.5 \%$	4 at -2.5\%	DS-3M	115	816	260A15R	275 (125)	WS11	RT29M11F15CUEE
25	2 at $+2.5 \%$	4 at -2.5\%	DS-3M	115	818	260A25R	440 (200)	WS11	RT29M11F25CUEE
37.5	2 at $+2.5 \%$	4 at -2.5\%	DS-3M	115	818	260A37R	480 (218)	WS11	RT29M11F37CUEE
50	2 at $+2.5 \%$	4 at -2.5\%	DS-3M	115	819	260A50R	725 (329)	WS16	RT29M11F50CUEE
75	1 at $+5 \%$	2 at -5%	DS-3M	115	820	260A75R	820 (372)	WS16	RT29R11F75CUEE
100	1 at $+5 \%$	2 at -5%	DS-3M	115	821	260A100R	1150 (522)	WS13	RT29R11F99CUEE

240×480 Volts to $120 / 240$ Volts-Copper Windings

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	FCAN	FCBN	Type						
15	(2)	(2)	DS-3M	115	816	3XA15R	264 (120)	WS11	RT20P11F15CUEE
25	(2)	(2)	DS-3M	115	818	3XA25R	420 (191)	WS11	RT20P11F25CUEE
37.5	(2)	(2)	DS-3M	115	818	3XA37R	450 (204)	WS11	RT20P11F37CUEE
50	(2)	(2)	DS-3M	115	819	3XA50R	703 (319)	WS16	RT20P11F50CUEE
75	(2)	(2)	DS-3M	115	820	3XA75R	793 (360)	WS16	RT20P11F75CUEE
100	(2)	(2)	DS-3M	115	821	3XA100R	1085 (493)	WS13	RT20P11F99CUEE

277 Volts to 120/240 Volts-Copper Windings

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp.		Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	FCAN	FCBN	Type	Rise	Frame				
15	2 at $+2.5 \%$	4 at -2.5\%	DS-3M	115	816	262C15R	275 (125)	WS11	RT27M11F15CUEE
25	2 at $+2.5 \%$	4 at -2.5\%	DS-3M	115	818	262C25R	440 (200)	WS11	RT27M11F25CUEE
37.5	2 at $+2.5 \%$	4 at -2.5\%	DS-3M	115	818	262C37R	480 (218)	WS11	RT27M11F37CUEE
50	2 at $+2.5 \%$	4 at -2.5\%	DS-3M	115	819	262C50R	725 (329)	WS16	RT27M11F50CUEE
75	1 at $+5 \%$	2 at -5%	DS-3M	115	820	262C75R	820 (372)	WS16	RT27M11F75CUEE
100	1 at $+5 \%$	2 at -5%	DS-3M	115	821	262C100R	1150 (522)	WS13	RT27M11F99CUEE

Notes

[^14]
Single-Phase—Type DS-3M Marine Duty 60 Hz NEMA TP-1 Energy-Efficient ${ }^{(1)}$

2

208×416 Volts to $120 / 240$ Volts-Copper Windings

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	FCAN	FCBN	Type						
15	(2)	(2)	DS-3M	115	816	3XF15R	264 (120)	WS11	RT18P11F15CUEE
25	(2)	(2)	DS-3M	115	818	3XF25R	420 (191)	WS11	RT18P11F25CUEE
37.5	(2)	(2)	DS-3M	115	818	3XF37R	450 (204)	WS11	RT18P11F37CUEE
50	(2)	(2)	DS-3M	115	819	3XF50R	703 (319)	WS16	RT18P11F50CUEE
75	(2)	(2)	DS-3M	115	820	3XF75R	793 (360)	WS16	RT18P11F75CUEE
100	(2)	(2)	DS-3M	115	821	3XF100R	1085 (493)	WS13	RT18P11F99CUEE

600 Volts to $120 / 240$ Volts-Copper Windings

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	FCAN	FCBN	Type						
15	2 at $+2.5 \%$	4 at -2.5\%	DS-3M	115	816	262B15R	275 (125)	WS11	RT60M11F15CUEE
25	2 at $+2.5 \%$	4 at -2.5\%	DS-3M	115	818	262B25R	440 (200)	WS11	RT60M11F25CUEE
37.5	2 at $+2.5 \%$	4 at -2.5\%	DS-3M	115	818	262B37R	480 (218)	WS11	RT60M11F37CUEE
50	2 at $+2.5 \%$	4 at -2.5\%	DS-3M	115	819	262B50R	725 (329)	WS16	RT60M11F50CUEE
75	1 at $+5 \%$	2 at -5\%	DS-3M	115	820	262B75R	820 (372)	WS16	RT60M11F75CUEE
100	1 at $+5 \%$	2 at -5%	DS-3M	115	821	262B100R	1150 (522)	WS13	RT60M11F99CUEE

Notes
(1) Suitable for installation in onshore, onboard or offshore applications.
(2) 1 at $+5 \%, 2$ at -5% at 208 volts primary; 2 at $+2.5 \%, 4$ at -2.5% at 416 volts primary.

Frame drawings/dimensions information begins on Page V2-T2-216.

Three-Phase—Type EPTM Marine Duty Encapsulated NEMA 3R, 60 Hz

480 Delta Volts to 208Y/120 Volts-Copper Windings

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp.		Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	FCAN	FCBN	Type	Rise	Frame				
3	None	2 at -5\%	EPTM	115	FR201	70A	132 (60)	-	LY48G28T03CU ${ }^{1}$
6	None	2 at -5\%	EPTM	115	FR200	70 A	182 (83)	-	LY48G28T06CU ${ }^{1}$
9	2 at $+2.5 \%$	2 at -2.5%	EPTM	115	FR103	72 B	221 (100)	-	LY48D28T09CU ${ }^{(1)}$
15	2 at $+2.5 \%$	2 at -2.5%	EPTM	115	FR95	72B	296 (135)	-	LY48D28T15CU ${ }^{1}$
30	2 at $+2.5 \%$	4 at -2.5\%	EPTM	115	FR243	84A	612 (278)	-	LY48M28T30CU
45	2 at $+2.5 \%$	4 at -2.5\%	EPTM	115	FR244	84A	808 (367)	-	LY48M28T45CU
75	2 at $+2.5 \%$	4 at -2.5\%	EPTM	115	FR245	84A	1450 (659)	-	LY48M28T75CU

480 Delta Volts to 240 Delta Volts-Copper Windings

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	FCAN	FCBN	Type						
3	None	2 at -5\%	EPTM	115	FR201	74A	132 (60)	-	LY48G24T03CU ${ }^{(1)}$
6	None	2 at -5%	EPTM	115	FR200	74 A	182 (83)	-	LY48G24T06CU ${ }^{(1)}$
9	None	2 at -5%	EPTM	115	FR103	74 A	221 (100)	-	LY48G24T09CU ${ }^{1}$
15	2 at $+2.5 \%$	2 at -2.5%	EPTM	115	FR243	230A	612 (278)	-	LY48D24T15CU (1)

Three-Phase—Type DT-3M Marine Duty Ventilated NEMA 2, 60 Hz (NEMA 3R with Weathershield Kit Installed)

480 Delta Volts to 208Y/120 Volts-Copper Windings (2)

kVA	Full Capac FCAN	FSCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	280B15M	252 (114)	WS38	MV48M28F15CU
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	280B30M	299 (136)	WS38	MV48M28F30CU
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	280B45M	414 (188)	WS38	MV48M28F45CU
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	915F	280B75M	662 (301)	WS39	MV48M28F75CU
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	916A	280B112M	927 (421)	WS19	MV48M28F12CU
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	916A	280B49M	994 (451)	WS19	MV48M28F49CU
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	917	280B22M	1839 (835)	WS34	MV48M28F22CU
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	918A	280B33M	2134 (969)	WS34	MV48M28F33CU
500	2 at $+2.5 \%$	2 at -2.5\%	DT-3M	115	919E	275A55M	3349 (1520)	WS35	MV48M28F55CU
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	80	912D	280B15M	295 (134)	WS38	MV48M28B15CU
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	80	912D	280B30M	367 (167)	WS38	MV48M28B30CU
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	80	915F	280B45M	585 (266)	WS39	MV48M28B45CU
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	80	916A	280B75M	903 (410)	WS19	MV48M28B75CU
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	80	916A	280B112M	959 (435)	WS19	MV48M28B12CU
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	80	917	280B49M	1250 (568)	WS34	MV48M28B49CU
225	2 at $+2.5 \%$	4 at -2.5%	DT-3M	80	918A	280B22M	1861 (845)	WS34	MV48M28B22CU
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	80	919E	280B33M	3600 (1634)	WS19	MV48M28B33CU

Notes

(1) T-T (Scott T) connected secondary.
(2) Not suitable for installation on U.S. or U.S. territory soil. Suitable for offshore or onboard applications.

Frame drawings/dimensions information begins on Page V2-T2-216

Transformers
Distribution Transformers

Three-Phase—Type DT-3M Marine Duty Ventilated NEMA 2, 60 Hz (NEMA 3R with Weathershield Kit Installed)

2
480 Delta Volts to 240 Delta Volts with 120 Volt Lighting Tap-Copper Windings (1)

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	FCAN	FCBN	Type						
15	2 at +2.5\%	4 at -2.5\%	DT-3M	115	912D	282B15M	252 (114)	WS38	MV48M22F15CU
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	282B30M	301 (137)	WS38	MV48M22F30CU
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	282B45M	382 (173)	WS38	MV48M22F45CU
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	915F	282B75M	550 (250)	WS39	MV48M22F75CU
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	916A	282B112M	675 (306)	WS19	MV48M22F12CU
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	916A	282B49M	860 (390)	WS19	MV48M22F49CU
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	917	282B22M	1839 (835)	WS34	MV48M22F22CU
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	918A	282B33M	2134 (969)	WS34	MV48M22F33CU
500	2 at $+2.5 \%$	2 at -2.5%	DT-3M	115	919E	293A55M	3349 (1520)	WS35	MV48D22F55CU

480 Delta Volts to 120 Delta Volts-Copper Windings (1)

	Full Capacity Taps kVA		FCAN	FCBN	Type	${ }^{\circ}$ C Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)
15	2 at $+2.5 \%$	4 at -2.5%	DT-3M	115	$912 D$	$295 B 15 M$	$252(114)$	Weathershield	Catalog Number
30	2 at $+2.5 \%$	4 at -2.5%	DT-3M	115	$912 D$	$295 B 30 M$	$301(137)$	WS38	MV48M12F15CU
45	2 at $+2.5 \%$	4 at -2.5%	DT-3M	115	$912 D$	$295 B 45 M$	$382(173)$	WS38	MV48M12F30CU
75	2 at $+2.5 \%$	4 at -2.5%	DT-3M	115	$915 F$	$295 B 75 M$	$550(250)$	WS39	MV48M12F45CU

Three-Phase-Type DT-3M Marine Duty 60 Hz NEMA TP-1 Energy-Efficient

208 Delta Volts to 208Y/120 Volts-Copper Windings (2)

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp.		Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	FCAN	FCBN	Type	Rise	Frame				
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	280E15M	265 (120)	WS38	MV29M28F15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912 D	280E30M	475 (215)	WS38	MV29M28F30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	280E45M	475 (216)	WS38	MV29M28F45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	914F	280E75M	700 (318)	WS39	MV29M28F75CUEE
112.5	1 at $+5 \%$	2 at -5%	DT-3M	115	916A	280E112M	935 (424)	WS19	MV29M28F12CUEE
150	1 at $+5 \%$	2 at -5\%	DT-3M	115	916A	280E150M	1274 (578)	WS19	MV29M28F49CUEE
225	1 at $+5 \%$	2 at -5%	DT-3M	115	917	280E225M	1743 (791)	WS34	MV29M28F22CUEE
300	1 at $+5 \%$	2 at -5\%	DT-3M	115	919E	280E300M	2350 (1067)	WS35	MV29M28F33CUEE
500	1 at $+5 \%$	2 at -5\%	DT-3M	115	920E	280E500M	3690 (1675)	WS35	MV29M28F55CUEE

Notes
(1) Not suitable for installation on U.S. or U.S. territory soil. Suitable for offshore or onboard applications.
(2) Suitable for installation in onshore, onboard or offshore applications.

Frame drawings/dimensions information begins on Page V2-T2-216

Distribution Transformers

Three-Phase—Type DT-3M Marine Duty 60 Hz NEMA TP-1 Energy-Efficient ${ }^{\text {(1) }}$

208 Delta Volts to 480Y/277 Volts-Copper Windings

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	FCAN	FCBN	Type						
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	342B15M	265 (120)	WS38	MV29M47F15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	342B30M	475 (215)	WS38	MV29M47F30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	342B45M	475 (216)	WS38	MV29M47F45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	914F	342B75M	700 (318)	WS39	MV29M47F75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	916A	342B112M	935 (424)	WS19	MV29M47F12CUEE
150	1 at $+5 \%$	2 at -5\%	DT-3M	115	916A	351A150M	1274 (578)	WS19	MV29R47F49CUEE
225	1 at $+5 \%$	2 at -5\%	DT-3M	115	917	333B225M	1743 (791)	WS34	MV29R47F22CUEE
300	1 at $+5 \%$	2 at -5\%	DT-3M	115	919E	333B300M	2350 (1067)	WS35	MV29R47F33CUEE
500	1 at $+5 \%$	2 at -5\%	DT-3M	115	920E	333B500M	3690 (1675)	WS35	MV29R47F55CUEE

240 Delta Volts to 208Y/120 Volts-Copper Windings

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp.		Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	FCAN	FCBN	Type	Rise	Frame				
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	280C15M	265 (120)	WS38	MV24M28F15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	280C30M	475 (215)	WS38	MV24M28F30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	280C45M	475 (216)	WS38	MV24M28F45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	914F	280C75M	700 (318)	WS39	MV24M28F75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	916A	280C112M	1009 (458)	WS19	MV24M28F12CUEE
150	1 at $+5 \%$	2 at -5\%	DT-3M	115	916A	289A150M	1274 (578)	WS19	MV24R28F49CUEE
225	1 at $+5 \%$	2 at -5%	DT-3M	115	917	289A225M	1743 (791)	WS34	MV24R28F22CUEE
300	1 at $+5 \%$	2 at -5\%	DT-3M	115	919E	289A300M	2350 (1067)	WS35	MV24R28F33CUEE
500	1 at $+5 \%$	2 at -5\%	DT-3M	115	920E	289A500M	3690 (1675)	WS35	MV24R28F55CUEE

240 Delta Volts to 480Y/277 Volts-Copper Windings

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp.		Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	FCAN	FCBN	Type	Rise	Frame				
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	342L15M	265 (120)	WS38	MV24M47F15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	342L30M	475 (215)	WS38	MV24M47F30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	342L45M	475 (216)	WS38	MV24M47F45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	914F	342L75M	700 (318)	WS39	MV24M47F75CUEE
112.5	1 at $+5 \%$	2 at -5\%	DT-3M	115	916A	351C112M	1009 (458)	WS19	MV24R47F12CUEE
150	1 at $+5 \%$	2 at -5\%	DT-3M	115	916A	351C150M	1274 (578)	WS19	MV24R47F49CUEE
225	1 at $+5 \%$	2 at -5\%	DT-3M	115	917	333A225M	1743 (791)	WS34	MV24R47F22CUEE
300	1 at $+5 \%$	2 at -5\%	DT-3M	115	919E	333A300M	2350 (1067)	WS35	MV24R47F33CUEE
500	1 at $+5 \%$	2 at -5\%	DT-3M	115	920E	333A500M	3690 (1675)	WS35	MV24R47F55CUEE

Notes
(1) Suitable for installation in onshore, onboard or offshore applications.

Frame drawings/dimensions information begins on Page V2-T2-216.

Transformers
Distribution Transformers

Three-Phase—Type DT-3M Marine Duty 60 Hz NEMA TP-1 Energy-Efficient ${ }^{(1)}$

2
440 Delta Volts to $220 \mathrm{Y} / 127$ Volts-Copper Windings

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	FCAN	FCBN	Type						
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	280J15M	256 (116)	WS38	MV44M31F15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	280J30M	337 (153)	WS38	MV44M31F30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	280J45M	446 (202)	WS38	MV44M31F45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	914F	280J75M	662 (301)	WS39	MV44M31F75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	916A	280J112M	914 (415)	WS19	MV44M31F12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	916A	280J150M	1132 (514)	WS19	MV44M31F49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	917	280J225M	2036 (924)	WS34	MV44M31F22CUEE
300	$2 \mathrm{at}+2.5 \%$	4 at -2.5\%	DT-3M	115	923	275F300M	2325 (1056)	WS37	MV44M31F33CUEE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	919E	275F500M	3681 (1671)	WS35	MV44M31F55CUEE

480 Delta Volts to 208Y/120 Volts-Copper Windings

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	280B15M	256 (116)	WS38	MV48M28F15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912 D	280B30M	337 (153)	WS38	MV48M28F30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912 D	280B45M	446 (202)	WS38	MV48M28F45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	914F	280B75M	662 (301)	WS39	MV48M28F75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	916A	280B112M	914 (415)	WS19	MV48M28F12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	916A	280B150M	1132 (514)	WS19	MV48M28F49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	917	275A225M	2036 (924)	WS34	MV48M28F22CUEE
300	2 at $+2.5 \%$	4 at -2.5%	DT-3M	115	923	275A300M	2325 (1056)	WS37	MV48M28F33CUEE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	919E	275A500M	3681 (1671)	WS35	MV48M28F55CUEE

480 Delta Volts to 240 Delta Volts with 120 Volt Lighting Tap on Phase B © ${ }^{2}$-Copper Windings

kVA	Full Capac FCAN	FCBN	Type	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	282B15M	248 (113)	WS38	MV48M22F15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	282B30M	410 (186)	WS38	MV48M22F30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	282B45M	445 (202)	WS38	MV48M22F45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	914F	282B75M	750 (341)	WS39	MV48M22F75CUEE
112.5	$2 \mathrm{at}+2.5 \%$	4 at -2.5\%	DT-3M	115	916A	282B112M	963 (437)	WS19	MV48M22F12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	916A	282B150M	1236 (561)	WS19	MV48M22F49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	917	282B225M	2100 (953)	WS34	MV48M22F22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	923	282B300M	2600 (1180)	WS37	MV48M22F33CUEE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	919E	291A500M	3700 (1680)	WS35	MV48M22F55CUEE

Notes
(1) Suitable for installation in onshore, onboard or offshore applications.
(2) Lighting tap limited to 5% of nameplate full load capacity.

Frame drawings/dimensions information begins on Page V2-T2-216

Distribution Transformers

Three-Phase—Type DT-3M Marine Duty 60 Hz NEMA TP-1 Energy-Efficient ${ }^{\text {(1) }}$

480 Delta Volts to $480 \mathrm{Y} / 277$ Volts-Copper Windings

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	FCAN	FCBN	Type						
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	280B15M	258 (117)	WS38	MV48M47F15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912 D	280B30M	401 (182)	WS38	MV48M47F30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	280B45M	455 (207)	WS38	MV48M47F45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	914F	280B75M	678 (308)	WS39	MV48M47F75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	916A	280B112M	676 (307)	WS19	MV48M47F12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	916A	280B150M	1249 (567)	WS19	MV48M47F49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	917	275A225M	2107 (957)	WS34	MV48M47F22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	923	275A300M	2418 (1098)	WS37	MV48M47F33CUEE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	919E	275A500M	3800 (1725)	WS35	MV48M47F55CUEE

600 Delta Volts to 208Y/120 Volts-Copper Windings

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp.		Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	FCAN	FCBN	Type	Rise	Frame				
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	280A15M	269 (122)	WS38	MV60M28F15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	280A30M	354 (161)	WS38	MV60M28F30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	280A45M	468 (213)	WS38	MV60M28F45CUEE
75	$2 \mathrm{at}+2.5 \%$	4 at -2.5\%	DT-3M	115	914F	280A75M	695 (316)	WS39	MV60M28F75CUEE
112.5	$2 \mathrm{at}+2.5 \%$	4 at -2.5\%	DT-3M	115	916A	280A112M	960 (436)	WS19	MV60M28F12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	916A	280A150M	1189 (540)	WS19	MV60M28F49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	917	280A225M	2138 (971)	WS34	MV60M28F22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	923	280A300M	2441 (1108)	WS37	MV60M28F33CUEE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	919E	280A500M	3865 (1755)	WS35	MV60M28F55CUEE

600 Delta Volts to 240 Delta Volts with 120 Volt Lighting Tap on Phase B (2)-Copper Windings

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	FCAN	FCBN	Type						
15	2 at +2.5\%	4 at -2.5\%	DT-3M	115	912D	282B15M	269 (122)	WS38	MV60M22F15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	282B30M	354 (161)	WS38	MV60M22F30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	282B45M	468 (213)	WS38	MV60M22F45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	914F	282B75M	695 (316)	WS39	MV60M22F75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	916A	282B112M	960 (436)	WS19	MV60M22F12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	916A	282B150M	1189 (540)	WS19	MV60M22F49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	917	282B225M	2138 (971)	WS34	MV60M22F22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	923	282B300M	2441 (1108)	WS37	MV60M22F33CUEE
500	2 at $+2.5 \%$	4 at -2.5%	DT-3M	115	919E	291A500M	3865 (1755)	WS35	MV60M22F55CUEE

[^15]Transformers
Distribution Transformers

Three-Phase—Type DT-3M Marine Duty 60 Hz NEMA TP-1 Energy-Efficient ${ }^{(1)}$

2

600 Delta Volts to $480 \mathrm{Y} / 277$ Volts-Copper Windings

kVA	Full Capacity Taps			${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	FCAN	FCBN	Type						
15	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	280A15M	284 (129)	WS38	MV60M47F15CUEE
30	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912 D	280A30M	441 (200)	WS38	MV60M47F30CUEE
45	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	912D	280A45M	501 (227)	WS38	MV60M47F45CUEE
75	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	914F	280A75M	746 (339)	WS39	MV60M47F75CUEE
112.5	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	916A	280A112M	744 (338)	WS19	MV60M47F12CUEE
150	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	916A	280A150M	1374 (624)	WS19	MV60M47F49CUEE
225	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	917	280A225M	2318 (1052)	WS34	MV60M47F22CUEE
300	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	923	280A300M	2660 (1208)	WS37	MV60M47F33CUEE
500	2 at $+2.5 \%$	4 at -2.5\%	DT-3M	115	919E	280A500M	4180 (1898)	WS35	MV60M47F55CUEE

Notes
(1) Suitable for installation in onshore, onboard or offshore applications.

Frame drawings/dimensions information begins on Page V2-T2-216

Distribution Transformers

Accessories

Please refer to Section 2.7 Page V2-T2-191.

Technical Data and Specifications

Frequency

Eaton standard dry-type distribution transformers are designed for 60 Hz operation. Transformers required for other frequencies are available and must be specifically designed.

Overload Capability

Short-term overload is designed into transformers as required by ANSI. Dry-type distribution transformers will deliver 200\% nameplate load for one-half hour, 150% load for one hour, and 125% load for four hours without being damaged, provided that a constant 50\% load precedes and follows the overload. See ANSI C57.96-01.250 for additional limitations.

Continuous overload capacity is not deliberately designed into a transformer because the design objective is to be within the allowed winding temperature rise with nameplate loading.

Insulation System and Temperature Rise

Industry standards classify insulation systems and rise as shown below:

Insulation System
Classification

	+ Winding	+ Hot Spot	Temp. Class
Ambient	Rise	$10^{\circ} \mathrm{C}$	$105^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	
$40^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
$25^{\circ} \mathrm{C}$	$135^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$185^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

The design life of transformers having different insulation systems is the same-the lower-temperature systems are designed for the same life as the higher-temperature systems.

Enclosures

Eaton ventilated transformers Types DS-3M and DT-3M use a NEMA 2 rated (drip-proof) enclosure as standard, and are rated NEMA 3 R with the addition of weathershields. Eaton encapsulated transformers Types EPM and EPTM use a NEMA 3R rated enclosure.

Winding Terminations

Primary and secondary windings are terminated in the wiring compartment. Encapsulated units have copper leads or stabs brought out for connections. Ventilated transformers have leads brought out to aluminum pads that are predrilled to accept Cu/Al lugs.
Lugs are not supplied with
these transformers. Eaton recommends that external cables be rated $90^{\circ} \mathrm{C}$ (sized at $75^{\circ} \mathrm{C}$ ampacity) for encapsulated designs and $75^{\circ} \mathrm{C}$ for ventilated designs.

Series-Multiple Windings

Series-multiple windings consist of two similar coils in each winding that can be connected in series or parallel (multiple). Transformers with series-multiple windings are designated with an " x " or "/" between the voltage ratings, such as voltages of " $120 / 240$ " or " 240×480." If the seriesmultiple winding is designated by an " x," the winding can be connected only for a series or parallel. With the "/" designation, a mid-point also becomes available in addition to the series or parallel connection. As an example, a 120×240 winding can be connected for either 120 (parallel) or 240 (series), but a $120 / 240$ winding can be connected for 120 (parallel), 240 (series) or 240 with a 120 mid-point.

Sound Levels

All Eaton 600 volt class general-purpose dry-type distribution transformers are designed to meet NEMA ST-20 sound levels listed here. These are the sound levels measured in a soundproof environment. Actual sound levels measured at an installation will likely be higher due to electrical connections and
environmental conditions. Lower sound levels are available and should be specified when the transformer is going to be installed in an area where sound may be a concern.

For additional information, please refer to Section 2.7

Page V2-T2-195

Average Sound Levels

NEMA ST-20 Average Equivalent Winding kVA Range	Self-Cooled Ventilated (up to 1.2 kV)		Encapsulated (up to 1.2 kV)
	K-Factor 1, 4, 9	K-Factor 13, 20	
3.00 and below	40	40	45
3.01 to 9.00	40	40	45
9.01 to 15.00	45	45	50
15.01 to 30.00	45	45	50
30.01 to 50.00	45	48	50
50.01 to 75.00	50	53	55
75.01 to 112.50	50	53	55
112.51 to 150.00	50	53	55
150.01 to 225.00	55	58	57
225.01 to 300.00	55	58	57
300.01 to 500.00	60	63	59
500.01 to 700.00	62	65	61
700.01 to 1000.00	64	67	63
Greater than 1000	Consult factory	Consult factory	Consult factory

Contents	
Description	Page
Motor Drive Isolation Transformers.	V2-T2-111
Mini-Power Centers	V2-T2-119
Totally Enclosed Non-Ventilated Transformers	V2-T2-124
Class I, Division 2, Hazardous Location Transformers	V2-T2-127
Open-Type Core and Coil Assembly Transformers	V2-T2-130
Marine Duty Transformers	V2-T2-133
Buck-Boost and Low Voltage Lighting Transformers	
Product Selection.	V2-T2-145
Accessories	V2-T2-171
Technical Data and Specifications	V2-T2-171
Wiring Diagrams	V2-T2-172
Medium Voltage Distribution Transformers	V2-T2-173

Features, Benefits and Functions

- 60 Hz operation
- 600 volt class insulation
- Short-term overload capability as required by ANSI
- Meet NEMA ST-20 sound levels

Standards and Certifications

- UL listed
- CSA certified

Industry Standards

All Eaton dry-type distribution and control transformers are built and tested in accordance with applicable NEMA, ANSI and IEEE Standards. All 600 volt class transformers are UL listed unless otherwise noted.

Seismically Qualified

Eaton-manufactured dry-type distribution transformers are seismically qualified, and exceed requirements of the International Building Code (IBC) and California Code Title 24.

Catalog Number Selection
Please refer to Section 2.7
Page V2-T2-187.

Product Selection

For quick selection data, refer to the tables on this and the following pages.

Selection Requirements

You should have the following information before selecting a buck-boost transformer:

Line Voltage

The voltage that you want to buck (decrease) or boost (increase). This can be found by measuring the supply line voltage with a voltmeter.

Load Voltage

The voltage at which your equipment is designed to operate. This is listed on the nameplate of the load equipment.

Load Amperes or Load kVA

You do not need to know both-one or the other is sufficient for selection purposes. This information usually can be found on the nameplate of the equipment that you want to operate.

Frequency

The supply line frequency must be the same as the frequency of the equipment to be operated-Eaton's buck-boost transformers operate at 60 Hz only.

Phase

The supply line should be the same as the equipment to be operated-either singleor three-phase.

Transformer Interconnection

For three-phase applications, interconnections of transformers should be made in a junction box. Two or three transformers may be used depending on an open delta (2) or wye (3) connection.

5-Step Selector

The tables that follow will simplify the selection of the buck-boost transformers. There are no calculations needed; simply follow these five steps:

1. Refer to the table having the same output voltage as the equipment you want to operate. For example, if you are installing a 240 volt 6 kVA single-phase load use selection table on the page.
2. Select the available line voltage across the top of the chart that is closest to the actual supply voltage. Therefore, for example, if the available line voltage is 213 volts, use the 212 volt column.
3. Read down the column until you reach an output kVA or amps rating equal to or greater than the load requirements. Since 6 kVA , in the example, is not listed, use the next higher rating, or 7.5 kVA .
4. Read across to the far left columns for the catalog number and quantity of transformers for your application. In this case, you will need one (1) catalog number S10N06P01P.
5. Connect the buck-boost transformer(s) you have selected in accordance with the connection diagram specified at the bottom of the available line voltage column. In this example, Diagram " F " would be used.

Note: For single-phase connections and three-phase open delta connections, inputs and outputs may be reversed. kVA capacity remains constant.

Additional Product Selection information begins on
Page V2-T2-189.
120×240 Volts to $12 / 24$ Volts

kVA	${ }^{\circ}$ C Temp. Rise	Frame	Weight Lbs (kg)	Catalog Number
0.05	115	FR52	$7(3)$	S10N04A81N
0.10	115	FR54	$7(3)$	S10N04A82N
0.15	115	FR55	$8(4)$	S10N04A83N
0.25	115	FR57P	$12(5)$	S10N04P26P
0.50	115	FR57P	$13(5)$	S10N04P51P
0.75	115	FR58AP	$21(10)$	S10N04P76P
1	115	FR67P	$31(14)$	S10N04P01P
1.5	115	FR67P	$40(18)$	S10N04P16P
2	115	FR68P	$40(18)$	S10N04P02P
3	115	FR176	$65(29)$	S10N04A03N
5	115	FR177	$113(51)$	S10N04A05N
7.5	115	FR178	$123(55)$	S10N04A07N

kVA	${ }^{\circ}$ C Temp. Rise	Frame	Weight Lbs (kg)	Catalog Number
0.05	115	FR52	$7(3)$	S10N06A81N
0.10	115	FR54	$7(3)$	S10N06A82N
0.15	115	FR55	$8(4)$	S10N06A83N
0.25	115	FR57P	$12(5)$	S10N06P26P
0.50	115	FR57P	$13(5)$	S10N06P51P
0.75	115	FR58AP	$21(10)$	S10N06P76P
1	115	FR67P	$31(14)$	S10N06P01P
1.5	115	FR67P	$40(18)$	S10N06P16P
2	115	FR68P	$40(18)$	S10N06P02P
3	115	FR176	$65(29)$	S10N06A03N
5	115	FR177	$113(51)$	S10N06A05N
7.5	115	FR178	$123(55)$	S10N06A07N

240×480 Volts to $24 / 48$ Volts

kVA	${ }^{\circ}$ C Temp. Rise	Frame	Weight Lbs (kg)	Catalog Number
0.05	115	FR52	$7(3)$	S20N08A81N
0.10	115	FR54	$7(3)$	S20N08A82N
0.15	115	FR55	$8(4)$	S20N08A83N
0.25	115	FR57P	$12(5)$	S20N08P26P
0.50	115	FR57P	$13(5)$	S20N08P51P
0.75	115	FR58AP	$21(10)$	S20N08P76P
1	115	FR67P	$31(14)$	S20N08P01P
1.5	115	FR67P	$40(18)$	S20N08P16P
2	115	FR68P	$40(18)$	S20N08P02P
3	115	FR176	$65(29)$	S20N08A03N
5	115	FR177	$113(51)$	S20N08A05N
7.5	115	FR178	$123(55)$	S20N08A07N

Note
Frame drawings/dimensions information begins on Page V2-T2-216.

Distribution Transformers

Single-Phase 115 Volt Output Required, 60 Hz

		Input	le Vol									
		84		91		96		100		102		
Units Required	Unit kVA	Output kVA	Amps	Output kVA	Amps	Catalog Number						
1	0.05	-	-	-	-	0.24	2.09	-	-	-	-	S10N04A81N
1	0.05	0.13	1.14	0.18	1.56	-	-	0.31	2.70	0.36	3.13	S10N06A81N
1	0.10	-	-	-	-	0.48	4.17	-	-	-	-	S10N04A82N
1	0.10	0.26	2.29	0.36	3.12	-	-	0.62	5.41	0.72	6.25	S10N06A82N
1	0.15	-	-	-	-	0.72	6.25	-	-	-	-	S10N04A83N
1	0.15	0.39	3.44	0.54	4.69	-	-	0.93	8.12	1.08	9.37	S10N06A83N
1	0.25	-	-	-	-	1.2	10.4	-	-	-	-	S10N04P26P
1	0.25	0.659	5.73	0.899	7.81	-	-	1.56	13.5	1.8	15.6	S10N06P26P
1	0.50	-	-	-	-	2.4	20.8	-	-	-	-	S10N04P51P
1	0.50	1.32	11.5	1.8	15.6	-	-	3.11	27.1	3.59	31.2	S10N06P51P
1	0.75	-	-	-	-	3.6	31.2	-	-	-	-	S10N04P76P
1	0.75	1.98	17.2	2.7	23.4	-	-	4.67	40.6	5.39	46.8	S10N06P76P
1	1	-	-	-	-	4.79	41.7	-	-	-	-	S10N04P01P
1	1	2.64	22.9	3.59	31.2	-	-	6.23	54.1	7.19	62.5	S10N06P01P
1	1.5	-	-	-	-	7.2	62.5	-	-	-	-	S10N04P16P
1	1.5	3.95	34.4	5.39	46.9	-	-	9.34	81.2	10.8	93.7	S10N06P16P
1	2	-	-	-	-	9.58	83.3	-	-	-	-	S10N04P02P
1	2	5.27	45.8	7.19	62.5	-	-	12.5	108	14.4	125	S10N06P02P
1	3	-	-	-	-	14.37	125.1	-	-	-	-	S10N04A03N
1	3	7.92	68.7	10.77	93.6	-	-	18.69	162.3	21.57	187.5	S10N06A03N
1	5	-	-	-	-	23.95	208.5	-	-	-	-	S10N04A05N
1	5	13.2	115	18	156	-	-	31.15	270.5	35.95	312.5	S10N06A05N
1	7.5	-	-	-	-	36	312	-	-	-	-	S10N04A07N
1	7.5	19.8	172	27	234	-	-	46.7	406	53.9	468	S10N06A07N
Connection Dia		D		B		B		C		A		

Notes

(1) Additional wiring trough may be required.
(2) Refer to Page V2-T2-172 for buck-boost wiring diagrams.

Output voltage for lower input voltage can be found by: $\frac{\text { Rated Output Voltage }}{\text { Rated Input Voltage }} \times$ Input Actual Voltage $=$ Output New Voltage
Output kVA available at reduced input voltage can be found by: $\frac{\text { Actual Input Voltage }}{\text { Rated Input Voltage }} \times$ Output kVA $=$ New kVA Rating
Frame drawings/dimensions information begins on Page V2-T2-216.

Distribution Transformers

Single-Phase 115 Volt Output Required, 60 Hz
Input Available Voltage

Units Required	Unit kVA	105 Output kVA	Amps	127 Output kVA	Amps	130 Output kVA	Amps	138 Output kVA	Amps	146 Output kVA	Amps	Catalog Number
1	0.05	0.48	4.17	0.54	4.58	-	-	0.29	2.5	-	-	S10N04A81N
1	0.05	-	-	-	-	0.41	3.54	-	-	0.23	1.98	S10N06A81N
1	0.10	0.96	8.33	1.1	9.17	-	-	0.58	5.0	-	-	S10N04A82N
1	0.10	-	-	-	-	0.82	7.08	-	-	0.46	3.95	S10N06A82N
1	0.15	1.44	12.5	1.6	13.7	-	-	0.87	7.5	-	-	S10N04A83N
1	0.15	-	-	-	-	1.3	10.6	-	-	0.69	5.93	S10N06A83N
1	0.25	2.39	20.8	2.63	22.9	-	-	1.44	12.5	-	-	S10N04P26P
1	0.25	-	-	-	-	2.03	17.7	-	-	1.14	9.88	S10N06P26P
1	0.50	4.79	41.6	5.27	45.8	-	-	2.87	25	-	-	S10N04P51P
1	0.50	-	-	-	-	4.07	35.4	-	-	2.27	19.8	S10N06P51P
1	0.75	7.19	62.4	7.9	68.7	-	-	4.31	37.5	-	-	S10N04P76P
1	0.75	-	-	-	-	6.1	53.1	-	-	3.41	29.6	S10N06P76P
1	1	9.58	83.3	10.5	91.7	-	-	5.75	50	-	-	S10N04P01P
1	1	-	-	-	-	8.14	70.8	-	-	4.55	39.5	S10N06P01P
1	1.5	14.4	125	15.8	137	-	-	8.62	75	-	-	S10N04P16P
1	1.5	-	-	-	-	12.2	106	-	-	6.82	59.3	S10N06P16P
1	2	19.2	16.7	21.1	183	-	-	11.5	100	-	-	S10N04P02P
1	2	-	-	-	-	16.3	142	-	-	9.10	79.2	S10N06P02P
1	3	28.7	249.9	31.5	275.1	-	-	17.3	150	-	-	S10N04A03N
1	3	-	-	-	-	24.4	212.4	-	-	13.6	118.5	S10N06A03N
1	5	47.9	416.5	52.5	458.5	-	-	28.7	250	-	-	S10N04A05N
1	5	-	-	-	-	40.7	354	-	-	22.7	197.5	S10N06A05N
1	7.5	71.9	624	79	687	-	-	43.1	357	-	-	S10N04A07N
1	7.5	-	-	-	-	61	531	-	-	34.1	296	S10N06A07N
Connection Dia		A		A		A		B		B		

Notes

(1) Additional wiring trough may be required.
(2) Refer to Page V2-T2-172 for buck-boost wiring diagrams.

Output voltage for lower input voltage can be found by: $\frac{\text { Rated Output Voltage }}{\text { Rated Input Voltage }} \times$ Input Actual Voltage $=$ Output New Voltage.
Output kVA available at reduced input voltage can be found by: $\frac{\text { Actual Input Voltage }}{\text { Rated Input Voltage }} \times$ Output kVA $=$ New kVA Rating.

[^16]Single-Phase 120 Volt Output Required, 60 Hz

Units Required	Unit kVA	88 Output kVA	Amps	95 Output kVA	Amps	100 Output kVA	Amps	104 Output kVA	Amps	106 Output kVA	Amps	Catalog Number
1	0.05	-	-	-	-	0.25	2.09	-	-	-	-	S10N04A81N
1	0.05	0.14	1.15	0.19	1.56	-	-	0.33	2.70	0.38	3.13	S10N06A81N
1	0.10	-	-	-	-	0.50	4.17	-	-	-	-	S10N04A82N
1	0.10	0.28	2.29	0.38	3.12	-	-	0.65	5.41	0.75	6.25	S10N06A82N
1	0.15	-	-	-	-	0.75	6.25	-	-	-	-	S10N04A83N
1	0.15	0.41	3.44	0.56	4.69	-	-	0.98	8.12	1.12	9.37	S10N06A83N
1	0.25	-	-	-	-	1.25	10.4	-	-	-	-	S10N04P26P
1	0.25	0.687	5.73	0.937	7.81	-	-	1.62	13.5	1.87	15.6	S10N06P26P
1	0.50	-	-	-	-	2.5	20.8	-	-	-	-	S10N04P51P
1	0.50	1.37	11.5	1.87	15.6	-	-	3.25	27.1	3.75	31.2	S10N06P51P
1	0.75	-	-	-	-	3.75	31.2	-	-	-	-	S10N04P76P
1	0.75	2.06	17.2	2.82	23.4	-	-	4.87	40.6	5.62	46.8	S10N06P76P
1	1	-	-	-	-	5	41.7	-	-	-	-	S10N04P01P
1	1	2.75	22.9	3.75	31.2	-	-	6.5	54.1	7.5	62.5	S10N06P01P
1	1.5	-	-	-	-	7.5	62.5	-	-	-	-	S10N04P16P
1	1.5	4.12	34.4	5.62	46.9	-	-	9.75	81.2	11.2	93.7	S10N06P16P
1	2	-	-	-	-	10	83.3	-	-	-	-	S10N04P02P
1	2	5.5	45.8	7.5	62.5	-	-	13	108	15	125	S10N06P02P
1	3	-	-	-	-	15	125.1	-	-	-	-	S10N04A03N
1	3	8.25	68.7	11.25	93.6	-	-	19.5	162.3	22.5	187.5	S10N06A03N
1	5	-	-	-	-	25	208.5	-	-	-	-	S10N04A05N
1	5	13.75	114.5	18.75	156	-	-	32.5	270.5	37.5	312.5	S10N06A05N
1	7.5	-	-	-	-	37.5	312	-	-	-	-	S10N04A07N
1	7.5	20.6	172	28.2	234	-	-	48.7	406	56.2	468	S10N06A07N
Connection Diagram (2)		D		B		B		C		A		

Notes

(1) Additional wiring trough may be required.
(2) Refer to Page V2-T2-172 for buck-boost wiring diagrams.

Output voltage for lower input voltage can be found by: $\frac{\text { Rated Output Voltage }}{\text { Rated Input Voltage }} \times$ Input Actual Voltage $=$ Output New Voltage.
Output kVA available at reduced input voltage can be found by: $\frac{\text { Actual Input Voltage }}{\text { Rated Input Voltage }} \times$ Output kVA $=$ New kVA Rating.
Frame drawings/dimensions information begins on Page V2-T2-216.

Distribution Transformers

Single-Phase 120 Volt Output Required, 60 Hz

		Input	e Vol									
		109		132		136		144		152		
	Unit	Output										
Required (1)	kVA	kVA	Amps	Catalog Number								
1	0.05	0.5	4.17	0.55	4.58	-	-	0.3	2.5	-	-	S10N04A81N
1	0.05	-	-	-	-	0.43	3.54	-	-	0.24	1.98	S10N06A81N
1	0.10	1.0	8.33	1.1	9.17	-	-	0.6	5.0	-	-	S10N04A82N
1	0.10	-	-	-	-	0.85	7.08	-	-	0.48	3.95	S10N06A82N
1	0.15	1.5	12.5	1.6	13.7	-	-	0.9	7.5	-	-	S10N04A83N
1	0.15	-	-	-	-	1.27	10.6	-	-	0.71	5.93	S10N06A83N
1	0.25	2.5	20.8	2.75	22.9	-	-	1.5	12.5	-	-	S10N04P26P
1	0.25	-	-	-	-	2.12	17.7	-	-	1.19	9.88	S10N06P26P
1	0.50	5	41.6	5.5	45.8	-	-	3	25	-	-	S10N04P51P
1	0.50	-	-	-	-	4.25	35.4	-	-	2.37	19.8	S10N06P51P
1	0.75	7.5	62.4	8.25	68.7	-	-	4.5	37.5	-	-	S10N04P76P
1	0.75	-	-	-	-	6.37	53.1	-	-	3.56	29.6	S10N06P76P
1	1	10	83.3	11	91.7	-	-	6	50	-	-	S10N04P01P
1	1	-	-	-	-	8.5	70.8	-	-	4.75	39.5	S10N06P01P
1	1.5	15	125	16.5	137	-	-	9	75	-	-	S10N04P16P
1	1.5	-	-	-	-	12.7	106	-	-	7.12	59.3	S10N06P16P
1	2	20	167	22	183	-	-	12	100	-	-	S10N04P02P
1	2	-	-	-	-	17	142	-	-	9.5	79.2	S10N06P02P
1	3	30	249.9	33	275.1	-	-	18	150	-	-	S10N04A03N
1	3	-	-	-	-	25.5	212.4	-	-	14.25	118.5	S10N06A03N
1	5	50	416.5	55	458.5	-	-	30	250	-	-	S10N04A05N
1	5	-	-	-	-	42.5	354	-	-	23.7	197.5	S10N06A05N
1	7.5	75	624	82.5	687	-	-	45	375	-	-	S10N04A07N
1	7.5	-	-	-	-	63.7	531	-	-	35.6	296	S10N06A07N
Connection Di		A		A		A		B		B		

Notes

(1) Additional wiring trough may be required.
(2) Refer to Page V2-T2-172 for buck-boost wiring diagrams.

Output voltage for lower input voltage can be found by: $\frac{\text { Rated Output Voltage }}{\text { Rated Input Voltage }} \times$ Input Actual Voltage $=$ Output New Voltage.
Output kVA available at reduced input voltage can be found by: $\frac{\text { Actual Input Voltage }}{\text { Rated Input Voltage }} \times$ Output kVA $=$ New kVA Rating.

[^17]Single-Phase 230 Volt Output Required, 60 Hz

		nput	V									
		199		203		207		209		216		
Units	Unit									Output		
Required ${ }^{(1)}$	kVA	kVA	Amps	Catalog Number								
1	0.05	-	-	-	-	0.43	1.88	0.48	2.08	-	-	S10N04A81N
1	0.05	0.31	1.36	0.36	1.56	-	-	-	-	0.72	3.12	S10N06A81N
1	0.10	-	-	-	-	0.86	3.75	0.96	4.17	-	-	S10N04A82N
1	0.10	0.62	2.71	0.72	3.12	-	-	-	-	1.44	6.25	S10N06A82N
1	0.15	-	-	-	-	1.29	5.62	1.44	6.25	-	-	S10N04A83N
1	0.15	0.93	4.06	1.08	4.69	-	-	-	-	2.16	9.37	S10N06A83N
1	0.25	-	-	-	-	2.15	9.37	2.39	10.4	-	-	S10N04P26P
1	0.25	1.55	6.77	1.8	7.81	-	-	-	-	3.59	15.6	S10N06P26P
1	0.50	-	-	-	-	4.31	18.7	4.79	20.8	-	-	S10N04P51P
1	0.50	3.11	13.5	3.6	15.6	-	-	-	-	7.19	31.2	S10N06P51P
1	0.75	-	-	-	-	6.46	28.2	7.19	31.2	-	-	S10N04P76P
1	0.75	4.66	20.3	5.4	23.4	-	-	-	-	10.8	46.8	S10N06P76P
1	1	-	-	-	-	8.62	37.5	9.58	41.7	-	-	S10N04P01P
1	1	6.23	27.1	7.2	31.2	-	-	-	-	14.4	62.5	S10N06P01P
1	1.5	-	-	-	-	12.9	56.2	14.4	62.5	-	-	S10N04P16P
1	1.5	9.34	40.6	10.8	46.9	-	-	-	-	21.6	93.7	S10N06P16P
1	2	-	-	-	-	17.2	75	19.2	83.3	-	-	S10N04P02P
1	2	12.5	54.2	14.4	62.5	-	-	-	-	28.7	125	S10N06P02P
1	3	-	-	-	-	25.8	112.5	28.7	125.1	-	-	S10N04A03N
1	3	18.6	81.3	21.6	93.6	-	-	-	-	43.2	187.5	S10N06A03N
1	5	-	-	-	-	43.1	187.5	47.9	208.5	-	-	S10N04A05N
1	5	31.1	135.5	36	156	-	-	-	-	72	312.5	S10N06A05N
1	7.5	-	-	-	-	64.6	282	71.9	312	-	-	S10N04A07N
1	7.5	46.6	203	54	234	-	-	-	-	108	468	S10N06A07N
Connection Dia		G		F		G		F		E		

Notes

(1) Additional wiring trough may be required.
(2) Refer to Page V2-T2-172 for buck-boost wiring diagrams

Output voltage for lower input voltage can be found by: $\frac{\text { Rated Output Voltage }}{\text { Rated Input Voltage }} \times$ Input Actual Voltage $=$ Output New Voltage.
Output kVA available at reduced input voltage can be found by: $\frac{\text { Actual Input Voltage }}{\text { Rated Input Voltage }} \times$ Output kVA $=$ New kVA Rating.

[^18]
Distribution Transformers

Single-Phase 230 Volt Output Required, 60 Hz

		Input A	e Volt									
		219		242		246		253		260		
Units	Unit									Output		
Required (1)	kVA	kVA	Amps	Catalog Number								
1	0.05	0.96	4.16	1.0	4.38	-	-	0.53	2.29	-	-	S10N04A81N
1	0.05	-	-	-	-	0.77	3.34	-	-	0.41	1.77	S10N06A81N
1	0.10	1.92	8.33	2.01	8.75	-	-	1.05	4.58	-	-	S10N04A82N
1	0.10	-	-	-	-	1.53	6.67	-	-	0.82	3.54	S10N06A82N
1	0.15	2.87	12.5	3.02	13.1	-	-	1.58	6.87	-	-	S10N04A83N
1	0.15	-	-	-	-	2.3	10.0	-	-	1.22	5.31	S10N06A83N
1	0.25	4.79	20.8	5.03	21.9	-	-	2.63	11.5	-	-	S10N04P26P
1	0.25	-	-	-	-	3.83	16.7	-	-	2.04	8.85	S10N06P26P
1	0.50	9.58	41.6	10.1	43.7	-	-	5.27	22.9	-	-	S10N04P51P
1	0.50	-	-	-	-	7.67	33.3	-	-	4.07	17.7	S10N06P51P
1	0.75	14.4	62.4	15.1	65.6	-	-	7.9	34.4	-	-	S10N04P76P
1	0.75	-	-	-	-	11.5	50	-	-	6.11	26.6	S10N06P76P
1	1	19.2	83.3	20.1	87.5	-	-	10.5	45.8	-	-	S10N04P01P
1	1	-	-	-	-	15.3	66.7	-	-	8.15	35.4	S10N06P01P
1	1.5	28.7	125	30.2	131	-	-	15.8	68.7	-	-	S10N04P16P
1	1.5	-	-	-	-	23	100	-	-	12.2	53.1	S10N06P16P
1	2	38.3	167	40.2	175	-	-	21.1	91.7	-	-	S10N04P02P
1	2	-	-	-	-	30.7	133	-	-	16.3	70.8	S10N06P02P
1	3	57.6	249.9	60.3	262.5	-	-	31.5	137.4	-	-	S10N04A03N
1	3	-	-	-	-	45.9	200.1	-	-	24.4	106.2	S10N06A03N
1	5	96	416.5	100.5	437.5	-	-	52.5	229	-	-	S10N04A05N
1	5	-	-	-	-	76.5	333.5	-	-	40.7	177	S10N06A05N
1	7.5	144	624	151	656	-	-	79	344	-	-	S10N04A07N
1	7.5	-	-	-	-	115	500	-	-	61.1	266	S10N06A07N
Connection Di		E		E		E		F		F		

Notes

(1) Additional wiring trough may be required.
(2) Refer to Page V2-T2-172 for buck-boost wiring diagrams.

Output voltage for lower input voltage can be found by: $\frac{\text { Rated Output Voltage }}{\text { Rated Input Voltage }} \times$ Input Actual Voltage $=$ Output New Voltage.
Output kVA available at reduced input voltage can be found by: $\frac{\text { Actual Input Voltage }}{\text { Rated Input Voltage }} \times$ Output kVA $=$ New kVA Rating.

[^19]Single-Phase 240 Volt Output Required, 60 Hz

		Input	le Volt									
Unit	Unit	Output										
Required (1)	kVA	kVA	Amps	Catalog Number								
1	0.05	-	-	-	-	0.45	1.88	0.5	2.08	-	-	S10N04A81N
1	0.05	0.32	1.35	0.38	1.56	-	-	-	-	0.75	3.12	S10N06A81N
1	0.10	-	-	-	-	0.9	3.75	1.0	4.17	-	-	S10N04A82N
1	0.10	0.65	2.71	0.75	3.12	-	-	-	-	1.5	6.25	S10N06A82N
1	0.15	-	-	-	-	1.35	5.62	1.5	6.25	-	-	S10N04A83N
1	0.15	0.98	4.06	1.12	4.69	-	-	-	-	2.25	9.37	S10N06A83N
1	0.25	-	-	-	-	2.25	9.37	2.5	10.4	-	-	S10N04P26P
1	0.25	1.62	6.77	1.87	7.81	-	-	-	-	3.75	15.6	S10N06P26P
1	0.50	-	-	-	-	4.5	18.7	5	20.8	-	-	S10N04P51P
1	0.50	3.25	13.5	3.75	15.6	-	-	-	-	7.5	31.2	S10N06P51P
1	0.75	-	-	-	-	6.75	28.2	7.5	31.2	-	-	S10N04P76P
1	0.75	4.87	20.3	5.62	23.4	-	-	-	-	11.2	46.8	S10N06P76P
1	1	-	-	-	-	9	37.5	10	41.7	-	-	S10N04P01P
1	1	6.5	27.1	7.5	31.2	-	-	-	-	15	62.5	S10N06A01
1	1.5	-	-	-	-	13.5	56.2	15	62.5	-	-	S10N04P16P
1	1.5	9.75	40.6	11.2	46.9	-	-	-	-	22.5	93.7	S10N06P16P
1	2	-	-	-	-	18	75	20	83.3	-	-	S10N04P02P
1	2	13	54.2	15	62.5	-	-	-	-	30	125	S10N06P02P
1	3	-	-	-	-	27	112.5	30	125.1	-	-	S10N04A03N
1	3	19.5	81.3	22.5	93.6	-	-	-	-	45	187.5	S10N06A03N
1	5	-	-	-	-	45	187	50	208	-	-	S10N04A05N
1	5	32.5	135	37.5	156	-	-	-	-	75	312	S10N06A05N
1	7.5	-	-	-	-	67.5	282	75	312	-	-	S10N04A07N
1	7.5	48.7	203	56.2	234	-	-	-	-	112	468	S10N06A07N
Connection Dia		G		F		G		F		E		

Notes

(1) Additional wiring trough may be required.
(2) Refer to Page V2-T2-172 for buck-boost wiring diagrams.

Output voltage for lower input voltage can be found by: $\frac{\text { Rated Output Voltage }}{\text { Rated Input Voltage }} \times$ Input Actual Voltage $=$ Output New Voltage.
Output kVA available at reduced input voltage can be found by: $\frac{\text { Actual Input Voltage }}{\text { Rated Input Voltage }} \times$ Output kVA $=$ New kVA Rating.

[^20]
Distribution Transformers

Single-Phase 240 Volt Output Required, 60 Hz

		Input Av	V Volt									
		229		252		256		264		272		
Units	Unit									Output		
Required (1)	kVA	kVA	Amps	Catalog Number								
1	0.05	1.0	4.16	1.05	4.38	-	-	0.55	2.29	-	-	S10N04A81N
1	0.05	-	-	-	-	0.8	3.33	-	-	0.42	1.77	S10N06A81N
1	0.10	2.0	8.33	2.1	8.75	-	-	1.1	4.58	-	-	S10N04A82N
1	0.10	-	-	-	-	1.6	6.67	-	-	0.85	3.54	S10N06A82N
1	0.15	3.0	12.5	3.15	13.1	-	-	1.65	6.87	-	-	S10N04A83N
1	0.15	-	-	-	-	2.4	10.0	-	-	1.27	5.31	S10N06A83N
1	0.25	5	20.8	5.25	21.9	-	-	2.75	11.5	-	-	S10N04P26P
1	0.25	-	-	-	-	4	16.7	-	-	2.12	8.85	S10N06P26P
1	0.50	10	41.6	10.5	43.7	-	-	5.5	22.9	-	-	S10N04P51P
1	0.50	-	-	-	-	8	33.3	-	-	4.25	17.7	S10N06P51P
1	0.75	15	62.4	15.7	65.6	-	-	8.25	34.4	-	-	S10N04P76P
1	0.75	-	-	-	-	12	50	-	-	6.37	26.6	S10N06P76P
1	1	20	83.3	21	87.5	-	-	11	45.8	-	-	S10N04P01P
1	1	-	-	-	-	16	66.7	-	-	8.5	35.4	S10N06P01P
1	1.5	30	125	31.5	131	-	-	16.5	68.7	-	-	S10N04P16P
1	1.5	-	-	-	-	24	100	-	-	12.7	53.1	S10N06P16P
1	2	40	167	42	175	-	-	22	91.7	-	-	S10N04P02P
1	2	-	-	-	-	32	133	-	-	17	70.8	S10N06P02P
1	3	60	249.9	63	262.5	-	-	33	137.4	-	-	S10N04A03N
1	3	-	-	-	-	48	200.1	-	-	25.5	106.2	S10N06A03N
1	5	100	416.5	105	437.5	-	-	55	229	-	-	S10N04A05N
1	5	-	-	-	-	80	333	-	-	42.5	177	S10N06A05N
1	7.5	150	624	157	656	-	-	82.5	344	-	-	S10N04A07N
1	7.5	-	-	-	-	120	500	-	-	63.7	266	S10N06A07N
Connection Di		E		E		E		F		F		

Notes

(1) Additional wiring trough may be required.
(2) Refer to Page V2-T2-172 for buck-boost wiring diagrams.

Output voltage for lower input voltage can be found by: $\frac{\text { Rated Output Voltage }}{\text { Rated Input Voltage }} \times$ Input Actual Voltage $=$ Output New Voltage.
Output kVA available at reduced input voltage can be found by: $\frac{\text { Actual Input Voltage }}{\text { Rated Input Voltage }} \times$ Output kVA $=$ New kVA Rating

[^21]
Distribution Transformers

Three-Phase Open Delta Connection 230 Volt Output Required, 60 Hz

Units Required (1)	Unit kVA	199 Output kVA	Amps	203 Output kVA	Amps	207 Output kVA	Amps	209 Output kVA	Amps	216 Output kVA	Amps	Catalog Number
2	0.05	-	-	-	-	0.75	1.87	0.83	2.08	-	-	S10N04A81N
2	0.05	0.54	1.35	0.62	1.56	-	-	-	-	1.24	3.12	S10N06A81N
2	0.10	-	-	-	-	1.49	3.75	1.66	4.17	-	-	S10N04A82N
2	0.10	1.08	2.71	1.24	3.12	-	-	-	-	2.49	6.25	S10N06A82N
2	0.15	-	-	-	-	2.24	5.62	2.49	6.25	-	-	S10N04A83N
2	0.15	1.62	4.06	1.87	4.69	-	-	-	-	3.73	9.37	S10N06A83N
2	0.25	-	-	-	-	3.3	9.37	4.15	10.4	-	-	S10N04P26P
2	0.25	2.7	6.77	3.11	7.81	-	-	-	-	6.22	15.6	S10N06P26P
2	0.50	-	-	-	-	7.47	18.7	8.3	20.8	-	-	S10N04P51P
2	0.50	5.39	13.5	6.22	15.6	-	-	-	-	12.4	31.2	S10N06P51P
2	0.75	-	-	-	-	11.2	28.2	12.4	31.2	-	-	S10N04P76P
2	0.75	8.09	20.3	9.33	23.4	-	-	-	-	18.7	46.8	S10N06P76P
2	1	-	-	-	-	14.9	37.5	16.6	41.7	-	-	S10N04P01P
2	1	10.8	27.1	12.4	31.2	-	-	-	-	24.9	62.5	S10N06P01P
2	1.5	-	-	-	-	22.4	56.2	24.9	62.5	-	-	S10N04P16P
2	1.5	16.2	40.6	18.7	46.9	-	-	-	-	37.3	93.7	S10N06P16P
2	2	-	-	-	-	29.9	75	33.2	83.3	-	-	S10N04P02P
2	2	21.6	54.2	24.9	62.5	-	-	-	-	49.8	125	S10N06P02P
2	3	-	-	-	-	44.7	112.5	49.8	125.1	-	-	S10N04A03N
2	3	32.4	81.3	32.7	93.6	-	-	-	-	74.7	187.5	S10N06A03N
2	5	-	-	-	-	74.7	187	83	208	-	-	S10N04A05N
2	5	53.9	135	62.2	156	-	-	-	-	124	312.5	S10N06A05N
2	7.5	-	-	-	-	112	282	124	312	-	-	S10N04A07N
2	7.5	80.9	203	93.3	234	-	-	-	-	187	468	S10N06A07N
Connection Dia		L		K		L		K		I		

Notes

(1) Additional wiring trough may be required.
(2) Refer to Page V2-T2-172 for buck-boost wiring diagrams.

Output voltage for lower input voltage can be found by: $\frac{\text { Rated Output Voltage }}{\text { Rated Input Voltage }} \times$ Input Actual Voltage $=$ Output New Voltage.
Output kVA available at reduced input voltage can be found by: $\frac{\text { Actual Input Voltage }}{\text { Rated Input Voltage }} \times$ Output kVA $=$ New kVA Rating
Frame drawings/dimensions information begins on Page V2-T2-216.

Distribution Transformers

Three-Phase Open Delta Connection 230 Volt Output Required, 60 Hz

		Input A	le Volt									
		219		242		246		253		260		
Units Required	Unit kVA	Output kVA	Amps	Output kVA	Amps	Output kVA	Amps	Output kVA	Amps	Output kVA	Amps	Catalog Number
2	0.05	1.66	4.17	1.74	4.37	-	-	0.91	2.29	-	-	S10N04A81N
2	0.05	-	-	-	-	1.33	3.33	-	-	0.70	1.77	S10N06A81N
2	0.10	3.32	8.33	3.48	8.75	-	-	1.83	4.58	-	-	S10N04A82N
2	0.10	-	-	-	-	2.65	6.67	-	-	1.41	3.54	S10N06A82N
2	0.15	4.98	12.5	5.23	13.1	-	-	2.74	6.87	-	-	S10N04A83N
2	0.15	-	-	-	-	3.98	10.0	-	-	2.12	5.13	S10N06A83N
2	0.25	8.3	20.8	8.71	21.9	-	-	4.56	11.5	-	-	S10N04P26P
2	0.25	-	-	-	-	6.64	16.7	-	-	3.52	8.85	S10N06P26P
2	0.50	16.6	41.7	17.4	43.7	-	-	9.73	22.9	-	-	S10N04P51P
2	0.50	-	-	-	-	13.3	33.3	-	-	7.05	17.7	S10N06P51P
2	0.75	24.9	62.4	26.1	65.6	-	-	13.7	34.4	-	-	S10N04P76P
2	0.75	-	-	-	-	19.9	50	-	-	10.6	26.6	S10N06P76P
2	1	33.2	83.3	34.8	87.5	-	-	18.3	45.8	-	-	S10N04P01P
2	1	-	-	-	-	26.5	66.7	-	-	14.1	35.4	S10N06P01P
2	1.5	49.8	125	52.3	131	-	-	27.4	68.7	-	-	S10N04P16P
2	1.5	-	-	-	-	39.8	100	-	-	21.2	53.1	S10N06P16P
2	2	66.4	167	69.7	175	-	-	36.5	91.7	-	-	S10N04P02P
2	2	-	-	-	-	53.1	133	-	-	28.2	70.8	S10N06P02P
2	3	99.6	249.9	104.4	262.5	-	-	54.9	137.4	-	-	S10N04A03N
2	3	-	-	-	-	79.5	200	-	-	42.3	106.2	S10N06A03N
2	5	166	417	174	437	-	-	91.3	229	-	-	S10N04A05N
2	5	-	-	-	-	133	333	-	-	70.5	177	S10N06A05N
2	7.5	249	624	261	656	-	-	137	344	-	-	S10N04A07N
2	7.5	-	-	-	-	199	500	-	-	106	266	S10N06A07N
Connection Di		1		1		I		K		K		

Notes

(1) Additional wiring trough may be required.
(2) Refer to Page V2-T2-172 for buck-boost wiring diagrams.

Output voltage for lower input voltage can be found by: $\frac{\text { Rated Output Voltage }}{\text { Rated Input Voltage }} \times$ Input Actual Voltage $=$ Output New Voltage.
Output kVA available at reduced input voltage can be found by: $\frac{\text { Actual Input Voltage }}{\text { Rated Input Voltage }} \times$ Output kVA $=$ New kVA Rating

[^22]
Distribution Transformers

Three-Phase Open Delta Connection 240 Volt Output Required, 60 Hz

Units Required ${ }^{(1)}$	Unit kVA	208 Output kVA	Amps	212 Output kVA	Amps	216 Output kVA	Amps	218 Output kVA	Amps	225 Output kVA	Amps	Catalog Number
2	0.05	-	-	-	-	0.73	1.87	0.87	2.08	-	-	S10N04A81N
2	0.05	0.56	1.35	0.65	1.56	-	-	-	-	1.3	3.12	S10N06A81N
2	0.10	-	-	-	-	1.56	3.75	1.73	4.17	-	-	S10N04A82N
2	0.10	1.13	2.71	1.3	3.12	-	-	-	-	2.6	6.25	S10N06A82N
2	0.15	-	-	-	-	2.34	5.62	2.6	6.25	-	-	S10N04A83N
2	0.15	1.69	4.06	1.95	4.69	-	-	-	-	3.9	9.37	S10N06A83N
2	0.25	-	-	-	-	3.9	9.37	4.33	10.4	-	-	S10N04P26P
2	0.25	2.81	6.77	3.25	7.81	-	-	-	-	6.49	15.6	S10N06P26P
2	0.50	-	-	-	-	7.79	18.7	8.66	20.8	-	-	S10N04P51P
2	0.50	5.63	13.5	6.5	15.6	-	-	-	-	13	31.2	S10N06P51P
2	0.75	-	-	-	-	11.7	28.2	13	31.2	-	-	S10N04P76P
2	0.75	8.44	20.3	9.75	23.4	-	-	-	-	19.5	46.8	S10N06P76P
2	1	-	-	-	-	15.6	37.5	17.3	41.7	-	-	S10N04P01P
2	1	11.3	27.1	13	31.2	-	-	-	-	26	62.5	S10N06P01P
2	1.5	-	-	-	-	23.4	56.2	26	62.5	-	-	S10N04P16P
2	1.5	16.9	40.6	19.5	46.9	-	-	-	-	39	93.7	S10N06P16P
2	2	-	-	-	-	31.2	75	34.6	83.3	-	-	S10N04P02P
2	2	22.5	54.2	26	62.5	-	-	-	-	52	125	S10N06P02P
2	3	-	-	-	-	46.8	112.5	51.9	125.1	-	-	S10N04A03N
2	3	33.9	81.3	39	93.6	-	-	-	-	78	187.5	S10N06A03N
2	5	-	-	-	-	77.9	187	86.6	208	-	-	S10N04A05N
2	5	56.3	135	65	156	-	-	-	-	130	312	S10N06A05N
2	7.5	-	-	-	-	117	282	130	312	-	-	S10N04A07N
2	7.5	84.4	203	97.5	234	-	-	-	-	195	468	S10N06A07N
Connection Dia		L		K		L		K		I		

Notes

(1) Additional wiring trough may be required.
(2) Refer to Page V2-T2-172 for buck-boost wiring diagrams.

Output voltage for lower input voltage can be found by: $\frac{\text { Rated Output Voltage }}{\text { Rated Input Voltage }} \times$ Input Actual Voltage $=$ Output New Voltage.
Output kVA available at reduced input voltage can be found by: $\frac{\text { Actual Input Voltage }}{\text { Rated Input Voltage }} \times$ Output kVA $=$ New kVA Rating
Frame drawings/dimensions information begins on Page V2-T2-216.

Distribution Transformers

Three-Phase Open Delta Connection 240 Volt Output Required, 60 Hz

Notes

(1) Additional wiring trough may be required.
(2) Refer to Page V2-T2-172 for buck-boost wiring diagrams.

Output voltage for lower input voltage can be found by: $\frac{\text { Rated Output Voltage }}{\text { Rated Input Voltage }} \times$ Input Actual Voltage $=$ Output New Voltage.
Output kVA available at reduced input voltage can be found by: $\frac{\text { Actual Input Voltage }}{\text { Rated Input Voltage }} \times$ Output kVA $=$ New kVA Rating.

[^23]WARNING! Three-phase autotransformers should never be used to obtain four-wire output with three-wire input. Four-wire output requires four-wire wye input.

Three-Phase Wye Connection 208 Volt Output Required, 60 Hz

Units Required	Unit kVA	Input Available Voltage										
		152		164		173		180		184		
		Output kVA	Amps	Catalog Number								
3	0.05	-	-	-	-	0.75	2.08	-	-	-	-	S10N04A81N
3	0.05	0.41	1.15	0.56	1.56	-	-	0.98	2.71	1.12	3.12	S10N06A81N
3	0.10	-	-	-	-	1.50	4.17	-	-	-	-	S10N04A82N
3	0.10	0.82	2.29	1.12	3.12	-	-	1.95	5.41	2.25	6.25	S10N06A82N
3	0.15	-	-	-	-	2.25	6.25	-	-	-	-	S10N04A83N
3	0.15	1.24	3.44	1.69	4.69	-	-	2.92	8.12	3.73	9.37	S10N06A83N
3	0.25	-	-	-	-	3.75	10.4	-	-	-	-	S10N04P26P
3	0.25	2.06	5.73	2.81	7.81	-	-	4.87	13.5	5.62	15.6	S10N06P26P
3	0.50	-	-	-	-	7.5	20.8	-	-	-	-	S10N04P51P
3	0.50	4.12	11.5	5.62	15.6	-	-	9.75	27.1	11.2	31.2	S10N06P51P
3	0.75	-	-	-	-	11.2	31.2	-	-	-	-	S10N04P76P
3	0.75	6.19	17.2	8.44	23.4	-	-	14.6	40.6	16.8	46.8	S10N06P76P
3	1	-	-	-	-	15	41.7	-	-	-	-	S10N04P01P
3	1	8.25	22.9	11.2	31.2	-	-	19.5	54.1	22.5	62.5	S10N06P01P
3	1.5	-	-	-	-	22.5	62.5	-	-	-	-	S10N04P16P
3	1.5	12.4	34.4	16.9	46.9	-	-	29.2	81.2	33.7	93.7	S10N06P16P
3	2	-	-	-	-	30	83.3	-	-	-	-	S10N04P02P
3	2	16.5	45.8	22.5	62.5	-	-	39	108	45	125	S10N06P02P
3	3	-	-	-	-	45	125	-	-	-	-	S10N04A03N
3	3	24.7	68.7	33.6	93.6	-	-	58.5	162.3	67.5	187.5	S10N06A03N
3	5	-	-	-	-	75	208	-	-	-	-	S10N04A05N
3	5	41.2	115	56.2	156	-	-	97.5	271	112	312	S10N06A05N
3	7.5	-	-	-	-	112	312	-	-	-	-	S10N04A07N
3	7.5	61.9	172	84.4	234	-	-	146	406	168	468	S10N06A07N
Connection Diagram ${ }^{2}$)		P		N		N		0		M		

Notes
(1) Additional wiring trough may be required.
(2) Refer to Page V2-T2-172 for buck-boost wiring diagrams.

Output voltage for lower input voltage can be found by: $\frac{\text { Rated Output Voltage }}{\text { Rated Input Voltage }} \mathrm{x}$ Input Actual Voltage $=0$ utput New Voltage.
Output kVA available at reduced input voltage can be found by: $\frac{\text { Actual Input Voltage }}{\text { Rated Input Voltage }} \times$ Output kVA $=$ New kVA Rating.
Frame drawings/dimensions information begins on Page V2-T2-216.

Distribution Transformers

WARNING! Three-phase autotransformers should never be used to obtain four-wire output with three-wire input. Four-wire output requires four-wire wye input.

Three-Phase Wye Connection 208 Volt Output Required, 60 Hz

		Input Av	le Vo									
		189		229		236		250		264		
Units Required ${ }^{(1)}$	Unit kVA	Output kVA	Amps	Output kVA	Amps	Output kVA	Amps	Output kVA	Amps	Output kVA	Amps	Catalog Number
3	0.05	1.5	4.16	1.65	4.58	-	-	0.9	2.5	-	-	S10N04A81N
3	0.05	-	-	-	-	1.27	3.54	-	-	0.71	1.98	S10N06A81N
3	0.10	3.0	8.33	3.3	9.17	-	-	1.8	5.0	-	-	S10N04A82N
3	0.10	-	-	-	-	2.55	7.08	-	-	1.42	3.95	S10N06A82N
3	0.15	4.5	12.5	4.95	13.7	-	-	2.7	7.5	-	-	S10N04A83N
3	0.15	-	-	-	-	3.82	10.6	-	-	2.14	5.93	S10N06A83N
3	0.25	7.5	20.8	8.25	22.9	-	-	4.5	12.5	-	-	S10N04P26P
3	0.25	-	-	-	-	6.35	17.7	-	-	3.56	9.88	S10N06P26P
3	0.50	15	41.6	16.5	45.8	-	-	9	25	-	-	S10N04P51P
3	0.50	-	-	-	-	12.7	35.4		-	7.12	19.3	S10N06P51P
3	0.75	22.5	62.4	24.7	68.7	-	-	13.5	37.5	-	-	S10N04P76P
3	0.75	-	-	-	-	19	53.1	-	-	10.7	29.3	S10N06P76P
3	1	30	83.3	33	91.7	-	-	18	50	-	-	S10N04P01P
3	1	-	-	-	-	25.5	70.8	-	-	14.2	39.5	S10N06P01P
3	1.5	45	125	49.5	137	-	-	27	75	-	-	S10N04P16P
3	1.5	-	-	-	-	38.2	106	-	-	21.4	59.3	S10N06P16P
3	2	60	167	66	183	-	-	361	100	-	-	S10N04P02P
3	2	-	-	-	-	51	142	-	-	28.5	79.2	S10N06P02P
3	3	90	249.9	99	275.1	-	-	54	150	-	-	S10N04A03N
3	3	-	-	-	-	76.5	212.4	-	-	46.2	118.5	S10N06A03N
3	5	150	416	165	458	-	-	90	250	-	-	S10N04A05N
3	5	-	-	-	-	127	354	-	-	71.2	198	S10N06A05N
3	7.5	225	624	274	687	-	-	135	375	-	-	S10N04A07N
3	7.5	-	-	-	-	190	531	-	-	107	293	S10N06A07N
Connection Dia		M		M		M		N		N		

Notes
(1) Additional wiring trough may be required.
(2) Refer to Page V2-T2-172 for buck-boost wiring diagrams

Output voltage for lower input voltage can be found by: $\frac{\text { Rated Output Voltage }}{\text { Rated Input Voltage }} \times$ Input Actual Voltage $=$ Output New Voltage.
Output kVA available at reduced input voltage can be found by: $\frac{\text { Actual Input Voltage }}{\text { Rated Input Voltage }} \times$ Output kVA $=$ New kVA Rating
Frame drawings/dimensions information begins on Page V2-T2-216

WARNING! Three-phase autotransformers should never be used to obtain four-wire output with three-wire input. Four-wire output requires four-wire wye input.

Three-Phase Wye Connection 230 Volt Output Required, 60 Hz

Units Required	Unit kVA	Input Available Voltage										
		183		192		199		208		218		
		Output kVA	Amps	Catalog Number								
3	0.05	-	-	0.83	2.08	-	-	1.65	4.58	1.66	4.17	S10N04A81N
3	0.05	0.62	1.56	-	-	0.54	1.35	-	-	-	-	S10N06A81N
3	0.10	-	-	1.66	4.17	-	-	3.3	9.17	3.32	8.35	S10N04A82N
3	0.10	1.25	3.12	-	-	1.08	2.71	-	-	-	-	S10N06A82N
3	0.15	-	-	2.49	6.25	-	-	4.95	13.7	4.98	12.5	S10N04A83N
3	0.15	1.87	4.69	-	-	1.62	4.06	-	-	-	-	S10N06A83N
3	0.25	-	-	4.15	10.4	-	-	8.2	22.9	8.3	20.9	S10N04P26P
3	0.25	3.11	7.81	-	-	2.70	6.77	-	-	-	-	S10N06P26P
3	0.50	-	-	8.3	20.8	-	-	16.5	45.8	16.6	41.7	S10N04P51P
3	0.50	6.22	15.6	-	-	5.39	13.5	-	-	-	-	S10N06P51P
3	0.75	-	-	12.4	31.2	-	-	24.7	68.8	24.9	62.6	S10N04P76P
3	0.75	9.33	23.4	-	-	8.09	20.3	-	-	-	-	S10N06P76P
3	1	-	-	16.6	41.7	-	-	33	91.7	33.2	83.5	S10N04P01P
3	1	12.5	31.2	-	-	10.8	27.1	-	-	-	-	S10N06P01P
3	1.5	-	-	24.9	62.5	-	-	49.5	137	49.8	125	S10N04P16P
3	1.5	18.7	46.9	-	-	16.2	40.6	-	-	-	-	S10N06P16P
3	2	-	-	33.2	83.3	-	-	66	183	66.4	167	S10N04P02P
3	2	24.9	62.5	-	-	21.6	54.2	-	-	-	-	S10N06P02P
3	3	-	-	49.8	125.1	-	-	99	275	99.6	250.5	S10N04A03N
3	3	37.5	93.6	-	-	32.4	81.3	-	-	-	-	S10N06A03N
3	5	-	-	83	208	-	-	165	458	166	417	S10N04A05N
3	5	62.2	156	-	-	53.9	135	-	-	-	-	S10N06A05N
3	7.5	-	-	124	312	-	-	247	688	249	626	S10N04A07N
3	7.5	93.3	234	-	-	80.9	203	-	-	-	-	S10N06A07N
Connection Diagram ${ }^{(2)}$		N		N		S		M		0		

Notes

(1) Additional wiring trough may be required.
(2) Refer to Page V2-T2-172 for buck-boost wiring diagrams

Output voltage for lower input voltage can be found by: $\frac{\text { Rated Output Voltage }}{\text { Rated Input Voltage }} \times$ Input Actual Voltage $=$ Output New Voltage.
Output kVA available at reduced input voltage can be found by: $\frac{\text { Actual Input Voltage }}{\text { Rated Input Voltage }} \times$ Output kVA $=$ New kVA Rating.
Frame drawings/dimensions information begins on Page V2-T2-216.

Distribution Transformers

WARNING! Three-phase autotransformers should never be used to obtain four-wire output with three-wire input. Four-wire output requires four-wire wye input.

Three-Phase Wye Connection 230 Volt Output Required, 60 Hz

Notes
(1) Additional wiring trough may be required.
(2) Refer to Page V2-T2-172 for buck-boost wiring diagrams.

Output voltage for lower input voltage can be found by: $\frac{\text { Rated Output Voltage }}{\text { Rated Input Voltage }} \times$ Input Actual Voltage $=$ Output New Voltage.
Output kVA available at reduced input voltage can be found by: $\frac{\text { Actual Input Voltage }}{\text { Rated Input Voltage }} \times$ Output kVA $=$ New kVA Rating
Frame drawings/dimensions information begins on Page V2-T2-216

WARNING! Three-phase autotransformers should never be used to obtain four-wire output with three-wire input. Four-wire output requires four-wire wye input.

Three-Phase Wye Connection 240 Volt Output Required, 60 Hz

		Input Available Voltage										
		190		200		208		218		228		
Units Required	Unit kVA	Output kVA	Amps	Catalog Number								
3	0.05	-	-	0.86	2.08	-	-	0.86	2.08	1.73	4.17	S10N04A81N
3	0.05	0.65	1.65	-	-	1.27	3.05	-	-	-	-	S10N06A81N
3	0.10	-	-	1.73	4.17	-	-	1.73	4.17	3.46	8.34	S10N04A82N
3	0.10	1.3	3.12	-	-	2.55	6.12	-	-	-	-	S10N06A82N
3	0.15	-	-	2.59	6.25	-	-	2.59	6.25	5.20	12.5	S10N04A83N
3	0.15	1.95	4.69	-	-	3.82	9.16	-	-	-	-	S10N06A83N
3	0.25	-	-	4.32	10.4	-	-	4.32	10.4	8.66	20.9	S10N04P26P
3	0.25	3.25	7.81	-	-	6.3	15.1	-	-	-	-	S10N06P26P
3	0.50	-	-	8.65	20.8	-	-	8.65	20.8	17.3	41.7	S10N04P51P
3	0.50	6.5	15.6	-	-	12.7	30.4	-	-	-	-	S10N06P51P
3	0.75	-	-	13	31.2	-	-	13	31.2	26	62.6	S10N04P76P
3	0.75	9.75	23.4	-	-	19.2	46	-	-	-	-	S10N06P76P
3	1	-	-	17.3	41.7	-	-	17.3	41.7	34.6	83.4	S10N04P01P
3	1	13	31.2	-	-	25.5	61.2	-	-	-	-	S10N06P01P
3	1.5	-	-	25.9	62.5	-	-	25.9	62.5	52	125	S10N04P16P
3	1.5	19.5	46.9	-	-	38.2	91.6	-	-	-	-	S10N06P16P
3	2	-	-	34.6	83.3	-	-	34.6	83.3	69.3	167	S10N04P02P
3	2	26	62.5	-	-	51	122.4	-	-	-	-	S10N06P02P
3	3	-	-	51.9	125.1	-	-	51.9	125.1	103.8	250.2	S10N04A03N
3	3	39	93.6	-	-	76.5	183.6	-	-	-	-	S10N06A03N
3	5	-	-	86.5	208	-	-	86.5	208	173	417	S10N04A05N
3	5	65	156	-	-	127.2	305.2	-	-	-	-	S10N06A05N
3	7.5	-	-	130	312	-	-	130	312	260	626	S10N04A07N
3	7.5	97.5	234	-	-	192	460	-	-	-	-	S10N06A07N
Connection Diagram ${ }^{(2)}$		N		N		M		R		0		

Notes
(1) Additional wiring trough may be required.
(2) Refer to Page V2-T2-172 for buck-boost wiring diagrams.

Output voltage for lower input voltage can be found by: $\frac{\text { Rated Output Voltage }}{\text { Rated Input Voltage }} \mathrm{x}$ Input Actual Voltage $=0$ utput New Voltage.
Output kVA available at reduced input voltage can be found by: $\frac{\text { Actual Input Voltage }}{\text { Rated Input Voltage }} \times$ Output kVA $=$ New kVA Rating.
Frame drawings/dimensions information begins on Page V2-T2-216.

Distribution Transformers

WARNING! Three-phase autotransformers should never be used to obtain four-wire output with three-wire input. Four-wire output requires four-wire wye input.

Three-Phase Wye Connection 240 Volt Output Required, 60 Hz

Notes
(1) Additional wiring trough may be required.
(2) Refer to Page V2-T2-172 for buck-boost wiring diagrams.

Output voltage for lower input voltage can be found by: $\frac{\text { Rated Output Voltage }}{\text { Rated Input Voltage }} \times$ Input Actual Voltage $=$ Output New Voltage.
Output kVA available at reduced input voltage can be found by: $\frac{\text { Actual Input Voltage }}{\text { Rated Input Voltage }} \times$ Output kVA $=$ New kVA Rating
Frame drawings/dimensions information begins on Page V2-T2-216

WARNING! Three-phase autotransformers should never be used to obtain four-wire output with three-wire input. Four-wire output requires four-wire wye input.

Three-Phase Wye Connection 460 Volt Output Required, 60 Hz

Units Required ${ }^{1}$	Unit kVA	Input Available Voltage								
		406		418		432		438		
		kVA	Amps	kVA	Amps	kVA	Amps	kVA	Amps	Catalog Number
3	0.05	-	-	1.66	2.08	-	-	3.22	4.04	S10N04A81N
3	0.05	1.25	1.57	-	-	2.49	3.12	-	-	S10N06A81N
3	0.10	-	-	3.31	4.15	-	-	6.62	8.31	S10N04A82N
3	0.10	2.49	3.12	-	-	4.97	6.24	-	-	S10N06A82N
3	0.15	-	-	4.97	6.24	-	-	9.94	12.48	S10N04A83N
3	0.15	3.73	4.68	-	-	7.46	9.36	-	-	S10N06A83N
3	0.25	-	-	8.28	10.39	-	-	16.6	20.84	S10N04P26P
3	0.25	6.22	7.81	-	-	12.4	15.56	-	-	S10N06P26P
3	0.50	-	-	16.6	20.84	-	-	33.2	41.67	S10N04P51P
3	0.50	12.5	15.69	-	-	24.69	31.25	-	-	S10N06P51P
3	0.75	-	-	24.8	31.12	-	-	49.6	62.25	S10N04P76P
3	0.75	18.7	23.47	-	-	37.3	46.82	-	-	S10N06P76P
3	1	-	-	33.1	41.54	-	-	66.2	83.09	S10N04P01P
3	1	24.9	31.25	-	-	49.7	62.38	-	-	S10N06P01P
3	1.5	-	-	49.7	62.38	-	-	99.4	124.75	S10N04P16P
3	1.5	37.3	46.94	-	-	74.6	93.63	-	-	S10N06P16P
3	2	-	-	66.3	83.22	-	-	133	166.93	S10N04P02P
3	2	49.7	62.38	-	-	99.5	124.88	-	-	S10N06P02P
3	3	-	-	99.3	124.64	-	-	198.6	249.27	S10N04A03N
3	3	74.6	93.63	-	-	149	187.01	-	-	S10N06A03N
3	5	-	-	166	208.35	-	-	322	404.16	S10N04A05N
3	5	125	156.89	-	-	249	312.53	-	-	S10N06A05N
3	7.5	-	-	248	311	-	-	496	622	S10N04A07N
3	7.5	187	235	-	-	373	468	-	-	S10N06A07N
Connection Diagram ${ }^{(2)}$		R		R		0		0		

Notes
(1) Additional wiring trough may be required.
(2) Refer to Page V2-T2-172 for buck-boost wiring diagrams.

Output voltage for lower input voltage can be found by: $\frac{\text { Rated Output Voltage }}{\text { Rated Input Voltage }} \times$ Input Actual Voltage $=$ Output New Voltage.
Output kVA available at reduced input voltage can be found by: $\frac{\text { Actual Input Voltage }}{\text { Rated Input Voltage }} \times$ Output kVA $=$ New kVA Rating.
Frame drawings/dimensions information begins on Page V2-T2-216.

Distribution Transformers

WARNING! Three-phase autotransformers should never be used to obtain four-wire output with three-wire input. Four-wire output requires four-wire wye input.

Three-Phase Wye Connection 460 Volt Output Required, 60 Hz

		Input Av						
		424		436		450		
Units	Unit			Output		Output		
Required ${ }^{(1)}$	kVA	kVA	Amps	kVA	Amps	kVA	Amps	Catalog Number
3	0.05	-	1.7	2.1	-	-	-	S10N04A81N
3	0.05	1.3	1.56	-	-	2.6	3.13	S10N06A81N
3	0.10	-	-	3.5	4.2	-	-	S10N04A82N
3	0.10	2.6	3.12	-	-	5.2	6.25	S10N06A82N
3	0.15		-	5.2	6.25	-	-	S10N04A83N
3	0.15	3.9	4.68	-	-	7.8	9.38	S10N06A83N
3	0.25	-	-	8.7	10.4	-	-	S10N04P26P
3	0.25	6.5	7.82	-	-	13	15.6	S10N06P26P
3	0.50	-	-	17.4	20.9	-	-	S10N04P51P
3	0.50	13	15.6	-	-	26	31.2	S10N06P51P
3	0.75	-	-	26	31.2	-	-	S10N04P76P
3	0.75	19.5	23.4	-	-	39	46.9	S10N06P76P
3	1	-	-	35	42	-	-	S10N04P01P
3	1	26	31.2	-	-	52	62.5	S10N06P01P
3	1.5	-	-	52	62.5	-	-	S10N04P16P
3	1.5	39	46.8	-	-	78	93.8	S10N06P16P
3	2	-	-	69	82.9	-	-	S10N04P02P
3	2	52	62.5	-	-	104	125	S10N06P02P
3	3	-	-	104	125	-	-	S10N04A03N
3	3	78	93.8	-	-	156	187.6	S10N06A03N
3	5	-	-	174	209.2	-	-	S10N04A05N
3	5	130	156.3	-	-	260	312.7	S10N06A05N
3	7.5	-	-	260	312	-	-	S10N04A07N
3	7.5	195	234	-	-	390	469	S10N06A07N
Connection Dia		R		R		0		

Notes
(1) Additional wiring trough may be required.
(2) Refer to Page V2-T2-172 for buck-boost wiring diagrams.

Output voltage for lower input voltage can be found by: $\frac{\text { Rated Output Voltage }}{\text { Rated Input Voltage }} \times$ Input Actual Voltage $=$ Output New Voltage.
Output kVA available at reduced input voltage can be found by: $\frac{\text { Actual Input Voltage }}{\text { Rated Input Voltage }} \times$ Output kVA $=$ New kVA Rating.
Frame drawings/dimensions information begins on Page V2-T2-216

Transformers

Distribution Transformers

Single-Phase Required, 60 Hz

Units Required	Unit kVA	Input Available Voltage/Output Voltage								
				230/277		346/380		362/380		
		Output		Output		Output		Output		
		kVA	Amps	kVA	Amps	kVA	Amps	kVA	Amps	Catalog Number
1	0.25	1.25	5.2	1.44	5.2	1.98	5.2	3.95	10.4	S20N08P26P
1	0.50	2.50	10.4	2.88	10.4	3.95	10.4	7.90	20.8	S20N08P51P
1	0.75	3.75	15.6	4.32	15.6	5.93	15.6	11.9	31.2	S20N08P76P
1	1	5.00	20.8	5.76	20.8	7.90	20.8	15.8	41.6	S20N08P01P
1	1.5	7.50	31.2	8.64	31.2	11.9	31.2	23.8	62.5	S20N08P16P
1	2	10.0	41.6	11.5	41.6	15.8	41.6	31.6	83.3	S20N08P02P
1	3	15.0	62.5	17.3	62.5	23.8	62.5	47.5	125.0	S20N08A03N
1	5	25.0	104.0	28.8	104.0	39.5	104.0	79.0	208.0	S20N08A05N
1	7.5	37.5	156.0	43.2	156.0	59.3	156.0	118.6	312.0	S20N08A07N
Connection Diagram (2)		B		B		F		E		

Single-Phase Required, 60 Hz

		Input Av	Voltag	Voltage						
		378/416		416/457		436/480		458/480		
Units Required (1)	Unit kVA	Output kVA	Amps	Catalog Number						
1	0.25	2.16	5.2	2.38	5.2	2.50	5.2	4.99	10.4	S20N08P26P
1	0.50	4.33	10.4	4.76	10.4	4.99	10.4	9.98	20.8	S20N08P51P
1	0.75	6.49	15.6	7.14	15.6	7.49	15.6	15.0	31.2	S20N08P76P
1	1	8.65	20.8	9.52	20.8	9.98	20.8	20.0	41.6	S20N08P01P
1	1.5	13.0	31.2	14.3	31.2	15.0	31.2	30.0	62.5	S20N08P16P
1	2	17.3	41.6	19.0	41.6	20.0	41.6	40.0	83.3	S20N08P02P
1	3	26.0	62.5	28.6	62.5	30.0	62.5	60.0	125.0	S20N08A03N
1	5	43.3	104.0	47.6	104.0	49.9	104.0	99.8	208.0	S20N08A05N
1	7.5	64.9	156.0	71.4	156.0	74.9	156.0	149.8	312.0	S20N08A07N
Connection Diagram ${ }^{(2)}$		F		F		F		E		

Notes

(1) Additional wiring trough may be required.
(2) Refer to Page V2-T2-172 for buck-boost wiring diagrams

Output voltage for lower input voltage can be found by: Rated Output Voltage $\frac{\text { Rated Input Voltage }}{x}$ Input Actual Voltage $=$ Output New Voltage.
Output kVA available at reduced input voltage can be found by: $\frac{\text { Actual Input Voltage }}{\text { Rated Input Voltage }} \times$ Output kVA $=$ New kVA Rating.
Frame drawings/dimensions information begins on Page V2-T2-216

Distribution Transformers

Single-Phase Required, 60 Hz

		Input Av	Volta	Voltage						
		277/230		480/456		504/480		528/480		
Unit	Unit	Output		Output		Output		Output		
Required (1)	kVA	kVA	Amps	kVA	Amps	kVA	Amps	kVA	Amps	Catalog Number
1	0.25	1.44	6.26	5.23	11.4	5.47	11.4	2.75	5.72	S20N08P26P
1	0.50	2.88	12.5	10.4	22.8	10.9	22.8	5.49	11.4	S20N08P51P
1	0.75	4.33	18.8	15.7	34.2	16.4	34.2	8.24	17.2	S20N08P76P
1	1	5.76	25.0	20.9	45.6	21.8	45.6	11.0	22.9	S20N08P01P
1	1.5	8.64	37.6	31.3	68.4	32.8	68.4	16.5	34.3	S20N08P16P
1	2	11.5	50.1	41.8	91.2	43.7	91.2	22.0	45.8	S20N08P02P
1	3	17.3	75.3	62.7	136.0	65.2	136.0	33.0	68.8	S20N08A03N
1	5	28.8	125.3	104.5	227.0	108.0	227.0	54.9	114.4	S20N08A05N
1	7.5	43.2	187.9	156.8	341.0	163.0	341.0	82.4	171.6	S20N08A07N
Connection Diagram (2)		B	E			E		F		

Notes
(1) Additional wiring trough may be required.
(2) Refer to Page V2-T2-172 for buck-boost wiring diagrams.

Output voltage for lower input voltage can be found by: $\frac{\text { Rated Output Voltage }}{\text { Rated Input Voltage }} \times$ Input Actual Voltage $=$ Output New Voltage.
Output kVA available at reduced input voltage can be found by: $\frac{\text { Actual Input Voltage }}{\text { Rated Input Voltage }} \times$ Output kVA $=$ New kVA Rating.

[^24]
Distribution Transformers

Three-Phase Required, 60 Hz

	ut		put								
	362/380		346/416		430/473		400/480		436/480		
Unit	Output										
kVA	kVA	Amps	Catalog Number								
0.25	6.52	10.4	3.75	5.2	4.26	5.2	4.33	5.2	4.33	5.2	S20N08P26P
0.50	13.0	20.8	7.50	10.4	8.52	10.4	8.65	10.4	8.65	10.4	S20N08P51P
0.75	19.6	31.2	11.2	15.6	12.8	15.6	13.0	15.6	13.0	15.6	S20N08P76P
1	26.1	41.6	15.0	20.8	17.0	20.8	17.3	20.8	17.3	20.8	S20N08P01P
1.5	39.1	62.4	22.5	31.2	25.5	31.2	26.0	31.2	26.0	31.2	S20N08P16P
2	52.2	83.2	30.0	41.6	34.1	41.6	34.6	41.6	34.6	41.6	S20N08P02P
3	78.4	125.0	45.0	62.5	51.2	62.5	52.0	62.5	52.0	62.5	S20N08A03N
5	130.4	208.0	75.1	104.0	85.2	104.0	86.6	104.0	86.6	104.0	S20N08A05N
7.5	195.6	312.0	112.6	156.0	127.8	156.0	129.9	156.0	129.9	156.0	S20N08A07N
Connection Diagram ${ }^{(1)}$	1		N		K		N		K		
Units Required (2)	2		3		2		3		2		

Three-Phase Required, 60 Hz

	Input Av	Voltag	Voltage						
	460/483		457/380		504/480		528/480		
Unit kVA	Output kVA	Amps	Catalog Number						
0.25	8.7	10.4	4.12	6.25	9.08	10.9	4.76	5.72	S20N08P26P
0.50	17.4	20.8	8.23	12.5	18.2	21.8	9.51	11.4	S20N08P51P
0.75	26.1	31.2	12.3	18.8	27.2	32.8	14.3	17.2	S20N08P76P
1	34.8	41.6	16.5	25.0	36.3	43.7	19.0	22.9	S20N08P01P
1.5	52.2	62.4	24.7	37.5	54.5	65.5	28.5	34.3	S20N08P16P
2	69.6	83.2	32.9	50.0	72.6	87.4	38.0	45.8	S20N08P02P
3	104.6	125.0	49.5	75.2	109.7	131.3	57.2	68.8	S20N08A03N
5	174.0	208.0	82.3	125.1	181.6	218.4	95.1	114.4	S20N08A05N
7.5	261.0	312.0	123.5	187.6	272.4	327.6	142.7	171.6	S20N08A07N
Connection Diagram (1)	।		N		।		K		
Units Required (2)	2		3		2		2		

Notes
(1) Refer to Page V2-T2-172 for buck-boost wiring diagrams
(2) Additional wiring trough may be required.

Output voltage for lower input voltage can be found by: $\frac{\text { Rated Output Voltage }}{\text { Rated Input Voltage }} x$ Input Actual Voltage $=$ Output New Voltage.
Output kVA available at reduced input voltage can be found by: $\frac{\text { Actual Input Voltage }}{\text { Rated Input Voltage }} \times$ Output kVA $=$ New kVA Rating.
Frame drawings/dimensions information begins on Page V2-T2-216

Distribution Transformers

Three-Phase Open Delta Connection 480 Volt Output Required, 60 Hz

Notes

(1) Additional wiring trough may be required.
(2) On transformers supplied with standard taps, taps must be placed at nominal settings.
(3) Refer to Page V2-T2-172 for buck-boost wiring diagrams.

Autotransformers can be used only where local electric codes permit and isolation of the two circuits is not required.
Output voltage for lower input voltage can be found by: $\frac{\text { Rated Output Voltage }}{\text { Rated Input Voltage }} \times$ Input Actual Voltage $=$ Output New Voltage.
Output kVA available at reduced input voltage can be found by: $\frac{\text { Actual Input Voltage }}{\text { Rated Input Voltage }} \times$ Output kVA $=$ New kVA Rating.
Frame drawings/dimensions information begins on Page V2-T2-216.

Transformers

Distribution Transformers

Single-Phase 480 Volt Output Required, 60 Hz

	Input Av	ge					
	600		575		575		
Units Required ${ }^{(1)}$	kVA	Amps	kVA	Amps	kVA	Amps	Catalog Number ${ }^{(2)}$
1	2.5	5.2	-	-	-	-	S20N11P51P
1	-	-	-	-	2.4	5	S60G11P51P
1	3.7	7.7	-	-	-	-	S20N11P76P
1	-	-	-	-	3.6	7.5	S60G11P76P
1	5.0	10.4	-	-	-	-	S20N11P01P
1	-	-	-	-	4.8	10	S60G11P01P
1	7.5	15.6	-	-	-	-	S20N11P16P
1	-	-	-	-	7.2	15	S60G11P16P
1	10	20.8	-	-	-	-	S20N11P02P
1	-	-	-	-	9.6	20	S60G11P02P
1	15	31.2	-	-	-	-	S20N11S03N
1	-	-	-	-	14.3	29.7	S60G11P03P
1	25	52	-	-	-	-	S20N11S05N
1	-	-	-	-	24	50	S60G11S05N
1	37.5	78.1	-	-	-	-	S20N11S07N
1	-	-	-	-	36	75	S60G11S07N
1	50	104.1	-	-	-	-	S20N11S10N
1	-	-	43	100	-	-	S60G11S10N
1	75	156.2	-	-	-	-	S20N11S15N
1	-	-	72	150	-	-	S60N11S15N
1	125	260.4	-	-	-	-	T20P11S25EE
1	-	-	120	250	-	-	S60J11S25N
1	187	389.6	-	-	-	-	T20P11S37EE
1	250	520.8	-	-	-	-	T20P11S50EE
Connection Diagram (3)	E		H		U		

Notes

(1) Additional wiring trough may be required
(2) On transformers supplied with standard taps, taps must be placed at nominal settings.
(3) Refer to Page V2-T2-172 for buck-boost wiring diagrams.

Autotransformers can be used only where local electric codes permit and isolation of the two circuits is not required.
Output voltage for lower input voltage can be found by: $\frac{\text { Rated Output Voltage }}{\text { Rated Input Voltage }} \times$ Input Actual Voltage $=$ Output New Voltage
Output kVA available at reduced input voltage can be found by: $\frac{\text { Actual Input Voltage }}{\text { Rated Input Voltage }} \times$ Output kVA $=$ New kVA Rating.
Frame drawings/dimensions information begins on Page V2-T2-216

Distribution Transformers

Accessories

Please refer to Section 2.7 Page V2-T2-191.

Technical Data and Specifications

Frequency

Eaton buck-boost transformers are designed for 60 Hz operation.

Overload Capability

Short-term overload is designed into transformers as required by ANSI. Dry-type distribution transformers will deliver 200\% nameplate load for one-half hour, 150% load for one hour, and 125\% load for four hours without being damaged, provided that a constant 50\% load precedes and follows the overload. See ANSI C57.96-01.250 for additional limitations.
Continuous overload capacity is not deliberately designed into a transformer because the design objective is to be within the allowed winding temperature rise with nameplate loading.

Insulation System and Temperature Rise

Industry standards classify insulation systems and rise as shown below:

Insulation System
Classification

	+ Winding Rise	+ Hot Spot	$\boldsymbol{=}$ Temp. Class
$40^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$105^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
$25^{\circ} \mathrm{C}$	$135^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$185^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

The design life of transformers having different insulation systems is the same-the lower-temperature systems are designed for the same life as the higher-temperature systems.

Enclosures

Eaton encapsulated buckboost transformers use a NEMA 3R rated enclosure

Winding Terminations

Primary and secondary windings are terminated in the wiring compartment. Encapsulated units have copper leads or stabs brought out for connections. Lugs are not supplied with these transformers. Eaton recommends that external cables be rated $90^{\circ} \mathrm{C}$ (sized at $75^{\circ} \mathrm{C}$ ampacity) for encapsulated designs.

Series-Multiple Windings

Series-multiple windings consist of two similar coils in each winding that can be connected in series or parallel (multiple). Transformers with series-multiple windings are designated with an " x " or "/" between the voltage ratings, such as voltages of " $120 / 240$ " or " 240×480." If the series-multiple winding is designated by an " x," the winding can be connected only for a series or parallel. With the "/" designation, a mid-point also becomes available in addition to the series or parallel connection. As an example, a 120×240 winding can be connected for either 120 (parallel) or 240 (series), but a 120/240 winding can be connected for 120 (parallel), 240 (series) or 240 with a 120 mid-point.

Sound Levels

All Eaton 600 volt class general-purpose dry-type distribution transformers are designed to meet NEMA ST-20 sound levels listed here. These are the sound levels measured in a soundproof environment. Actual sound levels measured at an installation will likely be higher due to electrical connections and environmental conditions. Lower sound levels are available and should be specified when the transformer is going to be installed in an area where sound may be a concern.

For additional information, please refer to Section 2.7
Page V2-T2-195.
Note: When installation is to be made on a grounded system, consideration must be given to the resulting voltage. Thus, on a 208 grounded wye/120 system, the voltage can be boosted to 240 volts but the voltage to ground will be 139 volts. If $240 / 120$ volts with a mid-point ground is needed, a standard two-winding transformer must be used.

The following formulas can be used to calculate specific requirements.

For single-phase:

For three-phase:

LOAD kVA $=\frac{$| Line Load Voltage $\times 1.73 \mathrm{x}$ |
| :---: |
| Full Load Amperes |}{1000}

Average Sound Levels

NEMA ST-20 Average Sound Level, dB			
Equivalent Winding kVA Range	Self-Cooled Ve K-Factor 1, 4, 9	(up to 1.2 kV) K-Factor 13, 20	Encapsulated (up to $\mathbf{1 . 2} \mathbf{~ k V) ~}$
3.00 and below	40	40	45
3.01 to 9.00	40	40	45
9.01 to 15.00	45	45	50
15.01 to 30.00	45	45	50
30.01 to 50.00	45	48	50
50.01 to 75.00	50	53	55
75.01 to 112.50	50	53	55
112.51 to 150.00	50	53	55
150.01 to 225.00	55	58	57
225.01 to 300.00	55	58	57
300.01 to 500.00	60	63	59
500.01 to 700.00	62	65	61
700.01 to 1000.00	64	67	63
Greater than 1000	Consult factory	Consult factory	Consult factory

Wiring Diagrams

Buck-Boost Transformers Wiring Diagrams

Note
(1) WARNING! If input is three-wire, "neutral" connection must be isolated and insulated! When used to supply a three-phase, four-wire load, the source must be three-phase, four-wire wye.

Contents	
Description	Page
Motor Drive Isolation Transformers .	V2-T2-111
Mini-Power Centers	V2-T2-119
Totally Enclosed Non-Ventilated Transformers.	V2-T2-124
Class I, Division 2, Hazardous Location Transformers	V2-T2-127
Open-Type Core and Coil Assembly Transformers	V2-T2-130
Marine Duty Transformers.	V2-T2-133
Buck-Boost and Low Voltage Lighting Transformers	V2-T2-144
Medium Voltage Distribution Transformers	
Features, Benefits and Functions.	V2-T2-174
Standards and Certifications.	V2-T2-174
Product Description	V2-T2-175

Transformers that are currently specifically excluded from the scope of DOE 10 CFR Part 431 include:

- Liquid-filled transformers below 10 kVA
- Dry-type transformers below 15 kVA
- AC and DC drives transformers
- Rectifier transformers designed for high harmonics
- Autotransformers
- Non-distribution transformers, such as UPS transformers
- Special impedance or regulation transformers
- Regulating transformers
- Sealed and non-ventilated transformers
- Machine tool transformers
- Welding transformers
- Transformers with tap ranges greater than 15\%
- Transformers with a frequency other than 60 Hz
- Grounding transformers
- Testing transformers

Medium Voltage Distribution Transformers

Product Description

Note: The following pages provide listings for most standard transformer ratings and catalog numbers. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton.

Single- and Three-Phase

- Ventilated, NEMA 3R enclosure standard
- Suitable for indoor or outdoor applications
- Upright mounting only
- $220^{\circ} \mathrm{C}$ insulation system
- $150^{\circ} \mathrm{C}$ rise standard; $115^{\circ} \mathrm{C}$ or $80^{\circ} \mathrm{C}$ rise optional
- Available in single-phase ratings 15-333 kVA
- Available in single-phase ratings 25-167 kVA; in three-phase ratings 15-1500 kVA

Application Description

 U.S. DOE 10 CFR Part 431 compliant energy-efficient transformers are specifically designed to meet the energy efficiency standards set forth in U.S. DOE 10 CFR Part 431. Compliant transformers are optimized to offer maximum efficiency at 50\% of nameplate rating.Transformers
Distribution Transformers

Features, Benefits
 and Functions

- 60 Hz operation (except as noted)
- Short-term overload capability as required by ANSI
- Meet NEMA ST-20 sound levels
- Meet federal energy efficiency requirements for dry-type transformers effective as of January 1, 2010

Standards and Certifications

- UL listed

Listed

Industry Standards

All Eaton dry-type distribution and control transformers are built and tested in accordance with applicable NEMA, ANSI and IEEE Standards.

Seismically Qualified

Eaton manufactured dry-type distribution transformers are seismically qualified and exceed requirements of the International Building Code (IBC) and California Code Title 24.

Product Description

Single-Phase-2010 Energy-Efficient

2400 Volts to 120/240 Volts-Aluminum Windings

kVA	Full Capac FCAN	FCBN	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
25	2 at $+2.5 \%$	2 at -2.5%	150	NH6	-	-	Included	T42D11S25E3R
37.5	2 at $+2.5 \%$	2 at -2.5%	150	NH3	-	-	Included	T42D11S37E3R
50	2 at $+2.5 \%$	2 at -2.5%	150	NH3	-	-	Included	T42D11S50E3R
75	2 at $+2.5 \%$	2 at -2.5%	150	NH3	-	-	Included	T42D11S75E3R
100	2 at $+2.5 \%$	2 at -2.5%	150	NH4	-	-	Included	T42D11S99E3R
167	2 at $+2.5 \%$	2 at -2.5%	150	NJ1	-	-	Included	T42D11S67E3R
25	2 at $+2.5 \%$	2 at -2.5%	115	NH6	-	-	Included	T42D11F25E3R
37.5	2 at $+2.5 \%$	2 at -2.5%	115	NH3	-	-	Included	T42D11F37E3R
50	2 at $+2.5 \%$	2 at -2.5%	115	NH3	-	-	Included	T42D11F50E3R
75	2 at $+2.5 \%$	2 at -2.5\%	115	NH3	-	-	Included	T42D11F75E3R
100	2 at $+2.5 \%$	2 at -2.5%	115	NH4	-	-	Included	T42D11F99E3R
167	2 at $+2.5 \%$	2 at -2.5%	115	NJ1	-	-	Included	T42D11F67E3R
25	2 at $+2.5 \%$	2 at -2.5%	80	NH3	-	-	Included	T42D11B25E3R
37.5	2 at $+2.5 \%$	2 at -2.5%	80	NH3	-	-	Included	T42D11B37E3R
50	2 at $+2.5 \%$	2 at -2.5\%	80	NH3	-	-	Included	T42D11B50E3R
75	2 at $+2.5 \%$	2 at -2.5%	80	NH4	-	-	Included	T42D11B75E3R
100	2 at $+2.5 \%$	2 at -2.5%	80	NJ1	-	-	Included	T42D11B99E3R
167	2 at $+2.5 \%$	2 at -2.5%	80	NJ1	-	-	Included	T42D11B67E3R

4160 Volts to 120/240 Volts-Aluminum Windings

kVA	Full Capac FCAN	FCBN	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
25	2 at +2.5\%	2 at -2.5\%	150	NH6	-	-	Included	T46D11S25E3R
37.5	2 at $+2.5 \%$	2 at -2.5%	150	NH3	-	-	Included	T46D11S37E3R
50	2 at $+2.5 \%$	2 at -2.5%	150	NH3	-	-	Included	T46D11S50E3R
75	2 at $+2.5 \%$	2 at -2.5\%	150	NH3	-	-	Included	T46D11S75E3R
100	2 at $+2.5 \%$	2 at -2.5\%	150	NH4	-	-	Included	T46D11S99E3R
167	2 at $+2.5 \%$	2 at -2.5\%	150	NJ1	-	-	Included	T46D11S67E3R
25	2 at $+2.5 \%$	2 at -2.5\%	115	NH6	-	-	Included	T46D11F25E3R
37.5	2 at $+2.5 \%$	2 at -2.5%	115	NH3	-	-	Included	T46D11F37E3R
50	2 at $+2.5 \%$	2 at -2.5\%	115	NH3	-	-	Included	T46D11F50E3R
75	2 at $+2.5 \%$	2 at -2.5\%	115	NH3	-	-	Included	T46D11F75E3R
100	2 at $+2.5 \%$	2 at -2.5\%	115	NH4	-	-	Included	T46D11F99E3R
167	2 at $+2.5 \%$	2 at -2.5%	115	NJ1	-	-	Included	T46D11F67E3R
25	2 at $+2.5 \%$	2 at -2.5\%	80	NH3	-	-	Included	T46D11B25E3R
37.5	2 at $+2.5 \%$	2 at -2.5\%	80	NH3	-	-	Included	T46D11B37E3R
50	2 at $+2.5 \%$	2 at -2.5%	80	NH3	-	-	Included	T46D11B50E3R
75	2 at $+2.5 \%$	2 at -2.5\%	80	NH4	-	-	Included	T46D11B75E3R
100	2 at $+2.5 \%$	2 at -2.5\%	80	NJ1	-	-	Included	T46D11B99E3R
167	2 at $+2.5 \%$	2 at -2.5%	80	NJ1	-	-	Included	T46D11B67E3R

Note
Contact your local Eaton sales office for CE Mark transformer requirements. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Transformers

Distribution Transformers

Single-Phase-2010 Energy-Efficient

2
2400 Volts to 120/240 Volts-Copper Windings

kVA	Full Capac FCAN	FCBN	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
25	2 at +2.5\%	2 at -2.5\%	150	NH6	-	-	Included	T42D11S25CUE3R
37.5	2 at +2.5\%	2 at -2.5\%	150	NH3	-	-	Included	T42D11S37CUE3R
50	2 at $+2.5 \%$	2 at -2.5%	150	NH3	-	-	Included	T42D11S50CUE3R
75	2 at $+2.5 \%$	2 at -2.5%	150	NH3	-	-	Included	T42D11S75CUE3R
100	2 at $+2.5 \%$	2 at -2.5%	150	NH4	-	-	Included	T42D11S99CUE3R
167	2 at +2.5\%	2 at -2.5\%	150	NJ1	-	-	Included	T42D11S67CUE3R
25	2 at $+2.5 \%$	2 at -2.5\%	115	NH6	-	-	Included	T42D11F25CUE3R
37.5	2 at $+2.5 \%$	2 at -2.5\%	115	NH3	-	-	Included	T42D11F37CUE3R
50	2 at $+2.5 \%$	2 at -2.5\%	115	NH3	-	-	Included	T42D11F50CUE3R
75	2 at $+2.5 \%$	2 at -2.5%	115	NH3	-	-	Included	T42D11F75CUE3R
100	2 at $+2.5 \%$	2 at -2.5\%	115	NH4	-	-	Included	T42D11F99CUE3R
167	2 at $+2.5 \%$	2 at -2.5%	115	NJ1	-	-	Included	T42D11F67CUE3R
25	2 at $+2.5 \%$	2 at -2.5\%	80	NH3	-	-	Included	T42D11B25CUE3R
37.5	2 at $+2.5 \%$	2 at -2.5\%	80	NH3	-	-	Included	T42D11B37CUE3R
50	2 at $+2.5 \%$	2 at -2.5%	80	NH3	-	-	Included	T42D11B50CUE3R
75	2 at $+2.5 \%$	2 at -2.5%	80	NH4	-	-	Included	T42D11B75CUE3R
100	2 at $+2.5 \%$	2 at -2.5\%	80	NJ1	-	-	Included	T42D11B99CUE3R
167	2 at $+2.5 \%$	2 at -2.5\%	80	NJ1	-	-	Included	T42D11B67CUE3R

4160 Volts to 120/240 Volts-Copper Windings

kVA	Full Capac FCAN	FCBN	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
25	2 at $+2.5 \%$	2 at -2.5\%	150	NH6	-	-	Included	T46D11S25CUE3R
37.5	2 at $+2.5 \%$	2 at -2.5\%	150	NH3	-	-	Included	T46D11S37CUE3R
50	2 at $+2.5 \%$	2 at -2.5\%	150	NH3	-	-	Included	T46D11S50CUE3R
75	2 at $+2.5 \%$	2 at -2.5\%	150	NH3	-	-	Included	T46D11S75CUE3R
100	2 at $+2.5 \%$	2 at -2.5%	150	NH4	-	-	Included	T46D11S99CUE3R
167	2 at $+2.5 \%$	2 at -2.5\%	150	NJ1	-	-	Included	T46D11S67CUE3R
25	2 at $+2.5 \%$	2 at -2.5%	115	NH6	-	-	Included	T46D11F25CUE3R
37.5	2 at $+2.5 \%$	2 at -2.5\%	115	NH3	-	-	Included	T46D11F37CUE3R
50	2 at $+2.5 \%$	2 at -2.5\%	115	NH3	-	-	Included	T46D11F50CUE3R
75	2 at $+2.5 \%$	2 at -2.5\%	115	NH3	-	-	Included	T46D11F75CUE3R
100	2 at $+2.5 \%$	2 at -2.5\%	115	NH4	-	-	Included	T46D11F99CUE3R
167	2 at $+2.5 \%$	2 at -2.5\%	115	NJ1	-	-	Included	T46D11F67CUE3R
25	2 at $+2.5 \%$	2 at -2.5%	80	NH3	-	-	Included	T46D11B25CUE3R
37.5	2 at $+2.5 \%$	2 at -2.5%	80	NH3	-	-	Included	T46D11B37CUE3R
50	2 at $+2.5 \%$	2 at -2.5\%	80	NH3	-	-	Included	T46D11B50CUE3R
75	2 at $+2.5 \%$	2 at -2.5%	80	NH4	-	-	Included	T46D11B75CUE3R
100	2 at $+2.5 \%$	2 at -2.5\%	80	NJ1	-	-	Included	T46D11B99CUE3R
167	2 at $+2.5 \%$	2 at -2.5\%	80	NJ1	-	-	Included	T46D11B67CUE3R

Note
Contact your local Eaton sales office for CE Mark transformer requirements. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Distribution Transformers

Three-Phase-2010 Energy-Efficient

2400 Delta Volts to 480Y/277 Volts-Copper Windings

kVA	Full Capac FCAN	FCBN	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
45	2 at +2.5\%	2 at -2.5%	150	NH3	-	-	Included	V42D47T45CUE3R
75	2 at $+2.5 \%$	2 at -2.5%	150	NH4	-	-	Included	V42D47T75CUE3R
112.5	2 at $+2.5 \%$	2 at -2.5%	150	NH4	-	-	Included	V42D47T12CUE3R
150	2 at $+2.5 \%$	2 at -2.5%	150	NJ1	-	-	Included	V42D47T49CUE3R
225	2 at $+2.5 \%$	2 at -2.5\%	150	NJ1	-	-	Included	V42D47T22CUE3R
300	2 at $+2.5 \%$	2 at -2.5%	150	NJ1	-	-	Included	V42D47T33CUE3R
500	2 at $+2.5 \%$	2 at -2.5%	150	NJ2	-	-	Included	V42D47T55CUE3R
750	2 at $+2.5 \%$	2 at -2.5%	150	NJ3	-	-	Included	V42D47T77CUE3R
45	2 at $+2.5 \%$	2 at -2.5%	115	NH3	-	-	Included	V42D47F45CUE3R
75	2 at $+2.5 \%$	2 at -2.5\%	115	NH4	-	-	Included	V42D47F75CUE3R
112.5	2 at $+2.5 \%$	2 at -2.5%	115	NH4	-	-	Included	V42D47F12CUE3R
150	2 at $+2.5 \%$	2 at -2.5%	115	NJ1	-	-	Included	V42D47F49CUE3R
225	2 at $+2.5 \%$	2 at -2.5%	115	NJ1	-	-	Included	V42D47F22CUE3R
300	2 at $+2.5 \%$	2 at -2.5%	115	NJ1	-	-	Included	V42D47F33CUE3R
500	2 at $+2.5 \%$	2 at -2.5%	115	NJ2	-	-	Included	V42D47F55CUE3R
750	2 at $+2.5 \%$	2 at -2.5%	115	NJ3	-	-	Included	V42D47F77CUE3R
45	2 at $+2.5 \%$	2 at -2.5%	80	NH4	-	-	Included	V42D47B45CUE3R
75	2 at $+2.5 \%$	2 at -2.5%	80	NH4	-	-	Included	V42D47B75CUE3R
112.5	2 at $+2.5 \%$	2 at -2.5%	80	NJ1	-	-	Included	V42D47B12CUE3R
150	2 at $+2.5 \%$	2 at -2.5%	80	NJ1	-	-	Included	V42D47B49CUE3R
225	2 at $+2.5 \%$	2 at -2.5%	80	NJ1	-	-	Included	V42D47B22CUE3R
300	2 at $+2.5 \%$	2 at -2.5%	80	NJ2	-	-	Included	V42D47B33CUE3R
500	2 at $+2.5 \%$	2 at -2.5%	80	NJ3	-	-	Included	V42D47B55CUE3R
750	2 at $+2.5 \%$	2 at -2.5%	80	NJ3	-	-	Included	V42D47B77CUE3R

Note
Contact your local Eaton sales office for CE Mark transformer requirements. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton Frame drawings/dimensions information begins on Page V2-T2-216.

Transformers

Distribution Transformers

Three-Phase-2010 Energy-Efficient

2
4160 Delta Volts to 480Y/277 Volts-Copper Windings

| | Full Capacity Taps
 kVA | | FCAN |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Note
Contact your local Eaton sales office for CE Mark transformer requirements. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton Frame drawings/dimensions information begins on Page V2-T2-216

Distribution Transformers

Three-Phase-2010 Energy-Efficient

2400 Delta Volts to 208Y/120 Volts-Copper Windings

| | Full Capacity Taps
 kVA | | FCAN |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Note
Contact your local Eaton sales office for CE Mark transformer requirements. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216

Transformers

Distribution Transformers

Three-Phase-2010 Energy-Efficient

4160 Delta Volts to 208Y/120 Volts-Copper Windings

kVA	Full Capacity Taps FCAN		FCBN	C Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield

Note
Contact your local Eaton sales office for CE Mark transformer requirements. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton Frame drawings/dimensions information begins on Page V2-T2-216

Distribution Transformers

Three-Phase-2010 Energy-Efficient

2400 Delta Volts to 480Y/277 Volts-Aluminum Windings

	Full Capacity Taps RCAN		FCBN	C Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield

Note
Contact your local Eaton sales office for CE Mark transformer requirements. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216

Transformers

Distribution Transformers

Three-Phase-2010 Energy-Efficient

2
4160 Delta Volts to $480 \mathrm{Y} / 277$ Volts-Aluminum Windings

| | Full Capacity Taps
 kVA | | FCAN |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Note
Contact your local Eaton sales office for CE Mark transformer requirements. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton Frame drawings/dimensions information begins on Page V2-T2-216

Distribution Transformers

Three-Phase-2010 Energy-Efficient

2400 Delta Volts to 208Y/120 Volts-Aluminum Windings

kVA	Full Capacit FCAN	FCBN	${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
45	2 at +2.5\%	2 at -2.5\%	150	NH3	-	-	Included	V42D28T45E3R
75	2 at $+2.5 \%$	2 at -2.5%	150	NH4	-	-	Included	V42D28T75E3R
112.5	2 at $+2.5 \%$	2 at -2.5\%	150	NH4	-	-	Included	V42D28T12E3R
150	2 at $+2.5 \%$	2 at -2.5\%	150	NJ1	-	-	Included	V42D28T49E3R
225	2 at $+2.5 \%$	2 at -2.5%	150	NJ1	-	-	Included	V42D28T22E3R
300	2 at $+2.5 \%$	2 at -2.5%	150	NJ1	-	-	Included	V42D28T33E3R
500	2 at $+2.5 \%$	2 at -2.5\%	150	NJ2	-	-	Included	V42D28T55E3R
750	2 at $+2.5 \%$	2 at -2.5\%	150	NJ3	-	-	Included	V42D28T77E3R
45	2 at $+2.5 \%$	2 at -2.5%	115	NH3	-	-	Included	V42D28F45E3R
75	2 at $+2.5 \%$	2 at -2.5%	115	NH4	-	-	Included	V42D28F75E3R
112.5	2 at $+2.5 \%$	2 at -2.5%	115	NH4	-	-	Included	V42D28F12E3R
150	2 at $+2.5 \%$	2 at -2.5%	115	NJ1	-	-	Included	V42D28F49E3R
225	2 at $+2.5 \%$	2 at -2.5%	115	NJ1	-	-	Included	V42D28F22E3R
300	2 at $+2.5 \%$	2 at -2.5\%	115	NJ1	-	-	Included	V42D28F33E3R
500	2 at $+2.5 \%$	2 at -2.5\%	115	NJ2	-	-	Included	V42D28F55E3R
750	2 at $+2.5 \%$	2 at -2.5%	115	NJ3	-	-	Included	V42D28F77E3R
45	2 at $+2.5 \%$	2 at -2.5\%	80	NH4	-	-	Included	V42D28B45E3R
75	2 at $+2.5 \%$	2 at -2.5%	80	NH4	-	-	Included	V42D28B75E3R
112.5	2 at $+2.5 \%$	2 at -2.5%	80	NJ1	-	-	Included	V42D28B12E3R
150	2 at $+2.5 \%$	2 at -2.5\%	80	NJ1	-	-	Included	V42D28B49E3R
225	2 at $+2.5 \%$	2 at -2.5\%	80	NJ1	-	-	Included	V42D28B22E3R
300	2 at $+2.5 \%$	2 at -2.5%	80	NJ2	-	-	Included	V42D28B33E3R
500	2 at $+2.5 \%$	2 at -2.5\%	80	NJ3	-	-	Included	V42D28B55E3R
750	2 at $+2.5 \%$	2 at -2.5%	80	NJ3	-	-	Included	V42D28B77E3R

Note
Contact your local Eaton sales office for CE Mark transformer requirements. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

Transformers

Distribution Transformers

Three-Phase-2010 Energy-Efficient

2
4160 Delta Volts to 208Y/120 Volts-Aluminum Windings

kVA	Full Capacity Taps		${ }^{\circ} \mathrm{C}$ Temp. Rise	Frame	Wiring Diagram Number	Weight Lbs (kg)	Weathershield	Catalog Number
	FCAN	FCBN						
45	2 at +2.5\%	2 at -2.5%	150	NH3	-	-	Included	V46D28T45E3R
75	2 at $+2.5 \%$	2 at -2.5%	150	NH4	-	-	Included	V46D28T75E3R
112.5	2 at $+2.5 \%$	2 at -2.5%	150	NH4	-	-	Included	V46D28T12E3R
150	2 at $+2.5 \%$	2 at -2.5%	150	NJ1	-	-	Included	V46D28T49E3R
225	2 at $+2.5 \%$	2 at -2.5%	150	NJ1	-	-	Included	V46D28T22E3R
300	2 at +2.5\%	2 at -2.5%	150	NJ1	-	-	Included	V46D28T33E3R
500	2 at $+2.5 \%$	2 at -2.5%	150	NJ2	-	-	Included	V46D28T55E3R
750	2 at $+2.5 \%$	2 at -2.5%	150	NJ3	-	-	Included	V46D28T77E3R
45	2 at $+2.5 \%$	2 at -2.5%	115	NH3	-	-	Included	V46D28F45E3R
75	2 at $+2.5 \%$	2 at -2.5%	115	NH4	-	-	Included	V46D28F75E3R
112.5	2 at $+2.5 \%$	2 at -2.5%	115	NH4	-	-	Included	V46D28F12E3R
150	2 at $+2.5 \%$	2 at -2.5%	115	NJ1	-	-	Included	V46D28F49E3R
225	2 at $+2.5 \%$	2 at -2.5%	115	NJ1	-	-	Included	V46D28F22E3R
300	2 at $+2.5 \%$	2 at -2.5%	115	NJ1	-	-	Included	V46D28F33E3R
500	2 at $+2.5 \%$	2 at -2.5%	115	NJ2	-	-	Included	V46D28F55E3R
750	2 at $+2.5 \%$	2 at -2.5%	115	NJ3	-	-	Included	V46D28F77E3R
45	2 at $+2.5 \%$	2 at -2.5%	80	NH4	-	-	Included	V46D28B45E3R
75	2 at $+2.5 \%$	2 at -2.5%	80	NH4	-	-	Included	V46D28B75E3R
112.5	2 at $+2.5 \%$	2 at -2.5%	80	NJ1	-	-	Included	V46D28B12E3R
150	2 at $+2.5 \%$	2 at -2.5%	80	NJ1	-	-	Included	V46D28B49E3R
225	2 at $+2.5 \%$	2 at -2.5%	80	NJ1	-	-	Included	V46D28B22E3R
300	2 at +2.5\%	2 at -2.5%	80	NJ2	-	-	Included	V46D28B33E3R
500	2 at $+2.5 \%$	2 at -2.5%	80	NJ3	-	-	Included	V46D28B55E3R
750	2 at +2.5\%	2 at -2.5%	80	NJ3	-	-	Included	V46D28B77E3R

Note
Contact your local Eaton sales office for CE Mark transformer requirements. For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton Frame drawings/dimensions information begins on Page V2-T2-216

Contents

| Description | Page |
| :--- | :--- | ---: |
| Standards and Certifications | V2-T2-186
 V2-T2-187 |
| Catalog Number Selection. | V2-T2-189 |
| Product Selection | V2-T2-191 |
| Options and Accessories | V2-T2-195 |
| Technical Data and Specifications | V2-T2-211 |
| Glossary of Transformer Terms . . . | |
| Frequently Asked Questions About Transformers . | V2-T2-214 |

Standards and Certifications

Eaton dry-type distribution transformers are approved, listed, recognized or may comply with the following standards.

Engineering Standards

Catalog Product Name	UL Standard	UL/cUL File Number	UL Listed Control Number	cUL Energy Efficiency File Number	CSA File Number	Insulation System Temp/ ${ }^{\circ} \mathrm{C}$	kVA SinglePhase	kVA ThreePhase	Applicable IEC Standard
Industrial Control Transformer									
MTE	5085	E46323	702X	-	LR27533	105	0.025-1.5	N/A	61558
MTK	5085	E46323	702X	-	LR27533	180	0.05-5	N/A	61558
Encapsulated Transformer									
AP	5085	E10156	591H	-	-	180	3-10	N/A	61558
AP	1561	E78389	591 H	-	-	180	15	N/A	61558
EP	5085	E10156	591 H	-	LR60545	180	0.05-10	N/A	61558
EP	1561	E78389	591H	EV157 (2)	LR60545 (3)	180	15-50	N/A	$61558{ }^{(4)} / 726$ (5)
EPT	5085	E10156	591H	-	LR60545	180	N/A	3-9	61558 (6) 726 (7)
EPT	1561	E78389	591H	EV157 (8)	LR60545 (9)	180	N/A	15-75	726
MPC	1062	E53449	591 H	-	LR60546	180	3-25	15-30	-
Ventilated Transformer									
DS-3	1561	E78389	591H	-	-	220	15-167	N/A	60726
DT-3	1561	E78389	591H	-	-	220	N/A	15-750	60726
KT	1561	E78389	591H	-	-	220	N/A	9-500	N/A

Notes

(1) UL 5085 replaces UL 506 .
(2) Applies to $25-50 \mathrm{kVA}$.
(3) Applies to 25 kVA .
(4) Applies to $15-25 \mathrm{kVA}$.
(5) Applies to 37.5 kVA .
6) Applies to 3 kVA .
(7) Applies to 5-9 kVA.
(8) Applies to $30-75 \mathrm{kVA}$.
(9) Applies to 30 kVA .

In addition to the above standards, Eaton dry-type distribution transformers are also manufactured in compliance with the
applicable standards listed below.
Not all of the following standards apply to every transformer.

NEC: National Electrical Code
NEMA ST-1: Specialty Transformers (C89.1) control transformers).
NEMA ST-20: General-Purpose Transformers.

NEMA TP-1: Guide for Determining Energy Efficiency for Distribution Transformers.
NEMA 250: Enclosures for Electrica
Equipment (1000 volts maximum).
IEEE C57.12.01: General Requirements for Dry-Type Distribution and Power
Transformers (including those with solidcast and/or resin-encapsulated windings)

ANSI C57.12.70: Terminal Markings and Connections for Distribution and Power Transformers.

ANSI C57.12.91: Standard Test Code
for Dry-Type Distribution and Power Transformers.

CSA C22 No. 47-M90: Air-Cooled Transformers (Dry-Type).
CSA C9-M1981: Dry-Type Transformers CSA C22.2 No. 66: Specialty Transformers.
CSA 802-94: Maximum Losses for
Distribution, Power and Dry-Type Transformers.

NEMA TP-2: Standard Test Method for
Measuring the Energy Consumption of
Distribution Transformers.
NEMA TP-3

Catalog Number Selection

General-Purpose, Energy-Efficient, Mini-Power Center, Shielded Isolation, Nonlinear, Buck-Boost, Marine Duty Transformers-

Notes

(1) Model number is not used on newly designed/redesigned transformers.
(2) Copper windings.
(3) Grade 304 stainless steel enclosure (does not imply a NEMA 4X rating).
(4) Open type core and coil assembly.
(5) Totally enclosed non-ventilated DS-3 or DT-3.
(6) $50 / 60 \mathrm{~Hz}$.
(7) Low sound design. LS47 indicates low sound equal to 47 dB ; LS42 indicates 42 dB .
(8) Fungus proof
(9) Certified test report of standard production tests for the specific serial number to be shipped.
(10) Certified sound level report.
(11) CE Marked
(12) Thermal indicator embedded in center coil. Suffix "TT" indicates two thermal indicators of different temperature ratings, are installed.
(B) NEMA TP-1 efficient.
(14) 0° phase-shift (used with HMTs).
(15) $+15^{\circ}$ phase-shift (used with HMTs).
(16) -15° phase-shift (used with HMTs).
(17) -30° phase-shift (used with HMTs).
(18) CSL3 DOE 2007 energy-efficient.
(19) NEMA 4X Grade 304 stainless steel enclosure.
(20) Easy install base
(21) Grade 316 stainless steel enclosure (does not imply NEMA 4X rating). (22) Integral 2 -inch infrared viewing window. (23) Integral 3 -inch infrared viewing window. (24) Integral 4 -inch infrared viewing window. (25) NEMA Premium ${ }^{\circledR}$ Efficient.

For Eaton's industrial control transformers catalog number selection, see Page V2-T2-188.

Contact your local Eaton sales office for voltage combinations not shown. Use table for catalog number breakdown only.
Do not use to create catalog numbers because all combinations may not be valid.

Transformers
Transformer Standards, Technical Data and Accessories

Motor Drive Isolation Transformers-Example: MD145E89B

Notes
(1) For other tap combinations, contact your local Eaton sales office.

Contact your local Eaton sales office for voltage combinations not shown. Use table for catalog number breakdown only. Do not use to create catalog numbers because all combinations may not be valid.

Product Selection

Single-Phase Transformers

How to Select Single-Phase Units

1. Determine the primary (source) voltage-the voltage presently available.
2. Determine the secondary (load) voltage-the voltage needed at the load.
3. Determine the kVA load:

- If the load is defined in kVA, a transformer can be selected from the tabulated data
- If the load rating is given in amperes, determine the load kVA from the chart (below right). To determine kVA when volts and amperes are known, use the formula:

$$
\mathrm{kVA}=\frac{\text { Volts Amperes }}{1000}
$$

- If the load is an AC motor, determine the minimum transformer kVA from the chart at the right
- Select a transformer rating equal to or greater than the load kVA.

4. Define tap arrangements needed.
5. Define temperature rise.

Using the above procedure, select the transformer from the listings in this catalog.

Single-Phase AC Motors

Horsepower	Full Load Amperes				Minimum Transformer kVA ${ }^{1}$
	115 Volts	208 Volts	220 Volts	230 Volts	
1/6	4.4	2.4	2.3	2.2	0.53
1/4	5.8	3.2	3.0	2.9	0.70
1/3	7.2	4.0	3.8	3.6	0.87
1/2	9.8	5.4	5.1	4.9	1.18
3/4	13.8	7.6	7.2	6.9	1.66
1	16	8.8	8.4	8	1.92
1-1/2	20	11.0	10.4	10	2.40
2	24	13.2	12.5	12	2.88
3	34	18.7	17.8	17	4.10
5	56	30.8	29.3	28	6.72
7-1/2	80	44	42	40	9.6
10	100	55	52	50	12.0

Full Load Current in Amperes-Single-Phase Circuits

	Voltage								
kVA	$\mathbf{1 2 0}$	$\mathbf{2 0 8}$	$\mathbf{2 2 0}$	$\mathbf{2 4 0}$	$\mathbf{2 7 7}$	$\mathbf{4 8 0}$	$\mathbf{6 0 0}$	$\mathbf{2 4 0 0}$	$\mathbf{4 1 6 0}$
0.25	2.0	1.2	1.1	1.0	0.9	0.5	0.4	0.10	0.06
0.50	4.2	2.4	2.3	2.1	1.8	1.0	0.8	0.21	0.12
0.75	6.3	3.6	3.4	3.1	2.7	1.6	1.3	0.31	0.18
1	8.3	4.8	4.5	4.2	3.6	2.1	1.7	0.42	0.24
$\mathbf{1 . 5}$	12.5	7.2	6.8	6.2	5.4	3.1	2.5	0.63	0.36
2	16.7	9.6	9.1	8.3	7.2	4.2	3.3	0.83	0.48
3	25	14.4	13.6	12.5	10.8	6.2	5.0	1.2	0.72
5	41	24.0	22.7	20.8	18.0	10.4	8.3	2.1	1.2
7.5	62	36	34	31	27	15.6	12.5	3.1	1.8
10	83	48	45	41	36	20.8	16.7	4.2	2.4
15	125	72	68	62	54	31	25	6.2	3.6
25	208	120	114	104	90	52	41	10.4	6.0
37.5	312	180	170	156	135	78	62	15.6	9.0
50	416	240	227	208	180	104	83	20.8	12.0
75	625	360	341	312	270	156	125	31.3	18.0
100	833	480	455	416	361	208	166	41.7	24.0
167	1391	802	759	695	602	347	278	69.6	40.1

Notes

(1) If motors are started more than once per hour, increase minimum transformer kVA by 20%.

When motor service factor is greater than 1 , increase full load amperes proportionally. Example: If service factor is 1.15, increase above ampere values by 15%.

Three-Phase Transformers

How to Select Three-Phase Units

1. Determine the primary (source) voltage-the voltage presently available.
2. Determine the secondary (load) voltage-the voltage needed at the load.
3. Determine the KVA load:

- If the load is defined in KVA, a transformer can be selected from the tabulated data
- If the load rating is given in amperes, determine the load kVA from the chart (below right). To determine kVA when volts and amperes are known, use the formula:

$$
\kappa \mathrm{VA}=\frac{\text { Volts } \text { Amperes } 1.732}{1000}
$$

- If the load is an AC motor, determine the minimum transformer kVA from the chart at the right
- Select a transformer rating equal to or greater than the load kVA

4. Define tap arrangements needed.
5. Define temperature rise.

Using the above procedure, select the transformer from the listings in this catalog.

Three-Phase AC Motors

Full Load Amperes						
Horsepower	$\mathbf{2 0 8}$ Volts	$\mathbf{2 3 0}$ Volts	$\mathbf{3 8 0}$ Volts	$\mathbf{4 6 0}$ Volts	$\mathbf{5 7 5}$ Volts	Minimum Transformer kVA
0.5	2.2	2.0	1.2	1.0	0.8	0.9
$3 / 4$	3.1	2.8	1.7	1.4	1.1	1.2
1	4.0	3.6	2.2	1.8	1.4	1.5
$\mathbf{1 . 5}$	5.7	5.2	3.1	2.6	2.1	2.1
2	7.5	6.8	4.1	3.4	2.7	2.7
3	10.7	9.6	5.8	4.8	3.9	3.8
5	16.7	15.2	9.2	7.6	6.1	6.3
7.5	24	22	14	11	9	9.2
10	31	28	17	14	11	11.2
15	46	42	26	21	17	16.6
20	59	54	33	27	22	21.6
25	75	68	41	34	27	26.6
30	88	80	48	40	32	32.4
40	114	104	63	52	41	43.2
50	143	130	79	65	52	52
60	170	154	93	77	62	64
75	211	192	116	96	77	80
100	273	248	150	124	99	103
125	342	312	189	156	125	130
150	396	360	218	180	144	150
200	528	480	291	240	192	200

Full Load Current in Amperes-Three-Phase Circuits

	Voltage kVA $\mathbf{2 0 8}$	$\mathbf{2 4 0}$	$\mathbf{3 8 0}$	$\mathbf{4 8 0}$	$\mathbf{6 0 0}$	$\mathbf{2 4 0 0}$	$\mathbf{4 1 6 0}$
3	8.3	7.2	4.6	3.6	2.9	0.72	0.42
6	16.6	14.4	9.1	7.2	5.8	1.4	0.83
$\mathbf{9}$	25	21.6	13.7	10.8	8.6	2.2	1.2
15	41.7	36.1	22.8	18.0	14.4	3.6	2.1
22.5	62.4	54.1	34.2	27.1	21.6	5.4	3.1
30	83.4	72.3	45.6	36.1	28.9	7.2	4.2
37.5	104	90.3	57.0	45.2	36.1	9.0	5.2
45	124	108	68.4	54.2	43.4	10.8	6.3
50	139	120	76	60.1	48.1	12.0	6.9
75	208	180	114	90	72	18.0	10.4
112.5	312	270	171	135	108	27.1	15.6
150	416	360	228	180	144	36.1	20.8
225	624	541	342	270	216	54.2	31.3
300	832	721	456	360	288	72.2	41.6
500	1387	1202	760	601	481	120	69.4
750	2084	1806	1140	903	723	180	104
1000	2779	2408	1519	1204	963	241	139

Notes

(1) If motors are started more than once per hour, increase minimum transformer kVA by 20%.

When motor service factor is greater than 1 , increase full load amperes proportionally. Example: If service factor is 1.15, increase above ampere values by 15%.

Options and Accessories

(Order separately)

Weathershield Kit

A weathershield kit consisting of a front and rear cover shield must be installed on all ventilated dry-type distribution transformers when the unit is located outdoors. The shields protect the transformer top ventilation openings against rain but allow for proper
ventilation. Field installation hardware is not required. Refer to specific transformer listing for selection of weathershield kit. Proper installation provides a NEMA 3R rating.

Note: For 316 stainless steel, add the suffix 'S' to the catalog number.

Weathershield Kit

Fits Frame Size(s) ${ }^{(1)}$	Catalog Number ${ }^{(2)}$
809, 810, 811, 816, 817, 818	WS11
814, 814E	WS13
815	WS15
819, 820	WS16
808, 908, 909, 910, 911, 912, 910A, 911A, 912A	WS31
912B, 912Z, 912D	WS38
812, 813, 913A, 913B, 914A, 915A, 916, 914B, 915B	WS33
914D, 915D, 914F, 915F, 914Z, 915Z	WS39
916A, 916B, 912 Z	WS19
917, 918, 918A	WS34
919, 920, 919E, 919EX, 920E, 920EX	WS35
922	WS36
923	WS37
842	WS45
843	WS43
844	WS44
939	WS57
940	WS58
942	WS59
943	WS60
944	WS61
945	WS62

Terminal Extension Kit

A terminal extension kit is used to allow front access to the rear terminals on most 500 and 750 kVA transformers (transformers on frames 919 and 920) when insufficient space is available at the rear of the transformer. Eaton recommends a minimum 6 -inch clearance from the wall to maintain proper ventilation.

Wall-Mounting Bracket

Wall-mounting brackets are used to wall-mount ventilated transformers. This bracket allows the transformer to be installed with the proper clearance, as recommended by Eaton.

Terminal				Extension Kit
Fits Frame Size(ss (1)	Bus Material	Catalog Number		
919	Aluminum	EXT55AL		
919	Copper	EXT55CU		
920	Aluminum	EXT77AL		
920	Copper	EXT77CU		

Wall-mounting brackets are compatible with the following frames.

Wall-Mounting Bracket	Availability Guide Wall-Mounting Bracket WMB01
	Frame Sizes ${ }^{1}$ (${ }^{\text {Catalog }}$ Number
	Type DS-3 (Single-Phase Compatible)
	809, 810, 811, 812, 813, 815, 816, 817, WMB01 818, 835, 836, 837, 814A, 842
	Type DT-3, K-Factor, Drive Isolation (Three-Phase Compatible)
	908, 909, 910, 911, 912, 910A, 911A, 912A, WMB01 $912 \mathrm{~B}, 912 \mathrm{D}, 913 \mathrm{~A}, 913 \mathrm{~B}, 914 \mathrm{~A}, 914 \mathrm{~B}, 914 \mathrm{D}$, $915 \mathrm{D}, 915 \mathrm{~A}, 915 \mathrm{~B}, 914 \mathrm{~F}, 915 \mathrm{~F}, 9122,914 Z, 915 Z$
	939,940 WMB05
	942,943 WMB04
	Notes
	(1) Effective June 1, 2001, frame numbers will have a prefix of FR, e.g., FR819. Dimensions, accessories and so on are still applicable as if the FR did not exist. (2) For Grade 316 stainless steel weathershields, add the suffix "S" to a catalog number, e.g., WS31S.

Terminal Lug Kits for Type DT-3 Transformers

Typical Sizing	Terminal Lugs Cable Range	Quantity	Hardware Bolt Size	Quantity	Catalog Number
15-37.5 kVA single-phase	\#14-\#2	8	1/4-20 $\times 3 / 4$	8	LKS1
15-45 kVA three-phase	\#6-250 kcmil	4			
50-75 kVA single-phase	\#6-250 kcmil	12	1/4-20 $\times 3 / 4$	8	LKS2
75-112.5 kVA three-phase			$1 / 4-20 \times 1-3 / 4$	8	
100-167 kVA single-phase	\#6-250 kcmil	3	1/4-20 $3 / 4$	3	LKS3
150-300 kVA three-phase	\#2-600 kcmil	22	$3 / 8-16 \times 2$	16	
500 kVA three-phase	\#2-600 kcmil	29	$3 / 8-16 \times 2$	18	LKS4

Rodent Screens

Description	Frame Size(s) ${ }^{(1)}$	Catalog Number
Rodent screens are used to discourage entry by birds or rodents.	908, 909	RS01
	910A, 911, 912	RS02
	913B, 914B, 915B	RS03
	916	RS04
	917, 918, 918A	RS05
	919, 920, 919E, 919EX, 920E, 920EX	RS06
	916A, 916B	RS07
	922	RS08
	923	RS09
	814, 821, 814E	RS11
	815	RS12
	816	RS13
	817,818	RS14
	819,820	RS15
	842	RS42
	843	RS43
	844	RS44
	912B, 9122, 912D	RS16
	914D, 915D, 914F, 915F, 914Z, $915 Z$	RS17
	9162	RS07
	939	RS57
	940	RS58
	942	RS59
	943	RS60
	944	RS61
	945	RS62

Replacement Parts for Mini-Power Centers

Frame	Deadfront Cover (Breaker Cover)	Front Cover
283	$47-37503$	7074 C 98 H 04
284	$47-37503-2$	7074 C 98 H 01
285	$47-37503-3$	7074 C 98 H 02
286	$47-37503-4$	7074 C 98 H 02
287	$47-37503-5$	7074 C 98 H 03
289	$47-37459$	7074 C 44 H 01
290	$47-37459-2$	7074 C 44 H 02
291	$47-37459-3$	7074 C 44 H 03
289 A	$47-42072-1$	7074 C 44 H 01
290 A	$47-42072-2$	7074 C 44 H 02
291 A	$47-42072-3$	7074 C 44 H 03

Notes
(1) Effective June 1, 2001, frame numbers will have a prefix of FR, e.g., FR819. Dimensions, accessories and so on are still applicable as if the FR did not exist.

Lugs are rated $\mathrm{Al} / \mathrm{Cu}$ and are suitable for use with either aluminum or copper conductors.

Transformer Standards, Technical Data and Accessories

Case Parts for Ventilated Units

Frame(s) ${ }^{(1)}$	Front Panel (Upper)	Front Panel (Lower)	Back Panel (Upper)	Back Panel (Lower)	Front or Back Panel (Cutout Cover Plate)	Top Cover	Side Panel (Two Required per Transformer)	Bottom
Single-Phase								
809	7073C16P03	-	7073C16P03	-	-	7073C17P01	7073C18P04	7073C14P03
810	7073C16P01	-	7073C16P01	-	-	7073C17P01	7073C18P01	7073C14P01
811	7073C16P01	-	7073C16P01	-	-	7073C17P01	$7073 \mathrm{C18P01}$	$7073 \mathrm{C14P01}$
812	$7073 \mathrm{C16P02}$	-	7073C16P02	-	-	7073C17P02	7073C18P02	7073C14P02
813	7073C16P02	-	7073C16P02	-	-	7073C17P02	$7073 \mathrm{C18P02}$	7073C14P02
814, 814E	7073C54P01	-	7073C54P01	-	-	7073C17P03	7073C18P05	7073C14P04
815	47-39433	-	47-39433	-	-	47-39431	47-39430	47-39429
816	47-40452	-	47-40452	-	-	47-40453	47-40451	47-40449
817	47-40457	-	47-40457	-	-	47-40458	47-40456	47-40454
818	47-40457	-	47-40457	-	-	47-40458	47-40456	47-40454
819	47-40574	-	47-40574	-	-	47-40575	47-40573	47-40459
820	47-40574	-	47-40574	-	-	47-40575	47-40573	47-40459
842	47-54828-2	-	47-54828-2	-	-	47-54829-2	47-54827-2	47-55335-2
843	47-54828-4	-	47-54828-4	-	-	47-54829-4	47-54827-4	47-55335-3
844	47-54828-5	-	47-54828-5	-	-	47-54829-5	47-54827-5	47-55335-5

Notes

(1) Effective June 1, 2001, frame numbers will have a prefix of FR, e.g., FR819. Dimensions, accessories and so on are still applicable as if the FR did not exist.

Parts listed are for standard catalog listed transformers. Units with modifications may require different parts. (Frame number from transformer nameplate required.) Transformer nameplate and UL label are not field replaceable.

Transformers

Transformer Standards, Technical Data and Accessories

Case Parts for Ventilated Units, continued
2

Frame(s) ${ }^{(1)}$	Front Panel (Upper)	Front Panel (Lower)	Back Panel (Upper)	Back Panel (Lower)	Front or Back Panel (Cutout Cover Plate)	Top Cover	Side Panel (Two Required per Transformer)	Bottom
Three-Phase								
908	7073C37P01	-	7073C37P01	-	-	1714C45P01	1714C44P03	7073C20P05
909	7073C37P01	-	7073C37P01	-	-	1714C45P01	$1714 \mathrm{C44P03}$	7073C20P05
910	1714C46P01	-	1714C46P01	-	-	1714C45P01	1714C44P01	7073C20P01
911	1714C46P01	-	1714C46P01	-	-	1714C45P01	1714C44P01	7073C20P01
912	1714С46P01	-	1714С46P01	-	-	1714C45P01	$1714 \mathrm{C44P01}$	7073 C 20 P 01
916	1714C60P01	-	1714C60P01	-	-	1714C58P01	1714C56P01	$7073 \mathrm{C20P03}$
917	47-44973-1	-	47-44973-1	-	-	1714C67P01	1714C64P01	7073C20P04
918	47-44973-1	-	47-44973-1	-	-	1714C67P01	1714C64P01	7073C20P04
919, 919E, 919EX	2D46331P03	2D46331P04	2D46331P03	2D46331P04	2D46331P01	2D46331P02	2D46332P01	2D46331P04
920, 920E, 920EX	2D46331P03	2D46331P04	2D46331P03	2D46331P04	2D46331P01	2D46331P02	2D46332P01	2D46331P04
922	2D46391H06	2D46391H08	2D46391 03	2D46391H08		2D46391H02	2D46392H01	-
923	47-45927-1	-	47-45927-1	-	-	47-45926-1	47-45925-1	47-45759-1
910 A	47-40592	-	47-40592	-	-	1714C45P01	47-40591	47-40589
911 A	47-40592	-	47-40592	-	-	1714C45P01	47-40591	47-40589
912 A	47-40592	-	47-40592	-	-	1714C45P01	47-40591	47-40589
912 B	47-49323-1	-	47-49323-1	-	-	47-49322-1	47-49321-1	47-49320-1
912 D	47-55332-2	-	47-55332-2	-	-	47-55331-2	47-55329-2	47-55330-1
912DN	47-55332-4	-	47-55332-4	-	-	47-55331-2	47-55329-2	47-55330-3
913 A	1714C47P03	-	1714C47P03	-	-	1714C45P02	1714C44P07	7073C30P02
913 B	47-40580	-	47-40580	-	-	1714C45P02	47-40578	47-41792
914 A	1714C47P03	-	1714C47P03	-	-	1714C45P02	$1714 \mathrm{C44P07}$	7073C30P02
914 B	47-40580	-	47-40580	-	-	1714C45P02	47-40578	47-41792
914 D	47-49317-1	-	47-49317-1	-	-	47-49316-1	47-49315-1	47-49314-1
914F/915F	47-56915-1	-	47-56915-1	-	-	47-56916-1	47-56917-1	47-56918-1
915A	1714C47P03	-	1714C47P03	-	-	1714C45P02	1714C44P07	$7073 \mathrm{C3OP02}$
915B	47-40580	-	47-40580	-	-	1714C45P02	47-40578	47-41792
915D	47-49317-1	-	47-49317-1	-	-	47-49316-1	47-49315-1	47-49314-1
916A	47-41790	-	47-41790	-	-	47-41791	47-41789	47-41788
918A	47-41801	-	47-41801	-	-	47-41802	47-41800	47-41802
9122	47-49323-1	-	47-49323-1	-	-	47-49322-1	47-49991-1	47-49989-1
9152	47-49317-1	-	47-49317-1	-	-	47-49316-1	47-49994-1	47-49995-1
9162	47-49992-1	-	47-49992-1	-	-	47-41791	47-49988-1	47-49987-1
939	73-5902-1	-	73-5902-1	-	-	73-5903-1	73-5900-1	73-5901-1
940	73-5902-2	-	73-5902-2	-	-	73-5903-2	73-5900-2	73-5901-2
942	73-5902-3	-	73-5902-3	-	-	73-5903-3	73-5900-3	73-5901-3
943	73-5902-4	-	73-5902-4	-	-	73-5903-4	73-5900-4	73-5901-4
944	73-5902-5	-	73-5902-5	-	-	73-5903-5	73-5900-5	73-5901-5
945	73-5902-6	-	73-5902-6	-	-	73-5903-6	73-5900-6	73-5901-6

Notes

[^25]
Technical Data and Specifications

Customer-Furnished Connecting Cables

Eaton recommends that external cables be rated $90^{\circ} \mathrm{C}$ (sized at $75^{\circ} \mathrm{C}$ ampacity) for encapsulated designs and $75^{\circ} \mathrm{C}$ for ventilated designs.
Primary and secondary terminal lugs are not included. Lug kits are available separately.

Overload Capability

Short-term overload capacity is designed into transformers as required by ANSI. Dry-type distribution transformers will deliver 200\% nameplate load for one-half hour, 150% load for one hour and 125% load for four hours without being damaged, provided that a constant 50% load precedes and follows the overload. See ANSI C57.96-01.250 for additional limitations.

Continuous overload capacity is not deliberately designed into a transformer because the design objective is to be within the allowed winding temperature rise with nameplate loading.

Seismically Qualified

Eaton manufactured dry-type distribution transformers are seismically qualified, and exceed requirements of the Uniform Building Code (UBC) and California Code Title 24.

Taps

Primary taps are available in most ratings to allow compensation for source voltage variations.

Series-Multiple Windings

Series-multiple windings consist of two similar coils in each winding that can be connected in series or parallel (multiple). Transformers with series-multiple windings are designated with a " x " or "/" between the voltage ratings, such as voltages of " $120 / 240$ " or " 240×480." If the series-multiple winding is designated by an " x," the winding can be connected only for a series or parallel. With the "/" designation, a midpoint also becomes
available in addition to the series or parallel connection. As an example, a 120×240 winding can be connected for either 120 (parallel) or 240 (series), but a 120/240 winding can be connected for 120 (parallel), 240 (series) or 240 with a 120 midpoint.

Enclosures

Eaton's ventilated transformers-Types DS-3, DT-3, MD and KT-use a NEMA 2 rated (drip-proof) enclosure as standard, and are rated NEMA 3R with the addition of weathershields. Eaton encapsulated-Types EP, EPT, EPZ and EPTZand totally enclosed, nonventilated (Types DS-3E and DT-3E) transformers use a NEMA 3R rated enclosure.

Buck-Boost Transformers

An autotransformer has only one winding, and is therefore smaller and more economical than the conventional twowinding transformer. In an autotransformer, the primary and secondary are electrically and mechanically connected. The required secondary voltage is obtained by "tapping-off" from the single winding.

Buck-boost autotransformers are insulated units with 120×240 or 240×480 volt primaries and $12 / 24,16 / 32$ or 24/48 volt secondaries, and provide a very economical method for minor voltage adjustments where circuit isolation is not needed.
Autotransformers can be used only where local electrical codes permit, and isolation of the two circuits is not required.

Nonlinear Ratings

The transformers shall be specifically designed to supply circuits with a harmonic profile equal to or less than a K-factor of 4 or 13 , as described in the following table, without exceeding specified temperature rise.
transformers and their installation to minimize the potential for sound transmission to surrounding structures and sound reflection. It is suggested that the following installation methods be included:

1. If possible, mount the transformer away from corners of walls or ceilings. For installation that must be near a corner, use soundabsorbing materials on the walls and ceilings if necessary to eliminate reflection.
2. Provide a solid foundation for mounting the transformer and then use vibration dampening mounts if not already provided in the transformer. (Eaton encapsulated EP/EPT designs use a special encapsulation system and ventilated DS/DT-3 designs contain a built-in vibration dampening system to minimize and isolate sound transmission.)
3. Provide flexible conduit to make the connections to the transformer.
4. Locate the transformer as far as possible from areas where high sound levels are undesirable.

Sound Levels

All Eaton 600 volt class general-purpose dry-type distribution transformers are designed to meet NEMA ST-20 sound levels listed here. These are the sound levels measured in a soundproof environment. Actual sound levels measured at an installation will likely be higher (up to 15 dB greater) due to electrical connections and environmental conditions. Lower sound levels are available and should be specified when the transformer is going to be installed in an area where sound may be a concern.

All Eaton general-purpose dry-type distribution transformers are designed with sound levels lower than NEMA ST-20 maximum levels. However, consideration should be given to the specific location of the
Average Sound Levels

NEMA ST-20 Average Sound Level, dB			
Equivalent Winding kVA Range	Self-Cooled Ventilated (up to 1.2 kV)		Encapsulated
	K-Factor 1, 4, 9	K-Factor 13, 20	(up to 1.2 kV)
3.00 and below	40	40	45
3.01 to 9.00	40	40	45
9.01 to 15.00	45	45	50
15.01 to 30.00	45	45	50
30.01 to 50.00	45	48	50
50.01 to 75.00	50	53	55
75.01 to 112.50	50	53	55
112.51 to 150.00	50	53	55
150.01 to 225.00	55	58	57
225.01 to 300.00	55	58	57
300.01 to 500.00	60	63	59
500.01 to 700.00	62	65	61
700.01 to 1000.00	64	67	63
Greater than 1000	Consult factory	Consult factory	Consult factory

Typical Data for 600-Volt Class General-Purpose Dry-Type Transformers, Aluminum Wound ©

Type EP $115^{\circ} \mathrm{C}$ Rise

	Weight Lbs		Losses in Watts		Efficiency				\% Regulation		\% Impedance ${ }^{(2)}$		
kVA	AI	Cu	No Load	Total	$\begin{aligned} & 1 / 4 \\ & \text { Load } \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & \text { Load } \end{aligned}$	$\begin{aligned} & \text { 3/4 } \\ & \text { Load } \end{aligned}$	Full Load	$\begin{aligned} & \text { 100\% } \\ & \text { P.F. } \end{aligned}$	$\begin{aligned} & 80 \% \\ & \text { P.F. } \end{aligned}$	Min.	Max.	Sound Level dB
0.05	-	7	6	9	65.3	79.6	84.3	85.6	5.9	6.4	5.5	9.5	45
0.075	-	7	7	14	66.0	79.0	82.5	82.8	9.4	9.2	7.5	11.0	45
0.10	-	7	5	15	82.4	86.9	87.7	86.5	10.3	10.6	8.0	12.0	45
0.15	-	8	7	20	83.4	88.2	88.9	87.8	9.0	9.6	8.0	12.0	45
0.25	-	12	14	29	79.0	87.2	89.5	89.6	5.9	7.5	7.5	9.5	45
0.5	-	13	20	47	85.1	90.3	91.4	91.4	5.5	7.0	5.0	7.0	45
0.75	-	20	29	57	86.0	91.3	92.7	92.9	3.9	5.0	4.0	6.0	45
1	-	30	24	60	90.8	93.9	94.5	94.4	3.8	4.9	3.8	5.8	45
1.5	65	40	30	90	92.5	94.7	95.0	94.6	4.1	5.2	2.5	4.5	45
2	113	40	30	100	94.2	95.7	95.8	95.4	3.6	4.7	3.3	5.3	45
3	-	69	61	135	92.0	95.0	95.7	95.7	2.5	3.5	2.5	4.1	45
5	-	120	104	215	91.8	95.0	95.8	95.9	2.3	3.3	2.0	4.6	45
7.5	123	133	129	250	93.2	96.0	96.7	95.9	1.5	2.4	2.4	3.4	45
10	193	208	153	295	93.9	96.3	97.0	97.2	1.5	2.5	2.0	3.3	50
15	216	235	209	435	94.4	96.6	97.1	97.2	1.6	2.8	1.6	3.6	50
25	385	414	191	440	96.8	98.0	98.3	98.4	1.1	2.5	1.6	4.2	50
37.5	735	856	225	370	97.4	98.3	98.5	98.4	1.2	2.6	2.8	4.0	50

Type EPT $115^{\circ} \mathrm{C}$ Rise (3)

kVA	Weight Lbs		Losses in Watts		Efficiency				\% Regulation		\% Impedance ${ }^{(2)}$		
	AI	Cu	No Load	Total	$\begin{aligned} & 1 / 4 \\ & \text { Load } \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & \text { Load } \end{aligned}$	$\begin{aligned} & 3 / 4 \\ & \text { Load } \end{aligned}$	Full Load	$\begin{aligned} & \text { 100\% } \\ & \text { P.F. } \end{aligned}$	$\begin{aligned} & 80 \% \\ & \text { P.F. } \end{aligned}$	Min.	Max.	Sound Level dB
3	116	123	110	165	87.3	92.6	94.3	94.9	2.1	6.1	2.4	8.0	45
6	143	153	145	275	90.9	94.5	95.5	95.7	2.2	3.1	2.9	4.9	45
9	166	178	195	375	91.6	95.0	95.9	96.1	2.0	2.8	2.0	3.6	45
15	275	300	265	545	93.0	95.7	96.5	96.6	1.9	3.1	1.9	3.9	50
30	422	504	250	665	96.5	97.7	98.0	97.9	1.5	2.5	1.8	3.8	50
45	660	745	300	740	97.2	98.2	98.4	98.5	1.0	2.1	1.8	4.0	50
75	1275	1450	400	945	97.7	98.6	98.8	98.8	0.8	1.6	1.7	3.4	55

Notes

(1) Typical values for aluminum windings. Contact Eaton for values of copper windings. Up-to-date design data is available at www.eaton.com.
(2) Actual impedance may be $\pm 7.5 \%$.
(3) Type EPT transformers $3-15 \mathrm{kVA}$ are T-T connected.

Performance data is based upon 480 volt Delta primary and a $208 \mathrm{Y} / 120$ volt secondary for three-phase transformers; 240×480 volt primary and a $120 / 240$ volt secondary for single-phase transformers. All data is subject to future revision. Refer to Eaton for 5 kV class information. All data is subject to future revision.

Typical Data for 600-Volt Class General-Purpose Dry-Type Transformers, Aluminum Wound

Type DS-3 $150^{\circ} \mathrm{C}$ Rise NEMA TP-1 Efficient

kVA	Weight	Losses in Watts		Efficiency (Trise $+20^{\circ}$)				\% Regulation		\% Imp. Trise $+20$	$\begin{aligned} & \mathrm{X} \\ & \text { Trise } \\ & \mathbf{+ 2 0} \end{aligned}$	RTrise+20	Sound Level dB	TP1 Efficiency	Inrush	
		No Load	Total at Rise $\mathbf{+ 2 0}$	25\%	50\%	75\%	Full Load	$\begin{aligned} & \text { 100\% } \\ & \text { PF } \end{aligned}$	$\begin{aligned} & 80 \% \\ & \text { PF } \end{aligned}$						Absolute Max.	Practical Max.
15	196	80	518	97.5	97.7	97.3	96.7	2.0	2.5	3.46	1.9	2.9	45	97.70	910	303
25	261	110	736	98.2	98.2	97.8	97.3	1.6	2.1	2.97	1.6	2.5	45	98.00	1477	492
38	304	132	1141	98.3	98.1	97.7	97.1	1.8	3.8	4.85	4.0	2.7	45	98.20	1056	352
50	396	145	1699	98.4	98.1	97.5	96.8	2.1	4.2	5.32	4.3	3.1	45	98.30	1078	359
75	688	260	1622	98.4	98.6	98.3	97.9	1.5	2.7	3.46	2.9	1.8	50	98.50	3428	1143
100	699	300	2527	98.5	98.4	98.1	97.6	1.9	4.0	5.17	4.7	2.2	50	98.60	2596	865
167	1610	900	3987	68.7	98.7	98.4	98.0	1.4	6.8	9.70	9.5	1.8	55	98.70	1250	416

Type DS-3 $115^{\circ} \mathrm{C}$ Rise NEMA TP-1 Efficient

kVA	Weight	Losses in Watts		Efficiency (Trise $+20^{\circ}$)			Full Load	\% Regulation		\% Imp. Trise +20	$\begin{aligned} & \mathrm{X} \\ & \text { Trise } \\ & +20 \end{aligned}$	RTrise+20	Sound Level dB	TP1 Efficiency	Inrush	
		No Load	Total at Rise $\mathbf{+ 2 0}$	25\%	50\%	75\%		$\begin{aligned} & \text { 100\% } \\ & \text { PF } \end{aligned}$	$\begin{aligned} & \text { 80\% } \\ & \text { PF } \end{aligned}$						Absolute Max.	Practical Max.
15	246	80	519	97.8	97.8	97.3	96.8	2.1	3.1	3.9	2.6	2.9	45	97.70	773	244
25	373	300	766	97.7	98.1	98.0	97.7	1.4	2.8	3.3	2.8	1.9	45	98.00	1102	367
37.5	380	125	1182	98.2	98.4	98.1	97.8	2.0	3.1	4.1	2.9	2.8	45	98.20	616	205
50	590	300	417	98.4	98.3	97.9	97.4	1.8	4.1	5.2	5.2	0.2	45	98.30	1553	511
75	689	170	2356	98.5	98.2	97.6	97.0	2.7	5.6	6.9	6.3	2.9	50	98.50	1717	572

Type DS-3 $80^{\circ} \mathrm{C}$ Rise NEMA TP-1 Efficient

kVA	Weight	Losses in Watts		Efficiency (Trise $+20^{\circ}$)				\% Regulation		\% Imp. Trise +20	$\underset{\text { Trise }}{\mathbf{X}}$$+20$	$\begin{aligned} & \text { R } \\ & \text { Trise } \\ & +20 \end{aligned}$	Sound Level dB	TP1 Efficiency	Inrush Absolute Max.	Practical Max.
		No Load	Total at Rise $\mathbf{+ 2 0}$	25\%	50\%	75\%	Full Load	$\begin{aligned} & \text { 100\% } \\ & \text { PF } \end{aligned}$	$\begin{aligned} & 80 \% \\ & \text { PF } \end{aligned}$							
15	360	115	269	97.4	98.3	98.4	98.4	0.8	1.7	2.0	1.8	1.0	45	97.70	1381	460
25	370	120	580	97.8	98.2	98.0	97.8	1.5	3.2	3.9	3.4	1.8	45	98.00	1046	348
37.5	565	150	834	98.1	98.4	98.1	97.8	1.5	3.3	4.1	3.6	1.8	45	98.20	1471	490
50	680	175	1014	98.4	98.5	98.4	98.1	1.5	3.4	4.2	3.9	1.7	45	98.30	1733	577
75	900	260	1387	98.3	98.6	98.5	98.2	1.4	3.5	4.3	4.0	1.5	50	98.50	2423	807

Type DT-3 $150^{\circ} \mathrm{C}$ Rise NEMA TP-1 Efficient

		Losses in Watts		Efficiency (Trise $+20^{\circ}$)				\% Regulation		\% Imp. Trise $+20$	$\begin{aligned} & X \\ & \text { Trise } \\ & +20 \end{aligned}$	RTrise+20	Sound Level dB	TP1 Efficiency	Inrush	
kVA	Weight	No Load	Total at Rise +20	25\%	50\%	75\%	Full Load	$\begin{aligned} & 100 \% \\ & \text { PF } \end{aligned}$	$\begin{aligned} & \text { 80\% } \\ & \text { PF } \end{aligned}$						Absolute Max.	Practical Max.
15	204	95	778	96.6	96.7	96.0	95.1	4.8	4.0	4.8	1.4	4.6	45	97.00	382	127
30	291	165	1207	97.2	97.3	96.9	96.2	3.7	5.6	4.6	3.0	3.5	45	97.50	479	159
37.5	381	210	1428	97.5	97.5	97.0	96.4	3.5	5.5	4.5	3.1	3.2	45	97.70	484	161
45	351	210	1911	97.5	97.4	96.7	96.0	3.8	6.3	5.1	3.4	3.8	45	97.70	564	188
50	531	270	1316	97.7	98.1	97.9	97.5	2.2	4.0	3.2	2.4	2.1	45	98.00	999	333
75	553	300	2917	97.9	97.7	97.0	96.3	3.6	6.6	5.3	4.0	3.5	50	98.00	561	187
112.5	793	400	3693	98.0	98.0	97.5	96.9	3.2	7.5	6.0	5.2	2.9	50	98.20	1049	350
150	913	490	4923	98.2	98.0	97.5	96.9	3.2	6.5	5.3	4.4	3.0	50	98.30	1518	506
225	1343	650	6476	98.4	98.2	97.8	97.2	2.8	6.3	5.1	4.4	2.6	55	98.50	2204	734
300	1597	750	8239	98.5	98.3	97.9	97.3	2.9	8.9	7.6	7.2	2.5	55	98.60	2097	699
500	2590	1400	9782	98.6	98.7	98.5	98.1	1.9	8.2	7.2	7.0	1.7	60	98.70	3769	1256
750	3340	1800	12,692	98.8	98.9	98.7	98.4	1.8	8.9	8.0	7.9	1.5	64	98.80	4521	1507

Typical Data for 600-Volt Class General-Purpose Dry-Type Transformers, Aluminum Wound

Type DT-3 $115^{\circ} \mathrm{C}$ Rise NEMA TP-1 Efficient

		Losses in Watts		Efficiency (Trise $+20^{\circ}$)				\% Regulation		\% Imp. Trise $+20$	$\begin{aligned} & X \\ & \text { Trise } \\ & +20 \end{aligned}$	$\begin{aligned} & \mathbf{R} \\ & \text { Trise } \end{aligned}$$+20$	Sound Level dB	TP1 Efficiency	Inrush Absolute Max.	Practical Max.
kVA	Weight	No Load	Total at Rise $\mathbf{+ 2 0}$	25\%	50\%	75\%	Full Load	$\begin{aligned} & \text { 100\% } \\ & \text { PF } \end{aligned}$	$\begin{aligned} & \text { 80\% } \\ & \text { PF } \end{aligned}$							
15	202	100	743	96.7	96.8	96.2	95.4	4.4	3.9	4.4	1.2	4.3	45	97.00	383	127
30	311	165	1492	97.3	97.1	96.3	95.5	4.5	4.8	4.8	1.8	4.4	45	97.50	411	137
45	418	220	1458	97.8	97.9	97.5	97.0	2.8	5.4	4.6	3.7	2.8	45	97.70	550	183
50	556	270	1211	97.6	98.1	98.0	97.7	1.9	3.7	3.2	2.6	1.9	45	98.00	892	297
75	581	300	2415	97.9	97.9	97.5	96.9	3.0	6.7	5.9	5.1	2.8	50	98.00	758	252
112.5	829	440	3209	98.0	98.1	97.8	97.3	2.6	3.6	3.1	1.9	2.5	50	98.20	1301	433
150	996	530	3781	98.1	98.3	97.9	97.5	2.4	5.8	5.2	4.7	2.2	50	98.30	1534	511
225	1569	720	5205	98.4	98.4	98.1	97.8	2.2	6.8	6.2	5.8	2.0	55	98.50	1875	631
300	1908	830	6926	98.5	98.5	98.2	97.8	2.3	6.0	5.4	4.9	2.0	55	98.60	2678	872
500	3117	1650	6968	98.5	98.9	98.8	98.7	1.2	6.6	6.6	6.5	1.1	60	98.70	3930	1310
750	4884	2000	9335	98.9	99.1	99.0	98.8	1.3	8.7	9.0	8.9	1.0	64	98.80	4458	1486

Type DT-3 $80^{\circ} \mathrm{C}$ Rise NEMA TP-1 Efficient

kVA	Weight	Losses in Watts		Efficiency (Trise $+20^{\circ}$)				\% Regulation		\% Imp. Trise $+20$	$\begin{aligned} & X \\ & \text { Trise } \\ & +20 \end{aligned}$	$\begin{aligned} & \text { R } \\ & \text { Trise } \\ & +20 \end{aligned}$	Sound Level dB	TP1 Efficiency	Inrush	
		No Load	Total at Rise $\mathbf{+ 2 0}$	25\%	50\%	75\%	Full Load	$\begin{aligned} & \text { 100\% } \\ & \text { PF } \end{aligned}$	$\begin{aligned} & \text { 80\% } \\ & \text { PF } \end{aligned}$						Absolute Max.	Practical Max.
15	276	165	551	96.7	97.4	97.2	96.8	3.4	3.9	3.5	2.3	2.6	45	97.00	358	119
30	350	180	904	97.3	97.8	97.6	97.2	2.5	3.9	3.4	2.5	2.4	45	97.50	337	112
45	540	290	1027	97.7	98.2	98.2	97.9	1.7	3.5	3.3	2.9	1.6	45	97.70	953	317
75	810	360	1782	97.8	98.2	98.0	97.7	0.3	3.5	4.3	3.9	1.9	50	98.00	1006	355
112.5	944	470	2521	98.2	98.4	98.2	97.9	1.9	4.4	4.1	3.7	1.8	50	98.20	1554	518
150	1438	650	2760	98.2	98.6	98.5	98.3	1.5	4.8	4.7	4.5	1.4	50	98.30	1665	555
225	1746	830	4047	98.3	98.6	98.5	98.3	1.6	5.5	5.6	5.4	1.4	55	98.50	2003	667
300	2400	1100	5338	98.6	99.0	99.0	98.9	1.6	5.9	6.1	5.9	1.4	55	98.60	2655	885
500	3418	1800	5858	98.6	99.0	99.0	98.9	0.9	4.9	5.4	5.3	0.8	60	98.70	4462	1487

Type KT-4 $150^{\circ} \mathrm{C}$ Rise NEMA TP-1 Efficient

		Losses in Watts		Efficiency (Trise $+20^{\circ}$)				\% Regulation		\% Imp. Trise +20	$\begin{aligned} & X \\ & \text { Trise } \\ & +20 \end{aligned}$	$\begin{aligned} & \mathbf{R} \\ & \text { Trise } \\ & \mathbf{+ 2 0} \end{aligned}$	Sound Level dB	TP1 Efficiency	Inrush Absolute Max.	Practical Max.
kVA	Weight	No Load	Total at Rise $\mathbf{+ 2 0}$	25\%	50\%	75\%	Full Load	$\begin{aligned} & \text { 100\% } \\ & \text { PF } \end{aligned}$	$\begin{aligned} & 80 \% \\ & \text { PF } \end{aligned}$							
15	206	100	883	96.7	96.5	95.6	94.6	5.5	5.2	5.5	1.8	5.2	45	97.00	375	125
30	311	165	1263	97.2	97.3	96.7	96.0	3.9	7.4	6.0	4.8	3.7	45	97.50	453	151
45	400	220	1554	97.7	97.7	97.3	96.7	3.2	5.9	4.8	3.8	3.0	45	97.70	710	236
75	547	300	2622	97.9	97.8	97.2	96.6	3.3	6.7	5.3	4.4	3.1	50	98.00	995	331
112.5	800	440	3525	98.0	98.0	97.6	97.0	3.0	7.4	6.0	5.3	2.7	50	98.20	1082	360
150	1010	530	4055	98.1	98.2	97.8	97.4	2.6	6.6	5.4	4.8	2.3	50	98.30	1574	524
225	1680	700	5879	98.3	98.3	97.9	97.5	2.6	7.6	6.3	5.9	2.3	55	98.50	1943	647
300	2122	1100	5895	98.4	98.6	98.4	98.1	1.9	6.8	5.9	5.7	1.6	55	98.60	2863	954
500	3201	1800	7054	98.5	98.9	98.8	98.7	1.3	5.9	5.4	5.2	1.1	60	98.70	4588	1529

Typical Data for 600-Volt Class General-Purpose Dry-Type Transformers, Aluminum Wound

Type KT-4 $115^{\circ} \mathrm{C}$ Rise NEMA TP-1 Efficient

kVA	Weight	Losses in Watts		Efficiency (Trise $+20^{\circ}$)				\% Regulation		\% Imp. Trise $+20$	$\begin{aligned} & X \\ & \text { Trise } \\ & \mathbf{+ 2 0} \end{aligned}$	$\begin{aligned} & \text { R } \\ & \text { Trise } \\ & +20 \end{aligned}$	Sound Level dB	TP1 Efficiency	Inrush	
		No Load	Total at Rise $\mathbf{+ 2 0}$	25\%	50\%	75\%	Full Load	$\begin{aligned} & \text { 100\% } \\ & \text { PF } \end{aligned}$	$\begin{aligned} & 80 \% \\ & \text { PF } \end{aligned}$						Absolute Max.	Practical Max.
15	307	135	394	96.3	97.5	97.6	97.5	1.8	2.7	2.2	1.4	1.7	45	97.00	491	163
30	313	165	1344	97.4	97.3	96.6	95.9	4.1	5.1	4.6	2.4	3.9	45	97.50	584	194
45	400	220	1463	97.8	97.9	97.5	97.0	3.0	6.1	5.2	4.4	2.8	45	97.70	591	197
75	587	285	2355	97.9	97.9	97.5	97.0	2.9	6.7	5.9	5.2	2.8	50	98.00	823	274
112.5	947	470	2910	97.9	98.1	97.9	97.5	2.4	5.0	4.3	3.7	2.2	50	98.20	1447	482
150	1243	560	4119	98.1	98.2	97.8	97.4	2.5	6.6	5.7	5.2	2.4	50	98.30	1468	489
225	1680	700	5413	98.3	98.3	98.1	97.7	2.3	7.5	7.0	6.7	2.1	55	98.50	1719	573
300	2480	1100	5735	98.4	98.7	98.5	98.2	1.8	6.7	6.3	6.1	1.5	55	98.60	2547	849

Type KT-4 $80^{\circ} \mathrm{C}$ Rise NEMA TP-1 Efficient

kVA	Weight	Losses in Watts		Efficiency (Trise $+20^{\circ}$)				\% Regulation		\% Imp. Trise +20	$\begin{aligned} & X \\ & \text { Trise } \\ & +20 \end{aligned}$	$\begin{aligned} & \text { R } \\ & \text { Trise } \\ & +20 \end{aligned}$	Sound Level dB	TP1 Efficiency	Inrush	
		No Load	Total at Rise $\mathbf{+ 2 0}$	25\%	50\%	75\%	Full Load	$\begin{aligned} & \text { 100\% } \\ & \text { PF } \end{aligned}$	$\begin{aligned} & 80 \% \\ & \text { PF } \end{aligned}$						Absolute Max.	Practical Max.
15	378	165	416	96.4	97.6	97.7	97.6	1.7	2.9	2.5	1.9	1.7	45	97.00	482	160
30	365	188	877	97.2	97.7	97.6	97.2	2.4	3.9	3.5	2.6	2.3	45	97.50	583	194
45	550	285	1055	97.4	98.1	98.0	97.8	1.8	3.7	3.4	2.9	1.7	45	97.70	708	236
75	774	360	1784	97.8	98.2	98.0	97.7	2.0	4.7	4.5	4.0	1.9	50	98.00	986	328
112.5	1380	550	1872	97.9	98.5	98.5	98.4	1.3	4.2	4.2	4.1	1.2	50	98.20	1577	525
150	1604	700	2728	98.0	98.5	98.5	98.3	1.4	4.4	4.5	4.3	1.4	50	98.30	1880	626
225	2336	850	3728	98.4	98.7	98.6	98.4	1.4	5.0	5.2	5.1	1.3	55	98.50	2647	882
300	2689	1100	4589	98.4	98.8	98.7	98.5	1.4	5.5	5.8	5.6	1.2	55	98.60	2610	870

Type KT-13 $150^{\circ} \mathrm{C}$ Rise NEMA TP-1 Efficient

kVA	Weight	Losses in Watts		Efficiency (Trise $+20^{\circ}$)				\% Regulation		\% Imp. Trise $+20$	$\begin{aligned} & \text { X } \\ & \text { Trise } \\ & +20 \end{aligned}$	$\begin{aligned} & \text { R } \\ & \text { Trise } \\ & +20 \end{aligned}$	Sound Level dB	TP1 Efficiency	Inrush Absolute Max.	Practical Max.
		No Load	Total at Rise +20	25\%	50\%	75\%	Full Load	$\begin{aligned} & \text { 100\% } \\ & \text { PF } \end{aligned}$	$\begin{aligned} & 80 \% \\ & \text { PF } \end{aligned}$							
15	271	165	604	96.7	97.3	97.0	96.5	3.1	4.2	3.6	2.1	2.9	45	97.00	379	126
30	365	198	977	97.1	97.6	97.3	96.9	2.7	4.3	3.5	2.4	2.6	45	97.50	565	188
45	545	280	1215	97.5	98.0	97.8	97.4	2.2	4.2	3.3	2.6	2.1	45	97.70	890	277
75	812	360	2139	97.7	98.0	97.8	97.4	2.6	5.9	4.9	4.3	2.4	50	98.00	907	302
112.5	920	490	3059	98.0	98.2	97.8	97.4	2.4	5.0	4.1	3.4	2.3	50	98.20	1513	504
150	1221	530	4297	98.1	98.1	97.7	97.2	2.7	6.5	5.3	4.6	2.5	50	98.30	1790	597
225	1960	830	4461	98.3	98.6	98.3	98.0	1.9	6.6	6.1	5.9	1.6	55	98.50	1771	590
300	2358	1100	5931	98.4	98.6	98.4	98.2	1.9	7.2	6.3	6.0	1.6	55	98.60	2543	847

Typical Data for 600-Volt Class General-Purpose Dry-Type Transformers, Aluminum Wound

2
Type KT-13 $115^{\circ} \mathrm{C}$ Rise NEMA TP-1 Efficient

kVA	Weight	Losses in Watts		Efficiency (Trise $+20^{\circ}$)				\% Regulation		\% Imp. Trise $+20$	$\begin{aligned} & X \\ & \text { Trise } \end{aligned}$$+20$	RTriseter	Sound Level dB	TP1 Efficiency	Inrush	
		No Load	Total at Rise +20	25\%	50\%	75\%	Full Load	$\begin{aligned} & \text { 100\% } \\ & \text { PF } \end{aligned}$	$\begin{aligned} & 80 \% \\ & \text { PF } \end{aligned}$						Absolute Max.	Practical Max.
15	332	165	432	96.6	97.6	97.6	97.4	1.9	3.2	2.8	2.2	1.8	45	97.00	409	136
30	390	200	903	97.3	97.8	97.6	97.2	2.5	4.4	3.6	2.8	2.3	45	97.50	420	120
45	548	280	1187	97.5	98.1	98.0	97.7	2.2	-	3.0	2.3	2.0	45	97.70	836	278
75	808	360	1850	97.8	98.1	97.8	97.5	2.4	5.6	4.8	4.3	2.2	50	98.00	805	268
112.5	990	540	2373	97.9	98.3	98.2	98.0	1.8	4.5	4.0	3.6	1.6	50	98.20	1303	434
150	1600	650	2372	98.1	98.5	98.4	98.1	1.3	3.4	3.0	2.8	1.1	50	98.30	1932	644
225	2306	850	4001	98.3	98.7	98.6	98.3	1.6	4.9	5.1	4.9	1.4	55	98.50	2508	836
300	3291	1100	4583	98.4	98.8	98.7	98.5	1.3	6.2	6.3	6.2	1.2	55	98.60	2851	950

Type KT-13 $80^{\circ} \mathrm{C}$ Rise NEMA TP-1 Efficient

kVA	Weight	Losses in Watts		Efficiency (Trise $+20^{\circ}$)				\% Regulation		\% Imp. Trise +20	$\begin{aligned} & X \\ & \text { Trise } \\ & +20 \end{aligned}$	$\begin{aligned} & R \\ & \text { Trise } \end{aligned}$	Sound Level dB	TP1 Efficiency	Inrush Absolute Max.	Practical Max.
		No Load	Total at Rise +20	25\%	50\%	75\%	Full Load	$\begin{aligned} & \text { 100\% } \\ & \text { PF } \end{aligned}$	$\begin{aligned} & \text { 80\% } \\ & \text { PF } \end{aligned}$							
15	315	165	536	96.4	97.3	97.2	96.9	2.5	3.9	3.6	2.5	2.5	45	97.00	375	125
30	408	188	854	97.4	97.9	97.7	97.3	2.3	4.0	3.6	2.8	2.2	45	97.50	497	166
45	555	280	982	97.6	98.2	98.2	98.0	1.6	3.2	3.0	2.5	1.6	45	97.70	656	218
75	838	400	1289	97.8	98.4	98.5	98.4	1.3	3.0	2.9	2.6	1.2	50	98.00	1624	541
112.5	1367	550	1905	97.9	98.5	98.5	98.4	1.3	4.2	4.4	4.2	1.2	50	98.20	1171	390
150	1607	668	2474	98.2	98.6	98.6	98.4	1.4	4.6	4.7	4.5	1.2	50	98.30	1562	520
225	2582	850	3471	98.3	98.7	98.7	98.5	1.3	5.1	6.3	6.2	1.2	55	98.50	2159	719
300	3228	1100	3978	98.3	98.8	98.8	98.7	1.1	4.2	4.5	4.3	1.0	55	98.60	3255	1085

Typical Data for 600-Volt Class General-Purpose Dry-Type Transformers, Copper Wound

Type DS-3 $150^{\circ} \mathrm{C}$ Rise NEMA TP-1 Efficient

kVA	Weight	Losses in Watts		Efficiency (Trise $+20^{\circ}$)			\% Regulation								Inrush	
		No Load	Total at Rise $\mathbf{+ 2 0}$	25\%	50\%	75\%	Full Load	$\begin{aligned} & \text { 100\% } \\ & \text { PF } \end{aligned}$	$\begin{aligned} & 80 \% \\ & \text { PF } \end{aligned}$	$\begin{aligned} & \text { \% } \\ & \text { Imp. } \end{aligned}$	X	R	Sound Level dB	TP1 Efficiency	Absolute Max.	Practical Max.
15	270	80	605	97.6	97.5	96.9	96.3	3.5	4.2	4.2	2.3	3.5	45	97.70	551	183
25	406	115	732	97.9	98.1	97.7	97.3	-	-	3.5	2.5	2.5	45	98.00	1379	459
37.5	453	125	1154	98.2	98.1	97.6	97.0	2.7	3.7	4.8	4.0	2.7	45	98.20	1321	440
50	657	160	1159	98.3	98.4	98.1	97.7	2.0	3.3	3.8	3.8	2.0	45	98.30	1321	440
75	803	175	2259	98.5	98.3	97.7	97.1	2.8	4.8	6.5	5.8	2.8	50	98.50	2133	711
100	960	250	2504	98.6	98.4	98.0	97.5	2.3	4.3	5.5	5.0	2.3	50	98.60	2779	926
167	1665	570	3094	98.7	98.8	98.6	98.3	1.5	6.3	9.0	8.8	1.5	50	98.70	2865	955

Type DS-3 $115^{\circ} \mathrm{C}$ Rise NEMA TP-1 Efficient

kVA	Weight	Losses in Watts		Efficiency (Trise $+20^{\circ}$)			\% Regulation				X	R	Sound Level dB	Inrush		
		No Load	Total at Rise $\mathbf{+ 2 0}$	25\%	50\%	75\%	Full Load	$\begin{aligned} & \text { 100\% } \\ & \text { PF } \end{aligned}$	$\begin{aligned} & 80 \% \\ & \text { PF } \end{aligned}$	$\begin{aligned} & \% \\ & \text { Imp. } \end{aligned}$				TP1 Efficiency	Absolute Max.	Practical Max.
15	264	80	437	97.8	98.1	97.8	97.3	2.4	2.2	3.3	2.2	2.4	45	97.70	718	239
25	420	110	603	97.9	98.2	98.0	97.7	2.0	2.9	3.2	2.6	2.0	45	98.00	862	287
37.5	450	125	1217	98.2	98.0	97.5	96.9	2.9	4.5	5.9	5.1	2.9	45	98.20	1300	433
50	703	300	1409	98.4	98.4	98.0	97.6	2.2	3.8	4.7	4.1	2.2	-	98.30	1498	499
75	793	175	2178	98.5	98.3	97.8	97.2	2.7	4.7	6.2	5.6	2.7	50	98.50	2107	702

Type DS-3 $80^{\circ} \mathrm{C}$ Rise NEMA TP-1 Efficient

kVA	Weight	Losses in Watts		Efficiency (Trise $+20^{\circ}$)			\% Regulation			\% Imp.	X	R	Sound Level dB	TP1 Efficiency	Inrush	
		No Load	Total at Rise $\mathbf{+ 2 0}$	25\%	50\%	75\%	Full Load	$\begin{aligned} & \text { 100\% } \\ & \text { PF } \end{aligned}$	$\begin{aligned} & 80 \% \\ & \text { PF } \end{aligned}$						Absolute Max.	Practical Max.
15	407	115	293	97.3	98.2	98.3	98.2	1.2	1.7	1.8	1.4	1.2	45	97.70	375	125
25	430	300	679	97.9	98.4	98.3	98.1	1.5	2.6	3.0	2.6	1.5	45	98.00	494	164
37.5	685	300	729	98.1	98.6	98.6	98.5	1.1	2.2	2.6	2.3	1.1	45	98.20	617	205
50	799	180	1013	98.3	98.6	98.4	98.1	1.7	2.9	3.4	2.9	1.7	45	98.30	989	329
75	1042	250	1447	98.3	98.6	98.4	98.1	1.6	3.4	3.8	3.5	1.6	50	98.50	1015	338

Type DT-3 $150^{\circ} \mathrm{C}$ Rise NEMA TP-1 Efficient

Typical Data for 600-Volt Class General-Purpose Dry-Type Transformers, Copper Wound

Type DT-3 $115^{\circ} \mathrm{C}$ Rise NEMA TP-1 Efficient

Type DT-3 $80^{\circ} \mathrm{C}$ Rise NEMA TP-1 Efficient

kVA	Weight	Losses in Watts		Efficiency (Trise $+20^{\circ}$)			\% Regulation				X	R	Sound Level dB	TP1 Efficiency	Inrush	
		No Load	Total at Rise $\mathbf{+ 2 0}$	25\%	50\%	75\%	Full Load	$\begin{aligned} & \text { 100\% } \\ & \text { PF } \end{aligned}$	$\begin{aligned} & \text { 80\% } \\ & \text { PF } \end{aligned}$	$\begin{aligned} & \text { \% } \\ & \text { Imp. } \end{aligned}$					Absolute Max.	Practical Max.
15	349	135	390	96.6	97.7	97.7	97.6	1.8	2.4	2.1	1.3	1.7	45	97.00	449	150
30	410	210	823	97.3	97.9	97.7	97.4	2.1	3.4	3.0	2.1	2.0	45	97.50	493	164
45	504	200	1308	97.9	98.0	97.7	97.2	2.5	4.5	3.9	3.1	2.5	45	97.70	473	158
75	818	370	1837	97.9	98.2	98.0	97.7	2.0	9.3	4.3	3.8	2.0	50	98.00	937	312
112.5	1065	440	2409	98.1	98.3	98.0	97.6	1.8	3.8	3.3	2.8	1.8	50	98.20	1754	584
150	1410	650	3349	98.3	98.5	98.3	97.9	1.9	3.9	3.7	3.2	1.8	50	98.30	1593	531
225	2030	830	4096	98.4	98.7	98.5	98.3	1.6	5.4	5.4	5.2	1.5	55	98.50	2568	856
300	3041	1100	4646	98.5	98.8	98.7	98.5	1.4	5.6	6.1	6.0	1.2	55	98.60	3753	1251

Type KT-4 $80^{\circ} \mathrm{C}$ Rise NEMA TP-1 Efficient

		Losses in Watts		Efficiency (Trise $+20^{\circ}$)			\% Regulation				X R		Sound Level dB	Inrush			
kVA	Weight	No Load	Total at Rise $\mathbf{+ 2 0}$	25\%	50\%	75\%	Full Load	$\begin{aligned} & \text { 100\% } \\ & \text { PF } \end{aligned}$	$\begin{aligned} & \text { 80\% } \\ & \text { PF } \end{aligned}$	$\begin{aligned} & \text { \% } \\ & \text { Imp. } \end{aligned}$			TP1 Efficiency	Absolute Max.	Practical Max.		
15	251	100	635	96.8	97.1	96.6	96.0	3.7	5.0	4.2	2.1	3.6		45	97.00	265	88
30	326	165	1134	97.4	97.5	97.1	96.5	3.5	5.3	4.3	2.9	3.2	45	97.50	504	168	
45	479	220	1505	97.6	97.8	97.3	96.8	3.0	5.6	5.0	4.1	2.9	45	97.70	670	223	
75	463	300	2883	97.9	97.7	97.1	96.4	3.6	7.1	5.9	4.7	3.4	50	98.00	975	325	
112.5	977	440	2952	98.1	98.2	97.9	97.5	2.6	6.6	5.6	5.1	2.2	50	98.20	1031	344	
150	1212	540	3716	98.3	98.4	98.0	97.6	2.4	6.0	5.1	4.6	2.1	50	98.30	1574	524	
225	1815	650	5420	98.4	98.5	98.1	97.7	2.4	7.6	6.5	6.2	2.1	55	98.50	1694	565	
300	2400	830	6259	98.6	98.6	98.4	98.0	2.2	6.3	5.2	4.9	1.8	55	98.60	2594	864	

Typical Data for 600-Volt Class General-Purpose Dry-Type Transformers, Copper Wound

Type KT-4 $115^{\circ} \mathrm{C}$ Rise NEMA TP-1 Efficient

Type KT-4 $80^{\circ} \mathrm{C}$ Rise NEMA TP-1 Efficient

kVA	Weight	Losses in Watts		Efficiency (Trise $+20^{\circ}$)			\% Regulation				X	R	Sound Level dB	TP1 Efficiency	Inrush	
		No Load	Total at Rise +20	25\%	50\%	75\%	Full Load	$\begin{aligned} & \text { 100\% } \\ & \text { PF } \end{aligned}$	$\begin{aligned} & 80 \% \\ & \text { PF } \end{aligned}$	$\begin{aligned} & \text { \% } \\ & \text { Imp. } \end{aligned}$					Absolute Max.	Practical Max.
15	365	165	371	97.0	98.0	98.1	98.0	1.5	2.3	2.1	1.5	1.4	45	97.00	499	166
30	424	210	787	97.3	97.9	97.8	97.6	2.0	3.2	2.9	2.2	1.9	45	97.50	659	219
45	653	290	977	97.4	98.1	98.1	98.0	1.6	3.1	3.0	2.5	1.5	45	97.70	925	308
75	640	350	1951	97.8	98.1	97.8	97.5	2.2	5.2	4.9	4.4	2.1	50	98.00	854	284
112.5	1264	560	2009	98.2	98.7	98.6	98.4	1.4	4.3	4.2	4.0	1.3	50	98.20	1449	483
150	1825	650	2873	98.5	98.7	98.5	98.2	1.6	6.1	6.4	6.3	1.5	50	98.30	1288	429
225	2096	890	4449	98.3	98.6	98.4	98.1	1.8	6.5	6.6	6.4	1.6	55	98.50	2292	764

Type KT-13 $150^{\circ} \mathrm{C}$ Rise NEMA TP-1 Efficient

kVA	Weight	Losses in Watts		Efficiency ((rise $+20^{\circ}$)			\% Regulation				$\mathrm{X} \quad \mathrm{R}$		Sound Level dB	TP1 Efficiency	Inrush		
		No Load	Total at Rise $\mathbf{+ 2 0}$	25\%	50\%	75\%	Full Load	$\begin{aligned} & \text { 100\% } \\ & \text { PF } \end{aligned}$	$\begin{aligned} & \text { 80\% } \\ & \text { PF } \end{aligned}$	$\begin{aligned} & \text { \% } \\ & \text { Imp. } \end{aligned}$			Absolute Max.		Practical Max.		
15	346	165	461	96.2	97.4	97.5	97.3	2.1	3.0	2.5	1.6	2.0		45	97.00	527	176
30	390	190	908	97.2	97.7	97.5	97.1	2.6	4.0	3.3	2.3	2.4	45	97.50	579	193	
45	623	235	1328	97.6	97.9	97.6	97.2	2.5	3.2	2.8	1.4	2.4	45	97.70	854	285	
75	848	370	2402	97.7	97.9	97.5	97.0	2.8	5.7	4.5	3.6	2.7	50	98.00	1046	348	
112.5	1080	455	2991	98.0	98.2	97.9	97.4	2.4	4.3	3.5	2.7	2.3	50	98.20	1180	393	
150	1431	600	3686	98.2	98.3	98.1	97.7	2.3	5.1	4.2	3.7	2.1	50	98.30	1250	416	
225	2129	830	4250	98.4	98.6	98.4	98.2	2.0	6.3	5.4	5.1	1.5	55	98.50	2771	923	

Type KT-13 $115^{\circ} \mathrm{C}$ Rise NEMA TP-1 Efficient

Typical Data for 600-Volt Class General-Purpose Dry-Type Transformers, Copper Wound

2

Type KT-13 $80^{\circ} \mathrm{C}$ Rise NEMA TP-1 Efficient

Type KT-13 $115^{\circ} \mathrm{C}$ Rise E3 Efficient

kVA	Weight	Losses in Watts		Efficiency (Trise $+20^{\circ}$)			\% Regulation				X	R	Sound Level dB	TP1 Efficiency	Inrush	
		No Load	Total at Rise $\mathbf{+ 2 0}$	25\%	50\%	75\%	Full Load	$\begin{aligned} & \text { 100\% } \\ & \text { PF } \end{aligned}$	$\begin{aligned} & 80 \% \\ & \text { PF } \end{aligned}$	$\begin{aligned} & \% \\ & \text { Imp. } \end{aligned}$					Absolute Max.	Practical Max.
15	3.25	78	359	97.6	98.1	98.0	97.7	2.0	3.7	3.2	2.6	1.9	45	98.00	307	102
30	370	125	636	98.1	98.4	98.3	98.0	1.7	2.7	2.3	1.6	1.7	45	98.30	779	260
45	635	135	1076	98.5	98.5	98.1	97.7	2.2	4.1	3.5	2.8	2.1	45	98.50	617	206
75	870	225	1529	98.5	98.6	98.4	98.0	1.9	4.9	4.4	4.1	1.7	50	98.60	993	331
112.5	1526	350	1768	98.6	98.8	98.7	98.5	1.3	3.5	3.1	2.8	1.3	50	98.80	2447	816
150	1665	350	2419	97.8	98.9	98.7	98.4	1.5	4.5	4.2	3.9	1.4	50	98.90	1976	659
225	2094	650	3650	98.9	98.9	98.8	98.5	1.5	5.4	5.2	5.1	1.3	55	99.00	2686	895
300	3900	750	3731	98.9	99.1	99.0	98.8	1.3	5.2	5.2	5.1	1.0	55	99.04	2990	997

Type KT-9 $\mathbf{1 1 5}^{\circ} \mathrm{C}$ Rise E3 Efficient

kVA	Weight	Losses in Watts		Efficiency (Trise $+20^{\circ}$)			\% Regulation				X	R	Sound Level dB	TP1 Efficiency	Inrush	
		No Load	Total at Rise $\mathbf{+ 2 0}$	25\%	50\%	75\%	Full Load	$\begin{aligned} & \text { 100\% } \\ & \text { PF } \end{aligned}$	$\begin{aligned} & \text { 80\% } \\ & \text { PF } \end{aligned}$	\% Imp.					Absolute Max.	Practical Max.
15	335	78	353	97.4	98.0	98.0	97.7	2.0	3.7	3.2	2.6	1.8	45	98.00	287	96
30	406	125	670	98.0	98.3	98.1	97.8	1.9	2.7	2.4	1.5	1.8	45	98.30	780	260
45	635	135	1075	98.6	98.5	98.2	97.7	2.3	4.1	3.5	2.8	2.1	45	98.50	603	201
75	870	210	1551	98.5	98.6	98.3	98.0	1.9	4.0	3.6	3.1	1.8	50	98.60	958	319
112.5	1526	350	1583	98.6	98.9	98.8	98.6	1.2	3.0	2.7	2.5	1.1	50	98.80	2480	827
150	1665	350	2463	98.8	98.9	98.7	98.4	1.6	4.5	4.2	4.0	1.4	50	98.90	1930	643
225	2094	650	3766	98.8	98.9	98.7	98.4	1.7	5.5	5.2	5.0	1.4	55	99.00	2778	926

Typical Data for 600-Volt Class General-Purpose Dry-Type Transformers, Copper Wound

Type NON HMT $115^{\circ} \mathrm{C}$ Rise NEMA TP-1 Efficient

Type THR HMT $115^{\circ} \mathrm{C}$ Rise NEMA TP-1 Efficient

		Losses in Watts		Efficiency (Trise $+20^{\circ}$)			\% Regulation				X	R	Sound Level dB			
kVA	Weight	No Load	Total at Rise $\mathbf{+ 2 0}$	25\%	50\%	75\%	Full Load	$\begin{aligned} & \text { 100\% } \\ & \text { PF } \end{aligned}$	$\begin{aligned} & 80 \% \\ & \text { PF } \end{aligned}$	$\begin{aligned} & \text { \% } \\ & \text { Imp. } \end{aligned}$				TP1 Efficiency	Absolute Max.	Practical Max.
15	-	80	708	97.1	97.0	96.4	95.5	4.3	7.4	6.3	4.7	4.2	45	97.00	-	-
30	450	100	1409	98.0	97.4	96.5	95.6	4.7	8.0	6.8	5.2	4.4	45	97.50	-	-
45	610	170	1374	98.2	98.1	97.7	97.1	2.8	4.8	4.2	3.2	2.7	45	97.70	-	-
75	868	250	2341	98.2	98.1	97.6	97.0	2.9	6.6	5.8	5.0	2.8	50	98.00	-	-
112.5	1643	400	2685	98.3	98.4	98.1	97.7	2.2	5.5	5.0	4.6	2.0	50	98.20	-	-
150	-	500	3304	98.5	98.6	98.3	97.9	2.0	6.7	6.3	6.0	1.9	50	98.30	-	-
225	3370	590	3712	98.7	98.8	98.7	98.4	1.7	6.6	6.4	6.2	1.4	55	98.50	-	-
300	3894	800	4688	98.9	99.0	98.8	98.5	1.7	7.4	7.2	7.1	1.3	55	98.60	-	-

Typical Specifications-General-Purpose (1000 kVA and Below)

General

Furnish and install, singlephase and three-phase general-purpose individually mounted dry-type transformers of the twowinding type, self-cooled, with ratings and voltages as indicated on the drawings. Transformers shall be manufactured by Eaton.

Transformers shall be designed, manufactured and tested in accordance with all the latest applicable ANSI, NEMA and IEEE Standards. All 600-volt class transformers through 1000 kVA shall be UL listed and bear the UL label.

Transformers shall be designed for continuous operation at rated kVA, for operation 24 hours a day, 365 days a year, with normal life expectancy as defined in ANSI C57.96.

Insulation Systems

Transformers shall be insulated as follows:

- Type EP or EPT: 0.050 through 75 kVA : $180^{\circ} \mathrm{C}$ insulation system
- Type DS-3 or DT-3: 15 kVA and above: $220^{\circ} \mathrm{C}$ insulation system

Required performance shall be obtained without exceeding the above indicated temperature rise in a $40^{\circ} \mathrm{C}$ maximum ambient, with a $30^{\circ} \mathrm{C}$ average over 24 hours.

All insulation materials shall be flame-retardant and shall not support combustion as defined in ASTM Standard Test Method D635.

Core and Coil Assemblies

Transformer core shall be constructed with high-grade, non-aging, silicon steel with high magnetic permeability, and low hysteresis and eddy current losses. Maximum magnetic flux densities shall be substantially below the saturation point. The transformer core volume shall allow efficient transformer operation at 10% above the nominal tap voltage. The core laminations shall be tightly clamped and compressed. Coils shall be wound of electrical-grade [aluminum] [copper] and continuous wound construction. BIL (basic impulse level) for all 600 -volt class windings shall be 10 kV .

On encapsulated units rated [75 kVA and below] [15 kVA and below] [9 kVA and below], the core and coil assembly shall be completely encapsulated in a proportioned mixture of resin or epoxy and aggregate to provide a moisture-proof, shock-resistant seal. The core and coil encapsulation system shall minimize the sound level.

On ventilated units rated [15 kVA and above] [30 kVA and above] [112.5 kVA and above], the core and coil assembly shall be installed on vibrationabsorbing pads.

Enclosures

The enclosure shall be made of heavy-gauge steel and shall be finished using a continuous process of degreasing, cleaning and phosphatizing, followed by electrostatic deposition of a thermosetting polyester powder coating and subsequent baking. The coating color shall be ANSI 61 and shall be UL recognized for outdoor use. The maximum temperature on top of the enclosure shall not exceed $90^{\circ} \mathrm{C}$.

On units rated [75 kVA and below] [15 kVA and below] [9 kVA and below] encapsulated, the enclosure construction shall be totally enclosed, non-ventilated, NEMA 3R, with lifting provisions.
On units rated [15 kVA and above] [30 kVA and above] [112.5 kVA and above], the enclosure construction shall be ventilated, NEMA 2, dripproof, with lifting provisions. All ventilation openings shall be protected against falling dirt. On outdoor units, provide
suitable weathershields over ventilation openings. To
ensure proper ventilation, locate the unit at least 6 inches (152.4 mm) from the adjacent wall or structure

Tests

The following tests shall be performed as standard on all transformers:

1. Ratio tests at the rated voltage connection and at all tap connections.
2. Polarity and phase relation tests on the rated voltage connection.
3. Applied potential tests.
4. Induced potential test.
5. No-load and excitation current at rated voltage on the rated voltage connection.

Sound Levels

Transformer average sound levels shall not exceed the following ANSI and NEMA levels for self-cooled ratings measured in accordance with NEMA ST-20.

Average Sound Levels

Transformer Standards, Technical Data and Accessories

Typical Specifications-

Dry-Type Transformers for Nonlinear Loads

General

Furnish and install, individually mounted dry-type transformers of the twowinding type, self-cooled, with ratings and voltages as indicated on the drawings.
Transformers shall be manufactured by Eaton.
Transformers shall be designed, manufactured and tested in accordance with all the latest applicable ANSI, NEMA and IEEE Standards. All 600-volt class transformers through 500 kVA shall be UL listed as suitable for non-sinusoidal current loads with K factor not to exceed [4] [13] [20].

Insulation Systems

Transformers shall be insulated with a UL recognized $220^{\circ} \mathrm{C}$ insulation system. Winding temperature rise shall be [$\left.80^{\circ} \mathrm{C}\right]\left[115^{\circ} \mathrm{C}\right]\left[150^{\circ} \mathrm{C}\right]$.
Required performance shall be obtained without exceeding the above indicated temperature rise in a $40^{\circ} \mathrm{C}$ maximum ambient, with a $30^{\circ} \mathrm{C}$ average.
All insulation materials shall be flame-retardant and shall not support combustion as defined in ASTM Standard Test Method D635.

Core and Coil Assemblies

Transformer core shall be constructed with high-grade, non-aging, silicon steel with high magnetic permeability, and low hysteresis and eddy current losses. Maximum magnetic flux densities shall be substantially below the saturation point. The transformer core volume shall allow efficient transformer operation at 10% above the nominal tap voltage. The core laminations shall be tightly clamped and compressed.

Transformer coils shall be wound of electrical-grade [aluminum] [copper] conductor with continuous wound construction. An electrostatic shield consisting of a single turn of aluminum shall be placed between the primary and secondary winding and grounded to the transformer core. BIL (basic impulse level) for all 600-volt class windings shall be 10 kV .

The core and coil assembly shall be installed on vibrationabsorbing pads.
The neutral conductor shall be rated to carry 200\% of normal phase current.

Enclosures

The enclosure shall be made of heavy gauge steel and shall be finished utilizing a continuous process of degreasing, cleaning and phosphatizing, followed by electrostatic deposition of a polymer polyester powder coating and baking. The coating color shall be ANSI 61 and shall be UL recognized for outdoor use. The maximum temperature on top of the enclosure shall not exceed $90^{\circ} \mathrm{C}$.

The enclosure construction shall be ventilated, NEMA 2, drip-proof, with lifting provisions. All ventilation openings shall be protected against falling dirt. On outdoor units, provide suitable weathershields over ventilation openings. To ensure proper ventilation, locate the unit at least 6 inches (152.4 mm) from the adjacent wall or structure.

Nonlinear Ratings

The transformers shall be specifically designed to supply circuits with a harmonic profile equal to or less than a K-factor of 4 or 13 as described below without exceeding $\left[80^{\circ} \mathrm{C}\right]\left[115^{\circ} \mathrm{C}\right]$ [$150^{\circ} \mathrm{C}$] temperature rise.

Nonlinear Ratings

Harmonic	K-4	K-13
Fundamental	100.0%	100.0%
3rd	34.0%	70.0%
5th	22.0%	42.0%
7 th	3.0%	5.0%
9th	1.0%	3.0%
11th	0.7%	3.0%
13th	0.5%	1.0%
15th	0.3%	0.7%
17th	0.3%	0.6%

Tests

The following tests shall be performed as standard on all transformers:

1. Ratio tests at the rated voltage connection and at all tap connections.
2. Polarity and phase relation tests on the rated voltage connection.
3. Applied potential tests.
4. Induced potential test.
5. No-load and excitation current at rated voltage on the rated voltage connection.

Sound Levels

Transformer average sound levels shall not exceed the following ANSI and NEMA levels for self-cooled ratings measured in accordance with NEMA ST-20.

Average Sound Levels

NEMA ST-20 Averag Equivalent Winding kVA Range	Self-Cooled Ventilated (up to 1.2 kV)		Encapsulated (up to $\mathbf{1 . 2}$ kV)
	K-Factor 1, 4, 9	K-Factor 13, 20	
3.00 and below	40	40	45
3.01 to 9.00	40	40	45
9.01 to 15.00	45	45	50
15.01 to 30.00	45	45	50
30.01 to 50.00	45	48	50
50.01 to 75.00	50	53	55
75.01 to 112.50	50	53	55
112.51 to 150.00	50	53	55
150.01 to 225.00	55	58	57
225.01 to 300.00	55	58	57
300.01 to 500.00	60	63	59
500.01 to 700.00	62	65	61
700.01 to 1000.00	64	67	63
Greater than 1000	Consult factory	Consult factory	Consult factory

Typical Specification-

AC Adjustable Frequency Drive Isolation Transformers

General

Furnish and install, singlephase and three-phase general-purpose individually mounted dry-type transformers of the twowinding type, self-cooled, with ratings and voltages for input application as indicated on the drawings. Transformers shall be manufactured by Eaton.

Transformers shall be designed, manufactured and tested in accordance with al the latest applicable ANSI, NEMA and IEEE Standards. All 600-volt class transformers through 550 kVA shall be UL listed and bear the UL label.

Transformers shall be designed for continuous operation at rated kVA, for operation 24 hours a day, 365 days a year, with normal life expectancy as defined in ANSI C57.96

Insulation Systems

Transformers shall be insulated with a UL recognized $220^{\circ} \mathrm{C}$ insulation system.

Required performance shall be obtained without exceeding the above indicated temperature rise in a $40^{\circ} \mathrm{C}$ maximum ambient, with a $30^{\circ} \mathrm{C}$ average over 24 hours.

All insulation materials shall be flame-retardant and shall not support combustion as defined in ASTM Standard Test Method D635.

Core and Coil Assemblies

Transformer core shall be constructed with high-grade, non-aging, silicon steel with high magnetic permeability, and low hysteresis and eddy current losses. Maximum magnetic flux densities shall be substantially below the saturation point. The transformer core volume shall allow efficient transformer operation at 10% above the nominal tap voltage. The core laminations shall be tightly clamped and compressed. Coils shall be wound of electrical-grade [aluminum] [copper] and continuous wound construction. BIL (basic impulse level) for all 600-volt class windings shall be 10 kV .

A temperature sensing device shall be imbedded in the center coil.

The core and coil assembly shall be installed on vibrationabsorbing pads.

Enclosures

The enclosure shall be made of heavy-gauge steel and shall be finished using a continuous process of degreasing, cleaning, and phosphatizing, followed by electrostatic deposition of a thermosetting polyester powder coating and subsequent baking. The coating color shall be ANSI 61 and shall be UL recognized for outdoor use. The maximum temperature on top of the enclosure shall not exceed $90^{\circ} \mathrm{C}$.

The enclosure construction shall be ventilated, NEMA 2, drip-proof, with lifting provisions. All ventilation openings shall be protected against falling dirt. To ensure proper ventilation, locate the unit at least 6 inches $(152.4 \mathrm{~mm})$ from the adjacent wall or structure. On outdoor units, provide suitable weathershields over ventilation openings.

Sound Levels

Transformer average sound levels shall not exceed the following ANSI and NEMA levels for self-cooled ratings measured in accordance with NEMA ST-20.

Average Sound Levels

NEMA ST-20 Average Sound Level, dB			
Equivalent Winding kVA Range	Self-Cooled Ven K-Factor 1, 4, 9	ed (up to 1.2 kV) K-Factor 13, 20	Encapsulated (up to 1.2 kV)
3.00 and below	40	40	45
3.01 to 9.00	40	40	45
9.01 to 15.00	45	45	50
15.01 to 30.00	45	45	50
30.01 to 50.00	45	48	50
50.01 to 75.00	50	53	55
75.01 to 112.50	50	53	55
112.51 to 150.00	50	53	55
150.01 to 225.00	55	58	57
225.01 to 300.00	55	58	57
300.01 to 500.00	60	63	59
500.01 to 700.00	62	65	61
700.01 to 1000.00	64	67	63
Greater than 1000	Consult factory	Consult factory	Consult factory

The following table lists the recommended kVA size of the drive isolation transformer for a specific horsepower requirement.

Three-Phase Horsepower AC Motor	kVA Minimum
5	7.5
7.5	11
10	14
15	20
20	27
25	34
30	40
40	51
50	63
60	75
75	93
100	118
125	145
150	220
200	275
250	330
300	540
400	550
500	770
600	
700	

Typical Specifications-

Mini-Power Centers (3-30 kVA)

General

Furnish and install, singlephase and three-phase general-purpose individually mounted mini-power centers of the two-winding type, self-cooled, with ratings and voltages as indicated on the drawings. Minipower centers shall be manufactured by Eaton.
Units shall be designed, manufactured and tested in accordance with all the latest applicable ANSI, NEMA, IEEE, CSA and UL standards, and shall be UL listed and CSA certified and bear the UL and CSA labels.

Units shall be designed for continuous operation at rated kVA, 24 hours a day, 365 days a year, with normal life expectancy as defined in ANSI C57.96.

Each mini-power center shall include a main primary breaker with an interrupting rating of 14 kA at $277 / 480$ volts; an encapsulated dry-type transformer and a secondary panelboard with main breaker rated 10 kA interrupting rating at 120/240 volts.

1. All interconnecting wiring between the primary breaker and transformer, secondary main breaker and transformer, and distribution section shall be factory installed. Main primary, secondary and feeder breakers shall be enclosed with a padlockable hinged door.
2. The secondary distribution section shall accommodate one-inch, plug-in breakers with 10 kA interrupting capacity.
3. On the all-copper, bolt-on designs, the secondary distribution section shall accommodate bolt-on breakers with 10 kA interrupting capacity.

Insulation System

Transformers shall be insulated with a $180^{\circ} \mathrm{C}$ insulation system.

Required performance shall be obtained without exceeding the above indicated temperature rise in a $40^{\circ} \mathrm{C}$ maximum ambient, with a $30^{\circ} \mathrm{C}$ average over 24 hours.

All insulation materials shall be flame-retardant and shall not support combustion as defined in ASTM Standard Test Method D635.

Core and Coil Assemblies

Transformer core shall be constructed with high-grade, non-aging, silicon steel with high magnetic permeability, and low hysteresis and eddy current losses. Maximum magnetic flux densities shall be substantially below the saturation point.

The transformer core volume shall allow efficient transformer operation at 10% above the nominal tap voltage. The core laminations shall be tightly clamped and compressed. Coils shall be wound of electrical-grade aluminum (copper) with continuous wound construction. BIL (basic impulse level) for all 600-volt class windings shall be 10 kV .
The core and coil assembly shall be completely encapsulated in a proportioned mixture of resin or expoxy and aggregate to provide a moisture-proof, shockresistant seal. The core and coil encapsulation system shall minimize the sound level.

Enclosures

The enclosure shall be made of heavy-gauge steel and shall be finished using a continuous process of degreasing, cleaning, and phosphatizing, followed by electrostatic deposition of a thermosetting polymer polyester powder coating and subsequent baking. The coating color shall be ANSI 61 and shall be UL recognized for outdoor use. Mini-power centers shall be equipped with a wiring compartment suitable for conduit entry and large enough to allow convenient wiring. The maximum temperature on top of the enclosure shall not exceed $90^{\circ} \mathrm{C}$. The core of the transformer shall be grounded to the enclosure. The enclosure shall be totally enclosed, non-ventilated, NEMA 3R, with lifting eyes.

Tests

The following tests shall be performed as standard on all transformers:

1. Ratio tests at the rated voltage connection and at all tap connections.
2. Polarity and phase relation tests on the rated voltage connection.
3. Applied potential tests.
4. Induced potential test.
5. No-load and excitation current at rated voltage on the rated voltage connection.

Sound Levels

Transformer average sound levels shall not exceed the following ANSI/NEMA levels for self-cooled ratings measured in accordance with NEMA ST-20.

\left.| Average Sound Levels (1) | |
| :--- | :--- |
| NEMA Average | |
| Sound Level in dB | |$\right]$

Typical Specification-

NEMA TP-1-2002 Compliant Energy-Efficient Transformers

General

Furnish and install, threephase energy-efficient dry-type transformers that comply with NEMA Standard TP-1-2002 and U.S. DOE 10 CFR Parts 430 and 431. Transformers shall be of the two-winding type, selfcooled, with ratings (kVA) as indicated on the drawings Transformer's losses shall conform to NEMA TP-1 requirements. Transformers shall be manufactured by Eaton.

Transformers shall be designed, manufactured and tested in accordance with all the latest applicable ANSI, NEMA and IEEE Standards, and shall be listed by Underwriters Laboratories and bear the UL label.

Transformers shall be designed for continuous operation at rated kVA, for 24 hours a day, 365 days a year, with normal life expectancy as defined in ANSI C57.96.

Insulation System and Temperature Rise

Transformers shall be insulated with a $220^{\circ} \mathrm{C}$ insulation system Transformers shall be $150^{\circ} \mathrm{C}$ rise and shall be capable of carrying a 15% continuous overload without exceeding a $150^{\circ} \mathrm{C}$ rise. Required performance shall be obtained without exceeding the above rise in a $40^{\circ} \mathrm{C}$ maximum, $30^{\circ} \mathrm{C}$ average ambient temperature.

All insulation materials shall be flame-retardant and shall not support combustion as defined in ASTM Standard Test Method D635.

Core and Coil Assemblies

Transformer core shall be constructed with high-grade, non-aging, silicon steel with high magnetic permeability, and low hysteresis and eddy current losses. Maximum magnetic flux densities shall be substantially below the saturation point.

The transformer core volume shall allow efficient transformer operation at 10% above the nominal tap voltage. The core laminations shall be tightly clamped and compressed. Coils shall be wound of electrical grade [aluminum] [copper] and continuous wound construction. BIL (basic impulse level) for all 600-volt class windings shall be 10 kV .

The core and coil assembly shall be installed on vibrationabsorbing pads.

Enclosures

The enclosure shall be made of heavy gauge steel and shall be finished utilizing a continuous process of degreasing, cleaning and phosphatizing, followed by electrostatic deposition of a thermosetting polyester powder coating and subsequent baking. The coating color shall be ANSI 61 and shall be UL recognized for outdoor use.

The enclosure construction shall be ventilated, NEMA 2, drip-proof, with lifting provisions. All ventilation openings shall be protected against falling dirt. To ensure proper ventilation, locate the unit at least 6 inches $(152.4 \mathrm{~mm}$) from the adjacent wall or structure.
All transformers shall be equipped with a wiring compartment suitable for conduit entry and large enough to allow convenient wiring. The maximum temperature on top of the enclosure shall not exceed $90^{\circ} \mathrm{C}$.

Tests

The following tests shall be performed as standard on all transformers:

1. Ratio tests at the rated voltage connection and at all tap connections.
2. Polarity and phase relation tests on the rated voltage connection.
3. Applied potential tests.
4. Induced potential test.
5. No-load and excitation current at rated voltage on the rated voltage connection.

Efficiency

Transformers shall be energy-efficient with minimum efficiencies as set forth per NEMA TP-1-2002 and U.S. DOE 10 CFR Parts 430 and 431 when operated at 35% of full load capacity.

NEMA TP-1-2002 Efficiency Levels

Single-Phase		Three	
kVA	Efficiency	kVA	Efficiency
15	97.7	15	97.0
25	98.0	30	97.5
37.5	98.2	45	97.7
50	98.3	75	98.0
75	98.5	112.5	98.2
100	98.6	150	98.3
167	98.7	225	98.5
250	98.8	300	98.6
333	98.9	500	98.7
-	-	750	98.8
-	-	1000	98.9

Sound Levels

Transformer average sound
levels shall not exceed the
following ANSI and NEMA
levels for self-cooled ratings.
Average Sound Levels

NEMA ST-20 Average Sound Level, dB			
Equivalent Winding kVA Range	Self-Cooled Ve K-Factor 1, 4, 9	(up to 1.2 kV) K-Factor 13, 20	Encapsulated (up to $\mathbf{1 . 2} \mathbf{~ k V}$)
3.00 and below	40	40	45
3.01 to 9.00	40	40	45
9.01 to 15.00	45	45	50
15.01 to 30.00	45	45	50
30.01 to 50.00	45	48	50
50.01 to 75.00	50	53	55
75.01 to 112.50	50	53	55
112.51 to 150.00	50	53	55
150.01 to 225.00	55	58	57
225.01 to 300.00	55	58	57
300.01 to 500.00	60	63	59
500.01 to 700.00	62	65	61
700.01 to 1000.00	64	67	63
Greater than 1000	Consult factory	Consult factory	Consult factory

Glossary of Transformer Terms

Air cooled: A transformer that is cooled by the natural circulation of air around, or through, the core and coils.

Ambient noise level: The

 existing or inherent sound level of the area surrounding the transformer, prior to energizing the transformer. Measured in decibels.
Ambient temperature:

The temperature of the air surrounding the transformer into which the heat of the transformer is dissipated.
Ampacity: The currentcarrying capacity of an electrical conductor under stated thermal conditions. Expressed in amperes

Ampere: The practical unit of electric current.

Attenuation: A decrease in signal power or voltage. Unit of measure is dB .

Autotransformer:

A transformer in which part of the winding is common to both the primary and the secondary circuits.

Banked: Two or more singlephase transformers wired together to supply a threephase load. Three singlephase transformers can be "banked" together to support a three-phase load. For example, three 10 kVA singlephase transformers "banked" together will have a 30 kVA three-phase capacity.

BIL: Basic impulse level. The ability of a transformer's insulation system to withstand high voltage surges. All Eaton 600V-class transformers have a 10 kV BIL rating.
BTU: British thermal unit. In North America, the term "BTU" is used to describe the heat value (energy content) of fuels, and also to describe the power of heating and cooling systems, such as furnaces, stoves, barbecue grills and air conditioners. When used as a unit of power, BTU "per hour" (BTU/h)
is understood, though this is often abbreviated to just "BTU."
Buck-boost: The name of a standard, single-phase, two-winding transformer application with the low voltage secondary windings connected as an autotransformer for boosting (increasing) or bucking (decreasing) voltages in small amounts. Applications can either be single-phase or three-phase.
CE: Mark to indicate thirdparty approved or selfcertification to specific requirements of the European community.

Celsius (centigrade): Metric temperature measure.
${ }^{\circ} \mathrm{F}=\left(1.8 \times{ }^{\circ} \mathrm{C}\right)+32$
${ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8$
Center tap: A tap at the midpoint of a winding. The center tap on three-phase delta-delta transformers is called a lighting tap. It provides 5\% of the transformer's kVA for single-phase loads.

Certified tests: Actual values taken during production tests and certified as applying to a given unit shipped on a specific order. Certified tests are serial number-specific.

Common mode: Electrical noise or voltage fluctuation that occurs between all of the line leads and the common ground, or between ground and line or neutral.

Compensated transformer:

A transformer with a turns ratio that provides a higher than nameplate output (secondary) voltage at no load, and nameplate output (secondary) voltage at rated load. It is common for small transformers (2 kVA and less) to be compensated.

Conductor losses: Losses

(expressed in watts) in a transformer that are incidental to carrying a load: coil resistance, stray loss due to stray fluxes in the
windings, core clamps, and the like, as well as circulating currents (if any) in parallel windings. Also called load losses.
Continuous rating: The load that a transformer can handle indefinitely without exceeding its specified temperature rise.

Core losses: Losses (expressed in watts) caused by magnetization of the core and its resistance to magnetic flux. Also called no-load losses or excitation losses. Core losses are always present when the transformer is energized.

CSA: Canadian Standards Association. The Canadian equivalent of Underwriters Laboratories (UL).

CSL3: Candidate Standard Level 3 (CSL3) design criteria developed by the U.S. Department of Energy. This term is used when considering the maximum, practical efficiency of a transformer.
cUL: Mark to indicate UL Certification to specific CSA Standards.

Decibel (dB): Unit of measure used to express the magnitude of a change in signal or sound level.
Delta connection: A standard three-phase connection with the ends of each phase winding connected in series to form a closed loop with each phase 120 degrees from the other. Sometimes referred to as three-wire.

Dielectric tests: Tests that consist of the application of a voltage higher than the rated voltage for a specified time for the purpose of determining the adequacy against breakdowns of insulating materials and spacings under normal conditions.

Dry-type transformer: A

transformer in which the core and coils are in a gaseous or dry compound insulating
medium. A transformer that is cooled by a medium other than a liquid, normally by the circulation of air.

E3: Eaton's version of a CSL3 transformer.

Eddy currents: The currents that are induced in the body of a conducting mass by the time variation of magnetic flux or varying magnetic field.
Efficiency: The ratio of the power output from a transformer to the tota power input. Typically expressed as a \%.

Electrostatic shield: Copper or other conducting sheet placed between primary and secondary windings, and grounded to reduce electrical interference and to provide additional protection from line-to-line or line-to-ground noise. Commonly referred to as "Faraday shield."

Encapsulated transformer:

A transformer with its coils either dipped or cast in an epoxy resin or other encapsulating substance.

Enclosure: A surrounding case or housing used to protect the contained equipment against external conditions and prevent personnel from accidentally contacting live parts.

Environmentally preferable

product: A product that has a lesser or reduced negative effect on human health and the environment when compared to competing products that serve the same purpose. This comparison may consider raw materials acquisition, production, manufacturing, packaging, distribution, reuse, operation, maintenance and disposal of the product. This term includes recyclable products, recycled products and reusable products.

EPACT: The Energy Policy Act of 1992 (EPAct) is an important piece of legislation for efficiency because it established minimum efficiency levels for dry-type distribution transformers manufactured or imported after December 2006. EPAct, which was based on NEMA standards, defined a number of terms, including what constitutes an energyefficient transformer. The DOE issued a rule that defines these transformers and how manufacturers must comply. DOE EPAct rule (PDF): Energy Efficiency Program for Certain Commercial and Industrial Equipment: Test Procedures, Labeling, and the Certification Requirements for Electric Motors. Final Rule. 10-CFR Part 431.

Excitation current: No load current. The current that flows in any winding used to excite the transformer when all other windings are open-circuited. It is usually expressed in percent of the rated current of a winding in which it is measured. Also called magnetizing current.

FCAN: "Full Capacity Above Nominal" taps. Designates the transformer will deliver its rated kVA when connected to a voltage source which is higher than the rated primary voltage.

FCBN: "Full Capacity Below Nominal" taps. Designates the transformer will deliver its rated kVA when connected to a voltage source which is lower than the rated primary voltage.
Frequency: On AC circuits, designates the number of times that polarity alternates from positive to negative and back again per second, such as 60 cycles per second. Typically measured in Hertz (Hz).

Ground: Connecting one side of a circuit to the earth through low resistance or low impedance paths to help prevent transmitting electrical shock to personnel.

Harmonic: A sinusoidal waveform with a frequency that is an integral multiple of the fundamental frequency $(60 \mathrm{~Hz}$).
$60 \mathrm{H}_{3}$ fundamental
$120 \mathrm{H}_{3}$ 2nd harmonic
$180 \mathrm{H}_{3}$ 3rd harmonic
$240 \mathrm{H}_{3}$ 4th harmonic

Harmonic distortion:

Nonlinear distortion of a system characterized by the appearance of harmonic (non-sinusoidal) currents in the output, when the input is sinusoidal.

Harmonic distortion, total
(THD): The square root of the sum of the squares of all harmonic currents present in a load, excluding the fundamental 60 Hz current. Usually expressed as a percent of the fundamental.

High voltage windings: In a two-winding transformer, the winding intended to have the greater voltage. Usually marked with " H " designations.

HMT: Harmonic Mitigating Transformer (HMT) is better able to handle the harmonic currents present in today's electrical power system. thereby increasing system capacity, reducing distortion throughout a facility, help to minimize downtime and "mysterious" maintenance on equipment, and return the longevity of equipment life through reduced operational energy losses, thereby running cooler.

Hp: Horsepower. The energy required to raise 33,000 pounds a distance of one foot in one minute. 1 hp is equal to 746 watts, or 0.746 kW .

Hi pot: A standard test on dry-type transformers consisting of extra-high potentials (voltages) connected to the windings. Used to check the integrity of insulation materials and clearances.

Hottest-spot temperature:

The highest temperature inside the transformer winding. Is greater than the measured average
temperature of the coil conductors, when using the resistance change method.

Hysteresis: The tendency of a magnetic substance to persist in any state of magnetization.

Impedance: The retarding forces of current in an AC circuit; the current-limiting characteristics of a transformer. Symbol = Z

Inductance: In electrical circuits, the opposition to a change in the flow of electrical current. Symbol $=\mathrm{L}$

Inducted potential test:

A standard dielectric test of transformer insulation. Verifies the integrity of insulating materials and electrical clearances.

Inrush current: The initial high peak of current that occurs in the first few cycles of energization, which can be 30 to 40 times the rated current.

Insulating transformer:

Another term for an isolating transformer.

Insulation: Material with a high electrical resistance.

Insulation materials: Those materials used to insulate the transformer's electrical windings from each other and ground.

Integral TVSS or SPD: Major

 Standard Change for Surge Protective Devices (formerly known as Transient Voltage Surge Suppressors). The primary safety standard for transient voltage surge suppressors (TVSS) has undergone major revisions in the past three years with mandatory compliance by manufacturers required by September 29, 2009. Even the name of the standard has changed from UL Standard for Safety for Transient Voltage Surge Suppressors, UL 1449 to UL Standard for Safety for Surge Protective Devices, UL 1449. This means that TVSS listed to the UL 1449 2nd Edition standard will no longer be able to be manufactured afterSeptember 29, 2009. All Surge Protective Devices must be designed, tested, manufactured and listed to the UL 1449 3rd Edition standard after this date.

Isolating transformer:

A transformer where the input (primary) windings are not connected to the output (secondary) windings (i.e., electrically isolated).

K-factor: A common industry term for the amount of harmonics produced by a given load. The larger the K-factor, the more harmonics that are present. Also used to define a transformer's ability to withstand the additional heating generated by harmonic currents.
kVA: Kilovolt-ampere. Designates the output that a transformer can deliver for a specified time at a rated secondary voltage and rated frequency without exceeding the specified temperature rise. When multiplied by the power factor, will give kilowatts or kW.

1000 VA $=1 \mathrm{kVA}$

Lamination: Thin sheets of electrical steel used to construct the core of a transformer.

Limiting temperature:

The maximum temperature at which a component or material may be operated continuously with no sacrifice in normal life expectancy.

Linear load: A load where the current waveform conforms to that of the applied voltage, or a load where a change in current is directly proportional to a change in applied voltage.
Live part: Any component consisting of an electrically conductive material that can be energized under conditions of normal use.

Load losses: ${ }^{2}$ R losses
in windings. Also see conductor losses.

Low voltage winding: In a
two-winding transformer, the winding intended to have the lesser voltage. Usually marked with " X " designations.

Mid-tap: See center tap.
Noise level: The relative intensity of sound, measured in decibels (dB). NEMA Standard ST-20 outlines the maximum allowable noise level for dry-type transformers.

Nonlinear load: A load where the current waveform does not conform to that of the applied voltage, or where a change in current is not proportional to a change in applied voltage.

Non-ventilated transformer:

 A transformer where the core and coil assembly is mounted inside an enclosure with no openings for ventilation. Also referred to as totally enclosed non-ventilated (TENV).No load losses: Losses in a transformer that is excited at rated voltage and frequency but that is not supplying a load. No load losses include core losses, dielectric losses and conductor losses in the winding due to the exciting current. Also referred to as excitation losses.

Overload capability: Shortterm overload capacity is designed into transformers as required by ANSI. Continuous overload capacity is not deliberately designed into a transformer because the design objective is to be within the allowed winding temperature rise with nameplate loading.

Percent IR (\% resistance): Voltage drop due to resistance at rated current in percent of rated voltage.

Percent IX (\% reactance):

Voltage drop due to reactance at rated current in percent of rated voltage.

Percent IZ (\% impedance):

Voltage drop due to
impedance at rated current in percent of rated voltage.

Phase: Type of AC electrical circuit; usually single-phase two- or three-wire, or threephase three- or four-wire.
Polarity test: A standard test on transformers to determine instantaneous direction of the voltages in the primary compared to the secondary.

Primary taps: Taps added to the primary (input) winding. See Tap.

Primary voltage: The input circuit voltage.

Power factor: The cosine of the phase angle between a voltage and a current.
Ratio test: A standard test of transformers to determine the ratio of the input (primary) voltage to the output (secondary) voltage.

Reactance: The effect of inductive and capacitive components of a circuit producing other than unity power factor.
Reactor: A single winding device with an air or iron core that produces a specific amount of inductive reactance into a circuit. Normally used to reduce of control current.

Regulation: Usually expressed as the percent change in output voltage when the load goes from full load to no load.

Scott T connection:
Connection for three-phase transformers. Instead of using three sets of coils for a three-phase load, the transformer uses only two sets of coils.

Series/multiple winding:

A winding consisting of two or more sections that can be connected for series operation or multiple (parallel) operation. Also called seriesparallel winding.

Short circuit: A low resistance connection, usually accidental, across part of a circuit, resulting in excessive current flow.

Sound levels: All
transformers make some sound mainly due to the vibration generated in its core by alternating flux. All Eaton general-purpose drytype distribution transformers are designed with sound levels lower than NEMA ST-20 maximum levels.

Star connection: Same as a wye connection.

Step-down transformer:

A transformer where the input voltage is greater than the output voltage.

Step-up transformer:

A transformer where the input voltage is less than the output voltage.

T-T connection: See Scott T connection.

Tap: A connection brought out of a winding at some point between its extremities, usually to permit changing the voltage or current ratio. Taps are typically used to compensate for above or below rated input voltage, in order to provide the rated output voltage. See FCAN and FCBN.

Temperature class: The maximum temperature that the insulation system of a transformer can continuously withstand. The common insulation classes are 105, 150, 180 (also 185) and 220.

Temperature rise: The increase over ambient temperature of the windings due to energizing and loading the transformer.

Total losses: The sum of the no-load losses and load losses.

Totally enclosed nonventilated enclosure: The core and coil assembly is installed inside an enclosure that has no ventilation to cool the transformer. The transformer relies on heat to radiate from the enclosure for cooling.

Transformer tests:

Per NEMA ST-20, routine transformer production tests are performed on each transformer prior to shipment. These tests are: Ratio tests on the rated voltage connection; Polarity and Phase Relation tests on the rated connection; NoLoad and Excitation Current tests at rated voltage on the rated voltage connection and Applied Potential and Induced Potential tests. Special tests include sound level testing.

Transverse mode: Electrical noise or voltage disturbance that occurs between phase and neutral, or from spurious signals across metallic hot line and the neutral conductor.

Turns ratio: The ratio of the number of turns in the high voltage winding to that in the low voltage winding.
Typical test data: Tests that were performed on similar units that were previously manufactured and tested.

UL (Underwriters

Laboratories): An
independent safety
testing organization.
Universal taps: A
combination of six primary voltage taps consisting of 2 at $+2-1 / 2 \%$ FCAN and 4 at -2-1/2\% FCBN.

Watt: A unit of electrical power when the current in a circuit is one ampere and the voltage is one volt.

Wye connection: A standard three-wire transformer connection with similar ends of single-phase coils connected together. The common point forms the electrical neutral point and may be grounded. Also referred to as three-phase four-wire. To obtain the line-to-neutral voltage, divide the line voltage by $\sqrt{3}(1.732)$.

Frequently Asked Questions About Transformers

Can 60 Hz transformers be used at other frequencies?

Transformers rated for 60 Hz can be applied to circuits with a higher frequency, as long as the nameplate voltages are not exceeded. The higher the frequency that you apply to a 60 Hz transformer, the less voltage regulation you will have. 60 Hz transformers may be used at lower frequencies but only at reduced voltages corresponding to the reduction in frequency. For example, a 480 to 120 volt 60 Hz transformer can carry rated kVA at 50 Hz but ONLY when applied as a 400 to 100 volt transformer ($50 / 60 \times 480=400$).

Can single-phase transformers

 be used on a three-phase source?Yes. Any single-phase transformer can be used on a three-phase source by connecting the primary terminals of the single-phase transformer to any two wires of a three-phase system. It does not matter whether the three-phase source is threephase three-wire or threephase four-wire. The output of the transformer will be single-phase.

Can transformers be used to

 create three-phase power from a single-phase system?No. Single-phase transformers alone cannot be used to create the phaseshifts required for a threephase system. Phase shifting devices (reactors or capacitors) or phase converters in conjunction with transformers are required to change singlephase power to three-phase.

What considerations need to be taken into account when operating transformers at high altitudes?

At altitudes greater than 3300 feet (1000 meters), the density of the air is less than at lower elevations. This reduces the ability of the air surrounding a transformer to cool it, so the temperature
rise of the transformer is increased. Therefore, when a transformer is being installed at altitudes greater than 3300 feet above sea level, it is necessary to derate the usable capacity of the transformer. The table below lists the derating factors. As an example, a 75 kVA 480V-208Y/120V transformer installed at 10,000 feet needs to be derated by 4%. Instead of 208 A output, the usable current is only 199A.

Altitude

Feet	Meters	Current Rating Factor
3300	1000	1.00
4000	1200	0.995
5000	1500	0.99
6000	1800	0.985
7000	2100	0.98
8000	2400	0.97
9000	2700	0.965
10,000	3000	0.96
12,000	3600	0.95
14,000	4200	0.935
15,000	4500	0.93

What considerations need to
be taken into account when operating transformers where the ambient temperature is high?
Eaton's dry-type transformers are designed in accordance with ANSI standards to operate in areas where the average maximum ambient temperature is $40^{\circ} \mathrm{C}$. For operation in ambient temperatures above $40^{\circ} \mathrm{C}$ there are two options:

1. Order a custom designed transformer made for the specific application.
2. Derate the nameplate kVA of a standard transformer by 8\% for each $10^{\circ} \mathrm{C}$ of ambient above $40^{\circ} \mathrm{C}$.

What is the normal life expectancy of a transformer?

When a transformer is operated under ANSI/IEEE basic loading conditions ANSI C57.96), its normal life expectancy is 20 years. The ANSI/IEEE basic loading conditions are:
A. The transformer is continuously loaded at rated kVA and rated voltages.
B. The average temperature of the ambient air during any 24 -hour period is equal to $30^{\circ} \mathrm{C}$ and at no time exceeds $40^{\circ} \mathrm{C}$.
C. The altitude where the transformer is installed does not exceed 3300 feet (1000 meters).

What are insulation classes?

Insulation classes were originally used to distinguish insulating materials operating at different temperatures. In the past, letters were used for the different designations. Recently, insulation system temperatures (${ }^{\circ} \mathrm{C}$) have replaced the letters' designations.

Insulation Classes
$\left.\begin{array}{ll}\text { Previous } & \begin{array}{l}\text { Insulation } \\ \text { System } \\ \text { Rating } \\ \text { (}\end{array} \\ \text { Des) }\end{array}\right]$

How do you know if the

 enclosure temperature is too hot?UL and CSA standards strictly regulate the highest temperature that an enclosure can reach. For ventilated transformers, the temperature of the enclosure should not increase by more than $50^{\circ} \mathrm{C}$ in a $40^{\circ} \mathrm{C}$ ambient at full rated current. For encapsulated transformers, the temperature of the enclosure should not increase by more than $65^{\circ} \mathrm{C}$ in a
$25^{\circ} \mathrm{C}$ ambient at full rated current. This means that it is permissible for the temperature of the enclosure to reach $90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$. Although this temperature is very warm to the touch, it is within the allowed standards. A thermometer should be used to measure enclosure temperatures, not your hand.

Can transformers be reverseconnected (reverse-fed)?

Yes, with limitations. Eaton single-phase transformers rated 3 kVA and larger can be reverse-connected without any loss of kVA capacity or any adverse effects. Transformers rated 2 kVA and below, because there is a turns ratio compensation on the low voltage winding that adjusts voltage between no load and full load conditions, should not be reverse-fed.

Three-phase transformers with either delta-delta or delta-wye configurations can also be reverseconnected for step-up operation. When reversefeeding a delta-wye connected transformer, there are two important considerations to take into account: (1) The neutral is not connected, only the three-phase wires of the wye system are connected, and (2) the ground strap between X0 and the enclosure must be removed. Due to high inrush currents that may be created in these applications, it is recommended that you do not reverse-feed transformers rated more than 75 kVA . The preferred solution is to purchase an Eaton step-up transformer designed specifically for your application.

Can transformers be connected in parallel?

Yes, with certain restrictions. For single-phase transformers being connected in parallel, the voltages and impedances of the transformers must be equal (impedances must be within 7.5\% of each other). For three-phase transformers, the same restrictions apply as for single-phase transformers, plus the phase shift of the transformers must be the same. For example, a delta-wye-connected transformer (30° phase shift) must be connected in parallel with another delta-wye-connected transformer, not a delta-delta connected-transformer (0° phase shift).

Why is the impedance of a transformer important?

The impedance of a transformer is important because it is used to determine the interrupting rating and trip rating of the circuit protection devices on the load or line side of the transformer. To calculate the maximum short circuit current on the load side of a transformer, use the following formula:
$\underset{\text { Load Current (Amps) }}{\text { Maximum Short Circuit }}=$
Full Load Current (Amps) Transformer Impedance

Full load current for singlephase circuits is:

Nameplate Volt-Amps
Load (output) Voltage
and for three-phase circuits, the full load current is:
$\frac{\text { Nameplate Volts-Amps }}{\text { Load (output) Volts } \sqrt{3}}$
Example: For a standard three-phase, 75 kVA transformer, rated 480 volt delta primary and 208Y/ 120 volt secondary (catalog number V48M28T75J) and impedance equal to 5.1%, the full load current is:

$$
\frac{75,000 \mathrm{VA}}{208 \mathrm{~V} \quad 1.732}=208.2 \mathrm{~A}
$$

The maximum short circuit load current is:
$\frac{208.2 \mathrm{~A}}{0.051}=4,082.4 \mathrm{~A}$
The circuit breaker or fuse on the secondary side of this transformer would have to have a minimum interrupting capacity of 4083 amperes at 208 volts. NEMA ST-20 (1992).

A similar transformer with lower impedance would require a primary circuit breaker or fuse with a higher interrupting capacity.

What clearances are required around transformers when they are installed?

All dry-type transformers depend upon the circulation of air for cooling; therefore, it is important that the flow of air around a transformer not be impeded. UL 1561 requires that there be no less than 6 inches (152.4 mm) clearance between any side transformer with ventilation openings and any wall or obstruction.
In compliance with
NEC 450.9, Eaton's ventilated transformers have a note on their nameplates requiring a minimum of 6 inches $(152.4 \mathrm{~mm})$ clearance from the ventilation openings and walls or other obstructions. This clearance only addresses the ventilation needs of the transformer. There may be additional local codes and standards that affect installation clearances.

Transformers should not be mounted in such a manner that one unit will contribute to the additional heating of another unit, beyond allowable temperature limits, for example, where two units are mounted on a wall one above the other.
2.7
Transformers

Dimensions

Dimensions

Approximate Dimensions in Inches (mm)

Enclosure Dimensional Drawings-Ventilated Transformers

Drawing 1

Drawing 2

Drawing 3

Frame	Drawing Number	Dimensions Height	Width	Length
FR816	1	31.30 (795.0)	22.89 (581.4)	18.39 (467.2)
FR818	1	37.59 (954.8)	22.89 (581.4)	20.36 (517.1)
FR819	2	42.03 (1067.6)	24.22 (615.2)	23.84 (605.5)
FR820	2	42.03 (1067.6)	24.22 (615.2)	23.84 (605.5)
FR814	2	62.91 (1597.9)	29.97 (761.2)	33.97 (862.8)
FR842	1	33.75 (857.3)	22.45 (570.2)	17.40 (442.0)
FR843	1	38.70 (983.0)	23.51 (597.2)	24.38 (619.3)
FR844	2	44.92 (1141.0)	26.27 (667.3)	27.12 (688.8)
FR821	2	62.91 (1597.9)	29.97 (761.2)	33.97 (862.8)
FR912D, FR912D	1	30.00 (762.0)	23.00 (584.2)	16.50 (419.1)
FR914D/FR914F	1	39.00 (990.6)	29.00 (736.6)	22.00 (558.8)
FR915D/FR915F	1	39.00 (990.6)	29.00 (736.6)	22.00 (558.8)
FR916A	2	48.56 (1233.4)	28.22 (716.8)	23.42 (594.9)
FR917	2	56.17 (1426.7)	31.44 (798.6)	24.67 (626.6)
FR918A	2	62.18 (1579.4)	31.44 (798.6)	30.68 (779.3)
FR923	2	57.54 (1461.5)	36.69 (931.9)	32.65 (829.3)
FR924	2	68.37 (1736.6)	44.46 (1129.3)	36.44 (925.6)
FR928	2	56.16 (1426.5)	32.93 (836.4)	27.97 (710.4)
FR929	2	59.56 (1512.8)	36.72 (932.7)	32.50 (825.5)
FR919	3	75.00 (1905.0)	44.20 (1122.7)	36.23 (920.2)
FR920	3	75.00 (1905.0)	44.20 (1122.7)	36.23 (920.2)
FR922	3	90.00 (2286.0)	69.26 (1759.2)	42.65 (1083.3)

Approximate Dimensions in Inches (mm)

Enclosure Dimensional Drawings-Encapsulated Transformers (Type EP)

Drawing 6

Drawing 7

Drawing 10

Drawing 8

Drawing 9

Drawing 11

Frame	Drawing Number	Dimensions Height	Width	Length
FR52	6	8.91 (226.3)	4.11 (104.4)	4.00 (101.6)
FR54	6	8.91 (226.3)	4.11 (104.4)	4.00 (101.6)
FR55	6	8.91 (226.3)	4.11 (104.4)	4.00 (101.6)
FR56	7	8.97 (227.8)	4.87 (123.7)	4.06 (103.1)
FR57	7	8.97 (227.8)	4.87 (123.7)	4.91 (124.7)
FR58A	7	11.28 (286.5)	5.99 (152.1)	5.75 (146.1)
FR59A	7	11.28 (286.5)	5.99 (152.1)	5.75 (146.1)
FR67	7	13.41 (340.6)	6.37 (161.8)	6.52 (165.6)
FR68	7	13.41 (340.6)	6.37 (161.8)	6.52 (165.6)
FR176	8	14.25 (361.9)	7.69 (195.3)	8.00 (203.2)
FR177	9	16.00 (406.4)	10.38 (263.7)	9.89 (251.2)
FR301	11	22.26 (565.4)	12.71 (322.8)	12.79 (324.9)
FR178	9	16.00 (406.4)	10.38 (263.7)	9.89 (251.2)
FR302	11	25.26 (641.6)	12.71 (322.8)	12.79 (324.9)
FR304	11	25.26 (641.6)	14.72 (373.9)	14.82 (376.4)
FR179	9	19.00 (482.6)	13.38 (339.9)	10.52 (267.2)
FR180	9	19.00 (482.6)	13.38 (339.9)	10.52 (267.2)
FR182	10	23.31 (592.1)	16.35 (415.3)	14.12 (358.6)
FR190	10	26.31 (668.3)	16.35 (415.3)	14.12 (358.6)

Approximate Dimensions in Inches (mm)

2

Enclosure Dimensional Drawings-Encapsulated Transformers Type EP (Single-Phase), continued

Frame	Drawing Number	Dimensions Height	Width	Length
FR132	13	$20.67(525.0)$	$19.02(483.1)$	$13.59(345.2)$
FR300A	12	$28.24(717.3)$	$22.42(569.5)$	$14.06(357.1)$
FR57P	14	$9.34(237.2)$	$4.45(113.0)$	$5.18(131.6)$
FR58AP	14	$11.68(296.7)$	$4.99(126.7)$	$5.99(152.1)$
FR567P	14	$13.03(330.9)$	$5.74(145.8)$	$6.56(166.6)$
FR568P	14	$13.78(350.0)$	$6.22(158.0)$	$6.32(160.5)$

Enclosure Dimensional Drawings-Encapsulated Transformers (Type EPT)

Drawing 15

Drawing 17

Frame	Drawing Number	Dimensions Height	Width	Length
FR201	15	$13.40(340.4)$	$15.93(404.6$	$8.26(209.8)$
FR102	15	$13.12(333.2)$	$19.59(497.6)$	$7.09(180.1)$
FR103	15	$15.90(403.9)$	$16.93(430.0)$	$10.01(254.3)$
FR200	15	$15.90(403.9)$	$16.93(430.0)$	$10.01(254.3)$
FR97	15	$15.19(385.8)$	$25.68(652.3)$	$8.38(212.9)$
FR95	15	$17.38(441.5)$	$20.00(508.0)$	$10.52(267.2)$
FR243	16	$17.38(441.5)$	$20.00(508.0)$	$10.52(267.2)$
FR96	15	$16.19(411.2)$	$29.68(753.9)$	$9.42(239.3)$
FR244	16	$28.15(715.0)$	$26.58(675.1)$	$14.66(372.4)$
FR245	17	$32.06(814.3)$	$30.29(769.4)$	$15.68(398.3)$

2.7
Transformers Dimensions

Approximate Dimensions in Inches (mm)

2

Enclosure Dimensional Drawings-Core-Coil Transformers

Drawing 4

Drawing 5

Frame	Drawing Number	Dimensions Height	Width	Length
FR817C	4	$39.28(997.7)$	$21.62(549.1)$	19.51 (495.6)
FR818C	4	$39.28(997.7)$	$21.62(549.1)$	$19.51(495.6)$
FR912C	5	$24.75(628.7)$	$19.50(495.3)$	$14.00(355.6)$
FR914C	5	$29.37(746.0)$	$25.12(638.0)$	$19.00(482.6)$
FR915C	5	$31.38(1067.6)$	$25.12(638.0)$	$19.00(482.6)$
FR9516C	5	$41.43(1052.3)$	$25.12(638.0)$	$20.00(508.0)$
FR916AC	5	$43.40(1102.4)$	$27.22(691.4)$	$22.82(579.6)$

Approximate Dimensions in Inches (mm)

Enclosure Dimensional Drawings-Totally Enclosed Nonventilated Transformers

Frame	Drawing Number	Dimensions Height	Width	Length
FR818N	26	$37.59(954.8)$	$22.89(581.4)$	$20.36(517.1)$
FR819N	27	$42.03(1067.6)$	$24.22(615.2)$	$23.84(605.5)$
FR820N	27	$42.03(1067.6)$	$24.22(615.2)$	$23.84(605.5)$
FR814N	27	$62.91(1597.9)$	$29.97(761.2)$	$33.97(862.8)$
FR912DN	26	$30.00(762.0)$	$23.00(584.2)$	$16.50(419.1)$
FR914DN/FR914FN	26	$39.18(995.2)$	$29.00(736.6)$	22.00 (558.8)
FR915DN/FR915FN	26	$39.18(995.2)$	$29.00(736.6)$	$22.00(558.8)$
FR916AN	27	$46.58(1183.1)$	$28.22(716.8)$	$23.42(594.9)$
FR917N	27	$56.18(1427.0)$	$31.44(798.6)$	$24.67(626.8)$
FR918AN	27	$62.18(1579.4)$	$31.44(798.6)$	$30.68(779.3)$
FR923N	27	$57.50(1460.5)$	$36.69(931.9)$	$32.65(829.3)$
FR919N	28	$75.00(1905.0)$	$44.21(1122.9)$	$36.23(920.2)$
FR920N	28	$75.00(1905.0)$	$44.21(1122.9)$	36.23 (920.2)

Approximate Dimensions in Inches (mm)

2

Enclosure Dimensional Drawings-Hazardous Location Transformers (Type EPZ)

Drawing 21

Drawing 22

Drawing 23

Drawing 24

Drawing 25

Frame	Drawing Number	Dimensions Height	Width	Length
FR57H	21	$8.97(227.8)$	$4.87(123.7)$	$4.91(124.7)$
FR58H	22	$11.28(286.5)$	$5.99(152.1)$	$5.75(146.1)$
FR59H	22	$11.28(286.5)$	$5.99(152.1)$	$5.75(146.1)$
FR67H	22	$13.41(340.6)$	$6.37(161.8)$	$6.52(165.6)$
FR68H	22	$13.41(340.6)$	$6.37(161.8)$	$6.52(165.6)$
FR176H	23	$14.25(361.9)$	$7.69(195.3)$	$8.00(203.2)$
FR177H	24	$16.00(406.4)$	$10.38(263.7)$	$9.89(251.2)$
FR178H	24	$16.00(406.4)$	$10.38(263.7)$	$9.89(251.2)$
FR179H	24	$19.00(482.6)$	$13.38(339.9)$	$10.52(267.2)$
FR180H	24	$19.00(482.6)$	$13.38(339.9)$	$10.52(267.2)$
FR182H	25	$23.31(592.1)$	$16.35(415.3)$	$14.12(358.6)$

Drawing 18
Drawing 19

Drawing 20

Frame	Drawing Number	Dimensions Height	Width	Length
FR201H	18	$13.40(340.4)$	$15.93(404.6)$	$8.26(209.8)$
FR200H	18	$15.90(403.9)$	$16.93(430.0)$	$10.01(254.3)$
FR103H	18	$15.90(403.9)$	$16.93(430.0)$	$10.01(254.3)$
FR95H	18	$17.38(441.5)$	$20.00(508.0)$	$10.52(267.2)$
FR243H	19	$17.38(441.5)$	$20.00(508.0)$	$10.52(267.2)$
FR244H	19	$28.15(715.0)$	$26.58(675.1)$	$14.66(372.4)$
FR245H	20	$32.06(814.3)$	$30.29(769.4)$	$15.68(398.3)$

Panelboards and Lighting Control

3.1 Introduction Product Selection Guide . V2-T3-2
$3.2 \quad E Z^{\text {TM }}$ Box and EZ Trim Product Description. V2-T3-4
Features. V2-T3-4
Standards and Certifications . V2-T3-5
Product Selection . V2-T3-6
3.3 Pow-R-Line C Panelboards
Product Description. V2-T3-7
Application Description . V2-T3-8
Standards and Certifications . V2-T3-10
Technical Data and Specifications . V2-T3-11
Type PRL1a . V2-T3-26
Type PRL1aF . V2-T3-30
Type PRL1a-LX . V2-T3-34
Type PRL2a . V2-T3-38
Type PRL2aF . V2-T3-42
Type PRL2a-LX . V2-T3-46
Retrofit Panelboard . V2-T3-50
Type PRL3a . V2-T3-58
Type PRL3E . V2-T3-62
Type PRL4 . V2-T3-66
Type PRL4D . V2-T3-76
Type PRL5P . V2-T3-86
Elevator Control Panellboard
Elevator Control Panelboard .
V2-T3-96
Types PRL1a, 2a, 3a, 3E, 4 and Column IModifications
Types PRL1a, 2a, 3a, 3E, 4, Column .
V2-T3-98
Modifications Selection Guide. V2-T3-98
3.6 Pow-R-Command
Product Overview . V2-T3-107
Features. V2-T3-108
Product Selection . V2-T3-111
Accessories . V2-T3-121
3.7 Metering Service Sections
Product Description. .
V2-T3-127
Application Description . V2-T3-127
Standards and Certifications . V2-T3-127
Catalog Number Selection . V2-T3-128
Product Selection . V2-T3-128
3.8 Pow-R-Stock Plus Progiram
Pow-R-Stock Plus. .
V2-T3-130
Customer Manufacturing Solution Centers
Customer Manufacturing Solution Centers
V2-T3-131

Learn
Online

Panelboards and Lighting Control
Introduction

Panelboards and Lighting Controls

Contents

Description

Product Selection Guide

Product Selection Guide
Product Types

Type PRL1a	Fusible Lighting Panelboard PRL1aF	Type PRL1a-LX Column Type	Type PRL2a	Fusible Lighting Panelboard PRL2aF	Type PRL2a-LX, Column Type
Bolt-On or Plug-On Circuit Breakers 240 Vac Maximum	240 and 480Y/277 Vac Maximum	Bolt-On Circuit Breakers 240 Vac Maximum	Bolt-On Circuit Breakers 240 or 480Y/277 Vac; 125/250 Vdc Maximum	240 and 480Y/277 Vac Maximum	Bolt-On Circuit Breakers 240 or 480Y/277 Vac; 125/250 Vdc Maximum
Main lugs only 600 A maximum	Main lugs only 400 A maximum	Main lugs only 225 A maximum	Main lugs only 600 A maximum	Main lugs only 400 A maximum	Main lugs only 225 A maximum
Main Circuit breaker 600 A maximum	Branch overcurrent protective devices 30 A maximum,	Main circuit breaker 225 A maximum	Main circuit breaker 600 A maximum	Branch overcurrent protective devices 30 A maximum,	Main circuit breaker 225 A maximum
Branch circuit breakers 100 A maximum, Single-, two- and three-pole	Single-, two and three-pole utilizing Class CC fuses	Branch circuit breakers 100 A maximum, Single-, two- and three-pole	Branch circuit breakers 100 A maximum, Single-, two- and three-pole	Single-, two- and three-pole utilizing Class CC fuses	Branch circuit breakers 100 A maximum, Single-, two- and three-pole

Product Types, continued

Retrofit Panelboard PRL-1R and PRL-2R	Type PRL3a	Type PRL3E	Type PRL4	Type PRL5P
Bolt-On Circuit Breakers 480Y/277 Vac; 240 Vac, 480Y/277 Vac	Bolt-On Circuit Breakers 240, 480 or 600 Vac; 250 Vdc Maximum	Bolt-On Circuit Breakers 240, 480Y/277 or 480 Vac; 250 Vdc Maximum	Circuit Breakers or Fusible Switches 240, 480 or 600 Vac; 600 Vdc Maximum Main lugs only	Plug-On Circuit Breakers 240, 480 or 600 Vac; 250 Vdc Maximum
Main lugs only 225A maximum	Main lugs only 800A maximum	Main lugs only 600A maximum	1200A maximum	Main lugs only 1200A maximum
Main circuit breaker 225A maximum	Main circuit breaker 600A maximum	Main circuit breaker 600A maximum	1200A maximum	Main circuit breaker 1200A maximum
Branch circuit breakers 100A maximum, Single-, two and three-pole	Branch circuit breakers 225A maximum, Single-, two- and three-pole	Branch circuit breakers 125A maximum, Single-, two- and three-pole	1200A maximum Branch circuit breakers 1200A maximum, Single-, two- and three-pole Branch fusible switches 1200A maximum, two- and three-pole	Branch circuit breakers 1200A maximum, Single-, two- and three-pole

Product Types, continued

Pow-R-Command	Metering Service Section	Elevator Control Panelboard
Bolt-On Circuit Breakers 240 or 480Y/277 Vac	Bolt-On Circuit Breaker or Fusible Switch 240, 480 or 600 Vac	Bolt-On Fusible Switches 600 Vac Maximum
Main lugs only 400A maximum	Service entrance panels combining a main disconnect with a power company metering compartment	Controls for up to four elevators in a single Panelboard
Main circuit breaker 400A maximum	400-1200A	Main lugs only 800A maximum
Branch circuit breakers 225A maximum, Single-, two- and three-pole		Branch overcurrent devices 15-200A fusible switches with Class J fuse clips maximum
Integral power switching controls		Designed to meet specific sections of various codes impacting elevators

Product Description

Eaton's EZ box and EZ trim represents the first significant change in panelboard box and trim designs in more than a half-century. The EZ box and EZ trim have been designed for faster, more secure and safer installations. The new EZ box and EZ trim are provided standard for Eaton's Pow-R-Line 1a and Pow-RLine 2a lighting panelboards, as well as the Pow-R-Line 3a and Pow-R-Line 3E mid-range panelboard.

Flange Detail

Features

- Virtually eliminates sharp edges
- Trim installs in seconds rather than minutes
- Door-in-door is standard
- Ability to adjust flush box to wall irregularities
- Trim installs without the need for tools
- No exposed hardware (because there is none)

The EZ box flanges are bent and painted, which virtually eliminates the sharp edges associated with traditional boxes. Additionally, all steel panelboard chassis parts are painted. This significantly reduces potential injury for material handlers and installers. Each flange is adjustable outward up to $3 / 4$-inch (19.1 mm). This feature allows the installer to adjust flush box applications to be level and flat with the finished wall after the wall material is installed to help correct wall irregularities. The new box flange also provides the means for attaching the EZ trim.

Contents

Description Page
EZ Box and EZ Trim
Standards and Certifications V2-T3-5
Product Selection. V2-T3-6

Standalone Trim and Bottom Flange Hanger with Notch

Corner Flange Detail

Fast Installation

The EZ trim incorporates a groundbreaking design that installs in seconds, rather than minutes. The standard trim features include door-in-door construction; no exposed hardware and no tools are required for installation.
Each EZ trim includes hangers attached on the right side. The bottom trim hanger has a notch in its base. To install, the bottom hanger is inserted into the bottom right side box flange opening, resting the notch on the flange.

Trim Hanger Inserted Into Box Flange

The balance of the hangers are aligned with the other flange openings and pushed in. When all hangers are in the box flange, the trim is lifted up slightly to clear the notch on the bottom hanger, and the trim in self-supported on the EZ box.
The installation is completed by swinging the trim to the closed position, then lifting and pushing slightly to the right. The trim will drop into place totally secured. The multi-point catches on the left side of the trim will lock into the left side box flange openings.
To prevent the trim from being removed by non-authorized persons, a unique sliding means automatically latches in place when the trim door is closed. Along with a new lock, the EZ trim offers a high degree of door security.

Standards and Certifications

When used with Eaton's panelboard chassis, EZ boxes and EZ trims meet the following applicable industry standards:

- UL 50 listed
- NEMA Standard PB1
- Federal specifications
- National Electrical Code

Product Selection

Boxes and Trims Only-Type 1

3
Types PRL1a, PRL2a

Box Dimensions-Inches (mm)	Height	YS Box Catalog Number	LT Trim Catalog Number	EZ Box (1) Catalog Number	EZ Trim ${ }^{(1)}$ Catalog Number
$\begin{aligned} & 20.00 \mathrm{~W} \times 5.75 \mathrm{D} \\ & (508.0 \mathrm{~W} \times 146.1 \mathrm{D}) \end{aligned}$	36.00 (914.4)	YS2036	LT2036S or F	EZB2036R	EZT2036S or F
	42.00 (1066.8)	YS2042	LT2042S or F	EZB2042R	EZT2042S or F
	48.00 (1219.2)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
	60.00 (1524.0)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
	72.00 (1828.8)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
	90.00 (2286.0)	YS2090	LT2090S or F	EZB2090R	EZT2090S or F

Type PRL3a

Box Dimensions-Inches (mm)	Height		LT Trim Catalog Number	EZ Box ${ }^{(1)}$ Catalog Number	EZ Trim ${ }^{(1)}$ Catalog Number
$\begin{aligned} & 20.00 \mathrm{~W} \times 5.75 \mathrm{D} \\ & (508.0 \mathrm{~W} \times 146.1 \mathrm{D}) \end{aligned}$	36.00 (914.4)	YS2036	LTV2036S or F	EZB2036R	EZTV2036S or F
	48.00 (1219.2)	YS2048	LTV2048S or F	EZB2048R	EZTV2048S or F
	60.00 (1524.0)	YS2060	LTV2060S or F	EZB2060R	EZTV2060S or F
	72.00 (1828.8)	YS2072	LTV2072S or F	EZB2072R	EZTV2072S or F
	90.00 (2286.0)	YS2090	LTV2090S or F	EZB2090R	EZTV2090S or F

Type PRL3a (800 A)

Box Dimensions-Inches (mm)	Height	YS Box Catalog Number	LT Trim Catalog Number
28.00 W x 5.75 D	36.00 (914.4)	YS2836	LTV2836S or F
	48.00 (1219.2)	YS2848	LTV2848S or F
	60.00 (1524.0)	YS2860	LTV2860S or F
	72.00 (1828.8)	YS2872	LTV2872S or F
	90.00 (2286.0)	YS2890	LTV2890S or F

Note
(1) EZ box must be used with EZ trim.

Pow-R-Line C Panelboards

Contents

Description	Page
Application Description	V2-T3-8
Standards and Certifications	V2-T3-10
Technical Data and Specifications	V2-T3-11
Type PRL1a	V2-T3-26
Type PRL1aF	V2-T3-30
Type PRL1a-LX.	V2-T3-34
Type PRL2a	V2-T3-38
Type PRL2aF	V2-T3-42
Type PRL2a-LX.	V2-T3-46
Retrofit Panelboard	V2-T3-50
Type PRL3a	V2-T3-58
Type PRL3E	V2-T3-62
Type PRL4	V2-T3-66
Type PRL4D	V2-T3-76
Type PRL5P	V2-T3-86

Product Description

Lighting and Distribution Panelboards

Eaton's assembled
panelboards are designed for sequence phase connection of branch circuit devices. This allows complete flexibility of circuit arrangement (single-, two- or three-pole) to allow balance of the electrical load on each phase.

Sturdy, rigid chassis assembly ensures accurate alignment of interior with panel front; prevents flexing and minimizes possibility of loosening or damage to current carrying parts during and after installation.

Four-point in-and-out adjustment of panel interior is provided to meet critical depth dimensions on flush installations. This compensates for possible misalignment of box at installation.
Main lugs are mechanical solderless type and approved for copper or aluminum conductors.

Enclosures

Boxes are code-gauge galvanized steel, which include a painted box finished in ANSI-61 light gray to match the trim.

Standard panelboard cabinets are designed for indoor use. Alternate types are available for indoor and special purpose applications.
All enclosures are furnished in accordance with Underwriters Laboratories standards and include wiring gutters with proper wire bending space. Special cabinets can be provided at an additional charge.

The box dimensions shown are inside dimensions. For outside dimensions, add $1 / 4$-inch (6.4 mm).

Standard panelboard boxes are supplied without knockouts (blank endwalls).

Fronts

Fronts (trims) for all panelboards are made of code-gauge steel and have a high durability ANSI-61 light gray finish applied by a bakedon polyester powder coating paint system.

The fronts for lighting and appliance branch circuit panelboards and small power distribution panelboards include a door with rounded corners and concealed hinges. A flush-type latch and lock assembly is included. All locks are keyed alike. These trims are available in both surface- and flushmounted designs.

EZ Trim Features Standard Door-in-Door with No Exposed Hardware or Sharp Edges (no Tools are Required for Installation)

The Three-Piece Trim for Larger Power Distribution Panelboards Provides for Easy Handling and Installation
Fronts for power distribution panelboards utilize a unique breaker front cover design in which each device has a dedicated bolt-on steel cover. The individual covers form a single deadfront for the panelboard that is used in conjunction with two wiring gutter covers to complete the trim. A door is not finished as part of the standard offering on these panelboards but can be provided, for an additional charge, using a deeper than standard box.

Application Description

Panelboard Selection Factors

In selecting a panelboard, the following factors must be considered:

- Service (voltage and frequency)
- Interrupting capacity (fully or series rated)
- Ampere rating of main
- Ampere ratings of branches
- Environment

Panelboard Short-Circuit Rating

The short-circuit rating of Eaton's assembled panelboards are test verified by, and listed with, Underwriters Laboratories (UL). Generally, these ratings are that of the lowest interrupting rated device in the panel.
Certain exceptions to this rule exist where branch devices have been UL tested in combination with specific main devices having a higher interrupting rating. Where these defined main devices and branch breaker combinations are utilized, the series short-circuit rating of the assembled panelboard will be the same as the tested rating of the approved rated main device in series with the branches. Available main and branch breaker combinations are tabulated starting on Page V2-T3-16.
All combinations shown are UL tested and listed.

These series ratings apply to panels having main devices, or main lug only panelboards fed remotely by the device listed in the series ratings chart as the main, for which UL listed tests were conducted.

Service Entrance Equipment
 The National Electrical Code (NEC) requires that:

- A panel used as service entrance equipment must be located near the point where the supply conductors enter the building
- A panelboard having main lugs only shall have a maximum of six service disconnects to de-energize the entire panelboard from the supply conductors. Where more than six disconnects are required, a main service disconnect must be provided
- A disconnectable electrical bond must be provided between the neutral and ground
- A service entrance type UL label must be factory installed
- Ground fault protection of equipment shall be provided for each service disconnect rated 1000A or more if the electrical service is a solidly grounded wye system of more than 150 V to ground, but not exceeding 600V phase-to-phase

Note: Service entrance panels must be identified as such on the order.

Panelboard Standards

In 2008, both the National
Electrical Code (Article 408)
and UL 67 were updated to remove the mandated 42 -circuit limitation. Eaton offers panelboards with more than 42 circuits for those jurisdictions that have adopted the 2008 NEC or later.
For jurisdictions that have| not adopted the 2008 or later version of the National Electrical Code, the 42-circuit limitation for Lighting and Appliance Branch Panelboards remains in place. Check with your local code officials to determine specific jurisdiction status.

Panelboard Installation

NEC requires that the operating handle of the topmost mounted device be no more than 6 feet 7 inches $(2006.6 \mathrm{~mm}$) above the finished floor and should be installed per NEC and manufacturer's instructions.

Additional boxes and fronts are required when the components required for one panelboard exceed the standard box dimensions.

Multi-Section Panelboards

When two or more separate enclosures are required, separate fronts for each box are standard. A common front can be furnished at additional charge.
Interconnecting MultiSection Panelboards
When a panelboard, for connection to one feeder, must be furnished in more than one section (Box), each section must be furnished with main bus and terminals of the same rating, unless a main overcurrent device is provided in each section.

Sub-feed or through-feed provisions must also be included (and priced) to provide connection capability to the second section.

Note: Sub-feed or through-feed lugs cannot be used on any panelboard that is not protected by a single main overcurrent device either in the panelboard or immediately upstream, i.e., service entrance panelboards with main lugs only using the six disconnect rule.

Sub-Feed Lugs

Sub-feed lugs (see figure below) are one means of interconnecting multi-section panels. The sub-feed (second set of) lugs are mounted directly beside the main lugs. These are required in each section except the last panel in the lineup. The feeder cables are brought into the wiring gutter of the first section and connected to the main lugs. Another set of the same size cables are connected to the sub-feed lugs (Section 1) and are carried over to the main lugs of the adjacent panel. Cross connection cables are not furnished by Eaton. Sub-feed lugs are only available on main lug only panels.

Note: Sub-feed lugs may not be used on main lug only (six disconnect rule) service entrance panels.

Sub-Feed Lugs

Through-Feed Lugs

Through-feed lugs (see figure below) are another method to interconnect multi-section panelboards. The incoming feeder cables are connected to the main lugs or main breaker at the bottom of panel (Section 1). Another set of lugs (through-feed) are located at the opposite end of the main bus. The interconnecting cables are connected to the throughfeed lugs in Section 1 and are carried over to the main lugs in Section 2. The connection arrangement could be reversed, i.e., main lugs at top; through-feed lugs at bottom end of panel. Cross cables are not furnished by Eaton.

Note: Through-feed lugs may not be used on main lug only (six disconnect rule) service entrance panels.
Through-Feed Lugs

Multiple Section Panelboard-Flush Mounted

Shown below is the standard method for flush mounting multiple section lighting and distribution panelboards using standard flush trims.

Multiple Section Panelboard Flush MountedDimensions in Inches (mm)

Overcurrent Protection

The following requirements will be found in the NEC:
Each lighting and appliance branch circuit panelboard shall be individually protected on the supply side by not more than two main circuit breakers or two sets of fuses having a combined rating not greater than that on the panelboard.

Pow-R-Line C Panelboards

Branch Circuit Loading for Lighting Panels

The size of mains and branches should be selected based on the following:

- Motor circuits: NEC Article 430
- Diversity factor
- Provision for future loading

Exception Number 1:

 Individual protection for a lighting panelboard is not required when the panelboard feeder has overcurrent protection not greater than that of the panelboard.
Exception Number 2:

For existing installations individual protection for lighting panelboards is not required where such panelboards are used as service equipment in supplying an individual residential occupancy and where any bus supplying 15 or 20A circuits is protected on the supply side by an overcurrent device.

Ambient Temperatures

The primary function of an overcurrent device is to protect the conductor and its insulation against overheating. In selecting the size of the devices and conductors, consideration should be given to the ambient temperature surrounding the conductors within and external to the panelboard. Cumulative heating within the panelboard may cause premature operation of the overcurrent protective devices.

Underwriters Laboratories test procedures are based, in part, on 80% loading of panelboard branch circuit devices. The NEC limits the loading of overcurrent devices in panelboards to 80% of rating where in normal operation the load will continue for three hours or more. Further derating may be required, depending on such factors as ambient temperature, duty cycle, frequency or altitude.

Exception: There is one exception to this rule in both UL and NEC. It applies to assemblies and overcurrent devices that have been listed for continuous duty at 100\% of its rating.

Special Conditions

Standard panelboards, assembled with standard components, are adequate for most applications. However, special consideration should be given to those required for application under special conditions such as:

- Excessive vibration or shock
- Frequencies above 60 cycles
- Altitudes above 6600 feet (2011.7m)
- Damp environment (possible fungus growth)
- Compliance with federal, state and municipal electrical codes and standards

Seismic Considerations

The Uniform Building Code ${ }^{\circledR}$ and the International Building Code, as well as local and state building codes, place an emphasis on seismic building design requirements. Electrical distribution systems are treated as attachments to the building and therefore, fall into this category.
All Eaton panelboards are seismic qualified at the highest possible level, and have been tested in accordance with ANSI C37.81. This standard quantifies actual earthquake conditions, as well as equipment seismic capability.

Harmonic Currents

Standard panelboard neutrals are rated for 100% of the panelboard current. However, since harmonic currents can cause overheated neutrals, an option is provided for neutrals to be rated at 200\% (1200A maximum neutral for 600A main bus) of the panelboard phase current.

Panelboards with the 200\% rated neutral are UL listed as suitable for use with nonlinear loads.

Prior to specifying the 200\% rated neutral, Eaton recommends a harmonic survey be conducted of the distribution system, be it new or existing.

Surge Protective Devices

The quality of power feeding sensitive electronic loads is critical to the reliable operation of any facility. In modern offices, hospitals, and manufacturing facilities, the most frequent causes of microprocessor-based equipment downtime and damage are voltage transients and electrical noise.

Electrical loads and microprocessor-based equipment are highly susceptible to both high and low energy transients. High energy transients include lightning induced surges and power company switching. These high energy transients can destroy components instantly.
More frequently the electrical system experiences low energy transients and high frequency noise.
The effects of continual low energy transients and high frequency noise can cause erratic equipment performance or sudden failure of electronic circuit board components.

Eaton can provide protective and diagnostic systems integral to panelboards. The surge protective device (SPD) is integrated into the panelboards using a "zero lead length" direct bus bar connection.

Pow-R-Line 4
The SPD protects sensitive electronic equipment from the damaging effects of high and low energy transients, as well as high frequency noise.

Standards and Certifications

Eaton's panelboards are designed to meet the following applicable industry standards, except where noted:

- Underwriters Laboratories:
- Panelboards: UL 67
- Cabinets and Boxes: UL 50
Note: Only panelboards containing UL listed devices can be UL labeled.
- National Electrical Code
- NEMA Standards: PB 1
- Federal Specification W-P-115c:
- Circuit BreakersType I Class I
- Fusible SwitchType II Class

Technical Data and Specifications

Panelboard Selection Guide

		Maximum Voltage Rating		Maximum Main Rating (Amperes)		Branch Circuits Ampere Range	Sub-Feed Breaker Maximum Amperes	AC Interrupting Capacity rms Symmetrical Amperes (kA)	
Panelboard Type	Device Type	AC	DC	MLO	Main Device			Fully Rated	Series Rated
PRL1a	Breaker	240	-	600	600	15-100	600	10-22	22-100
PRL1R	Breaker	240	-	225	225	15-100	-	10-22	22-100
PRL1aF	Fusible	240	-	400	400	15-30	400	200	-
PRL1a-LX	Breaker	240	-	225	225	15-100	-	10-22	22-100
PRL2a	Breaker	240	250	600	600	15-100	600	65	65-200
	Breaker	480Y/277	250	600	600	15-100	600	14	22-150
PRL2R	Breaker	240	-	225	225	15-100	-	10-22	22-200
	Breaker	480Y/277	-	225	225	15-100	-	14	22-100
PRL2aF	Fusible	480Y/277	-	400	400	15-30	400	200	-
PRL2a-LX	Breaker	240	250	225	225	15-100	-	65	65-200
	Breaker	480Y/277	250	225	225	15-100	-	14	22-150
PRL3a	Breaker	240	250	800	600	15-225	600	10-200	22-200
	Breaker	480	250	800	600	15-225	600	14-100	22-150
	Breaker	600	250	800	600	15-225	600	14-35	-
PRL3E	Breaker	240	250	600	600	15-125	400	25-100	100-200
	Breaker	480Y/277	250	600	600	15-125	400	18-65	65-100
	Breaker	480	250	600	600	15-125	400	18-65	65-100
PRL4B	Breaker	240	600	1200	1200	15-1200	-	10-200	22-200
	Breaker	480	600	1200	1200	15-1200	-	14-200	22-150
	Breaker	600	600	1200	1200	15-1200	-	14-200	-
PRL4D	Breaker	240	-	1200	1200 (1)	600	-	65-200	-
	Breaker	480	-	1200	$1200{ }^{(1)}$	600	-	35-100	-
	Breaker	600	-	1200	$1200{ }^{(1)}$	600	-	18-50	-
PRL4F	Fusible	240	250	1200	1200	30-1200	-	100-200	-
	Fusible	600	250	1200	1200	30-1200	-	100-200	-
PRL5P	Breaker	240	250	1200	1200	15-1200	-	10-200	22-200
	Breaker	480	250	1200	1200	15-1200	-	14-200	22-150
	Breaker	600	250	1200	1200	15-1200	-	14-200	-
PRC100 PRC25	Breaker	240	-	400	400	15-225	-	10-65	22-100
	Breaker	480Y/277	-	400	400	15-225	-	14	65-100
Elevator Control	Fusible	240	-	800	800	15-200	-	200	-
	Fusible	480Y/277	-	800	800	15-200	-	200	-
	Fusible	480	-	800	800	15-200	-	200	-

Note
(1) Fixed mounted only.

Terminal Wire Ranges, Pressure-Type Al/Cu Terminals Except as Noted

Note: All terminal sizes are based on wire ampacities corresponding to those shown in NEC Table 310.16 under the $75^{\circ} \mathrm{C}$ insulation columns ($75^{\circ} \mathrm{C}$ wire). The use of smaller size, (in circular mills), regardless of insulation temperature rating, is not permitted.

Where copper-aluminum terminals are supplied on designated panelboard types, best results are obtained if a suitable joint compound is applied when aluminum conductors are used.

Check Eaton's standard terminal sizes versus customer requirements. In particular, 400 and 800A breakers often require nonstandard lugs.

Optional 750 kcmil mechanical screw-type terminals are available upon request. Panelboard dimensions may be affected, refer to Eaton.

Standard Main Lug Terminals

	W	Ampere					
Panel Type	100 A	225 A	250 A	400 A	600 A	800 A	1200 A
PRL1a	\#12-1/0	\#6-300 kcmil	-	(2) \#4-500 kcmil	(2) $4 / 0-500 \mathrm{kcmil}$	-	-
PRL2a	\#12-1/0	\#6-300 kcmil	-	(2) \#4-500 kcmil	(2) $4 / 0-500 \mathrm{kcmil}$	-	-
PRL1R	\#12-1/0	\#6-300 kcmil	-	(2) \#4-500 kcmil	-	-	-
PRL2R	\#12-1/0	\#6-300 kcmil	-	(2) \#4-500 kcmil	-	-	-
PRL1aF	\#12-1/0	\#6-300 kcmil	-	(2) \#4-500 kcmil	-	-	-
PRL2aF	\#12-1/0	\#6-300 kcmil	-	(2) \#4-500 kcmil	-	-	-
PRL3a	\#12-1/0	-	\#6-350 kcmil	(2) \#4-500 kcmil	(2) \#4-500 kcmil	(3) \#4-500 kcmil	-
PRL3E	\#12-1/0	-	\#6-350 kcmil	(2) \#4-500 kcmil	(2) \#4-500 kcmil	-	-
PRL4	-	-	\#4-500 kcmil	(2) \#4-500 kcmil	(2) \#4-500 kcmil	(3) \#4-500 kcmil	(4) \#4-500 kcmil
PRL1a-LX	\#12-1/0	\#6-300 kcmil	-	-	-	-	-
PRL2a-LX	\#12-1/0	\#6-300 kcmil	-	-	-	-	-
PRC100	\#12-1/0	-	\#6-350 kcmil	(2) \#4-500 kcmil	-	-	-
PRC25	\#12-1/0	\#6-300 kcmil	-	(2) \#4-500 kcmil	-	-	-
PRL5P	-	-	-	$\begin{aligned} & \text { (1) \#1/0-500 kcmil } \\ & \text { or } \\ & \text { (2) \#1/0-250 kcmil } \end{aligned}$	(2) \#4-500 kcmil	(2) \#2-500 kcmil or (3) \#2-400 kcmil	(4) \#4-750 kcmil
Elevator Control	-	-	\#4-500 kcmil	(2) \#4/0-500 kcmil	(2) \#4/0-500 kcmil	(3) \#4/0-500 kcmil	-

Standard Circuit Breaker Terminals

Breaker Type	Ampere Rating	Wire Range
BAB, QBHW, BABRSP, HQP, QPHW	15-70	\#14-\#4
	90-100	\#8-1/0
EDB, EDS, ED, EDH, EDC	100-225	\#4-4/0 or \#6-300 kcmil
EGB, EGE, EGS, EGH	15-50	\#14-3/0 AL/CU
	60-125	\#6-3/0 AL/CU
$\begin{aligned} & \text { EHD, FDB, FD, } \\ & \text { HFD, FDC, HFDDC (2) } \end{aligned}$	15-100	\#14-1/0
	125-225	\#4-4/0
FCL	15-100	\#14-1/0
$\begin{aligned} & \text { GHB, HGHB, GHQ, } \\ & \text { GHORSP } \end{aligned}$	15-20	\#14-\#10
	25-100	\#10-1/0
EGB, EGS, EGH	15-50	\#14-1/0
	60-125	\#6-2/0
JD, HJD, JDC, HJDDC © ${ }^{(2)}$	70-250	\#4-350 kcmil
DK	250-350	250-500 kcmil
	400	(2) 3/0-250 kcmil or (1) 3/0-500 kcmil
$\begin{aligned} & \text { KD, } \\ & \text { HKD, KDC, HKDDC, (2) } \\ & \text { CKD, CHKD } \end{aligned}$	225	(1) \#3-350 kcmil
	350	(2) 3/0-250 kcmil or
	400	(2) 3/0-250 kcmil or (1) 3/0-500 kcmil
LHH	150-400	\#2-500 kcmil
	150-400	(2) \#2-500 kcmil
	150-400	(1) $500-750 \mathrm{kcmil}$
LGE, LGH, LGC, LGU, LHH ${ }^{(1)}$	250-400	(1) \#2-500 kcmil
	500-600	(2) \#2-500 kcmil
$\begin{aligned} & \text { LD, HLD, LDC, HLDDC (2) } \\ & \text { CLD, CHLD } \end{aligned}$	300-500	(2) $250-350 \mathrm{kcmil}$
	600	(2) $400-500 \mathrm{kcmil}$
MDL, HMDL, HMDLDC (2) CMDL, CHMDL	400-600	(2) \#1-500 kcmil
	700-800	(3) $3 / 0-400 \mathrm{kcmil}$
ND, HND, CND, CHND, NDC, CNDC	800-1000	(3) $3 / 0-400 \mathrm{kcmil}$
	1200	(4) $4 / 0-500 \mathrm{kcmil}$
LCL	125-225	(1) \#6-350 kcmil
	250-400	(1) \#4-250 kcmil and (1) 3/0-600 kcmil
FB-P	15-100	\#14-1/0
LA-P	70-225	\#6-350 kcmil
	250-400	(1) \#4-250 kcmil and (1) 3/0-600 kcmil
NB-P, NBDC ${ }^{(2)}$	300-700	(2) \#1-500 kcmil
	800	(3) $3 / 0-400 \mathrm{kcmil}$

FDPW Switch Terminals

Ampere Rating	Wire Range
30	$\# 14-1 / 0$
60	$\# 14-1 / 0$
100	$\# 14-1 / 0$
200	$\# 4-300$ kcmil
400	$250-750$ kcmil or (2) $3 / 0-250 \mathrm{kcmil}$
600	(2) \#4-600 kcmil or (4) $3 / 0-250 \mathrm{kcmil}$
800	(3) $250-750$ kcmil or (6) $3 / 0-250$ kcmil
1200	(4) $250-750$ kcmil or (8) $3 / 0-250$ kcmil

Elevator Control Panel Feeder Terminals

Ampere Rating	Wire Range
30	$\# 14-1 / 0$
60	$\# 14-1 / 0$
100	$\# 14-1 / 0$
200	$\# 4-300 \mathrm{kcmil}$

Notes

(1) LHH is 400A maximum.
(2) Suitable for DC applications only.

Pow-R-Line C Panelboards

Selection Guide

Molded Case Circuit Breaker Ratings
Note: Circuit breakers equal or exceed Federal Specification W-C-375b requirements for the particular class associated with each circuit breaker type

Breaker Type	Continuous Ampere Rating	Number of Poles	Maximum Voltage AC	UL Listed Interrupting Ratings-kA Symmetrical Amperes AC Rating Volts					DC Rating Volts ${ }^{1}$	
				120/240	240	277	480	600	125	250
BAB (2)3, HQP (2)3	15-70	1	120	10	-	-	-	-	-	-
	15-100	2	120/240	10	-	-	-	-	-	-
	15-100	2,3	240	-	10	-	-	-	-	-
BABRP, BABRSP (2)	15-30	1	120	10	-	-	-	-	-	-
	15-30	2	120/240	10	-	-	-	-	-	-
QBGF, QBGFEP, QPGF, QPGFEP, QBAF, QBAG	15-40	1	120	10	-	-	-	-	-	-
	15-50	2	120/240	10	-	-	-	-	-	-
	15-20	1	120	10	-	-	-	-	-	-
	15-20	2	120/240	10	-	-	-	-	-	-
QBHW (23), ${ }^{\text {a }}$ (${ }^{\text {a }}$	15-70	1	120	22	-	-	-	-	-	-
	15-100	2	120/240	22	-	-	-	-	-	-
	15-100	2,3	240	-	22	-	-	-	-	-
QBHGF, QBHGFEP, QPHGF, QPHGFEP	15-30	1	120	22	-	-	-	-	-	-
	15-30	2	120/240	22	-	-	-	-	-	-
$\begin{aligned} & \mathrm{GQ}_{1} \mathrm{GHO}^{(2)}, \mathrm{GHORSP}, \\ & \mathrm{GHB}^{(2)}{ }^{3}{ }^{2} \end{aligned}$	15-20	1	277	65	-	14	-	-	-	-
	15-100 (4)	1	277	65	-	14	-	-	14	-
	15-100 (4)	2,3	480Y/277	-	65	-	14	-	-	14
$\begin{aligned} & \text { HGHB (2), } \\ & \text { GHBGFEP } \end{aligned}$	15-30	1	277	65	-	25	-	-	-	-
	15-60	1	277	-	-	14	-	-	-	-
GHBS	15-30	1	277	65	-	14	-	-	-	-
	15-30	2	480Y/277	-	65	-	14	-	-	-
EHD (2)3	15-100	1	277	-	-	14	-	-	10	-
	15-100	2,3	480	-	18	-	14	-	-	10
EGB	15-125	1	277	35	35	18	-	-	10	-
	15-125	2,3	480	-	35	-	18	-	-	10
EGS	15-125	1	277	100	-	35	-	-	35	-
	15-125	2,3	480	-	100	-	35	-	-	35
EGH	15-125	1	277	200	-	65	-	-	42	-
	15-125	2,3	480	-	200	-	65	-	-	42
$\begin{aligned} & \text { FDB © © }, \\ & \text { FD (2) } \end{aligned}$	15-150	2,3	600	-	18	-	14	14	-	10
	15-150	1	277	-	-	35	-	-	10	-
	15-225	2,3	600	-	65	-	35	18	-	10
HFD (2)3	15-150	1	277	-	-	65	-	-	10	-
	15-225	2,3	600	-	100	-	65	25	-	22

Notes

(1) DC ratings apply to substantially non-inductive circuits.
(2) 15 and 20 A single-pole switching duty rated for fluorescent applications.
${ }^{3}$ Single-, two- and three-pole HACR rated.
${ }^{4}$ DC rated single-pole, 15-70A only.
5 Two- and three-pole HACR rated.

Selection Guide, continued

Molded Case Circuit Breaker Ratings, continued
Note: Circuit breakers equal or exceed Federal Specification W-C-375b requirements for the particular class associated with each circuit breaker type.

UL Listed Interrupting Ratings-kA Symmetrical Amperes

Breaker Type	Continuous Ampere Rating	Number of Poles	Volts AC	AC Rating Volts		277	480	600	DC Rating Volts ${ }^{\text {(1) }}$	
				120/240	240				125	250
FDC ${ }^{(2)}$	15-225	2,3	600	-	200	-	100	35	-	22
FCL	15-100	2,3	480	-	200	-	150	-	-	-
EDB ${ }^{2}$	100-225	2,3	240	-	22	-	-	-	10	-
EDS ${ }^{(2)}$	100-225	2,3	240	-	42	-	-	-	10	-
ED ${ }^{(2)}$	100-225	2,3	240	-	65	-	-	-	10	-
EDH ${ }^{(2)}$	100-225	2,3	240	-	100	-	-	-	10	-
EDC ${ }^{(2)}$	100-225	2,3	240	-	200	-	-	-	10	-
EGB ${ }^{2}$	15-125	1,2,3	240	-	25	-	18	-	-	-
EGE ${ }^{(2)}$	15-125	1,2,3	240	-	-	-	-	18	-	-
EGS ${ }^{(2)}$	15-125	1,2,3	240	-	85	-	35	22	-	-
EGH ${ }^{(2)}$	15-125	1,2,3	240	-	100	-	65	25	-	-
$\mathrm{JD}^{(2)}$	70-250	2,3	600	-	65	-	35	18	-	10
HJD ${ }^{(2)}$	70-250	2,3	600	-	100	-	65	25	-	22
JDC ${ }^{(2)}$	70-250	2,3	600	-	200	-	100	35	-	22
DK	250-400	2,3	240	-	65	-	-	-	-	10
KD, CKD (3)	100-400	2,3	600	-	65	-	35	25	-	$10{ }^{4}$
HKD, CHKD (3)	100-400	2,3	600	-	100	-	65	35	-	$22(4)$
LHH (5)	150-400	2,3	480	-	100	-	65	35	-	42
KDC	100-400	2,3	600	-	200	-	100	65	-	$22(4)$
LCL (5)	125-400	2,3	600	-	200	-	200	100	-	-
LGE	250-600	3	600	-	65	-	35	18	-	22
LGC (5)	250-600	2,3	600	-	200	-	100	50	-	42
LGU (5)	250-600	2,3	600	-	200	-	150	65	-	50
LD © ${ }^{\text {¢ }}$ CLD 3 (5)	300-600	2,3	600	-	65	-	35	25	-	22 (4)
LGH	250-600	3	600	-	100	-	65	35	-	22
HLD (${ }^{\text {, CHLD }}$ (3)	300-600	2,3	600	-	100	-	65	35	-	$25{ }^{4}$
LDC (5) CLDC (3)	300-600	2,3	600	-	200	-	100	50	-	25 (4)
MDL © ${ }^{\text {© }}$ CMDL (3)	400-800	2,3	600	-	65	-	50	25	-	$22(4)$
HMDL (5, CHMDL (3)	400-800	2,3	600	-	100	-	65	35	-	$25{ }^{4}$
ND (5, CND (3)	600-1200	2,3	600	-	65	-	50	25	-	-
HND (${ }^{\text {, }, ~ C H N D ~}{ }^{\text {(3) }}$	600-1200	2,3	600	-	100	-	65	35	-	-
NDC © ${ }^{\text {® }}$ CNDC ${ }^{\text {®5 }}$	600-1200	2,3	600	-	200	-	100	65	-	-

Integrally Fused, Current Limiting Circuit Breakers

FB-P	15-100	2,3	600	-	200	-	200	200	-	©
LA-P	70-400	2,3	600	-	200	-	200	200	-	©
NB-P	300-800	2,3	600	-	200	-	200	200	-	(6)

Notes

(1) DC ratings apply to substantially non-inductive circuits.
(2) Two- and three-pole HACR rated.

3 100% rated circuit breaker.
4) DC rating not available with electronic trip.

5 Available with integral ground fault protection.
© 100 k based on NEMA test procedure.

Series Rated Combinations

Underwriters Laboratories permits panelboards to be labeled with a short-circuit rating of up to 200 kA symmetrical where UL listed combinations of main and branch circuit breakers are used.

These combinations consist of main breakers or fusible devices connected ahead of, and in series with approved conventional breakers used as branch devices.

Two arrangements are acceptable and comply with UL standards for panelboards. The main circuit breaker or fusible switch may be installed in the panel as a main device, or it may be mounted remote, (directly upstream) from the panel. In either case, the approved main and branch combinations must be followed. These arrangements are acceptable and are UL listed having been tested in accordance with UL 67 standards.

From the tables that follow, specific combinations of main devices (upstream) and branch devices (downstream), series connected and electrically adjacent in the system, may be selected to qualify the assembled panelboard for the short-circuit ratings shown.

Applying Series Ratings

The following is provided to use the series rating tables on the following pages.

1. Determine the available system voltage and fault current.
2. Select the appropriate table using the system voltage.
3. Use the appropriate "Series Equipment Rating" column equal to, or greater than, the available fault current, to determine the allowable UL recognized combinations of main (upstream) and branch (downstream) overcurrent devices. Main devices are shown in bold/shaded areas. Respective branch breakers are shown directly below their associated main device. If a rating is not initially found in a column, first look to the columns to the right for higher "Series Equipment Ratings" within the same table. If still not found, use ratings from table of a higher system voltage (higher numbered table(s).

Page V2-T3-17
120/240 Vac—Breaker/ Breaker

Page V2-T3-19
240 Vac—Breaker/Breaker
Page V2-T3-21
277 Vac—Breaker/Breaker
Page V2-T3-21
480Y/277 Vac—Breaker/ Breaker

Page V2-T3-22
480 Vac—Breaker/Breaker
Page V2-T3-23
600 Vac—Breaker/Breaker
Page V2-T3-23
120/240 Vac—Fuse/Breaker
Page V2-T3-24
240 Vac—Fuse/Breaker
Page V2-T3-24
277 Vac—Fuse/Breaker
Page V2-T3-25
480Y/277 Vac—Fuse/Breaker
Page V2-T3-25
480 Vac-Fuse/Breaker
Page V2-T3-25
600 Vac-Fuse/Breaker
Page V2-T3-25
Triple Series Ratings

Series Rating Tables

120/240 Vac - Breaker/Breaker Series Ratings
Main devices are shown at top in shaded area. Respective branch devices shown directly below.

Main Breaker Maximum Amperes	Series Equipment Rating-kA Symmetrical										
	18	22	42	65			100			200	
100	EHD			GB, GHB			FB-P			FCL	
	BA, BAB BABRP BABRSP HQP QBGF QBAF	QPHW BA, BAB HOP QBGF QPGF QBAF		BA, BAB BABRP BABRSP HOP QBGF QPGF QBAF QBAG QBHW QPHW			BA, BAB BABRP BABRSP HQP QBGF QPGF QBAF QBAG QBHW QPHW EHD FD			BA, BAB BABRP BABRSP HOP QBGF QPGF QBAF QBAG QBHW QPHW GB, GHB GH0 EHD FD HFD	
125	FDB						EGS				
	BA, BAB HQP QBGF QBAF QBAG						GH0, GHB				
150	FDB										
	BA, BAB HOP QBGF QBAF QBAG										
200							LA-P				
							BA, BAB HOP QBHW QPHW EHD FD				
225		EDB	EDS	ED, FD, FDE			EDH, CHH	HFD, HFDE	FDC		FDC
		BA, BAB BABRP BABRSP HQP QBGF QPGF QBHGF QPHGF QBHW QPHW QBAF QBAG	BA, BAB BABRP BABRSP HOP QBGF QPGF QBHGF QPHGF QBHW QPHW QBAF QBAG	BA, BAB BABRP BABRSP HOP QBGF QPGF QBAF QBAG QBHW QBHGF			BA, BAB BABRP BABRSP HOP QBGF QPGF QBAF QBAG	BA, BAB HOP QBGF QBAF QBAG QBHW QPHW QBHGF GB, GHB GHO, GHORSP EHD FD, EGS	BA, BAB HOP QBHW QPHW		GB, GHB GHO GHQRSP EHD FD HFD EGS EGH
250				JD, JDB	HJD	JDC	HJD	JDC		JDC	
				BA (15-70A) BAB (15-70A) HOP (15-70A) QBHW QPHW EHD	BA, BAB HOP QBHW QPHW	QBGF QPGF QBAF QBAG	$\begin{aligned} & \text { GB, GHB } \\ & \text { EHD } \\ & \text { FD } \\ & \text { EGS } \end{aligned}$	BA, BAB HQP QBHW QPHW		$\begin{aligned} & \text { GB, GHB } \\ & \text { EHD } \\ & \text { FD } \\ & \text { HFD } \\ & \text { EGS } \\ & \text { EGH } \end{aligned}$	

Panelboards and Lighting Control

Pow-R-Line C Panelboards

120/240 Vac-Breaker/Breaker Series Ratings, continued
Main devices are shown at top in shaded area. Respective branch devices shown directly below.

Main Breaker Maximum Amperes	Series Equipment Rating-kA Symmetrical									
	18	22	42	65			100		200	
400		DK, KD KDB	$\begin{aligned} & \text { DK, KD } \\ & \text { KDB, CKD } \end{aligned}$	HKD, CHKD	DK, KD KDB CKD EHD	KDC	$\begin{aligned} & \text { HKD } \\ & \text { CHKD } \end{aligned}$		KDC	LCL
		KDB BA, BAB BABRP BABRSP HQP QBGF QPGF QBAF QBAG	KDB, CKD BA (15-70A) BAB (15-70A) BABRP BABRSP HOP (15-70A) QBHW QPHW	BA (15-70A) BAB (15-70A) BABRP BABRSP HOP (15-70A) QBHW QPHW		$\begin{aligned} & \text { BA (15-70A) } \\ & \text { BAB (15-70A) } \\ & \text { HQP (} 15-70 \mathrm{~A}) \end{aligned}$	$\begin{aligned} & \text { CHKD } \\ & \text { GB, GHB } \\ & \text { EHD } \\ & \text { FD } \\ & \text { EGS (1) } \end{aligned}$	$\begin{aligned} & \text { QBHW } \\ & \text { QPHW } \end{aligned}$	$\begin{aligned} & \text { GB, GHB } \\ & \text { EHD } \\ & \text { FD } \\ & \text { HFD } \\ & \text { EGS } \\ & \text { EGH } \end{aligned}$	BA, BAB HOP QBGF QPGF QBAF QBAG QBHW QPHW GB, GHB EHD FD HFD
600							CHLD, HLD			
							EHD			
800							HMDL			
							EHD			
1200							HND			
							EHD			

Note

(1) Not valid with CHKD

240 Vac - Breaker/Breaker Series Ratings
For single- and two-pole 120/240 volt rated breakers (BA, BAB, HOP, QBHW, QPHW), see Page V2-T3-17.
Main devices are shown at top in shaded area. Respective branch devices shown directly below.

Main Breaker Maximum Amperes	Series Equipment Rating-kA Symmetrical								
	18	22	42	65		100			200
100	EHD	QBHW_H OPHW_H		GB, GHB		FB-P			FCL
	$\begin{aligned} & \text { BAB_H } \\ & \text { HOP_H } \end{aligned}$	$\begin{aligned} & \text { OPHW_H } \\ & \text { BAB_H } \\ & \text { HOP_H } \end{aligned}$		$\begin{aligned} & \text { BAB_H } \\ & \text { HOP_H } \\ & \text { QBHW_H } \\ & \text { QPHW_H } \end{aligned}$		$\begin{aligned} & \text { BAB_H } \\ & \text { HQP_H } \\ & \text { EHD } \\ & \text { FDB } \\ & \text { FD } \end{aligned}$			BAB_H HQP_H QBHW_H QPHW_H GB, GHB EHD FD, FDE FDB HFD, HFDE
125						EGH			
						GHB			
150	FDB								
	$\begin{aligned} & \text { BAB_H } \\ & \text { HOP_H } \end{aligned}$								
200						LA-P			
						BAB_H HQP_H OBHW_H OPHW_H EHD FDB FD JD, JDB			
225		EDB	EDS	ED	FD, FDE	EDH, EDC	HFD, HFDE	FDC	FDC
		$\begin{aligned} & \text { HQP_H } \\ & \text { BAB_H } \\ & \text { QBHW } \\ & \text { OPHW } \end{aligned}$	$\begin{aligned} & \text { HQP_H } \\ & \text { BAB_H } \\ & \text { QBHW } \\ & \text { OPHW } \end{aligned}$	$\begin{aligned} & \text { BAB_H } \\ & \text { HOP_H } \\ & \text { QBHW_H } \end{aligned}$	$\begin{aligned} & \text { BAB_H } \\ & \text { HOP_H } \\ & \text { OBHW_H } \\ & \text { OPHW_H } \\ & \text { EHD (15-70A) } \\ & \text { FDB } \end{aligned}$	$\begin{aligned} & \text { BAB_H } \\ & \text { HOP_H } \end{aligned}$	BAB_H HOP_H QBHW_H QPHW_H GB, GHB EHD FDB FD, FDE	BAB_H HQP_H QBHW_H QPHW_H	GB, GHB EHD FDB FD, FDE HFD, HFDE
			CHH						
			BAB_H						
250				JD, JDB	HJD	HJD	JDC		JDC
				$\begin{aligned} & \text { BAB_H (15-70A) } \\ & \text { HOP_H(15-70A) } \\ & \text { QBHW_H } \\ & \text { QPHW_H } \\ & \text { EHD } \\ & \text { FDB } \end{aligned}$	$\begin{aligned} & \text { BAB_H (15-70A) } \\ & \text { HOP_H (15-70A) } \\ & \text { QBHW_H } \\ & \text { QPHW_H } \end{aligned}$	$\begin{aligned} & \text { GB, GHB } \\ & \text { EHD } \\ & \text { FD } \\ & \text { FDB } \\ & \text { ED } \\ & \text { JD, JDB } \\ & \text { EGS } \end{aligned}$	BAB_H HOP_H QBHW_H QPHW_H		GB, GHB EHD FD, FDE FDB HFD, EDB, EDS, HFDE ED EDH JD, JDB HJD, EGS, EGH

Panelboards and Lighting Control

Pow-R-Line C Panelboards

240 Vac-Breaker/Breaker Series Ratings, continued
For single- and two-pole 120/240 volt rated breakers (BA, BAB, HQP, QBHW, QPHW), see Page V2-T3-17.
Main devices are shown at top in shaded area. Respective branch devices shown directly below.

Main Breaker Maximum Amperes	Series Equipment Rating-kA Symmetrical				
	65	100		200	
400	$\begin{aligned} & \text { DK, KD, KDB } \\ & \text { CKD } \end{aligned}$	HKD, CHKD	KDC	KDC	LCL
	CKD BAB_H HOP_H QBHW_H QPHW_H EHD FDB	QBHW_H ${ }^{(1)}$ QPHW_H ${ }^{(1)}$ GB, GHB EHD FDB, FDE FD, EDB, EDS ED JD, JDB DK, KD, KDB EGS ${ }^{2}$	QBHW H QPHW_H	GB, GHB EHD FDB FD, FDE, HFDE HFD, EDB, EDS ED EDH JD, JDB HJD DK, KD, KDB HKD	BAB_H HQP_H QBHW_H QPHW_H GB, GHB EHD FDB, FDE, HFDE FD, HFD, EDB, EDS ED EDH JD, JDB HJD DK, KD, KDB HKD
500		NB-P			
		$\begin{aligned} & \text { JD, JDB } \\ & \text { KD, KDB, DK } \\ & \text { CKD } \end{aligned}$			
600		HLD, HLDB, CHLD		LDC	
		GB (1), GHB (1) FD, EDB, EDS ED, EHD JD, JDB KD, KDB, DK, CKD LD, LDB		EDB, EDS, ED	
800		NB-P	HMDL		
		KD, KDB, DK	$\begin{aligned} & \text { EHD } \\ & \text { FD } \end{aligned}$		
1200		HND, CHND			NDC
		$\begin{aligned} & \text { EDB, EDS, ED } \\ & \text { EHD } \end{aligned}$			$\begin{aligned} & \text { EDB, EDS, ED } \\ & \text { EDH } \end{aligned}$
2500		RD			RDC
		EDB, EDS, ED			$\begin{aligned} & \text { EDB, EDS, ED } \\ & \text { EDH } \end{aligned}$

Notes

(1) Valid on two- and three-pole breakers only. Not valid for single-pole.
(2) Not valid with CHKD.

277 Vac-Breaker/Breaker Series Ratings

Main devices are shown at top in shaded area. Respective branch devices shown directly below.
All ratings in this table apply to single-pole branch breakers only. For two- and three-pole branch breakers, see other tables.

Main Breaker Maximum Amperes	Series Equipment Rating-kA Symmetrical						
	22	25	35	65	100		150
100							FCL
							GHB GHO, GHQRSP EHD FD HFD
125			EGS	EGH			
			$\begin{aligned} & \text { GHO } \\ & \text { GHB } \end{aligned}$	$\begin{aligned} & \text { GHO } \\ & \text { GHB } \end{aligned}$			
225			FD, FDE	HFD, HFDE	FDC		
			GHB GHO GHORSP (1)	$\begin{aligned} & \text { GHB, GHORSP (2) } \\ & \text { GHO } \\ & \text { EHD } \\ & \text { FD } \end{aligned}$	GHB EHD FD HFD		
250	JD, JDB		JD, JDB	HJD	LCL	JDC	
	GHB		GHB (15-50A)	$\begin{aligned} & \text { GHB (15-50A) } \\ & \text { EHD } \\ & \text { FD } \end{aligned}$	GHBS	GHB EHD FD HFD	
400	KD, KDB	HKD	KD, KDB	HKD, CHKD	KDC		LCL
	CKD	CHKD GHB	$\begin{aligned} & \text { CKD } \\ & \text { GHB (15-50A) } \\ & \text { EHD } \\ & \text { FD } \end{aligned}$	$\begin{aligned} & \text { GHB (15-50A) } \\ & \text { EHD } \\ & \text { FD } \end{aligned}$	$\begin{aligned} & \text { GHB (15-50A) } \\ & \text { EHD } \\ & \text { FD } \\ & \text { HFD } \end{aligned}$		GHB EHD FD HFD

480Y/277 Vac-Breaker/Breaker Series Ratings
Main devices are shown at top in shaded area. Respective branch devices shown directly below.
All ratings in this table apply to two- and three-pole branch breakers only. For single-pole branch breakers, see table above.

Main Breaker Maximum Amperes	Series Equipment Rating-kA Symmetrical					
	22	25	35	65	100	150
100						FCL
						GHB, GHQRSP
125			EGS	EGH		
			GHB	GHB		
225			FD, FDE	HFD, HFDE	FDC	
			GHB, GHORSP ${ }^{(1)}$	GHB, GHQRSP (2)	GHB	
250	JD, JDB		JD, JDB	HJD	JDC	
	GHB		GHB (15-50A)	GHB (15-50A)	GHB	
400	KD, KDB	HKD, CHKD	KD, KDB	HKD, CHKD	KDC	LCL
	CKD	GHB	CKD	GHB (15-50A)	GHB (15-50A)	GHB
	GHB		GHB (15-50A)			

[^26]Panelboards and Lighting Control

Pow-R-Line C Panelboards

480 Vac-Breaker/Breaker Series Ratings
Main devices are shown at top in shaded area. Respective branch devices shown directly below.
All ratings in this table apply to two- and three-pole branch breakers only. Not valid for single-pole branch breakers.

Main Breaker Maximum Amperes	Series Equipment Rating-kA Symmetrical					
	25	35	65	100		150
100				FB-P		FCL
				EHD FDB FD HFD		EHD FDB FD, FDE HFD, HFDE
200				LA-P		
				EHD FDB FD HFD JD, JDB HJD		
225		FD, FDE	HFD, HFDE	FDC		
		$\begin{aligned} & \text { EHD } \\ & \text { FDB } \end{aligned}$	EHD FDB FD, FDE EGS (1)	$\begin{aligned} & \text { EHD, EGS, EGH } \\ & \text { FDB } \\ & \text { FD, FDE } \\ & \text { HFD, HFDE } \end{aligned}$		
250	JD, JDB		HJD	JDC		LCL
	$\begin{aligned} & \text { EHD } \\ & \text { FDB } \end{aligned}$		EHD FDB FD, FDE JD, JDB, EGS	EHD, EGS, EGH FDB FD, FDE HFD, HFDE JD, JDB HJD		FDE, HFDE
400		KD, KDB	HKD	KDC	LA-P	LCL
		$\begin{aligned} & \text { EHD } \\ & \text { FDB } \end{aligned}$	$\begin{aligned} & \text { EHD } \\ & \text { FDB } \\ & \text { FD, FDE } \\ & \text { JD, JDB } \\ & \text { KD, KDB, EGS } \end{aligned}$	EHD, EGS, EGH FDB FD, FDE HFD, HFDE JD, JDB HJD KD, KDB HKD	$\begin{aligned} & \text { JD, JDB } \\ & \text { HJD } \\ & \text { KD, KDB } \\ & \text { HKD } \end{aligned}$	EHD FDB FD, FDE HFD, HFDE FDC JD, JDB HJD KD, KDB HKD
500				NB-P		
				$\begin{aligned} & \text { JD, JDB } \\ & \text { HJD } \\ & \text { KD, KDB } \\ & \text { HKD } \end{aligned}$		
600		$\begin{aligned} & \text { LD, LDB } \\ & \text { CLD } \end{aligned}$	HLD, HLDB CHLD			
		JD, JDB	$\begin{aligned} & \text { FD, FDE } \\ & \text { JD, JDB } \\ & \text { KD, KDB } \\ & \text { LD, LDB } \end{aligned}$			

Note

(1) Not valid with HFDE.

600 Vac-Breaker/Breaker Series Ratings
Main fuse class shown at top in shaded area. Respective branch devices shown directly below.
All ratings in this table apply to two- and three-pole branch breakers only. Not valid for single-pole branch breakers.

Main Breaker Maximum Amperes	Series Equipment Rating-kA Symmetrical					
	18	25	35	42	50	100
225	FD	HFD	FDC			
	FDB	$\begin{aligned} & \text { FDB } \\ & \text { FD, FDE } \end{aligned}$	FDB FD, FDE HFD, HFDE			
250	JD, JDB	HJD	JDC			LCL
	FDB	FDB FD, FDE JD, JDB	FDB FD, FDE HFD, HFDE JD, JDB HJD			FDE, HFDE
400		KD, KDB	HKD, CHKD	KDC	KDC	LCL
		$\begin{aligned} & \text { CKD } \\ & \text { FDB } \\ & \text { FD, FDE } \\ & \text { JD, JDB } \end{aligned}$	$\begin{aligned} & \text { FDB } \\ & \text { FD, FDE } \\ & \text { HFD, HFDE } \\ & \text { JD, JDB } \\ & \text { HJD } \end{aligned}$	$\begin{aligned} & \text { FDB } \\ & \text { FD, FDE } \\ & \text { HFD, HFDE } \end{aligned}$	$\begin{aligned} & \text { JD, JDB } \\ & \text { HJD } \\ & \text { KD, KDB } \\ & \text { HKD } \end{aligned}$	FDB FD, FDE HFD, HFDE FDC JD, JDB HJD JDC KD, KDB HKD KDC
600		$\begin{aligned} & \text { LD, LDB } \\ & \text { CLD } \end{aligned}$	$\begin{aligned} & \text { HLD, HLDB } \\ & \text { CHLD } \end{aligned}$			
		$\begin{aligned} & \text { FD, FDE } \\ & \mathrm{JD}, \mathrm{JDB} \end{aligned}$	$\begin{aligned} & \text { KD, KDB } \\ & \text { LD, LDB } \end{aligned}$			

120/240 Vac-Fuse/Breaker Series Ratings
Main fuse class shown at top in shaded area. Respective branch devices shown directly below.

Main Fuse Maximum Amperes	Series Equipment Rating-kA Symmetrical					
	100			200		
100						R
						BA, BAB HOP QBHW QPHW GB GHB
200			R	J	T	
			$\begin{aligned} & \text { GB } \\ & \text { GHB } \end{aligned}$	$B A, B A B$ HOP QBHW QPHW	BA, BAB HOP QBHW QPHW	
400	J	T		J	T	
	BA, BAB HOP QBHW QPHW	BA, BAB HOP QBHW QPHW		$\begin{aligned} & \text { GB } \\ & \text { GHB } \end{aligned}$	GB	

Panelboards and Lighting Control

Pow-R-Line C Panelboards

240 Vac-Fuse/Breaker Series Ratings
For single-pole and two-pole 120/240 volt rated breakers (BA, BAB, HQP, OBHW, OPHW), see Page V2-T3-23.
Main fuse class shown at top in shaded area. Respective branch devices shown directly below.

Main Fuse Maximum Amperes	Series Equipment Rating-kA Symmetrical					
	100			200		
100						R
						BAB_H HOP_H QBHW_H QPHW_H GB GHB
200			R	J	T	R
			$\begin{aligned} & \text { GB } \\ & \text { GHB } \end{aligned}$	$\begin{aligned} & \text { BAB_H } \\ & \text { HOP_H } \\ & \text { QBHW_H } \\ & \text { OPHW_H } \end{aligned}$	$\begin{aligned} & \text { BAB_H } \\ & \text { HQP_H } \\ & \text { QBHW_H } \\ & \text { OPHW_H } \end{aligned}$	$\begin{aligned} & \text { GB (1) } \\ & \text { GHB (1) } \end{aligned}$
400	J	T		J	T	
	BAB_H HQP_H QBHW_H QPHW_H	$\begin{aligned} & \text { BAB_H } \\ & \text { HOP_H } \\ & \text { QBHW_H } \\ & \text { OPHW_H } \end{aligned}$		$\begin{aligned} & \text { GB } \\ & \text { GHB } \end{aligned}$	$\begin{aligned} & \text { GB } \\ & \text { GHB } \end{aligned}$	
600			L			
			EHD FDB FD, FDE ED JD, JDB DK, KD, KDB			

277-Vac Fuse/Breaker Series Ratings

Main fuse class are shown at top in shaded area. Respective branch devices shown directly below.
All ratings in this table apply to single-pole branch breakers only. For two- and three-pole branch breakers, consult other tables.

Main Fuse Maximum Amperes	Series Equipment Rating-kA Symmetrical						
	65		100			200	
100			J	T		R	
			$\begin{aligned} & \text { GHBS } \\ & \text { GHO } \\ & \text { GHQRSP } \end{aligned}$	GHBS GHO GHORSP		GHB	
200	J	T	J	T	R		
	GHBS GHO GHORSP	GHBS GHO GHQRSP	$\begin{aligned} & \text { EHD } \\ & \text { FD } \\ & \text { HFD } \end{aligned}$	$\begin{aligned} & \text { EHD } \\ & \text { FD } \\ & \text { HFD } \end{aligned}$	GHB		
400						J	T
						GHB	GHB

Note

(1) Valid on two- and three-pole breakers only. Not valid for single-pole.

480Y/277 Vac-Fuse/Breaker Series Ratings
Main fuse class shown at top in shaded area. Respective branch devices shown directly below. All ratings in this table apply to two- and three-pole branch breakers only. Not valid for singlepole branch breakers.

Main Fuse Maximum							
		Series Equipment Rating-kA Symmetrical					
	65		100		200		
100			J	T			R
			GHBS	GHBS			GHB
200	J	T		R			
	GHBS	GHBS		GHB			
400					J	T	
					GHB	GHB	
600			J	T			
			EHD FD, FDE HFD FDC HFDE	GHB EHD FD, FDE HFD, HFDE FDC JD HJD JDC			

480 Vac-Fuse/Breaker Series Ratings

Main fuse class shown at top in shaded area. Respective branch devices shown directly below. All ratings in this table apply to two- and three-pole branch breakers only. Not valid for singlepole branch breakers.

Main Fuse Maximum Amperes	Series Equipment Rating-kA Symmetrical			
100	$\mathbf{1 0 0}$	R		
		$\mathbf{2 0 0}$		
200	\mathbf{J}	T		
	EHD	EHD		
	FD	FD		
	HFD	HFD		
	FDC	FDC		

600 Vac-Fuse/Breaker Series Ratings
Main fuse class shown at top in shaded area. Respective branch devices shown directly below. All ratings in this table apply to two- and three-pole branch breakers only. Not valid for singlepole branch breakers.

Triple Series Ratings

Main Fuse Class and Maximum Amperes	Tenant Main Type	Branch Type	Short- Circuit Series Rating (kA, Sym.)	
L-6000	DK, KD, KDB	GB, GHB, EHD ©	240	100
L-6000	DK, KD, KDB	GB, GHB	$120 / 240$	100
L-6000	DK, KD, KDB	FD (1, FDB	240	100
L-6000	DK, KD, KDB	JD, JDB	240	100
L-6000	JD, JDB	GB, GHB	240	100
L-6000	JD, JDB	GB, GHB	$120 / 240$	100
L-6000	FD	GB, GHB	240	100
L-6000	FD	GB, GHB	$120 / 240$	100
L-6000	FD, FDB	BAB_H, HQP_H	240	100
L-6000	FD, FDB	BA, BAB		
L-6000	EHD	BAB_H, HOP_H	240	100
L-6000	EHD	BA, BAB, HOP	$120 / 240$	100

Note
(1) Valid on two- and three-pole breakers only. Not valid for single-pole.

Type PRL1a

3
Contents
Description Page
Product Description V2-T3-7
Application Description V2-T3-8
Standards and Certifications V2-T3-10
Technical Data and Specifications V2-T3-11
Type PRL1a
Product Selection. V2-T3-27
Box Sizing and Selection V2-T3-28
Type PRL1aF V2-T3-30
Type PRL1a-LX V2-T3-34
Type PRL2a V2-T3-38
Type PRL2aF V2-T3-42
Type PRL2a-LX V2-T3-46
Retrofit Panelboard V2-T3-50
Type PRL3a V2-T3-58
Type PRL4. V2-T3-66
Type PRL4D V2-T3-76
Type PRL5P V2-T3-86

Type PRL1a

Product Description

- 240 Vac maximum
- Three-phase four-wire, three-phase three-wire, single-phase three-wire, single-phase two-wire
- 400 A maximum mains
- 100A maximum branch breakers
- Bolt-on or plug-on branch breakers
- Each branch connector is capable of up to a total of 140A maximum by breaker ampere rating
- Factory assembled
- Refer to Page V2-T3-7 for additional information

Application Description

- Lighting branch panelboard
- Fully rated or series rated
- Interrupting ratings up to 200 kA symmetrical
- Suitable for use as Service Entrance Equipment, when specified on the order
- See Pages V2-T3-7 through V2-T3-23 for additional information

Standards and Certifications

- UL 67, UL 50
- Federal Specification W-P-115c
- Refer to Page V2-T3-7 for additional information

Product Selection

PRL1a Ampere Rating	Interrupting Rating (kA Sym.) $\mathbf{2 4 0}$ Vac	Breaker Type			
Main Lug Only			\quad	100	-
:---	:---				
225	-				
400	-				
600	-				
Main Breaker					
100	10				
100	22				

PRL1a Branch Circuit Breakers
Bolt-on = BAB, QBHW, QBGF, QBHGF, QBGFEP, QBHGFEP, QBAF, QBAG, QBHAF, QBHAG Plug-on = HOP, QPHW, QPGF, QPHGF, QPGFEP, QPHGFEP

Ampere Rating	Interrupting Rating (kA Sym.) 240 Vac	Breaker Type
15-60	10	BAB, HOP
70	10	BAB, HOP
80-100	10	BAB, HOP
15-50 (2)	10	OBGF, OPGF ${ }^{\text {8 }}$
15-50 (2)	10	QBGFEP, QPGFEP ©
15-20	10	QBCAF ©
15-60	10	BAB-D, HQP-D ©
15-30	10	BAB-C, HQP-B ©
15-30	10	BABRP (8)
15-30	10	BABRSP ©
15-60	22	QBHW, OPHW
70	22	QBHW, QPHW
80-100	22	QBHW, QPHW
15-30	22	QBHGF, QPHGF (3)
15-30	22	OBHGFEP, QPHGFEP (4)
15-20	22	QBHCAF ${ }^{\text {© }}$
Provision	-	-

Notes

(1) Single-pole breakers are rated 120 Vac maximum.
(2) 50 A devices are available as two-pole only.
(3) GFCI for 5 mA personnel protection.
(4) GFP for 30 mA equipment protection.
(5) Arc fault circuit breaker.
© HID (High Intensity Discharge) rated breaker.
(7) Switching Neutral Breaker. single-pole device requires two-pole space, two-pole device requires three-pole space.
(8) Solenoid operated breaker.

Box Sizing and Selection

Approximate Dimensions in Inches (mm)

Assembled Circuit
 Breaker Panelboards and Lighting Controls

Box size and box and trim catalog numbers for all standard panelboard types are found on
Page V2-T3-29.

Instructions

1. Using description of the required panelboard select the rating and type of main required.
2. Count the total number of branch circuit poles, including provisions, required in the panelboard. Do not count main breaker poles. Convert twoor three-pole branch breaker to single-poles, i.e., three-pole breaker, count as three poles.

Determine sub-feed breaker or through-feed lug requirements.
3. Select the main ampere rating section from table on Page V2-T3-29.
4. Select panelboard type from first column, main breaker frame, if applicable, from second column, and sub-feed breaker frame, if applicable, from the third column.
5. From Step \#2, determine the number of branch circuits in Column 4.
6. Read box size, box and trim catalog numbers across columns to the right. Specify surface or flush mounting on the order.

Cabinets

Fronts are code-gauge steel, ANSI-61 light gray painted finish.

Boxes are code-gauge galvanized steel without knockouts. Standard depth is $5-3 / 4$ inches (146.1 mm). Standard width is 20 inches $(508.0 \mathrm{~mm}$). An optional 28 -inch (711.2 mm) wide box is available.

Top and Bottom Gutters
5-1/2 inches (139.7 mm) minimum.

PRL1a Panelboard Sizing

Panelboard Types	Main Breaker Types and Mounting Position $(H)=$ Horizontal (V) = Vertical	Sub-Feed Breaker Types and Mounting Position (H) = Horizontal (V) = Vertical	Maximum No. of Branch Circuits Including Provisions	Box Dimensi Height	ons ${ }^{\text {® }}$ Width	Depth	YS Box Catalog Number	LT Trim Catalog Number	EZ Box Catalog Number	EZ Trim Catalog Number
100 A										
Main breaker	BAB, QBHW (H)	-	15	36.00 (914.4)	20.00 (508.0)	5.75 (146.1)	YS2036	LT2036S or F	EZB2036R	EZT2036S or F
		-	27	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
		-	39	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
		-	42	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
Main lugs or main breaker	EHD FD, HFD (V)	-	18	36.00 (914.4)	20.00 (508.0)	5.75 (146.1)	YS2036	LT2036S or F	EZB2036R	EZT2036S or F
		-	30	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
		-	42	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
Main lugs or main breaker with 100 A through-feed lugs or sub-feed breaker	EHD FD HFD (V)	EHD FD HFD (V)	18	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
			30	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
			42	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
225 A										
Main lugs or main breaker	$\begin{aligned} & \text { EDB, EDS, ED, } \\ & \text { EDH, FD, HFD } \\ & \text { (V) } \end{aligned}$	-	18	36.00 (914.4)	20.00 (508.0)	5.75 (146.1)	YS2036	LT2036S or F	EZB2036R	EZT2036S or F
		-	30	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
		-	42	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
Main lugs or main breaker with 225 A throughfeed lugs or sub-feed breaker	$\begin{aligned} & \text { FD, HFD, } \\ & \text { EDS, ED, } \\ & \text { EDH } \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \text { FD, HFD, } \\ & \text { EDS, ED, } \\ & \text { EDH } \\ & \text { (V) } \end{aligned}$	18	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
			30	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
			42	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
400 A										
Main breaker	DK, KD, HKD, KDC, LHH (V)	-	18	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
		-	30	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
		-	42	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
Main lugs or main breaker with 225 A through-feed lugs or sub-feed breaker	$\begin{aligned} & \text { DK, KD, HKD, } \\ & \text { KDC, LHH } \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \mathrm{FD,}, \mathrm{HFD}, \\ & \mathrm{EDS}, \mathrm{ED}, \\ & \mathrm{EDH} \\ & \text { (V) } \end{aligned}$	18	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
			30	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
			42	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
Main breaker with 400 A through-feed lugs or sub-feed breaker	DK, KD, HKD, KDC, LHH (V)	$\begin{aligned} & \text { DK, KD, } \\ & \text { HKD, KDC } \\ & \text { (V) } \end{aligned}$	18	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
			30	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
			42	90.00 (2286.0)	20.00 (508.0)	5.75 (146.1)	YS2090	LT2090S or F	EZB2090R	EZT2090S or F
600 A										
Main breaker	LGE, LGS, LGH, LGC, LGU (V)	-	18	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
		-	30	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
		-	42	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
Main lugs or main breaker with 225 A through-feed lugs or sub-feed breaker	LGE, LGS, LGH, LGC, LGU (V)	FD, HFD, EDS ED, EDH (V)	18	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
			30	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
			42	90.00 (2286.0)	20.00 (508.0)	5.75 (146.1)	YS2090	LT2090S or F	EZB2090R	EZT2090S or F
Main breaker with 400 A through-feed lugs or sub-feed breaker	LGE, LGS, LGH, LGC, LGU (V)	DK, KD, HKD, KDC (V)	18	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
			30	90.00 (2286.0)	20.00 (508.0)	5.75 (146.1)	YS2090	LT2090S or F	EZB2090R	EZT2090S or F
			42	90.00 (2286.0)	20.00 (508.0)	5.75 (146.1)	YS2090	LT2090S or F	EZB2090R	EZT2090S or F
Main breaker with 600 A through-feed lugs or sub-feed breaker	LGE, LGS, LGH, LGC, LGU (V)	LGE, LGS, LGH, LGC (V)	18	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
			30	90.00 (2286.0)	20.00 (508.0)	5.75 (146.1)	YS2090	LT2090S or F	EZB2090R	EZT2090S or F
			42	90.00 (2286.0)	20.00 (508.0)	5.75 (146.1)	YS2090	LT2090S or F	EZB2090R	EZT2090S or F

Note
(1) Smaller panelboard box sizes are available if required. Contact Eaton for application information.

Type PRL1aF

Product Description

- 240 Vac maximum
- 400A maximum mains
- Three-phase four-wire, single-phase three-wire
- 30A maximum branch devices
- Factory assembled

Application Description

- Lighting branch panelboards
- Instrument protection
- Fully rated
- Interrupting ratings up to 200 kA symmetrical when protected by fuse

Contents	
Description	Page
Product Description.	V2-T3-7
Application Description	V2-T3-8
Standards and Certifications .	V2-T3-10
Technical Data and Specifications	V2-T3-11
Type PRL1a.	V2-T3-26
Type PRL1aF	
Product Selection.	V2-T3-31
Box Sizing and Selection	V2-T3-32
Type PRL1a-LX	V2-T3-34
Type PRL2a	V2-T3-38
Type PRL2aF	V2-T3-42
Type PRL2a-LX	V2-T3-46
Retrofit Panelboard	V2-T3-50
Type PRL3a	V2-T3-58
Type PRL3E	V2-T3-62
Type PRL4.	V2-T3-66
Type PRL4D	V2-T3-76
Type PRL5P	V2-T3-86

Standards and Certifications

- UL 67, UL 50

Product Selection

PRL1aF

Ampere Rating	Interrupting Rating (kA Sym.) 240 Vac	Breaker Type
Main Lug Only		
100	-	-
225	-	-
400	-	-
Main Breaker		
100	18	EHD
100	22	EDB
100	42	EDS
100	65	ED
100	65	FD
100	65	FDE
100	100	EDH
100	100	HFD
100	100	HFDE
225	22	EDB
225	42	EDS
225	65	ED
225	65	FD
225	65	FDE
225	100	EDH
225	100	HFD
225	100	HFDE
400	42	DK
400	65	KD
400	100	HKD
400	200	KDC
400	200	LHH

PRL1aF—Branch Overcurrent Devices Hybrid breaker/fuse (Class CC) branch device

Ampere Rating	Interrupting Rating	Breaker Type
30	200	Hybrid

Box Sizing and Selection

Approximate Dimensions in Inches (mm)

Assembled Circuit Breaker Panelboards

Box size and box and trim catalog numbers for all standard panelboard types are found on
Page V2-T3-33.

Instructions

1. Using description of the required panelboard, select the rating and type of main required.
2. Count the total number of branch circuit poles, including provisions, required in the panelboard.

Determine through-feed lug requirements.
3. Select the main ampere rating section from table on Page V2-T3-33.
4. Select panelboard type from first column, main breaker frame.
5. From Step \#2, determine the number of branch circuits in Column 4.
6. Read box size, box and trim catalog numbers across columns to the right. Specify surface or flush mounting on the order.

Cabinets

Fronts are code-gauge steel, ANSI-61 light gray painted finish.

Boxes are code-gauge galvanized steel without knockouts. Standard depth is $5-3 / 4$ inches (146.1 mm). Standard width is 20 inches $(508.0 \mathrm{~mm}$). An optional 28 -inch (711.2 mm) wide box is available.

Top and Bottom Gutters

5-1/2 inches (139.7 mm) minimum.

Approximate Dimensions in Inches (mm)

Note
(1) Smaller panelboard box sizes are available if required. Contact Eaton for application information.

Panelboards and Lighting Control
Pow-R-Line C Panelboards

Type PRL1a-LX, Column Type

Contents	
Description	Page
Product Description.	V2-T3-7
Application Description	V2-T3-8
Standards and Certifications	V2-T3-10
Technical Data and Specifications .	V2-T3-11
Type PRL1a	V2-T3-26
Type PRL1aF	V2-T3-30
Type PRL1a-LX	
Product Selection.	V2-T3-35
Box Sizing and Selection	V2-T3-36
Type PRL2a	V2-T3-38
Type PRL2aF	V2-T3-42
Type PRL2a-LX	V2-T3-46
Retrofit Panelboard	V2-T3-50
Type PRL3a	V2-T3-58
Type PRL3E	V2-T3-62
Type PRL4	V2-T3-66
Type PRL4D	V2-T3-76
Type PRL5P.	V2-T3-86

Standards and Certifications

- UL 67, UL 50
- Federal Specification W-P-115c
- Refer to Page V2-T3-7 for additional information

Product Selection

Type PRL1a-LX	PRL1a-LX		
	Ampere Rating	Interrupting Rating (kA Sym.) 240 Vac	Breaker Type
	Main Lug Only		
	100	-	-
	225	-	-
	Main Breaker		
	100	10	BAB
	100	18	EHD
	100	22	QBHW
	100	22	EDB
	100	42	EDS
	100	65	ED
	100	65	FD
	100	100	EDH
	100	100	HFD
	255	22	EDB
	255	42	EDS
	225	65	ED
	225	100	EDH

Branch Circuit Breakers-PRL1a-LX ©

Ampere Rating	Interrupting Rating (kA Sym.) 240 Vac ${ }^{2}$	Breaker Type
15-60	10	BAB
70	10	BAB
80-100	10	BAB
15-50 ③	10	QBGF ${ }^{4}$
15-50 (3)	10	QBGFEP (5)
15-20	10	QBCAF ${ }^{\text {© }}$
15-30	10	BABRP ${ }^{(2)}$
15-30	10	BABRSP (${ }^{\text {P }}$
15-60	22	QBHW
70	22	QBHW
80-100	22	OBHW
15-30	22	QBHGF (4)
15-30	22	QBHGFEP (5)
15-20	22	QBHCAF ${ }^{\text {6 }}$
Provision	-	-

Pull Box With Extension Trough

Includes pull box with trough extension. For additional trough extensions, refer to table below.

Description	Catalog Number
Pullbox with 36-inch trough	XCTXB036
Pullbox with 48-inch trough	XCTXB048
Pullbox with 60-inch trough	XCTXB060
Pullbox with 72-inch trough	XCTXB072
Pullbox with 84-inch trough	XCTXB084

Neutral Bars

When Column Type panels are furnished with trough extensions and pull box, the neutral bar will be placed in the pull box unless otherwise specified.

When troughs and pull box are not furnished, the neutral bar will be located on the panel at the same end as the main.

Additional Trough Extensions

Width and depth are the same as the panelboard.

Length Inches (mm)	Catalog Number
$36.00(914.4)$	CTXB036
$48.00(1219.2)$	CTXB048
$60.00(1524.0)$	CTXB060
$72.00(1828.8)$	CTXB072
$84.00(2133.6)$	CTXB084

Notes

(1) 240 V breakers must be used on three-phase, three-wire, 240 V delta systems or on the high leg of a midpoint delta grounded system.
(2) Single-pole breakers are rated 120 Vac maximum.
(3) 50A devices are available as two-pole only.
(4) GFCI for 5 mA personnel protection.
(5) GFP for 30 mA equipment protection.
(6) Arc fault circuit breaker.
(7) Solenoid operated breaker.

Box Sizing and Selection

Approximate Dimensions in Inches (mm)

Assembled Circuit Breaker Panelboards

Box size, box and trim catalog numbers for standard Column Type panelboards listed are available from tables on

Page V2-T3-37.

Instructions

1. Using description of the required panelboard, select the rating and type of main required.
a. 100A panelboardsPage V2-T3-37.
b. 225A panelboardsPage V2-T3-37.
2. Count the total number of branch circuit poles, including provisions, required in the panelboard. Do not count main breaker poles. Convert two- or threepole branch breaker to single poles, i.e., threepole breaker, count as three poles. Determine sub-feed breaker or through-feed lug requirements.
3. Select the panelboard main ampere rating from tables on Page V2-T3-37.
4. Panelboard Type from first column, main breaker Frame and Designation, if applicable from second column, and sub-feed breaker Frame and Designation, if applicable, from the third column.
5. From Step \#2, determine the number of branch circuits in Column 4.
6. Read box size, box and trim catalog numbers across columns to the right. All panels are surface mounted.

Cabinets

Boxes and trims are codegauge steel, ANSI-61 light gray painted finish.
Boxes are furnished without knockouts. Standard depth is 6.00 inches (152.4 mm).
Standard width is
8.63 inches (219.1 mm).

Top and Bottom Gutters
4.50 inches (114.3 mm) minimum.

Left Side Gutter

4.38 inches (111.2 mm) minimum.

Pull Box

Pull box is furnished without knockouts. Standard dimensions:

Pull Box Dimensions

Height	Width	Depth
$12.00(304.8)$	$16.00(406.4)$	$6.00(152.4)$

PRL1a-LX Trough Extension

Trough Extension

When extension troughs are used, Section 376 of the National Electrical Code, reading as follows, should be observed: 376. Number of Conductors. Wireways shall not contain more than 30 conductors at any cross section, unless the conductors are for signal circuits or are control conductors between a motor and its starter and used only for starting duty. The sum of the cross-sectional areas of all contained conductors at any cross section of a wireway shall not exceed 20% of the interior crosssectional area of the wireway.

Approximate Dimensions in Inches (mm)
100A Maximum PRL1a-LX Column Type Panelboard Sizing

Panelboard Types	Main Breaker Types Mounting: (H) = Horizontal (V) = Vertical	Sub-Feed Breaker Types Vertical Mounting	Maximum Number of Branch Circuits Including Provisions	Box Dimensio Height	Width	Depth	Box Catalog Number	Trim Catalog Number
Main breaker	BAB, QBHW (H)	-	27	69.00 (1752.6)	8.63 (219.2)	6.00 (152.4)	YSC969	LTC969S
		-	39	81.00 (2057.4)	8.63 (219.2)	6.00 (152.4)	YSC981	LTC981S
Main lugs or main breaker	EHD, EDB, EDS, ED, FD, HFD (V)	-	30	69.00 (1752.6)	8.63 (219.2)	6.00 (152.4)	YSC969	LTC969S
		-	42	81.00 (2057.4)	8.63 (219.2)	6.00 (152.4)	YSC981	LTC981S
Main lugs or main breaker with 100A through-feed lugs or sub-feed breaker	EHD, EDB, EDS, ED, FD, HFD (V)	EHD, FD, HFD	30	78.00 (1981.2)	8.63 (219.2)	6.00 (152.4)	YSC978	LTC978S
			42	90.00 (2286.0)	8.63 (219.2)	6.00 (152.4)	YSC990	LTC990S

225A Maximum PRL1a-LX Column Type Panelboard Sizing
$\left.\begin{array}{lllllllllll} & \begin{array}{lllll}\text { Main Breaker } \\ \text { Types }\end{array} & \begin{array}{l}\text { Sub-Feed } \\ \text { Breaker Types }\end{array} & \begin{array}{l}\text { Maximum } \\ \text { Number } \\ \text { of Branch }\end{array} & \text { Box Dimensions Inches }\end{array}\right]$

Note

(1) Add suffix B to trim catalog number for bottom fed panelboards (i.e., LTC969SB).

Type PRL2a

3

Type PRL2a

Product Description

- 480Y/277 Vac maximum (125 Vdc)
- Three-phase four-wire, three-phase three-wire, single-phase three-wire, single-phase two-wire
- 600 A maximum mains
- 100 A maximum branch breakers
- Bolt-on branch breakers
- Each branch connector is capable of up to a total of 140 A maximum by breaker ampere rating
- Factory assembled
- Refer to Page V2-T3-7 for additional information

Application Description

- Lighting branch panelboard
- Fully rated or series rated
- Interrupting ratings up to 200 kA symmetrical
- Suitable for use as Service Entrance Equipment, when specified on the order
- See Pages V2-T3-7 through V2-T3-23 for additional information

Contents	
Description	Page
Product Description.	V2-T3-7
Application Description	V2-T3-8
Standards and Certifications	V2-T3-10
Technical Data and Specifications .	V2-T3-11
Type PRL1a	V2-T3-26
Type PRL1aF	V2-T3-30
Type PRL1a-LX	V2-T3-34
Type PRL2a	
Product Selection.	V2-T3-39
Box Sizing and Selection	V2-T3-40
Type PRL2aF	V2-T3-42
Type PRL2a-LX	V2-T3-46
Retrofit Panelboard	V2-T3-50
Type PRL3a	V2-T3-58
Type PRL3E.	V2-T3-62
Type PRL4	V2-T3-66
Type PRL4D	V2-T3-76
Type PRL5P.	V2-T3-86

Standards and Certifications

- UL 67, UL 50
- Federal Specification W-P-115c
- Refer to Page V2-T3-7 for additional information

Product Selection

Type PRL2a	PRL2a				
	Ampere Rating	Interrupt (kA Sym 240 Vac	ting Rating metrical) 480Y/277 Vac	125/250 Vdc	Breaker Type
	Main Lug Only				
	100	-	-	-	-
	225	-	-	-	-
	400	-	-	-	-
	600	-	-	-	-
	Main Breaker				
	100	65	14	14	GHB
	100	18	14	10	EHD
	100	65	35	10	FD, FDE
	100	100	65	22	HFD, HFDE
	100	200	100	22	FDC
	225	65	-	-	ED
	225	65	35	10	FD, FDE
	225	100	65	22	HFD, HFDE
	225	200	100	22	FDC
	250	65	35	10	JD
	250	100	65	22	HJD
	250	200	100	22	JDC
	400	65	35	10	KD
	400	100	65	22	HKD
	400	100	65	-	LHH
	400	200	100	22	KDC
	600	65	35	22	LGE
	600	85	50	22	LGS
	600	100	65	42	LGH
	600	200	100	42	LGC, LGU

PRL2a Branch Circuit Breakers

Ampere Rating	Interrupting Rating (kA Symmetrical)			Breaker Type
	$240 \mathrm{Vac}{ }^{1}$	480Y/277 Vac	125/250 Vdc	
15-20	65	14	-	GH0 (2)
15-20	65	14	14	GHB (2)
25-60	65	14	14	GHB (2)
70-100	65	14	14	GHB (2)
15-30	65	25	-	HGHB ${ }^{(2)}$
15-20	65	14	-	GHQRSP (3)
15-30	65	14	-	GHBS (2) ${ }^{\text {(3) }}$
15-60	-	14	-	GHBGFEP (2) 4
15-20	-	14	-	GHBHID (2)(5)
Provision	-	-	-	-

Notes

(1) Interrupting ratings in this column are applicable to 120 Vac for single-pole breakers.
(2) Must be used on $480 \mathrm{Y} / 277 \mathrm{~V}$ grounded wye systems only.
(3) Remote controllable breaker.
(4) GFP for 30 mA equipment protection. Requires two-pole spaces. 277 Vac only.
(5) HID (High Intensity Discharge) rated breaker.

Box Sizing and Selection

Approximate Dimensions in Inches (mm)

Assembled Circuit
 Breaker Panelboards and Lighting Controls

Box size and box and trim catalog numbers for all standard panelboard types are found on

Page V2-T3-41.

Instructions

1. Using description of the required panelboard select the rating and type of main required.
2. Count the total number of branch circuit poles, including provisions, required in the panelboard. Do not count main breaker poles. Convert twoor three-pole branch breaker to single-poles, i.e., three-pole breaker, count as three poles.

Determine sub-feed breaker or through-feed lug requirements.
3. Select the main ampere rating section from table on Page V2-T3-41.
4. Select panelboard type from first column, main breaker frame, if applicable, from second column, and sub-feed breaker frame, if applicable, from the third column.
5. From Step \#2, determine the number of branch circuits in Column 4.
6. Read box size, box and trim catalog numbers across columns to the right. Specify surface or flush mounting on the order.

Cabinets

Fronts are code-gauge steel, ANSI-61 light gray painted finish.

Boxes are code-gauge galvanized steel without knockouts. Standard depth is $5-3 / 4$ inches (146.1 mm). Standard width is 20 inches (508.0 mm). An optional 28 -inch (711.2 mm) wide box is available.

Top and Bottom Gutters

5-1/2 inches (139.7 mm) minimum.

Approximate Dimensions in Inches (mm)

PRL2a Panelboard Sizing

	Main Breaker Types	Sub-Feed Breaker Types		men						
Panelboard Types	$\begin{aligned} & (\mathrm{H})=\text { Horizontal } \\ & (\mathrm{V})=\text { Vertical } \end{aligned}$	$\begin{aligned} & \text { (H) = Horizontal } \\ & (\mathrm{V})=\text { Vertical } \end{aligned}$	Including Provisions	Height	Width	Depth	Catalog Number	Catalog Number	Catalog Number	Catalog Number
100 A										
Main breaker	GHB(H)	-	15	36.00 (914.4)	20.00 (508.0)	5.75 (146.1)	YS2036	LT2036S or F	EZB2036R	EZT2036S or F
		-	27	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
		-	39	48.00 (1219.2)	20.00 (508.0)	5.75(146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
		-	42	60.00 (1524.0)	20.00 (508.0)	5.75(146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
Main lugs or main breaker	EHD FD, HFD, FDE HFDE (V)	-	18	36.00 (914.4)	20.00 (508.0)	5.75(146.1)	YS2036	LT2036S or F	EZB2036R	EZT2036S or F
		-	30	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
		-	42	48.00 (1219.2)	20.00 (508.0)	5.75(146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
Main lugs or main breaker with 100 A through-feed lugs or sub-feed breaker	EHD FD, FDE HFD, HFDE (V)	EHD FD HFD (V)	18	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
			30	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
			42	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
225 A										
Main lugs or main breaker	EDB, EDS, ED, EDH, FD, HFD FDE, HFDE (V)	-	18	36.00 (914.4)	20.00 (508.0)	5.75 (146.1)	YS2036	LT2036S or F	EZB2036R	EZT2036S or F
		-	30	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
		-	42	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
	$\begin{aligned} & \text { JD, HJD } \\ & \mathrm{JDC} \\ & \text { (V) } \end{aligned}$	-	18	60.00 (1524.0)	20.00 (508.0)	5.75(146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
		-	30	60.00 (1524.0)	20.00 (508.0)	5.75(146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
		-	42	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
Main lugs or main breaker with 225A through-feed lugs or sub-feed breaker	```EHD,FD,HFD, EDB,EDS,ED, EDH FDE, HFDE (V)```	$\begin{aligned} & \text { EHD, FD, HFD, } \\ & \text { EDB, EDS, ED, } \\ & \text { EDH (V) } \end{aligned}$	18	48.00 (1219.2)	20.00 (508.0)	5.75(146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
			30	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
			42	60.00 (1524.0)	20.00 (508.0)	5.75(146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
	$\begin{aligned} & \text { JD, HJD } \\ & \text { JDC } \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \text { EHD, FD, HFD, } \\ & \text { EDB, EDS, ED, } \\ & \text { EDH (V) } \end{aligned}$	18	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
			30	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
			42	72.00 (1828.8)	20.00 (508.0)	5.75(146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
400 A										
Main lugs or main breaker	$\begin{aligned} & \text { DK, KD, HKD, } \\ & \text { KDC, LHH } \\ & \text { (V) } \end{aligned}$	-	18	60.00 (1524.0)	20.00 (508.0)	5.75(146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
		-	30	60.00 (1524.0)	20.00 (508.0)	5.75(146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
		-	42	72.00 (1828.8)	20.00 (508.0)	5.75(146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
Main lugs or main breaker with 225A through-feed lugs or sub-feed breaker	$\begin{aligned} & \text { DK, KD, HKD, } \\ & \text { KDC, LHH } \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \text { EHD, FD, HFD, } \\ & \text { EDB, EDS, ED, } \\ & \text { EDH (V) } \end{aligned}$	18	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
			30	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
			42	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
Main lugs or main breaker with 400A through-feed lugs or sub-feed breaker	$\begin{aligned} & \text { DK, KD, HKD, } \\ & \text { KDC, LHH } \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \text { JD, HJD, JDC, } \\ & \text { DK, KD, } \\ & \text { HKD, KDC } \\ & \text { (V) } \end{aligned}$	18	72.00 (1828.8)	20.00 (508.0)	5.75(146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
			30	90.00 (2286.0)	20.00 (508.0)	5.75 (146.1)	YS2090	LT2090S or F	EZB2090R	EZT2090S or F
			42	90.00 (2286.0)	20.00 (508.0)	5.75 (146.1)	YS2090	LT2090S or F	EZB2090R	EZT2090S or F
600 A										
Main breaker	LGE, LGS, LGH, LGC, LGU (V)	-	18	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
		-	30	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
		-	42	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
Main lugs or main breaker with 225A through-feed lugs or sub-feed breaker	LGE, LGS, LGH, LGC, LGU (V)	FD, HFD, EDS, ED, EDH (V)	18	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
			30	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
			42	90.00 (2286.0)	20.00 (508.0)	5.75 (146.1)	YS2090	LT2090S or F	EZB2090R	EZT2090S or F
Main breaker with 400 A through-feed lugs or sub-feed breaker	LGE, LGS, LGH, LGC, LGU (V)	$\begin{aligned} & \text { DK, KD, } \\ & \text { HKD, } \\ & \text { KDC } \\ & \text { (V) } \end{aligned}$	18	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
			30	90.00 (2286.0)	20.00 (508.0)	5.75 (146.1)	YS2090	LT2090S or F	EZB2090R	EZT2090S or F
			42	90.00 (2286.0)	20.00 (508.0)	5.75 (146.1)	YS2090	LT2090S or F	EZB2090R	EZT2090S or F
Main breaker with 600 A through-feed lugs or sub-feed breaker	LGE, LGS, LGH, LGC, LGU (V)	LGE, LGS, LGH, LGC (V)	18	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
			30	90.00 (2286.0)	20.00 (508.0)	5.75 (146.1)	YS2090	LT2090S or F	EZB2090R	EZT2090S or F
			42	90.00 (2286.0)	20.00 (508.0)	5.75 (146.1)	YS2090	LT2090S or F	EZB2090R	EZT2090S or F

Note
(1) Smaller panelboard box sizes are available if required. Contact Eaton for application information.

Type PRL2aF

Product Description

- 240 Vac maximum
- 400A maximum mains
- Three-phase four-wire, single-phase three-wire
- 30A maximum branch devices
- Factory assembled

Application Description

- Lighting branch panelboard
- Instrument protection
- Fully rated
- Interrupting ratings up to 200 kA symmetrical when protected by fuse

Contents	
Description	Page
Product Description.	V2-T3-7
Application Description	V2-T3-8
Standards and Certifications	V2-T3-10
Technical Data and Specifications .	V2-T3-11
Type PRL1a	V2-T3-26
Type PRL1aF	V2-T3-30
Type PRL1a-LX	V2-T3-34
Type PRL2a	V2-T3-38
Type PRL2aF	
Product Selection.	V2-T3-43
Box Sizing and Selection	V2-T3-44
Type PRL2a-LX	V2-T3-46
Retrofit Panelboard	V2-T3-50
Type PRL3a.	V2-T3-58
Type PRL3E.	V2-T3-62
Type PRL4	V2-T3-66
Type PRL4D	V2-T3-76
Type PRL5P.	V2-T3-86

Standards and Certifications

- UL 67, UL 50

Listed

Product Selection

PRL2aF

Ampere Rating	Interrupting Rating (kA Sym.) 480Y/277 Vac	Breaker Type
Main Lug Only		
100	-	-
225	-	-
400	-	-
Main Breaker		
100	35	EHD
100	35	FD
100	35	FDE
100	35	HFD
100	35	FD
225	65	FDE
225	65	HFD
225	35	KFDE
225	65	HKD
400	100	KDC
400	100	LHH
400		
400	-	

PRL2aF Branch Overcurrent Devices
Hybrid breaker/fuse (Class CC) branch device

	Interrupting Rating (kA Sym.) 480Y/277 Vac	Breaker Type
30	200	Hybrid

Panelboards and Lighting Control
Pow-R-Line C Panelboards

Box Sizing and Selection

Approximate Dimensions in Inches (mm)

Assembled Circuit Breaker Panelboards

Box size and box and trim catalog numbers for all standard panelboard types are found on

Page V2-T3-45.

Instructions

1. Using description of the required panelboard, select the rating and type of main required.
2. Count the total number of branch circuit poles, including provisions, required in the panelboard.

Determine through-feed lug requirements.
3. Select the main ampere rating section from table on Page V2-T3-45.
4. Select panelboard type from first column, main breaker frame, if applicable, from second column.
5. From Step \#2, determine the number of branch circuits in Column 4.
6. Read box size, box and trim catalog numbers across columns to the right. Specify surface or flush mounting on the order.

Cabinets

Fronts are code-gauge steel, ANSI-61 light gray painted finish.

Boxes are code-gauge galvanized steel without knockouts. Standard depth is $5-3 / 4$ inches (146.1 mm). Standard width is 20 inches (508.0 mm). An optional 28 -inch (711.2 mm) wide box is available.

Top and Bottom Gutters

5-1/2 inches (139.7 mm) minimum.

Approximate Dimensions in Inches (mm)

PRL2aF Panelboard Sizing

Panelboard Types	Main Breaker Types and Mounting Position (H) = Horizontal (V) = Vertical	Maximum No. of Branch Circuits Including Provisions	Box Dimensi Height	Width	Depth	YS Box Catalog Number	LT Trim Catalog Number	EZ Box Catalog Number	EZ Trim Catalog Number
100A									
Main lugs or main breaker	EHD FD, HFD, FDE HFDE (V)	18	36.00 (914.4)	20.00 (508.0)	5.75 (146.1)	YS2036	LT2036S or F	EZB2036R	EZT2036S or F
		30	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
		42	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
Main lugs or main breaker with 100 A through-feed lugs or sub-feed breaker	EHD FD, FDE HFD, HFDE (V)	18	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
		30	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
		42	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
225A									
Main lugs or main breaker	$\begin{aligned} & \text { EDB, EDS, ED, } \\ & \text { EDH, FD, HFD } \\ & \text { FDE, HFDE } \\ & \text { (V) } \end{aligned}$	18	36.00 (914.4)	20.00 (508.0)	5.75 (146.1)	YS2036	LT2036S or F	EZB2036R	EZT2036S or F
		30	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
		42	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
	$\begin{aligned} & \text { JD, HJD } \\ & \text { JDC } \\ & \text { (V) } \end{aligned}$	18	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
		30	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
		42	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
Main lugs or main breaker with 225A through-feed lugs	$\begin{aligned} & \text { EHD, FD, HFD, } \\ & \text { EDB, EDS, ED, EDH } \\ & \text { FDE, HFDE } \\ & \text { (V) } \end{aligned}$	18	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
		30	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
		42	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
	$\begin{aligned} & \text { JD, HJD } \\ & \text { JDC } \\ & \text { (V) } \end{aligned}$	18	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
		30	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
		42	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
400A									
Main lugs or main breaker	KD, HKD, KDC, LHH (V)	18	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
		30	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
		42	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
Main lugs or main breaker with 225 A through-feed lugs	KD, HKD, KDC, LHH (V)	18	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
		30	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
		42	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
Main lugs or main breaker with 400A through-feed lugs	KD, HKD, KDC, LHH (V)	18	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
		30	90.00 (2286.0)	20.00 (508.0)	5.75 (146.1)	YS2090	LT2090S or F	EZB2090R	EZT2090S or F
		42	90.00 (2286.0)	20.00 (508.0)	5.75 (146.1)	YS2090	LT2090S or F	EZB2090R	EZT2090S or F

Note

(1) Smaller panelboard box sizes are available if required. Contact Eaton for application information.

Type PRL2a-LX, Column Type

Type PRL2a-LX

Product Description

- 480Y/277 Vac maximum (125 Vdc)
- Three-phase four-wire, three-phase three-wire, single-phase three-wire, single-phase two-wire
- 225A maximum mains
- 100A maximum branch breakers
- Bolt-on branch breakers
- Factory assembled
- Refer to Refer to Page V2-T3-7 for additional information

Application Description

- Lighting branch panelboard
- Column mounting width
- Fully rated or series rated
- Interrupting ratings up to 200 kA symmetrical
- See Pages V2-T3-7 through V2-T3-23 for additional information

Contents	
Description	Page
Product Description.	V2-T3-7
Application Description	V2-T3-8
Standards and Certifications .	V2-T3-10
Technical Data and Specifications .	V2-T3-11
Type PRL1a	V2-T3-26
Type PRL1aF	V2-T3-30
Type PRL1a-LX	V2-T3-34
Type PRL2a	V2-T3-38
Type PRL2aF	V2-T3-42
Type PRL2a-LX	
Product Selection.	V2-T3-47
Box Sizing and Selection	V2-T3-48
Retrofit Panelboard	V2-T3-50
Type PRL3a.	V2-T3-58
Type PRL3E.	V2-T3-62
Type PRL4	V2-T3-66
Type PRL4D	V2-T3-76
Type PRL5P.	V2-T3-86

Standards and Certifications

- UL 67, UL 50
- Federal Specification W-P-115c
- Refer to Page V2-T3-7 for additional information

Product Selection

Type PRL2a-LX	PRL2a-LX				
	Interrupting Rating (kA Symmetrical)				
	Ampere Rating	240 Vac	$\begin{aligned} & 480 \mathrm{Y} / 277 \\ & \text { Vac } \end{aligned}$	$\begin{aligned} & \text { 125/250 } \\ & \text { Vdc } \end{aligned}$	Breaker Type
4	Main Lug Only				
	100	-	-	-	-
	225	-	-	-	-
1	Main Breaker				
	100	65	14	14	GHB
	100	18	14	10	EHD
	100	65	35	10	FD, FDE
	100	100	65	22	HFD, HFDE
	100	200	100	22	FDC
	225	65	-	-	ED
	225	65	35	10	FD
	225	100	65	22	HFD
	225	200	100	22	FDC

Branch Circuit Breakers-PRL2a-LX

Interrupting Rating (kA Symmetrical)				
Ampere Rating	$\begin{aligned} & 240 \\ & \text { Vac } \end{aligned}$	$\begin{aligned} & \text { 480Y/277 } \\ & \text { Vac } \end{aligned}$	$\begin{aligned} & 125 / 250 \\ & \text { Vdc } \end{aligned}$	Breaker Type
15-20	65	14	-	GH0 (2)
15-20	65	14	14	GHB (2)
25-60	65	14	14	GHB (2)
70-100	65	14	14	GHB (2)
15-30	65	25	-	HGHB (2)
15-20	65	14	-	GHORSP ${ }^{3}$
15-30	65	14	-	GHBS (2) ${ }^{\text {(3) }}$
15-60	-	14	-	GHBGFEP (2) ${ }^{\text {(}}$
Provision	-	-	-	-

Pull Box With
Extension Trough
Includes pull box with trough extension. For additional trough extensions, refer to table below.

Description	Catalog Number
Pullbox with 36-inch trough	XCTXB036
Pullbox with 48-inch trough	XCTXB048
Pullbox with 60-inch trough	XCTXB060
Pullbox with 72-inch trough	XCTXB072
Pullbox with 84-inch trough	XCTXB084

Neutral Bars

When Column Type panels are furnished with trough extensions and pull box, the neutral bar will be placed in the pull box unless otherwise specified.
When troughs and pull box are not furnished, the neutral bar will be located on the panel at the same end as the main.

Additional Trough
Extensions
Width and depth are the same as the panelboard.

Length Inches (mm)	Catalog Number
$36.00(914.4)$	CTXB036
$48.00(1219.2)$	CTXB048
$60.00(1524.0)$	CTXB060
$72.00(1828.8)$	CTXB072
$84.00(2133.6)$	CTXB084

Notes

(1) Interrupting ratings in this column are applicable to 120 Vac for single-pole breakers.
(2) At 480 V , must be used on $480 \mathrm{Y} / 277 \mathrm{~V}$ grounded wye systems only.
(3) Solenoid operated breaker.
(4) GFP for 30 mA equipment protection. Requires two pole spaces.

Box Sizing and Selection

Approximate Dimensions in Inches (mm)

Assembled Circuit Breaker Panelboards

Box size, box and trim catalog numbers for standard column type panelboards listed are available from tables on

Page V2-T3-49.

Instructions

1. Using description of the required panelboard, select the rating and type of main required.
a. 100A panelboardsPage V2-T3-49.
b. 225A panelboardsPage V2-T3-49.
2. Count the total number of branch circuit poles, including provisions, required in the panelboard. Do not count main breaker poles. Convert twoor three-pole branch breaker to single poles, i.e., three-pole breaker, count as three poles.

Determine sub-feed breaker or through-feed lug requirements.
3. Select the panelboard main ampere rating from tables on Page V2-T3-49.
4. Panelboard Type from first column, main breaker Frame and Designation, if applicable from second column, and sub-feed breaker Frame and Designation, if applicable, from the third column.
5. From Step \#2, determine the number of branch circuits in Column 4.
6. Read box size, box and trim catalog numbers across columns to the right. All panels are surface mounted.

Cabinets

Boxes and trims are codegauge steel, ANSI-61 light gray painted finish.
Boxes are furnished without knockouts. Standard depth is 6.00 inches (152.4 mm).
Standard width is
8.63 inches (219.1 mm).

Top and Bottom Gutters 4.50 inches (114.3 mm) minimum.

Left Side Gutter

3.31 inches (84.2 mm) minimum.

Pull Box

Pull box is furnished without knockouts. Standard dimensions:

Pull Box Dimensions

Height	Width	Depth
$12.00(304.8)$	$16.00(406.4)$	$6.00(152.4)$

PRL2a-LX Trough Extension

Trough Extension

When extension troughs are used, Section 376 of the National Electrical Code, reading as follows, should be observed: 376. Number of Conductors. Wireways shall not contain more than 30 conductors at any cross section, unless the conductors are for signal circuits or are control conductors between a motor and its starter and used only for starting duty. The sum of the cross-sectional areas of all contained conductors at any cross section of a wireway shall not exceed 20% of the interior crosssectional area of the wireway.

Approximate Dimensions in Inches (mm)
100A Maximum PRL2a-LX Column Type Panelboard Sizing

			Maximum	Box Dimensio				
Panelboard Types	Types Mounting: (H) = Horizontal (V) = Vertical	Sub-Feed Breaker Types Vertical Mounting	of Branch Circuits Including Provisions	Height	Width	Depth	Box Catalog Number	Trim Catalog Number ${ }^{(1)}$
Main breaker	GHB	-	27	69.00 (1752.6)	8.63 (219.2)	6.00 (152.4)	YSC969	LTC969S
	(H)	-	39	81.00 (2057.7)	8.63 (219.2)	6.00 (152.4)	YSC981	LTC981S
Main lugs or main breaker	EHD, FD	-	30	69.00 (1752.6)	8.63 (219.2)	6.00 (152.4)	YSC969	LTC969S
	HFD, FDC (V)	-	42	81.00 (2057.7)	8.63 (219.2)	6.00 (152.4)	YSC981	LTC981S
Main lugs or main breaker	EHD, FD	EHD, FD, HFD	30	78.00 (1981.2)	8.63 (219.2)	6.00 (152.4)	YSC978	LTC978S
with 100 A through-feed lugs or sub-feed breaker	$\begin{aligned} & \text { HFD, FDC } \\ & \text { (V) } \end{aligned}$		42	90.00 (2286.0)	8.63 (219.2)	6.00 (152.4)	YSC990	LTC990S

225A Maximum PRL2a-LX Column Type Panelboard Sizing

| | Main Breaker
 Types | Sub-Feed
 Breaker Types | Maximum
 Number
 of Branch
 Circuits | Box Dimensions |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Note

(1) Add suffix B to trim catalog number for bottom fed panelboards (i.e., LTC969SB).

Contents	
Description	Page
Product Description.	V2-T3-7
Application Description	V2-T3-8
Standards and Certifications .	V2-T3-10
Technical Data and Specifications	V2-T3-11
Type PRL1a	V2-T3-26
Type PRL1aF	V2-T3-30
Type PRL1a-LX	V2-T3-34
Type PRL2a	V2-T3-38
Type PRL2aF	V2-T3-42
Type PRL2a-LX	V2-T3-46
Retrofit Panelboard	V2-T3-50
Catalog Number Selection.	V2-T3-51
Product Selection.	V2-T3-52
Trim Selection	V2-T3-54
Custom Trim Selection.	V2-T3-55
Application Guidelines	V2-T3-56
Options and Accessories	V2-T3-57
Type PRL3a	V2-T3-58
Type PRL3E	V2-T3-62
Type PRL4.	V2-T3-66
Type PRL4D	V2-T3-76
Type PRL5P	V2-T3-86

Retrofit Panelboard

Product Description

- PRL1R-240 Vac; PRL2R-480Y/277V
- Single-phase three-wire or single two-wire
- Three-phase three-wire or three-phase four-wire
- 225A maximum
- 100A maximum branch breakers
- Standard PRL1R fits existing box depths from 4.50-6.00 inches deep; Standard PRL2R fits existing box depths from 4.75-6.00 inches deep (without additional accessories)
- Integrally mounted neutral assembly
- Grounding lug included
- Neutral and ground convertible from left-right
- Bolt-on branch breakers
- Factory assembled

Application Description

- Lighting branch panelboard
- Fully rated or series rated
- Interrupting capacities to 100 kA symmetrical
- Suitable for use as Service Entrance Equipment where specified on the order

Standards and Certifications

- UL 67
- Federal Specification W-P-115c
- CSA C22.2 No. 29

Catalog Number Selection

Retrofit Panelboard

Trim Selection

Notes

(1) P2R only.
(2) Flush trims include 1-inch overlap per side.
(3) Standard trim includes 12-gauge steel painted ANSI 61 grey.
(4) Stainless trims provided as 304 standard. Optional 316 available.

Product Selection

3

P1R-Aluminum Bus, Single-Phase or Three-Phase ©

Ampere Rating	Number of Circuits	Interrupting Rating (kA Sym.) 240 Vac	Main Breaker Type	Single-Phase Three-Wire-Single-Phase Two-Wire Catalog Number	Three-Phase Three-Wire- Three-Phase Four-Wire Catalog Number
Main Lug Only					
100	18	-	MLO	P1RL1A118	P1RL3A118
	30	-	MLO	P1RL1A130	P1RL3A130
	42	-	MLO	P1RL1A142	P1RL3A142
225	18	-	MLO	P1RL1A218	P1RL3A218
	30	-	MLO	P1RL1A230	P1RL3A230
	42	-	MLO	P1RL1A242	P1RL3A242
Main Breaker					
100	18	10	$B A B{ }^{2}$	P1RB1A118BAB ${ }^{\text {(3) }}$	P1RB3A118BAB ${ }^{(3)}$
	30	10	$\mathrm{BAB}{ }^{2}$	P1RB1A130BAB ${ }^{(3)}$	P1RB3A130BAB ${ }^{3}{ }^{\text {3 }}$
	42	10	BAB^{2}	P1RB1A142BAB ${ }^{(3)}$	P1RB3A142BAB ${ }^{(3)}$
	18	18	EHD	P1RB1A118EHD ${ }^{3}$	P1RB3A118EHD ${ }^{3}$
	30	18	EHD	P1RB1A130EHD ${ }^{3}{ }^{\text {a }}$	P1RB3A130EHD ${ }^{(3)}$
	42	18	EHD	P1RB1A142EHD ${ }^{(3)}$	P1RB3A142EHD ${ }^{(3)}$
	18	22	QBHW (2)	P1RB1A1180BHW ${ }^{(3)}$	P1RB3A1180BHW ${ }^{(3)}$
	30	22	QBHW (2)	P1RB1A1300BHW ${ }^{(3)}$	P1RB3A1300BHW ${ }^{(3)}$
	42	22	QBHW (2)	P1RB1A1420BHW ${ }^{(3)}$	P1RB3A1420BHW ${ }^{(3)}$
	18	65	ED	P1RB1A118ED ${ }^{3}$	P1RB3A118ED ${ }^{(3)}$
	30	65	ED	P1RB1A130ED ${ }^{(3)}$	P1RB3A130ED (3)
	42	65	ED	P1RB1A142ED ${ }^{3}$	P1RB3A142ED ${ }^{3}$
	18	100	EDH	P1RB1A118EDH ${ }^{3}{ }^{3}$	P1RB3A1-8EDH ${ }^{(3)}$
	30	100	EDH	P1RB1A130EDH ${ }^{3}{ }^{\text {a }}$	P1RB3A130EDH ${ }^{3}{ }^{\text {3 }}$
	42	100	EDH	P1RB1A142EDH ${ }^{(3)}$	P1RB3A142EDH ${ }^{(3)}$
225	18	65	ED	P1RB1A218ED ${ }^{3}$	P1RB3A218ED (3)
	30	65	ED	P1RB1A230ED ${ }^{\text {3 }}$	P1RB3A230ED ${ }^{\text {3 }}$
	42	65	ED	P1RB1A242ED ${ }^{3}$	P1RB3A242ED ${ }^{\text {3 }}$
	18	100	EDH	P1RB1A218EDH ${ }^{3}$	P1RB3A218EDH ${ }^{(3)}$
	30	100	EDH	P1RB1A230EDH ${ }^{3}{ }^{3}$	P1RB3A230EDH ${ }^{3}{ }^{(1)}$
	42	100	EDH	P1RB1A242EDH ${ }^{3}$	P1RB3A242EDH ${ }^{3}{ }^{\text {3 }}$

Notes

(1) Standard trim included. Select standard trim from Page V2-T3-54. Custom trims are available for an additional charge. Contact your local Satellite for more information about custom trims.
(2) BAB and $Q B H W$ main devices consume available circuit space positions. (Two circuits for single-phase; three circuits for three-phase.)
${ }^{(3)}$ Add main breaker ampere rating suffix. May NOT exceed main bus rating.
A neutral assembly is included with the base chassis. For single-phase two-wire systems or for three-phase, three-wire systems, do not connect.
Sum of branch circuit amperes not to exceed 140A.

Ampere Rating	Number of Circuits	Main Breaker Interrupting Rating (kA Sym.) 480Y/277 Vac	Main Breaker Type	Three-Phase Four-Wire Catalog Number
Main Lug Only				
100	18	-	MLO	P2RL3A118
	30	-	MLO	P2RL3A130
	42	-	MLO	P2RL3A142
225	18	-	MLO	P2RL3A218
	30	-	MLO	P2RL3A230
	42	-	MLO	P2RL3A242
Main Breaker				
100	18	14	GHB (1)	P2RB3A118GHB ${ }^{2}$
	30	14	GHB ${ }^{(1)}$	P2RB3A130GHB ${ }^{\text {(2) }}$
	42	14	GHB (1)	P2RB3A142GHB ${ }^{\text {2 }}$
	18	14	EHD	P2RB3A118EHD (2)
	30	14	EHD	P2RB3A130EHD ${ }^{2}{ }^{2}$
	42	14	EHD	P2RB3A142EHD ${ }^{(2)}$
	18	35	FD	P2RB3A118FD ${ }^{\text {2 }}$
	30	35	FD	P2RB3A130FD ${ }^{(2)}$
	42	35	FD	P2RB3A142FD ${ }^{2}$
	18	65	HFD	P2RB3A118HFD ${ }^{2}$
	30	65	HFD	P2RB3A130HFD ${ }^{2}$
	42	65	HFD	P2RB3A142HFD ${ }^{2}$
	18	100	FDC	P2RB3A118FDC ${ }^{2}$ 2
	30	100	FDC	P2RB3A130FDC ${ }^{(2)}$
	42	100	FDC	P2RB3A142FDC ${ }^{2}$
225	18	35	FD	P2RB3A218FD ${ }^{\text {(2) }}$
	30	35	FD	P2RB3A230FD ${ }^{\text {2 }}$
	42	35	FD	P2RB3A242FD ${ }^{(2)}$
	18	65	HFD	P2RB3A218HFD ${ }^{2}$
	30	65	HFD	P2RB3A230HFD ${ }^{2}$
	42	65	HFD	P2RB3A242HFD ${ }^{2}$
	18	100	FDC	P2RB3A218FDC ${ }^{(2)}$
	30	100	FDC	P2RB3A230FDC ${ }^{(2)}$
	42	100	FDC	P2RB3A242FDC ${ }^{(2)}$

Notes

(1) GHB main devices consume available circuit space positions. (Three circuits for three-phase.)
(2) Add main breaker ampere rating suffix. May NOT exceed main bus rating.

A neutral assembly is included with the base chassis.

Pow-R-Line C Panelboards

Trim Selection

Instructions

- In order to meet minimum wire bending space requirements and to ensure ease of installation, minimum enclosure space dimensions have been defined for each chassis. In order to ensure a proper fit, every panelboard to be renovated must be carefully surveyed prior to installation
- Determine the electrical requirements of the
panelboard to be renovated (i.e., main breaker or main lugs, amperes, interrupting rating, circuit space, branch breakers, accessories)
- Using the electrical requirement data, select a base chassis and any required breakers, options and accessories
- Page V2-T3-56 provides the minimum dimensions of the enclosure, in which each base chassis may
be installed. These dimensions assume that the chassis is mounted in the center of the existing box, both vertically and horizontally. Where site conditions require the chassis to be offset from this centrally mounted position, it is the installer's responsibility to ensure wire bending space and electrical clearance requirements are met

Standard Trim Selection - 20-Inch (508.0 mm) Wide Enclosure

Trim Door Size Code	Enclosure HeightInches (mm)	Surface Type			Flush Type		
		Catalog Number	Trim Dimensions-Inches (mm)		Catalog Number	Trim Dimensions-Inches (mm)	
			Height	Width		Height	Width
A	24.00 (609.6)	RTA2024	24.00 (609.6)	20.00 (508.0)	RTA2226	26.00 (660.4)	22.00 (558.8)
A	30.00 (762.0)	RTA2030	30.00 (762.0)	20.00 (508.0)	RTA2232	32.00 (812.8)	22.00 (558.8)
A	36.00 (914.4)	RTA2036	36.00 (914.4)	20.00 (508.0)	RTA2238	38.00 (965.2)	22.00 (558.8)
B	30.00 (762.0)	RTB2030	30.00 (762.0)	20.00 (508.0)	RTB2232	32.00 (812.8)	22.00 (558.8)
B	36.00 (914.4)	RTB2036	36.00 (914.4)	20.00 (508.0)	RTB2238	38.00 (965.2)	22.00 (558.8)
B	42.00 (1066.8)	RTB2042	42.00 (1066.8)	20.00 (508.0)	RTB2244	44.00 (1117.6)	22.00 (558.8)
C	36.00 (914.4)	RTC2036	36.00 (914.4)	20.00 (508.0)	RTC2238	38.00 (965.2)	22.00 (558.8)
C	42.00 (1066.8)	RTC2042	42.00 (1066.8)	20.00 (508.0)	RTC2244	44.00 (1117.6)	22.00 (558.8)
C	48.00 (1219.2)	RTC2048	48.00 (1219.2)	20.00 (508.0)	RTC2250	50.00 (1270.0)	22.00 (558.8)
D	30.00 (762.0)	RTD2030	30.00 (762.0)	20.00 (508.0)	RTD2232	32.00 (812.8)	22.00 (558.8)
D	36.00 (914.4)	RTD2036	36.00 (914.4)	20.00 (508.0)	RTD2238	38.00 (965.2)	22.00 (558.8)
D	42.00 (1066.8)	RTD2042	42.00 (1066.8)	20.00 (508.0)	RTD2244	44.00 (1117.6)	22.00 (558.8)
E	36.00 (914.4)	RTE2036	36.00 (914.4)	20.00 (508.0)	RTE2238	38.00 (965.2)	22.00 (558.8)
E	42.00 (1066.8)	RTE2042	42.00 (1066.8)	20.00 (508.0)	RTE2244	44.00 (1117.6)	22.00 (558.8)
E	48.00 (1219.2)	RTE2048	48.00 (219.2)	20.00 (508.0)	RTE2250	50.00 (1270.0)	22.00 (558.8)

Standard Trim Selection - 14-Inch (355.6 mm) Wide Enclosure

Custom Trim Selection

Instructions

In order to accommodate instances where the standard trims do not suit an installation, custom-sized trims may be ordered. Since the trim mounts to the retrofit chassis, and not the existing enclosure, custom trims can solve many problems encountered with differing enclosure sizes and configurations. Contact your local satellite plant to ensure manufacturability and determine lead time required.

Outer Dimensions

The outer dimensions are the overall OUTSIDE dimensions of the trim. In surfacemounted applications, this is usually the same as the outside dimensions of the enclosure to be renovated. For flush-mounted applications, an additional amount of trim material extends beyond the outer edge of the box, in order to cover any gap between the wall material and the box. Extending the outer dimensions can cover larger than normal wall gaps or imperfections that may be encountered.

Pow-R-Line C Panelboards

Application Guidelines

Instructions

- In order to meet minimum wire bending space requirements and to ensure ease of installation, minimum enclosure space dimensions have been defined for each chassis. In order to ensure a proper fit, every panelboard to be renovated must be carefully surveyed prior to installation
- Determine the electrical requirements of the panelboard to be renovated
(i.e., main breaker or main lugs, amperes, interrupting rating, circuit space, branch breakers, accessories)
- Using the electrical requirement data, select a base chassis and any required breakers, options and accessories
- This page provides the minimum dimensions of the enclosure, in which each base chassis may be installed. These dimensions
assume that the chassis is mounted in the center of the existing box, both vertically and horizontally. Where site conditions require the chassis to be offset from this centrally mounted position, it is the installer's responsibility to ensure wire bending space and electrical clearance requirements are met. Installing chassis offset from the central position requires a custom offset trim.

Contact your local Satellite for pricing and ordering details

- The table below provides a "Trim Door Size Code." Using this code, select a standard trim from the tables that will fit the outside dimensions of the existing box. Refer to Page V2-T3-55 to define nonstandard trim requirements

Minimum Enclosure Sizing

| Ampere
 Rating | Number of
 Circuits | Main Device
 Type | Trim Door
 Size Code | Minimum Enclosure Dimensions——nches (mm)
 Height | Width |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Main Lug Only | | | | | |
| 100 | 18 | MLO | Depth | | |

Options and Accessories

Branch Circuit Breakers-P1R		
Ampere Rating	Interrupting Rating (kA Sym.) 240 Vac	Breaker Type
15-60	10	BAB
70	10	BAB
80-100	10	BAB
15-30	10	BABRP ${ }^{3}$
15-30	10	BABRSP (3)
15-50 (2)	10	QBGF (4)
15-50 ²)	10	QBGFEP (5)
15-20	10	QBCAF ${ }^{\text {(6) }}$
15-60	10	BAB-D ${ }^{\text {(7) }}$
15-30	10	BAB-C ${ }^{8}$
15-60	22	QBHW
70	22	QBHW
80-100	22	QBHW
15-30	22	QBHGF
15-30	22	QBHGFEP
15-20	22	QBHCAF ©
Provision	-	-

Branch Breakers-P2R

Ampere Rating	Interrupting Rating (kA Sym.) 480Y/277 Vac	Breaker Type Rating (kA Sym.)
$15-20$	14	GHO
$15-20$	14	GHB
$25-60$	14	GHB
$70-100$	14	GHB
$15-60$	14	GHBGFEP (9)
$15-20$	14	GHB-HID (10)
$15-30$	25	HGHB
Provision	-	-

Insulated/Isolated Ground Bus (Separately Mounted)

Aluminum	Copper
Catalog	Catalog
Number	Number
P1RGKA	P1RNKC

Number of Termination Points	Aluminum	Copper
	Catalog	Catalog
	Number	Number
18	P1RNKA18	P1RNKC18
30	P1RNKA30	P1RNKC30
42	P1RNKA42	P1RNKC42

Depth Adder Kits (®)
Standard Pow-R-Line 1R-Fits 4.50 to 6.00 inches
Standard Pow-R-Line 2R-Fits 4.75 to 6.00 inches

Accessory/Kits	For Use With Box Depth- Inches (mm)	Part Number
1.50 depth adder	$6.00-7.50(152.4-190.5)$	P1RDA15
3.00 depth adder	$7.50-9.00(190.5-228.6)$	P1RDA30
4.50 depth adder	$9.00-10.50(228.6-266.7)$	P1RDA45
6.00 depth adder	$10.50-12.00(266.7-304.8)$	P1RDA60

Box Collar Kits (4)

Accessory/Kits	For Use With Box DepthInches (mm)	Part Number
Box collar	3.50-4.50 (88.9-114.3)	P1RBC10
Notes		
(1) Single-pole breakers are rated 120 Vac maximum.		
${ }^{\text {2 }}$ (50 A devices available as two-pole only.		
(3) Remote controllable circuit breaker.		
(4) GFCI for 5 mA personnel protection.		
(5) GFP for 30 mA equipment protection.		
(6) Arc fault circuit breaker.		
(7) HID (High Intensity Discharge) rated breaker.		
(8) Switching neutral breaker. Single-pole device requires two pole spaces; two-pole device requires three pole spaces.		
(9) GFP for 30 mA equipment protection. Requires two-pole spaces. 277 Vac only.		
(0) HID (High Intensity Discharge) rated breaker.		
(11) To convert base chassis catalog number from aluminum main bus to copper main bus, change the 6th digit of the aluminum base chassis catalog number to "C" (e.g., P1RL1A1-42 becomes P1RL1C1-42).		
(2) Each base chassis includes a neutral bar that contains one connection point for every circuit space available. Use this kit when additional connection points are required or the neutral must be separately mounted to meet existing cable locations.		
${ }^{(3)}$ Allows for panel to be used in boxes deeper than 6.00 inches.		
(44) Allows for panel to be used in boxes less than 4.50 inches.		

Type PRL3a

Product Description

- 600 Vac maximum (250 Vdc)
- Three-phase four-wire, three-phase three-wire, single-phase three-wire, single-phase two-wire
- 800A maximum main lugs
- 600A maximum main breaker
- 225A maximum branch breakers
- Bolt-on branch breakers
- Factory assembled
- Refer to Page V2-T3-7 for additional information

Application Description

- Lighting panelboard or power distribution panelboard
- Fully rated or series rated
- Interrupting ratings up to 200 kA symmetrical
- Suitable for use as Service Entrance Equipment, when specified on the order
- See Pages V2-T3-7 through V2-T3-23 for additional information

Contents	
Description	Page
Product Description.	V2-T3-7
Application Description.	V2-T3-8
Standards and Certifications .	V2-T3-10
Technical Data and Specifications	V2-T3-11
Type PRL1a.	V2-T3-26
Type PRL1aF	V2-T3-30
Type PRL1a-LX	V2-T3-34
Type PRL2a	V2-T3-38
Type PRL2aF	V2-T3-42
Type PRL2a-LX	V2-T3-46
Retrofit Panelboard	V2-T3-50
Type PRL3a	V2-T3-58
Product Selection.	V2-T3-59
Box Sizing and Selection	V2-T3-61
Type PRL3E.	V2-T3-62
Type PRL4.	V2-T3-66
Type PRL4D	V2-T3-76
Type PRL5P.	V2-T3-86

Standards and Certifications

- UL 67, UL 50
- Federal Specification W-P-115c
- Refer to Page V2-T3-7 for additional information

Product Selection

PRL3a

Ampere	Interrupting Rating (kA Symmetrical) Rating						$\mathbf{2 4 0}$ Vac	$\mathbf{4 8 0}$ Vac	$\mathbf{6 0 0}$ Vac	$\mathbf{2 5 0}$ Vdc	Breaker Type
Main Lug Only		-									
100	-	-	-	-							
250	-	-	-	-	-						
400	-	-	-	-	-						
600	-	-	-	-	-						
800 (1)	-	-	-	-	-						

100	18	14	-	10	EHD
100	18	14	14	10	FDB
100	22	-	-	-	EDB
100	42	-	-	-	EDS
100	65	-	-	-	ED
100	100	-	-	-	EDH
100	65	35	18	10	FD, FDE
100	100	65	25	22	HFD, HFDE
100	200	100	35	22	FDC
100	200	150	-	-	FCL
100	200	200	200	$100{ }^{(2)}$	FB-P ${ }^{(3)}$
225	22	-	-	-	EDB
225	42	-	-	-	EDS
225	65	-	-	-	ED
225	100	-	-	-	EDH
225	200	-	-	-	EDC
225	65	35	18	10	FD, FDE
225	100	65	25	22	HFD, HFDE
225	200	100	35	22	FDC
250	65	35	18	10	JD
250	100	65	25	22	HJD
250	200	100	35	22	JDC
400	65	-	-	10	DK
400	65	35	25	10	KD
400	100	65	35	22	HKD
400	100	65	-	-	LHH
400	200	100	65	22	KDC
400	65	-	-	-	LCL (4)
400	200	200	200	$100{ }^{(2)}$	LA-P (3) ${ }^{\text {(}}$
600	65	35	18	22	LGE
600	100	65	35	22	LGH
600	200	100	50	42	LGC
600	65	35	25	22	LD
600	100	65	35	25	HLD
600	200	100	50	25	LDC
600	65	35	25	22	CLD (5)
600	100	65	35	25	CHLD (5)
600	200	100	50	25	CLDC (5)

Notes

(1) 800 A MLO requires 28 -inch (711.2 mm) wide box
(2) 100,000 based on NEMA test procedure.
(3) Top feed only.
(4) Requires 6.50 -inch (165.1 mm) deep box. Not available in Type 3R, 12, 4 and 4 X enclosures.
(5) 100% rated circuit breaker. Requires copper bus. Not available in Type 12,4 and 4 X enclosures.

Pow-R-Line C Panelboards

PRL3a Branch Circuit Breakers

Ampere Rating	Interrupting Rating (kA Symmetrical)				Breaker Type
	240 Vac	480 Vac	600 Vac	250 Vdc	
15-60	10 (2)3	-	-	-	BAB
15-60	10	-	-	-	BAB-H
70	10 (2) 3	-	-	-	BAB
70	10	-	-	-	BAB-H
80-100	10 (2)3	-	-	-	BAB
80-100	10	-	-	-	BAB-H
15-50 (1)	10 (2)3	-	-	-	QBGF
15-50 (1)	10	-	-	-	QBGFEP
15-20	$10{ }^{(2) 3}$	-	-	-	QBCAF ${ }^{4}$
15-60	10 (2)3	-	-	-	BAB-D (5)
15-30	$10{ }^{(2) 3}$	-	-	-	BAB-C ${ }^{\text {© }}$
15-30	$10^{(2)}$	-	-	-	BABRP ${ }^{(7)}$
15-30	$10^{(2)}$	-	-	-	BABRSP ${ }^{(7)}$
15-60	22 (2)3	-	-	-	QBHW
15-60	22	-	-	-	QBHW-H
70	22 (2)3	-	-	-	QBHW
70	22	-	-	-	QBHW-H
80-100	22 (2)3	-	-	-	QBHW
80-100	22	-	-	-	QBHW-H
15-30	22	-	-	-	QBHGF
15-30	22	-	-	-	QBHGFEP
15-20	22 (2)3	-	-	-	QBHCAF ${ }^{4}$
15-20	65	14 (89)	-	-	GH0
15-20	65	14 (89)	-	14	GHB

PRL3a Branch Circuit Breakers, continued

Ampere Rating	Interrupting Rating (kA Symmetrical)				Breaker Type
	240 Vac	480 Vac	600 Vac	250 Vdc	
25-60	65	14 (89)	-	14	GHB
70-100	65	14 (89)	-	14	GHB
15-30	65	25 (8)	-	-	HGHB
15-20	65	14 (89)	-	14	GHORSP (3)
15-30	65	14 (89)	-	14	GHBS (7)
15-60	-	14 (8)	-	-	GHBGFEP
15-20	-	14 (8)	-	-	GHBHID (5)
15-60	18 (10)	$14{ }^{(8)}$	-	10	EHD
70-100	18 (10)	$14{ }^{(8)}$	-	10	EHD
15-60	18	V14	14	10	FDB
70-100	18	14	14	10	FDB
110-150	18	14	14	10	FDB
15-60	65 (1)	$35{ }^{\text {8 }}$	18	10	FD, FDE
70-100	65 (1)	$35{ }^{(8)}$	18	10	FD, FDE
110-225	65 (10)	35	18	10	FD (1), FDE
15-60	100 (1)	65 (8)	25	22	HFD, HFDE
70-100	100 (1)	65 (8)	25	22	HFD, HFDE
110-225	100 (1)	65	25	22	HFD (11), HFDE
15-60	200	100	35	22	FDC
70-100	200	100	35	22	FDC
110-225	200	100	35	22	FDC (1)
100-225	22	-	-	-	EDB (11)
100-225	42	-	-	-	EDS (11)
100-225	65	-	-	-	ED (1)
100-225	100	-	-	-	EDH (1)
100-225	200	-	-	-	EDC (11)

Notes

(1) 50 A devices are available as two-pole only.
(2) Single-pole breaker rated 120 Vac .
(3) Two-pole breaker rated 120/240 Vac.
(4) Arc fault circuit breaker.

5 HID (High Intensity Discharge) rated breaker.
(6) Switching Neutral Breaker. single-pole device requires two-pole space, two-pole device requires three-pole space.
(7) Solenoid operated breaker.
(8) Single-pole breaker rated 277 Vac.
(9) For use on $480 \mathrm{Y} / 277 \mathrm{~V}$ systems only
(10) AIC rating for two- and three-pole breakers only.
(11) Maximum of six breakers per panel, 175-225A.

Box Sizing and Selection

Approximate Dimensions in Inches (mm)

Panel Layout Instructions

1. Select:
a. Required mains (lugs or breaker).
b. Neutral where required.
c. Branch circuits as required.
2. Layout panel as shown below, using appropriate " X " dimensions.
3. Using total X units (panel height) find box height in inches (mm) and box catalog number from table below. (When total X units come out to an uneven number, use next highest number; i.e., if total X comes out 25 X , use 31X.)

Layout-PRL3a

Notes

(1) GHB, HGHB and GHO breakers cannot be mixed on same connector as BAB, QBHW, BABRP and BABRSP.
(2) Maximum of six breakers per panel.
(3) Horizontal mounted 15-150A main breakers EHD, FDB, FD, FDE, HFD, HFDE and FDC, will be furnished as branch breaker construction. Branch breakers single-, two- or three-pole as required, may be located opposite these main breakers.
(4) If optional terminal kit 3TA225FDK is required, use 10X
(5) FB-P and LA-P top mounting only.
© LCL or LA-P main breaker requires 6-1/2-inch (165.1 mm) deep box.

Layout Example

1. Description of Panel

Type PRL3a three-phase, four-wire, 120/208 Vac flush mounting. Panel to have short-circuit rating of 22,000 symmetrical amperes. Main breaker 400A, three-pole, bottom mounting. Branch circuits bolt-on as follows:
12-200A single-pole OBHW
1-200A three-pole ED
1-225A three-pole ED
2. Layout Information from Layout-PRL3a table (left):
a. 400A Neutral $=8 \mathrm{X}$
b. 12-poles of QBHW $=5 \mathrm{X}$
c. Two three-pole ED breakers . . $=6 \mathrm{X}$
d. Main breaker, 400A,

Three-pole DK = $=15 \mathrm{X}$
Total Height $=34 \mathrm{X}$
3. From Box Tabulation-PRL3a table (below):
a. 34X Height (use 40X box)
b. Box Height 72 inches (1828.8 mm)
c. Box Catalog Number YS2072 or EZB2072R

Box Tabulation-PRL3a					
$\begin{aligned} & \text { "X" } \\ & \text { Units } \end{aligned}$	Box Height	YS Box Catalog Number	LT Trim Catalog Number	EZ Box Catalog Number	EZ Trim Catalog Number
100-400A					
14 X	36.00 (914.4)	YS2036	LT2036S or F	EZB2036R	EZT2036S or F
23 X	48.00 (1219.2)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
31X	60.00 (1524.0)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
40X	72.00 (1524.0)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
53 X	90.00 (2286.0)	YS2090	LT2090S or F	EZB2090R	EZT2090S or F
600A					
23 X	48.00 (1219.2)	YS2048	LTV2048S or F	EZB2048R	EZTV2048S or F
31 X	60.00 (1524.0)	YS2060	LTV2060S or F	EZB2060R	EZTV2060S or F
40X	72.00 (1524.0)	YS2072	LTV2072S or F	EZB2072R	EZTV2072S or F
53 X	90.00 (2286.0)	YS2090	LTV2090S or F	EZB2090R	EZTV2090S or F
800A					
23 X	48.00 (1219.2)	YS2848	LTV2848S or F	-	-
31 X	60.00 (1524.0)	YS2860	LTV2860S or F	-	-
40X	72.00 (1524.0)	YS2872	LTV2872S or F	-	-
53 X	90.00 (2286.0)	YS2890	LTV2890S or F	-	-

Cabinets

Fronts are code-gauge steel,
ANSI-61 light gray painted finish.

Boxes are code-gauge galvanized steel without knockouts. Standard depth is 5-3/4 inches (146.1 mm).
Standard widths are:
20-inch (508.0 mm)
100-600A.
28-inch (711.2 mm)
800A.

Standard Depth

5-3/4 inches (146.1 mm).

Top and Bottom Gutters

5-1/2 inches (139.7 mm) minimum.

Side Gutters

4 inches (101.6 mm) minimum.

Contents	
Description	Page
Product Description.	V2-T3-7
Application Description	V2-T3-8
Standards and Certifications .	V2-T3-10
Technical Data and Specifications	V2-T3-11
Type PRL1a.	V2-T3-26
Type PRL1aF .	V2-T3-30
Type PRL1a-LX	V2-T3-34
Type PRL2a	V2-T3-38
Type PRL2aF	V2-T3-42
Type PRL2a-LX	V2-T3-46
Retrofit Panelboard	V2-T3-50
Type PRL3a	V2-T3-58
Type PRL3E.	V2-T3-62
Product Selection.	V2-T3-63
Box Sizing and Selection	V2-T3-64
Type PRL4.	V2-T3-66
Type PRL4D	V2-T3-76
Type PRL5P.	V2-T3-86

Application Description

- Lighting and appliance branch panelboard
- Fully rated or series rated
- Interrupting ratings up to 200 kA symmetrical
- Suitable for use as Service Entrance Equipment, when specified on the order
- See Pages V2-T3-7 through V2-T3-23 for additional information

Product Selection

Panelboards and Lighting Control
Pow-R-Line C Panelboards

Box Sizing and Selection

Approximate Dimensions in Inches (mm)

Assembled Circuit Breaker Panelboards and Lighting Controls

Box size and box and trim catalog numbers for all standard panelboard types are found on Page V2-T3-65.

Instructions

1. Using description of the required panelboard, select the rating and type of main required.
2. Count the total number of branch circuit poles, including provisions, required in the panelboard. Do not count main breaker poles. Convert twoor three-pole branch breaker to single-poles, i.e., three-pole breaker, count as three poles. Determine sub-feed breaker or through-feed lug requirements.
3. Select the main ampere rating section from Page V2-T3-65.
4. Select panelboard type from first column, main breaker frame, if applicable, from second column, and sub-feed breaker frame, if applicable, from the third column.
5. From Step \#2, determine the number of branch circuits in Column 4.
6. Read box size, box and trim catalog numbers across columns to the right. Specify surface or flush mounting on the order.

Cabinets

Fronts are code-gauge steel, ANSI-61 light gray painted finish.
Boxes are code-gauge galvanized steel without knockouts. Standard depth is $5-3 / 4$ inches (146.1 mm). Standard width is 20 inches (508.0 mm). An optional 28 -inch (711.2 mm) wide box is available.

Top and Bottom Gutters

 5-1/2 inches (139.7 mm) minimum.Approximate Dimensions in Inches (mm)

PRL3E Panelboard Sizing

Panelboard Types	Main Breaker Types and Mounting Position (H) = Horizontal (V) = Vertical	Sub-Feed Breaker Types and Mounting Position$(\mathrm{H})=\text { Horizontal }$(V) = Vertical	Maximum No. of Branch Circuits Including Provisions	Box Dimensions ${ }^{(1)}$						
				Height	Width	Depth	Catalog Number	Catalog Number	Catalog Number	Catalog Number
125A										
Main breaker	EG, EGS, EGH (H)	-	12	36.00 (914.4)	20.00 (508.0)	5.75 (146.1)	YS2036	LT2036S or F	EZB2036R	EZT2036S or F
		-	24	36.00 (914.4)	20.00 (508.0)	5.75 (146.1)	YS2036	LT2036S or F	EZB2036R	EZT2036S or F
		-	36	36.00 (914.4)	20.00 (508.0)	5.75 (146.1)	YS2036	LT2036S or F	EZB2036R	EZT2036S or F
		-	42	42.00 (1066.8)	20.00 (508.0)	5.75 (146.1)	YS2042	LT2042S or F	EZB2042R	EZT2042S or F
Main lugs or main breaker	$\begin{aligned} & \text { FD, HFD } \\ & \text { (V) } \end{aligned}$	-	18	36.00 (914.4)	20.00 (508.0)	5.75 (146.1)	YS2036	LT2036S or F	EZB2036R	EZT2036S or F
		-	30	42.00 (1066.8)	20.00 (508.0)	5.75 (146.1)	YS2042	LT2042S or F	EZB2042R	EZT2042S or F
		-	42	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
Main lugs or main breaker with 125 A through-feed lugs or sub-feed breaker	$\begin{aligned} & \mathrm{FD} \\ & \mathrm{HFD} \\ & \mathrm{~V}) \end{aligned}$	EHD	18	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
		$\begin{aligned} & \text { FD } \\ & \text { HFD } \end{aligned}$	30	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
		$\begin{aligned} & \text { TFL } \\ & \text { (V) } \end{aligned}$	42	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
250A										
Main lugs or main breaker	$\begin{aligned} & \text { EDS, ED, } \\ & \text { EDH, FD, HFD } \\ & \text { (V) } \end{aligned}$	-	18	36.00 (914.4)	20.00 (508.0)	5.75 (146.1)	YS2036	LT2036S or F	EZB2036R	EZT2036S or F
		-	30	42.00 (1066.8)	20.00 (508.0)	5.75 (146.1)	YS2042	LT2042S or F	EZB2042R	EZT2042S or F
		-	42	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
Main lugs or main breaker with 225A through-feed lugs or sub-feed breaker	FD, HFD, EDS, ED, EDH (V)	FD, HFD, EDS, ED, EDH (V)	18	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
			30	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
			42	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
400A										
Main breaker	$\begin{aligned} & \text { DK, KD, HKD, } \\ & \text { KDC } \\ & \text { (V) } \end{aligned}$	-	18	48.00 (1219.2)	20.00 (508.0)	5.75 (146.1)	YS2048	LT2048S or F	EZB2048R	EZT2048S or F
		-	30	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
		-	42	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
Main breaker with 225A through-feed lugs or sub-feed breaker	$\begin{aligned} & \text { DK, KD, HKD, } \\ & \text { KDC } \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \text { EHD, FD, HFD, } \\ & \text { EDB, EDS, ED, } \\ & \text { EDH (V) } \end{aligned}$	18	60.00 (1524.0)	20.00 (508.0)	5.75 (146.1)	YS2060	LT2060S or F	EZB2060R	EZT2060S or F
			30	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
			42	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
Main lugs or main breaker with 400A through-feed lugs or sub-feed breaker	$\begin{aligned} & \text { DK, KD, HKD, } \\ & \text { KDC } \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \text { JD, HJD, JDC, } \\ & \text { DK, KD, } \\ & \text { HKD, KDC } \\ & \text { (V) } \end{aligned}$	18	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
			30	72.00 (1828.8)	20.00 (508.0)	5.75 (146.1)	YS2072	LT2072S or F	EZB2072R	EZT2072S or F
			42	90.00 (2286.0)	20.00 (508.0)	5.75 (146.1)	YS2090	LT2090S or F	EZB2090R	EZT2090S or F

PRL3E Branch Circuit Breakers

Ampere Rating	Interrupting Rating (kA Symmetrical)			Breaker Type
	240 Vac	480 Vac	250 Vdc	
15-125	25	18	10	EGB
15-125	85	35	35	EGS
15-125	100	65	42	EGH

Note

(1) Smaller panelboard box sizes are available if required. Contact Eaton for application information.

3

Type PRL4B Circuit Breaker and Type PRL4F Fusible Panelboards

Type PRL4

Product Description

- 600 Vac maximum (600 Vdc)
- Three-phase, four-wire, three-phase three-wire, single-phase three-wire, single-phase two-wire
- PRL4B circuit breaker panelboard
- PRL4F fusible switch panelboard
- 1200A maximum mains
- 1200A maximum branch devices
- Bolt-on branch devices
- Factory assembled
- Refer to Page V2-T3-7 for additional information

Application Description

- Power distribution panelboard
- Fully rated or series rated
- Interrupting ratings up to 200 kA symmetrical
- Suitable for use as Service Entrance Equipment, when specified on the order
- See Pages V2-T3-7 through V2-T3-23 for additional information

Contents	
Description	Page
Product Description.	V2-T3-7
Application Description	V2-T3-8
Standards and Certifications	V2-T3-10
Technical Data and Specifications	V2-T3-11
Type PRL1a.	V2-T3-26
Type PRL1aF	V2-T3-30
Type PRL1a-LX	V2-T3-34
Type PRL2a	V2-T3-38
Type PRL2aF	V2-T3-42
Type PRL2a-LX	V2-T3-46
Retrofit Panelboard	V2-T3-50
Type PRL3a.	V2-T3-58
Type PRL3E.	V2-T3-62
Type PRL4	
Product Selection.	V2-T3-67
Box Sizing and Selection-PRL4B	V2-T3-70
Box Sizing and Selection-PRL4F .	V2-T3-73
Type PRL4D	V2-T3-76
Type PRL5P.	V2-T3-86

Standards and Certifications

- UL 67, UL 50
- Federal Specification
- W-P-115c
- Refer to Page V2-T3-7 for additional information

Product Selection

Ampere	Interrupting Rating (kA Symmetrical)					
Rating	240 Vac 480 Vac 600 Vac 250 Vdc 600 Vdc Type					
Main Lug Only						
250	-	-	-	-	-	-
400	-	-	-	-	-	-
600	-	-	-	-	-	-
800	-	-	-	-	-	-
1200	-	-	-	-	-	-

Main Breaker ${ }^{(1)}$

250	65	35	18	10	-	JD
250	100	65	25	22	-	HJD
250	-	-	-	42	35	HJDDC ${ }^{(2)}$
250	200	100	35	22	-	JDC
250	200	200	-	-	-	LCL
400	65	-	-	10	-	DK
400	65	35	25	10	-	KD
400	65	35	25	-	-	CKD (3)
400	100	65	35	22	-	HKD
400	-	-	-	42	35	HKDDC ${ }^{(2)}$
400	100	65	35	42	-	LHH
400	100	65	35	-	-	CHKD (3)4
400	200	100	65	22	-	KDC
400	200	200	-	-	-	LCL
400	200	200	200	-	-	LA-P
600	65	35	18	22	-	LGE ${ }^{1}$
600	100	65	35	22	-	LGH ${ }^{(1)}$
600	200	100	50	42	-	LGC
600	200	150	65	50	-	LGU
600	65	35	25	22	-	LD
600	65	35	25	-	-	CLD ${ }^{3}$
600	100	65	35	25	-	HLD
600	-	-	-	42	35	HLDDC (2)
600	100	65	35	-	-	CHLD (3)
600	200	100	50	25	-	LDC
600	200	100	50	-	-	CLDC (3)
800	65	50	25	22	-	MDL
800	100	65	35	25	-	HMDL
800	-	-	-	42	35	HMDLDC ${ }^{(2)}$
800	65	50	25	-	-	CMDL ${ }^{3}$
800	100	65	35	-	-	CHMDL ${ }^{3}$
800	200	200	200	-	-	NB-P
800	65	50	25	-	-	ND
800	100	65	35	-	-	HND
800	200	100	65	-	-	NDC
800	65	50	25	-	-	CND (3)
800	100	65	35	-	-	CHND (3)
800	200	100	65	-	-	CNDC ${ }^{(3)}$
1200	65	50	25	-	-	ND
1200	100	65	35	-	-	HND
1200	200	100	65	-	-	NDC
1200	65	50	25	-	-	CND (3)
1200	100	65	35	-	-	CHND ${ }^{\text {3 5 }}$
1200	200	100	65	-	-	CNDC ${ }^{3}$ (6)
1200	-	-	-	42	50	NBDC ${ }^{(2)}$

PRL4 Main Fusible Switches

Notes

(1) For ground fault protection on main devices, see Modification 14-Applies to 310 and 310+ Trip Units on Page V2-T3-102 or Modification 15 on Page V2-T3-102.
(2) For use on DC systems only.
(3) 100% rated breaker. Requires copper bus. Not available in Type 12, 4 and $4 X$ enclosures.
(4) Breaker only available in three-pole frame.
(5) Requires 44 -inch $(1117.6 \mathrm{~mm})$ wide box.
(6) For ground fault protection on main devices, see Modification 15 on Page V2-T3-102
(7) Fuses not included. Specify required fuse clips on all switches.
(8) Class J Fuse provisions are applicable only to 600 V units. When required, use dimensions of 600 V units for all voltages 600 and below.
(9) No DC rating on 600, 800 and 1200A switches

Pow-R-Line C Panelboards

PRL4 Branch Devices

Ampere Rating	Interrupting Rating (kA Symmetrical)					Breaker Type
	240 Vac	480 Vac	600 Vac	250 Vdc	600 Vdc	
15-60	10 (2)3	-	-	-	-	BAB
15-60	10	-	-	-	-	BAB-H
70-100	10 (2)3	-	-	-	-	BAB
70-100	10	-	-	-	-	BAB-H
15-50 (1)	$10{ }^{(2) 3}$	-	-	-	-	QBGF
15-20	$10{ }^{(2) 3}$	-	-	-	-	QBCAF ${ }^{4}$
15-60	22 (2)3	-	-	-	-	OBHW
15-60	22	-	-	-	-	QBHW-H
70-100	22 (2)3	-	-	-	-	QBHW
70-100	22	-	-	-	-	QBHW-H
15-30	22 (2)3	-	-	-	-	QBHGF
15-20	22 (2)3	-	-	-	-	QBHCAF ${ }^{(4)}$
15-20	$65{ }^{(2)}$	14 (5)	-	-	-	GH0 (3)
15-60	65 (2)	14 (5)	-	14	-	GHB (7)
70-100	$65{ }^{(2)}$	14 (5)	-	14	-	GHB (2)
15-30	65 (2)	25 (5)	-	-	-	HGHB (${ }^{\text {(}}$
15-60	$18{ }^{(8)}$	14 (5)	-	10	-	EHD
70-100	$18{ }^{(8)}$	14 (5)	-	10	-	EHD
15-60	18	14	14	10	-	FDB
70-100	18	14	14	10	-	FDB
110-150	18	14	14	10	-	FDB
15-60	65 (8)	35 (5)	18	10	-	FD, FDE
70-100	65 (8)	35 (5)	18	10	-	FD, FDE
110-225	$65{ }^{(8)}$	35	18	10	-	FD, FDE
15-60	$100{ }^{\text {® }}$	65 (5)	25	22	-	HFD, HFDE
70-100	$100{ }^{\text {8 }}$	65 (5)	25	22	-	HFD, HFDE
110-225	$100{ }^{\text {(8) }}$	65	25	22	-	HFD, HFDE
15-60	200	100	35	22	-	FDC
70-100	200	100	35	22	-	FDC
110-225	200	100	35	22	-	FDC
15-100	200	150	-	-	-	FCL
15-150	-	-	-	42	35	HFDDC ${ }^{\text {© }}$
100-225	22	-	-	-	-	EDB
100-225	42	-	-	-	-	EDS
100-225	65	-	-	-	-	ED
100-225	100	-	-	-	-	EDH
100-225	200	-	-	-	-	EDC
70-225	65	35	18	10	-	JD
250	65	35	18	10	-	JD
70-225	100	65	25	22	-	HJD

PRL4 Branch Devices, continued

Ampere Rating	Interrupting Rating (kA Symmetrical)				600 Vdc	Breaker Type
	240 Vac	480 Vac	600 Vac	250 Vdc		
250	100	65	25	22	-	HJD
70-250	-	-	-	42	35	HJDDC ${ }^{\text {© }}$
70-225	200	100	35	22	-	JDC
250	200	100	35	22	-	JDC
125-250	200	200	-	-	-	LCL
250-400	65	-	-	10	-	DK
100-400	65	35	25	10	-	KD
100-400	65	35	25	-	-	CKD @ロ®1
100-400	100	65	35	22	-	HKD
100-400	-	-	-	42	35	HKDDC © ${ }^{\text {® }}$
100-400	100	65	35	-	-	CHKD ©(1)
125-400	100	65	35	42	-	LHH
100-400	200	100	65	22	-	KDC
200-400	200	200	-	-	-	LCL
250-600	65	35	18	22	-	LGE
300-600	65	35	25	22	-	LD
300-600	65	35	25	-	-	CLD (9)
250-600	100	65	35	22	-	LGH
300-600	100	65	35	25	-	HLD
300-600	-	-	-	42	35	HLDDC ${ }^{\text {© }}$
300-600	100	65	35	-	-	CHLD (1)
250-600	200	100	35	42	-	LGC
300-600	200	100	50	25	-	LDC
300-600	200	100	50	25	-	CLDC ${ }^{1}$
250-600	200	150	65	50	-	LGU
400-800	65	50	25	22	-	MDL
400-800	100	65	35	25	-	HMDL
300-800	-	-	-	42	35	HMDLDC ${ }^{6}$
400-800	65	50	25	-	-	CMDL ${ }^{(1)}$
400-800	100	65	35	-	-	CHMDL ${ }^{1}$
400-800	65	50	25	-	-	ND
400-800	100	65	35	-	-	HND
400-800	200	100	65	-	-	NDC
400-800	65	50	25	-	-	CND (1)2
400-800	100	65	35	-	-	CHND (1) ${ }^{(2)}$
400-800	200	100	65	-	-	CNDC (1)2
600-1200	65	50	25	-	-	ND
600-1200	100	65	35	-	-	HND
600-1200	200	100	65	-	-	NDC
600-1200	65	50	25	-	-	CND (1)2
600-1200	100	65	35	-	-	CHND (1) ${ }^{\text {(2) }}$
600-1200	200	100	65	-	-	CNDC (1) ${ }^{\text {2 }}$
700-1200	-	-	-	42	50	NBDC ${ }^{6}$

Notes

(1) 50A devices are available as two-pole only
(2) Single-pole breakers rated 120 Vac .
(3) Two-pole breakers rated 120/240 Vac.
4. Arc fault circuit breaker.
(5) Single-pole breakers rated 277 Vac .

6 For use on DC systems only.
(7) At 480V, must be used on $480 \mathrm{Y} / 277 \mathrm{~V}$ grounded wye systems only.
(8) AIC rating for two- and three-pole breakers only.
(9) 100\% rated breaker. Requires copper bus. Not available in Type 12, 4 and 4 X enclosures.
(1) Breaker only available in three-pole frame.
(11) Available in single branch mounting only.

PRL4 Branch Devices, continued

FDPW and FDPB Switch Ratings, 240 or 600 Vac

Ampere Rating	Fuse Class Used	Short-Circuit Ratings (kA Symmetrical)
30-100	R, J ©	200
200 Single	R, J (5)	200
200 Twin	R © , J © , T	200
400,600 (${ }^{\text {(7) }}$	$\mathrm{R}{ }^{(1)}, ~{ }^{(5)}, \mathrm{T}$	200
$800,1200{ }^{(3)}$	L	200

Notes

(1) 100 kAIC based on NEMA test procedure.
(2) Fuses not included. Specify required fuse clips on all switches. (T fuse clips not available for 200/200 twin switches.)
(3) When branches of a twin unit are of different ampere ratings, as a 30-60 twin unit, price and layout as a 60-60 twin unit; when a 60-100 twin unit, price and layout as a 100-100 twin unit.
(4) No DC rating on 600,800 and 1200 A switches.
(5) Class J fuse provisions are applicable to 600 V units. When required, use price and dimensions of 600 V units for all voltages 600 V and below.
(6) Twin 200A switches are not available with Class R fuse clips at 600V.
(7) When shunt trip is required, 400-600A switches used with Class R fuses are rated 100 kAIC .

Pow-R-Line C Panelboards

Box Sizing and Selection-PRL4B

Approximate Dimensions in Inches (mm)

Main Lug Only (MLO), Main Breaker, Neutral, Through-Feed Lug (TFL) and Sub-Feed Lug (SFL) "X" Space Requirements. (For other configurations not shown, refer to Eaton.)

* = $\begin{aligned} & \text { Space available for branch devices. For device sizing, } \\ & \text { see Page V2-T3-72. }\end{aligned}$

PRL4B Layout

Standard Main Lug, Through-Feed and Sub-Feed Lugs (1) (500 kcmil Maximum)

Main Breaker with Neutral (when required) (500 kcmil Maximum)

Available with 38 X and 50 X Panel Height only.

Optional Main Lugs, Through-Feed and Sub-Feed Lugs (1) (750 kcmil Maximum)

Note
(1) Sub-feed lugs are available 250-600A. For 600A, use 1200A "A" space.

Approximate Dimensions in Inches (mm)

Panel Layout and Dimensions

To determine the dimensions of a given panelboard enclosure, make a layout sketch by fitting together the main, branch and lug modules according to the appropriate tables in the layout guide. Assign " X " units to each module as shown and obtain a total " X " number.

The height of the enclosure is related to the total " X " units in the layout as shown in table on right. Three standard box heights are available to accommodate any and all layout arrangements. " X " unit totals that do not exactly match those in table on right must be rounded off to the next highest standard (26X, 38X, 50X).

If a calculated " X " total for a panel exceeds 50X, the panel must be split into two or more separate sections with " X " space for through-feed lugs figured in for all but one section. If a neutral is required, a separate neutral bar and appropriate " X " space must be included in each section.

Layout Example

- 1-PRL4B panelboard, 480Y/277 volt, three-phase four-wire 65 kA, 800A, main lug, consisting of:
- 12-20A/single-pole HFD
- 2-250A/three-pole HJD
- 1-400A/three-pole HKD

Reference PRL4B Layout Example

1. From layout guide, total " X " height of panel = 26X, (which is a design standard and no rounding off is necessary).
2. From table on right, enclosure height for 26X panel = 57 inches (1447.8 mm).
3. Width $=24$ inches (609.6 mm)—directly from layout guide.
4. Enclosure depth = 11.31 inches (287.0 mm) -standard for all PRL4 panelboards.
PRL4B Layout Example

20A/1P	20A/1P	1X
20A/1P	20A/1P	1X
250A/3P		3 X
250A/3P		3 X
400A/3P		4X
Main Lugs	$800 \mathrm{~A}$	10X

Box Dimensions-PRL4B

"X" Units	Catalog Number	Height	Width	Depth ${ }^{(1)}$
$26 X$	BX2457	$57.00(1447.8)$	$24.00(609.6)$	$11.31(287.0)$
$38 X$	BX2473	$73.50(1866.9)$	$24.00(609.6)$	$11.31(287.0)$
$50 X$	BX2490	$90.00(2286.0)$	$24.00(609.6)$	$11.31(287.0)$
$38 X$	BX3673	$73.50(1866.9)$	$36.00(914.4)$	$11.31(287.0)$
$50 X$	BX3690	$90.00(2286.0)$	$36.00(914.4)$	$11.31(287.0)$
$38 X$	BX4473	$73.50(1866.9)$	$44.00(1117.6)$	$11.31(287.0)$
$50 X$	BX4490	$90.00(2286.0)$	$44.00(1117.6)$	$11.31(287.0)$

Top and Bottom Gutters

10.63-inch (269.9 mm) minimum.

Side Gutters-Minimum

24.00 -inch (609.6 mm) wide box- 5.00 -inch (127.0 mm).
36.00 -inch (914.4 mm) wide box- 6.00 -inch (152.4 mm).
44.00 -inch (1117.6 mm) wide box- 8.00 -inch (203.2 mm).

Notes

(1) Box depth is 10.40 inches (264.2 mm), cover adds 0.90 inches $(22.9 \mathrm{~mm})$ to depth.

800A maximum bus size in 24.00 -inch (609.6 mm) wide box. Flush trims not available on PRL4B panels.

Layout for Branch and Horizontally Mounted Main Devices Layout-PRL4B

Notes

(1) BAB and QBHW breakers with shunt trips require one additional pole space, i.e., single-pole is two-pole size, two-pole is three-pole size, and three-pole is four-pole size.
(2) If panel contains only BAB or QBHW branch breakers, use a PRL1a panelboard.
(3) GHB, HGHB or GHQ breakers cannot be mixed on same subchassis as BAB, QBHW
(4) If panel contains only GHB, HGHB or GHO branch breakers, use a PRL2a panelboard.
(5) When only one single-pole breaker of the group is required on either side of chassis, the single-pole breaker space required changes from 1 X to 2 X .
(6) Minimum 36 -inch (914.4 mm) wide box is required if optional \#6-300 kcmil lug is required.
(7) MDL main breaker in 24-inch (609.6 mm) wide box, refer to Page V2-T3-70.
(8) Optional 750 kcmil terminal requires 44 -inch (1117.6 mm) wide box.
(9) For use on DC systems only.

See Page V2-T3-70 for MLO or Neutral and Vertically Mounted Mains space requirements.

Box Sizing and Selection-PRL4F

Approximate Dimensions in Inches (mm)
Main Lug (MLO), Main Switch, Neutral, Through-Feed (TFL) and Sub-Feed Lug (SFL) "X" Space Requirements. (For other

* = Space available for branch devices. For device sizing, see Page V2-T3-75. configurations not shown, refer to Eaton.)

$$
\bullet \text { = Blank means no bus under cover, to meet NEC cable }
$$ bending space.

PRL4F Layout

Main Switch with Neutral (when required) (500 kcmil Maximum)

200A, 400A,

Standard Main Lug, Through-Feed and Sub-Feed Lugs (1)
(500 kemil Maximum)

Optional Main Lugs, Through-Feed and Sub-Feed Lugs (1) (750 kcmil Maximum)

Notes

(1) Sub-feed lugs are available 250-600A. For 600A, use 1200A "A" space.
(2) 800 A and 1200 A mains available only in vertical mounting.

Approximate Dimensions in Inches (mm)

Panel Layout and Dimensions

To determine the dimensions of a given panelboard enclosure, make a layout sketch by fitting together the main, branch and lug modules according to the appropriate tables in the layout guide. Assign " X " units to each module as shown and obtain a total " X " number.
The height of the enclosure is related to the total " X " units in the layout as shown in table on right. Three standard box heights are available to accommodate any and all layout arrangements. " X " unit totals that do not exactly match those in table on right must be rounded off to the next higher standard (38X, 50X).

If a calculated "X" total for a panel exceeds 50X, the panel must be split into two or more separate sections with " X " space for through-feed lugs figured in for all but one section. If a neutral is required, a separate neutral bar and appropriate " X " space must be included in each section.

Layout Example

- PRL4F, three-phase four-wire, 208Y/120 volt complete with 400A main switch and the following branches:
- One 200A/three-pole
- Two 100A/three-pole
- Two 30A/three-pole

Panel to have short-circuit rating of 100 kA symmetrical.

Reference PRL4F Layout Example

1. From layout guide, total " X " height of panel $=43 \mathrm{X}$.
2. Rounded off to next higher standard $=50 \mathrm{X}$.
3. From table on right, enclosure height for 50X panel = 90 inches $(2286.0 \mathrm{~mm}$).
4. Width $=36$ inches (914.4 mm).
5. Enclosure depth is standard for all PRL4 panelboards $=11.31$ inches (287.0 mm).

Type PRL4F
Layout Example

400 A Neutral		7 X
$30 \mathrm{~A} / 3 \mathrm{P}$	$30 \mathrm{~A} / 3 \mathrm{P}$	4 X
$100 \mathrm{~A} / 3 \mathrm{P}$	$100 \mathrm{~A} / 3 \mathrm{P}$	4 X
$200 \mathrm{~A} / 3 \mathrm{P}$		6 X
400A three-pole Main Switch (Vertical Mounted)	22 X	
Total $=43 \mathrm{X}$		

Box Dimensions-PRL4F

"X" Units	Catalog Number	Height	Width	Depth ${ }^{(1)}$
$38 X$	BX3673	$73.50(1866.9)$	$36.00(914.4)$	$11.31(287.0)$
$50 X$	BX3690	$90.00(2286.0)$	$36.00(914.4)$	$11.31(287.0)$
$38 X$	BX4473	$73.50(1866.9)$	$44.00(1117.6)$	$11.31(287.0)$
$50 X$	BX4490	$90.00(2286.0)$	$44.00(1117.6)$	$11.31(287.0)$

Top and Bottom Gutters

10.63 inches (269.9 mm) minimum.

Side Gutters-Minimum

- 36 -inch (914.4 mm) wide box:
- 8 -inch (203.2 mm)—200A maximum
- 6 -inch (152.4 mm)-400-1200A maximum
- 44-inch (1117.6 mm) wide box:
- 10-inch (254.0 mm)-200A maximum
- 8-inch (203.2 mm)—400-1200A

Notes

(1) Box depth is 10.40 -inch $(264.2 \mathrm{~mm})$, cover adds 0.90 -inch $(22.8 \mathrm{~mm})$ to depth.

Flush trims not available on PRL4F panels.

Layout for Branch and Horizontally Mounted Main Device-PRL4F

A Fusible switch may be used as horizontally main.

- 400 and 600A horizontally mounted feeder switches in 36 -inch $(914.4 \mathrm{~mm}$) or 44 -inch (1117.6 mm) wide box. 400 and 600 A horizontally mounted main switches only in 44-inch (1117.6 mm) wide box. For vertically mounted main, see Page V2-T3-73 for sizing.
Note: See Page V2-T3-73 for MLO or Neutral and Vertically Mounted Main space requirements.

Type PRL4D

Product Description

- Drawout molded case circuit breaker power panelboard
- Front accessible
- Front connected
- Through-the-door design drawout mechanism
- Visual indication of breaker status and position
- Large grab handles for easy removal
- 600 Vac maximum
- 1200A maximum mains
- 600A maximum drawout molded case feeder breakers

Application Description

- Interrupting ratings up to 200 kAIC symmetrical
- Feeder power panelboard
- Rated as Service Entrance Equipment when appropriately equipped
- Ideal for:
- Data centers
- Industrial facilities
- Process equipment manufacturing
- Anywhere that requires quick change of feeder devices is needed

Benefits

- Ease of maintenance
- Faster to remove and install
- Less downtime

Standards and Certifications

- UL 67 Listed chassis
- UL 50 Listed box and trim

Product Selection

PRL4D Main Lugs and Main Breakers

Interrupting Rating (kA Symmetrical)					
Ampere Rating	240 Vac	480 Vac	600 Vac	Breaker Type	"X" Space
Main Lugs Only (Fixed-Mounted Only)					
400	-	-	-	-	10X
600	-	-	-	-	10X
800	-	-	-	-	10X
1200	-	-	-	-	12X

Main Circuit Breaker (Drawout Only) (1)

600	65	35	18	LGE	$9 X$
600	100	65	35	LGH	$9 X$
600	200	100	50	LGC	$9 X$

Main Circuit Breaker (Fixed-Mounted Only) ${ }^{(1)}$

600	65	35	18	LGE	$4 X$
600	100	65	35	LGH	$4 X$
600	200	100	50	LGC	$4 X$
600	65	35	25	CLD ²	$6 X$
600	100	65	35	CHLD ${ }^{2}{ }^{2}$	$6 X$
600	200	100	50	CLDC ${ }^{2}{ }^{2}$	$6 X$
800	65	50	25	MDL	$6 X$
800	100	65	35	HMDL	$6 X$
800	65	50	25	CMDL (2)	$6 X$
800	100	65	35	CHMDL ${ }^{2}{ }^{2}$	$6 X$
1200	85	50	25	NGS	$6 X$
1200	100	65	35	NGH	$6 X$
1200	200	100	65	NGC	$6 X$
1200	65	50	25	CND ${ }^{2}{ }^{2}$	$6 X$
1200	100	65	35	CHND ${ }^{2}{ }^{2}$	$6 X$
1200	200	100	65	CNDC ${ }^{2}{ }^{2}$	$6 X$

Notes

(1) For ground fault protection on main devices, see Modification 10-applies to 310 and $310+$ trip units only.
(2) 100\% rated circuit breaker

Panelboards and Lighting Control

Pow-R-Line C Panelboards

PRL4D Drawout Branch/Feeder Breakers

3

Single Mount Two-Pole and Three-Pole

Ampere Rating	$\mathbf{2 4 0}$ Vac	$\mathbf{4 8 0}$ Vac	$\mathbf{6 0 0}$ Vac	Breaker Type	" X " Space
Single-Mount Breakers with Thermal-Magnetic Trip Units					
$70-250$	85	35	18	JGS	$7 X$
$70-250$	100	65	25	JGH	$7 X$
$70-250$	200	100	35	JGC	$7 X$
$250-600$	85	35	18	LGS	$9 X$
$250-600$	100	65	35	LGH	$9 X$
$250-600$	200	100	50	LGC	$9 X$

Single-Mount Breakers with Electronic 310+ Trip Units (Three-Pole Only)

20-50	85	35	18	JGS	7X
20-50	100	65	25	JGH	7X
20-50	200	100	35	JGC	7X
40-100	85	35	18	JGS	7X
40-100	100	65	25	JGH	7X
40-100	200	100	35	JGC	7X
80-150	85	35	18	JGS	7X
80-150	100	65	25	JGH	7X
80-150	200	100	35	JGC	7X
100-250	85	35	18	JGS	7X
100-250	100	65	25	JGH	7X
100-250	200	100	35	JGC	7X
100-250	85	35	18	LGS	9X
100-250	100	65	35	LGH	9X
100-250	200	100	50	LGC	9 X
200-400	85	35	18	LGS	9X
200-400	100	65	35	LGH	9X
200-400	200	100	50	LGC	9X
250-600	85	35	18	LGS	9X
250-600	100	65	35	LGH	9X
250-600	200	100	50	LGC	9 X

Provision for Future (Includes Factory-Installed Base Cassette)

$20-250$	Any JG family branch/feeder breaker	$7 X$
$100-600$	Any LG family branch/feeder breaker	$9 X$

For Dual/Twin feeder breakers, select any two breakers within the same "Breaker Type."

Dual/Twin Mount Two-Pole and Three-Pole

Ampere Rating	Interrupting Rating (kA Symmetrical)				
	240 Vac	480 Vac	600 Vac	Breaker Type	"X" Space
Dual-/Twin-Mount Breakers with Thermal-Magnetic Trip Units					
70-250	85	35	18	JGS	7X
70-250	100	65	25	JGH	7X
70-250	200	100	35	JGC	7X

Dual-/Twin-Mount Breakers with Electronic 310+ Trip Units (Three-Pole Only)

$20-50$	85	35	18	JGS	$7 X$
$20-50$	100	65	25	JGH	$7 X$
$20-50$	200	100	35	JGC	$7 X$
$40-100$	85	35	18	JGS	$7 X$
$40-100$	100	65	25	JGH	$7 X$
$40-100$	200	100	35	JGC	$7 X$
$80-150$	85	35	18	JGS	$7 X$
$80-150$	100	65	25	JGH	$7 X$
$80-150$	200	100	35	JGC	$7 X$
$100-250$	85	35	18	JGS	$7 X$
$100-250$	100	65	25	JGH	$7 X$
$100-250$	200	100	35	JGC	$7 X$

Provision for Future (Includes Factory-Installed Base Cassette)

$20-250$	Any JG Family Branch/Feeder Breaker	$7 X$
$100-600$	Any LG Family Branch/Feeder Breaker	$9 X$

Pow-R-Line C Panelboards

Box Sizing and Selection-PRL4D

Approximate Dimensions in Inches (mm)

Main Lug Only (MLO), Main Breaker, Neutral, Through-Feed Lug (TFL) and Sub-Feed Lug (SFL) "X" Space Requirements. (For other configurations not shown, refer to Eaton.)
$\begin{aligned} \text { * }= & \text { Space available for branch devices. For device sizing, } \\ & \text { see Page V2-T3-82. }\end{aligned}$

PRL4D Layout

Standard Main Lug, Through-Feed and Sub-Feed Lugs (1) (500 kcmil Maximum)

Main Breaker with Neutral (when required) (500 kcmil Maximum)

800A Vertically Mtd. MDL Main Breaker only in 24-inch (609.6 mm) wide box Available with 38 X and 50 X Panel Height only.

Optional Main Lugs, Through-Feed and Sub-Feed Lugs (1) (750 kcmil Maximum)

Note
(1) Sub-feed lugs are available 250-600A. For 600A, use 1200A "A" space.

Approximate Dimensions in Inches (mm)

Panel Layout and Dimensions

To determine the dimensions of a given panelboard enclosure, make a layout sketch by fitting together the main, branch and lug modules according to the appropriate tables in the layout guide. Assign " X " units to each module as shown and obtain a total " X " number.
The height of the enclosure is related to the total " X " units in the layout as shown in table on right. Three standard box heights are available to accommodate any and all layout arrangements. " X " unit totals that do not exactly match those in table on right must be rounded off to the next higher standard (38X, 50X).

If a calculated " X " total for a panel exceeds 50X, the panel must be split into two or more separate sections with " X " space for through-feed lugs figured in for all but one section. If a neutral is required, a separate neutral bar and appropriate " X " space must be included in each section.

Layout Example

- One PRL4D panelboard, 480Y/277 Vac, threephase, four-wire, 65 kA , 800A main lugs only with:
- One JGS 200A/ three-pole
- One LGS 400A/ three-pole
- One JGS 150A/ three-pole dual mount
- One JGS 100A/ three-pole dual mount

Reference PRL4D Layout Example

1. From layout guide, total " X " height of panel $=33 X$.
2. From table on right, $33 X$ must use minimum 38X dimensions. Minimum box height is 73.50 inches (1866.9 mm).
3. From the layout for branch and main devices, find minimum box width requirements for mains and branch/feeder devices.

- JGS single minimum width: 36 inches
- LGS single minimum width: 36 inches
- JGS dual minimum width: 44 inches
As the JGS duals require a minimum of a 44 -inch-wide box, the minimum box width is 44 inches.

4. From PRL4D Layout Example, the correct minimum box selection is $B \times 4473$, which is 73.50 inches $\mathrm{H} \times 44.00$ inches $W \times 11.31$ inches D ($1866.9 \mathrm{~mm} \mathrm{H} \times 1117.6$ $\mathrm{mm} W \times 287.0 \mathrm{~mm}$ D).

Box Dimensions-PRL4D				
$\begin{aligned} & \text { "X" } \\ & \text { Units } \end{aligned}$	Catalog Number	Height	Width	Depth ${ }^{(1)}$
38X	BX3673	73.50 (1866.9)	36.00 (914.4)	11.31 (287.0)
50X	BX3690	90.00 (2286.0)	36.00 (914.4)	11.31 (287.0)
38 X	BX4473	73.50 (1866.9)	44.00 (1117.6)	11.31 (287.0)
50X	BX4490	90.00 (2286.0)	44.00 (1117.6)	11.31 (287.0)

Top and Bottom Gutters

10.63 inches (269.9 mm) minimum.

Side Gutters-Minimum

- 36 -inch (914.4 mm) wide box: 6 -inch (152.4 mm)
- 44 -inch (1117.6 mm) wide box: 8 -inch (203.2 mm)

Type PRL4D Layout Example

JGS 200A three-pole single feeder		7X
LGS 400A three-pole single feeder		9X
JGS 150A three-pole dual feeder	JGS 150A three-pole dual feeder	7X
Main Lugs	$\begin{aligned} & 800 \mathrm{~A} \\ & \hline \end{aligned}$	10X

Notes

(1) Box depth is 10.40 -inch (264.2 mm), cover adds 0.90 -inch (22.8 mm) to depth. Flush trims not available on PRL4D panels.
Door-to-door option not available on PRL4D panels.

Panelboards and Lighting Control

Pow-R-Line C Panelboards

Layout for Branch and Horizontally Mounted Main Devices-PRL4D

Instructions

Determine box size by locating all main and feeder devices in your panel. The width of box is determined by the maximum box size shown for each device. For main lugs, through-feed lugs and sub-feed lugs, refer to Page V2-T3-80.

3

Notes

(1) 100% rated breaker.
(2) Optional 750 kcmil terminal requires 44 -inch (1117.6 mm) wide box.
(3) Contact Eaton for availability.

Accessories and Modifications

PRL4D Modifications

Modification	Item Number
Ambient compensating breakers	1
Breaker accessories-internal	2
Complete assembly	3
Compression type lugs	4
Conduit covers	5
Copper lugs/terminals	6
Copper main bus	7
Density rated bus	8
Directory frame-metal	9
Electronic trip units	10
Ground bars	11
Ground fault protection	12
Infrared (IR) viewing windows	13
Handle lock-off device	14
Nameplates	15
Permanent circuit numbers	16
Seismically qualified	17
Service entrance equipment rated	18
Shunt trips	22
Sub-feed lugs	23
Surge protective devices	20
Through-feed lugs	219

1. Ambient Compensating
 \section*{Breakers}

For ambient compensating breakers (where available) in lieu of standard breakers, add 10% to panelboard branch breaker and to main breaker list prices, if required.
(Not UL Listed.)

2. Breaker Accessories-Internal (Only One Accessory Per Position)

Accessories

Breaker Type	Device Mounting	Internal Breaker Accessory
JG family	Drawout ${ }^{1}$	Auxiliary switch 1A-1B
JG family	Drawout ${ }^{1}$	Auxiliary switch 2A-2B
JG family	Drawout ${ }^{1}$	Bell alarm
JG family	Drawout ${ }^{(1)}$	High load alarm w/trip
JG family	Drawout (1)	Ground fault alarm w/trip
JG family	Drawout (2)	Undervoltage release
JG family	Drawout (2)	Zone selective interlock
LG family	Drawout (1)	Auxiliary switch 1A-1B
LG family	Drawout ${ }^{1}$	Auxiliary switch 2A-2B
LG family	Drawout ${ }^{1}$	Bell alarm
LG family	Drawout (1)	High load alarm w/trip
LG family	Drawout ${ }^{(1)}$	Ground fault alarm w/trip
LG family	Drawout (2)	Undervoltage release (3)
LG family	Drawout [${ }^{\text {2 }}$	Zone selective interlock
LG family	Fixed	Auxiliary switch 1A-1B
LG family	Fixed	Auxiliary switch 2A-2B
LG family	Fixed	Bell alarm
LG family	Fixed	High load alarm w/trip
LG family	Fixed	Ground fault alarm w/trip
LG family	Fixed	Undervoltage release ${ }^{3}$
LG family	Fixed	Zone selective interlock
MDL family	Fixed	Auxiliary switch 1A-1B
MDL family	Fixed	Auxiliary switch 2A-2B
MDL family	Fixed	Auxiliary switch 1A-1B w/alarm
MDL family	Fixed	Auxiliary switch $2 \mathrm{~A}-2 \mathrm{~B}$ w/alarm
NG family	Fixed	Auxiliary switch 1A-1B
NG family	Fixed	Auxiliary switch 2A-2B
NG family	Fixed	Bell alarm
NG family	Fixed	High load alarm w/trip
NG family	Fixed	Ground fault alarm w/trip
NG family	Fixed	Undervoltage release ${ }^{3}$
NG family	Fixed	Zone selective interlock
Notes		
Accessories wired to a pull-apart terminal block. Right position only. (2) Accessories wired to a pull-apart terminal block. Left position only.		

3. Complete Assembly

Complete assembly of panelboard box, interior and trim prior to shipment, when requested on order.

4. Compression Main Lugs

Al/Cu Burndy Range Taking Type.

Modification 4

Main Lug Amperes	PRL4D Lug Wire Range
800	(3) $500-750 \mathrm{kcmil}$
1200	(4) \#2-600 kcmil (4) $500-750 \mathrm{kcmil}$

5. Conduit Covers

Fabricated sheet metal to cover open conduits above and/or below standard Type 1 box.

Modification 5
Description
Conduit enclosing shield-open back
Conduit enclosing shield-solid back
6. Copper Lugs/Terminals
Optional copper mechanical
main lugs only and includes
main incoming neutral lug.
Modification 6
Main Lug
PRL4D Lug Amperes Wire Range
600
800
1200
(2) $1 / 0-600 \mathrm{kcmil}$

7. Copper Main Busbars

Optional copper busbars are available in all ampere ratings.

Modification 7

Ampere Range	Bare Copper Silver-Plated Chassis Bus Copper Bus
600	
800	
1000	
1200	

8. Density Rated Bus

Standard main bus ampere rating is determined by UL listed temperature rise testing. Density rated bus is defined at 750A per square inch for aluminum bus and 1000A per square inch for copper bus. Adder for aluminum density rated bus is in addition to the base price. Adder for copper density rated bus is in addition to the base price plus the appropriate adder for copper bus. See Modification 7.

Modification 8

Ampere Rating
Aluminum-750A per Square Inch
600
800
1000
1200
Copper-1000A per Square Inch
600
800
1000
1200
9. Directory Frame-Metal

Metal directory frame in lieu of standard non-metallic pocket directory holder.

Modification 9
Directory Frame Type
Metal frame, plastic cover

10. Electronic Trip Units

Thermal-magnetic trip units are standard. For electronic trip units, select appropriate breaker from the electronic trip section of Pages
V2-T3-78 and V2-T3-79. See selection below for electronic trip units.

Modification 10

Breaker Frame Family	Trip Unit Type
Drawout Feeder JGS, JGH, JGC	Digitrip $310+$ LS Digitrip 310+ LSI Digitrip 310+ LSG Digitrip 310+ LSIG
Drawout Feeder or Main LGS, LGH LGC	Digitrip $310+$ LS Digitrip 310+ LSI Digitrip 310+ LSG Digitrip 310+ LSIG

The following electronic trip units integrate Eaton's Arcflash Reduction Maintenance System within the trip unit.

Breaker Frame Family	Trip Unit Type
Drawout Feeder or Main LGS, LGH, LGC	Digitrip 310+ ALSI
	Digitrip 310+ ALSIG

Electronic Trip Units for Fixed-Mounted Mains Only.

Breaker Frame Family	Trip Unit Type	Trip Unit Functionality ${ }^{(1)}$
LGS, LGH, LGC	Digitrip 310+	LS
	Digitrip 310+	LSI
	Digitrip 310+	LSG
	Digitrip 310+	LSIG
	Digitrip 310+	ALSI ${ }^{(2)}$
	Digitrip 310+	ALSIG (2)
CLD, CHLD, CLDC	Digitrip 310	LS
	Digitrip 310	LSI
	Digitrip 310	LSG
	Digitrip 310	LSIG
MDL, HMDL, CMDL, CHMDL	Digitrip 310	LS
	Digitrip 310	LSI
	Digitrip 310	LSG
	Digitrip 310	LSIG
NGS, NGH, NGC	Digitrip 310+ ${ }^{3}$	LS
	Digitrip 310+ ${ }^{(3)}$	LSI
	Digitrip 310+ ${ }^{(3)}$	LSG
	Digitrip 310+ ${ }^{(3)}$	LSIG
	Digitrip 310+ ${ }^{(3)}$	ALSI ${ }^{(2)}$
	Digitrip 310+ ${ }^{\text {3 }}$	ALSIG (2)
CND, CHND, CNDC	Digitrip $310{ }^{(4)}$	LS
	Digitrip $310{ }^{(4)}$	LSI
	Digitrip 310 (4)	LSG
	Digitrip $310{ }^{(4)}$	LSIG

11. Ground Bars

Modification 11

Description	Bar Type
Aluminum bar for aluminum	Standard, attached to box
and copper conductors	Insulated/isolated ground bar
Copper bar for use with	Standard, attached to box
copper only conductors	Insulated/isolated bar

Notes

(1) $L=$ Adjustable long delay pickup
$\mathrm{S}=$ Adjustable short delay pickup w/fixed short delay I = Adjustable instantaneous pickup
G = Adjustable ground fault pickup
A = Arcflash Reduction Maintenance System
(2) Trip unit includes Arcflash Reduction Maintenance System
(3) Digitrip 310+ is standard for the NGS, NGH and NGC.
(4) Digitrip 310 is standard for CND, CHND and CNDC.

12. Ground Fault Protection

Refer to Modification 10 for ground fault trip units.

13. Infrared (IR) Viewing Windows

Infrared viewing windows for main devices and drawout single-mounted feeder devices.

Modification 13	
Overcurrent	IR Window Device
Manufacturer	

14. Handle Lock-Off Devices for Breakers
Contact Eaton for a list of padlockable and nonpadlockable circuit breaker handle lock-offs.

15. Nameplates, Engraved

Field-attached nameplates.
Modification 15
Description
Mastic back, engraved, black with white lettering

Mastic back, engraved, colors other than black

Nameplates, screw attached

16. Permanent Circuit Numbers

Permanently attached micarta circuit numbering.

17. Seismically Qualified

For seismically qualified PRL4D panelboards, request seismic labeling on order.

18. Service Entrance Equipment

Service Entrance labeling as detailed under the "Service Entrance Equipment" per UL and NEC. Only panelboards meeting these requirements may be labeled as such. The requirement or service entrance labeling must be noted on the order. Includes neutral disconnect link and labeling "Suitable For Use as Service Equipment" (SUSE). Ground bar must be ordered separately. See Modification 11.

19. Shunt Trip for Main or Feeder Breakers

For tripping breaker from remote point. Voltage and frequency must be specified when ordering shunt trips. Wiring to terminal block is included with the drawout molded case product as standard. For all others wired to terminal block, contact Eaton.

20. Sub-Feed Lugs

Available only on main lug only panelboards.
Not available on service entrance panelboards with main lugs using the six disconnect rule.
Mechanical AI/Cu lugs. Compression or copper body lugs require additional price adder from Modification 4 or Modification 6, as appropriate.

Modification 20

Panel Ampere Rating	Box Height Addition
600	$4 X$
800	$6 X$

21. Surge Protective Devices

 (SPD)Package includes SPD unit and integral circuit breaker disconnect (30A) connected to the chassis bus.

Modification 21

Surge Current Rating	50	80	100	120	160	200	250	300	400
SPD Package Options-Basic Package									
LED monitor, L-N, L-G, L-L and $\mathrm{N}-\mathrm{G}$	■	\square	\square	■	■	■	■	■	■

Standard Package

LED monitor, L-N, L-G, L-L and
N-G. EMI/RFI filtering. Audible
alarm with disable switch.
Form C relay contact.
Premium Package
LED monitor, L-N, L-G, L-L and

LED BMIREI , L-G, L-L AN
N-G. EMI/RFI filtering. Audible
alarm with disable switch.
Form C relay contact. Six-digit
LCD display. Counts surges in
all modes. Nonvolatile memory
(no battery backup). Reset
button designed to prevent
accidental resets

22. Through-Feed Lugs
Mechanical Al/Cu lugs.
Compression or copper
lugs require additional price
adder from Modification 4
Compression Lug or
Modification 6 Copper
Lugs/Terminals.
Modification 22 Refer to PRL4D Layout. Panel Main Ampere Rating\quad Box Height 600$\quad 7 \mathrm{Addition}$
800
1200

23. Touchup Paint

Modification 23
Description
12 oz spray can. ANSI-6 light gray indoor
Case lot of 12—12 oz spray can. ANSI-61
light gray indoor

Note

(1) Available on only single-mounted drawout. Not available on dual-mounted feeder devices.

Product Overview

The PRL5P panelboard incorporates Eaton's plug-on power panelboard experience with modern manufacturing technology to provide the most flexible plug-on design in the industry.
Designed to eliminate the multitude of parts associated with other similar products, the PRL5P panelboard is the choice for applications where additions and changes must be fast and convenient.

Plug-On Mains and

Branches provide the flexibility to move devices on factory-assembled panels after the boards are received at the job site. The electrician may move branch devices and place them into a configuration that fits the particular wiring needs of that installation.

Breakers are mounted to an adapter that includes the bus connection hardware. The breaker to bus bar connection is positive and secure. This proven connection has been utilized by Eaton in plug-on power panelboards since 1984.

Two Enclosure Widths Provide Greater Flexibility

30-Inch ($\mathbf{7 6 2 . 0} \mathbf{~ m m}$) Wide.

The narrowest enclosure in the industry for an 800A main, breaker or lug, and up to 600A branch breakerswhile providing ample wiring bending space. An industry exclusive is the ability to mount two 225A, 480 Vac breakers on the same adapter unit. It requires half the space necessitated by other products.

Type PRL5P—30-Inch (762.0 mm) Wide

48-Inch (1219.2 mm) Wide.

Provides for mains up to 1200A. The 1200A lug adapter unit accepts up to 750 kcmil conductors. Two 600A breakers can be mounted across from one another. Another exclusive allows breakers of different sizes to be mounted across from one another, providing the ability to maximize space within the panel. There are no restrictions or predetermined spaces where branch devices must be placed.

Type PRL5P—48-Inch (1219.2 mm) Wide

Circuit Breaker and Lug Adapter Units

Breaker adapter units utilize molded case circuit breakers that provide increased performance in considerably less space than standard breakers. They're available from 15-1200A at 600 Vac maximum. A wide range of integrally mounted breaker accessories are available.

Main and through-feed lug adapter units are available and are mounted similar to the breakers. Lug units are available up to 1200A.

Breaker and lug attachment units can withstand fault currents up to 200 kA rms symmetrical.

600A L-Frame Breaker

400A K-Frame Breaker

Dual-Mounted 225A F-Frame Breakers

1200A Main Lug Unit

An Oversized Area is Provided for Neutral Connections with Ample Lugs for Ease of Installation

3

Contents
Description Page
Product Description V2-T3-7
Application Description V2-T3-8
Standards and Certifications V2-T3-10
Technical Data and Specifications V2-T3-11
Type PRL1a V2-T3-26
Type PRL1aF V2-T3-30
Type PRL1a-LX V2-T3-34
Type PRL2a V2-T3-38
Type PRL2aF V2-T3-42
Type PRL2a-LX V2-T3-46
Retrofit Panelboard V2-T3-50
Type PRL3a V2-T3-58
Type PRL3E V2-T3-62
Type PRL4 V2-T3-66
Type PRL4D V2-T3-76
Type PRL5P
Product Overview V2-T3-86
Product Selection V2-T3-89
Technical Data and Specifications V2-T3-94
Dimensions V2-T3-94

Type PRL5P

Product Description

- 600 Vac maximum (250 Vdc)
- Three-phase four-wire, three-phase three-wire, single-phase three-wire
- 1200A maximum mains
- 1200A maximum branch devices
- Plug-on branch devices
- Factory assembled
- Refer to Pages V2-T3-7 and V2-T3-88 for additional information

Application Description

- Power distribution panelboard
- Fully rated or series rated
- Interrupting ratings up to 200 kA symmetrical
- Suitable for use as Service Entrance Equipment, when specified on the order
- See Pages V2-T3-7 through V2-T3-23 for additional information

Product Selection

Panelboard Selection and Layout

Select either single-row or double-row bus chassis. Single-row bus chassismaximum 800 ampere main breaker or main lug only Select main device and " X " space from table below. Select branch devices and corresponding " X " space from the following tables.

Refer to layout data from the following tables. Make a
layout sketch of the main and branch devices utilizing either a single-row or double-row bus chassis indicating the " X " space for each device. The maximum total " X " space cannot exceed 40X for any panelboard. Should more than 40X be required, add the appropriate through-feed lug adapter or breaker to feed an additional panelboard.

PRL5P © ${ }^{(1)}$

Main Ampere Rating	Interrupting Rating (kA Symmetrical)			250 Vdc	Main Device Type	Main " X " Space
Main Lug Only Single-Row Bus						
400	-	-	-	-	Lug	8 X
600	-	-	-	-	Lug	8 X
800	-	-	-	-	Lug	8 X

Main Lug Only Double-Row Bus

800	-	-	-	-	Lug	$7 X$
1200	-	-	-	-	Lug	$7 X$

Main Breaker Single-Row Bus

400	65	-	-	10	DK	$4 X$
400	65	35	25	10	KD	$4 X$
400	100	65	35	22	HKD	$4 X$
400	200	100	65	22	KDC	$4 X$
600	35	35	25	22	LD	$6 X$
600	100	65	35	25	$H L$	$6 X$
600	200	100	35	25	LDC	$6 X$
800	65	50	25	22	MDL	$6 X$
800	100	65	35	25	HMDL	$6 X$

Main Breaker Double-Row Bus

800	65	50	25	22	MDL	6 X
800	100	65	35	25	HMDL	6 X
1200	65	50	25	-	ND	6 X
1200	100	65	35	-	HND	6 X
1200	200	100	65	-	NDC	$6 X$

Branch Devices-Single-Pole Breakers in Single Adapter Units-PRL5P

Ampere Rating	Interrupting Rating (kA Symmetrical) $\mathbf{1 2 0}$ Vac						
$15-60$	$\mathbf{2 4 0}$ Vac	$\mathbf{2 7 7}$ Vac	$\mathbf{1 2 5}$ Vdc	Breaker Type	"X" Type		
14	-	14	10	EHD	$2 X, 3 X$		
$15-60$	35	-	35	10	FD	$2 X, 3 X$	

Note

(1) Includes aluminum bus chassis, box, trim, main and neutral (if required).

Pow-R-Line C Panelboards

Ampere Rating	Interrupting Rating (kA Symmetrical)				Breaker Type	"X" Space
	240 Vac	480 Vac	600 Vac	250 Vdc		
100-225	22	-	-	-	EDB	3 X
100-225	42	-	-	-	EDS	3 X
100-225	65	-	-	-	ED	3 X
100-225	100	-	-	-	EDH	3 X
100-225	200	-	-	-	EDC	3 X
15-60	18	14	-	10	EHD	3 X
70-100	18	14	-	10	EHD	3 X
15-60	65	35	18	10	FD	3 X
70-100	65	35	18	10	FD	3 X
110-225	65	35	18	10	FD	3 X
15-60	100	65	25	22	HFD	3 X
70-100	10	65	25	22	HFD	3 X
110-225	100	65	25	22	HFD	3 X
15-60	200	100	35	22	FDC	3 X
70-100	200	100	35	22	FDC	3 X
110-225	200	100	35	22	FDC	3 X
70-225	65	35	18	10	JD	3 X
250	65	35	18	10	JD	3 X
70-225	100	65	25	22	HJD	3 X
250	100	65	25	22	HJD	3 X
70-225	200	10	35	22	JDC	3 X
250	200	100	35	22	JDC	3 X
100-400	65	-	-	-	DK	4 X
250-400	65	35	25	10	KD	4X
250-400	100	65	35	22	HKD	4X
250-400	200	100	65	22	KDC	4X
300-600	65	35	25	22	LD	6 X
300-600	100	65	35	25	HLD	6X
300-600	200	100	50	25	LDC	6 X
400-800	65	50	25	22	MDL (1)	6X
400-800	100	65	35	25	HMDL (1)	6 X
400-800	65	50	25	-	ND (1)	6 X
400-800	100	65	35	-	HND (1)	6 X
400-800	200	100	65	-	NDC (1)	6X
600-1200	65	50	25	-	ND (1)	6 X
600-1200	100	65	35	-	HND (1)	6 X
600-1200	200	100	65	-	NDC (1)	6X

Branch Devices-Sub-Feed Lug Units-PRL5P

Ampere Rating	Interrupting Rating (kA Symmetrical)				Breaker Type	$\begin{aligned} & \text { "X" } \\ & \text { Space } \end{aligned}$
	240 Vac	480 Vac	600 Vac	250 Vdc		
400	-	-	-	-	Lug	8X
600	-	-	-	-	Lug	8 X
800	-	-	-	-	Lug	8X
1200	-	-	-	-	Lug (1)	$7 \times$

Note

(1) For use only in double-row chassis panelboards only.

Branch Devices-Dual Breaker Adapters-PRL5P

Ampere Rating	Interrupting Rating (kA Symmetrical) $\mathbf{2 4 0} \mathbf{V a c}$	$\mathbf{4 8 0} \mathbf{~ V a c}$	$\mathbf{6 0 0} \mathbf{V a c}$	$\mathbf{2 5 0} \mathbf{V d c}$	Breaker Type	"X" Space
$100-225$	65	-	-	-	ED	$3 X$
$100-225$	100	-	-	-	EDH	$3 X$
$100-225$	200	-	-	-	EDC	$3 X$
$15-60$	18	14	-	10	EHD	$3 X$
$70-100$	18	14	-	10	EHD	$3 X$
$15-60$	65	35	18	10	FD	$3 X$
$70-100$	65	35	18	10	FD	$3 X$
$110-225$	65	35	18	10	FD	$3 X$
$15-60$	100	65	25	22	HFD	$3 X$
$70-100$	100	65	25	22	HFD	$3 X$
$110-225$	100	65	25	22	HFD	$3 X$
$15-60$	200	100	35	22	FDC	$3 X$
$70-100$	200	100	35	22	FDC	$3 X$
$110-225$	200	100	35	22	FDC	$3 X$

Note: Any two breakers listed above may be mounted on the same 2 X or 3 X dual breaker adapter. Dual breaker adapters may be in single- or double-row chassis. Dual breaker adapters can NOT be mounted across from another in a double-row chassis.

Modifications

1. Ambient Compensating Breakers

For ambient compensating breakers (where available) in lieu of standard breakers, add 10% to panelboard branch breaker and to main breaker list prices, if required.
(Not UL listed.)

2. Bus Density

Main bus ampere rating is determined by UL listed temperature test. 1000A per square inch copper is available and included in copper bus price addition.

3. Special Cabinet (Box) Construction

Modification 3
Modification
Type 3R Enclosure
Add per panel

4. Complete Assembly

Complete assembly of panelboard box, interior and trim prior to shipment when required.

Modification 4 Description		
		Modification 7
Main Lug Amperes		

6. Copper Main Bus
Modification 6
Panel Construction
Single-bus interior
Double-bus interior

6a. Silver-Plated Copper Main Bus

For silver-plated copper panelboard main bus and/or connectors, add as follows:

Modification 6a

Main Bus Ratings Amperes
Single-bus interior
Double-bus interior

6b. Copper Neutral
Modification 6b
Panel Construction

Single-bus-800A maximum
Double-bus-1200A maximum

7. Copper Lugs

Optional copper only mechanical main lugs (includes main incoming neutral lugs).

Modification 7

Metal frame, plastic cover
9. Trim and Door Modifications -Special Fronts and Doors

14. Copper Wire Only Terminals for Molded Case Circuit Breakers

To replace standard AI/Cu terminals.
Modification 14

Breaker Frame	Maximum Breaker Ampere Rating	Terminal Material	Wire Range
F	225	Copper	\#4-4/0
J	250	Stainless Steel	\#4-350
K	225	Copper	(1) \#3-350
	350	Copper	(1) 250-500
	400	Copper	(2) 3/0-250
L	600	Copper	(2) 250-500
M	600	Copper	(2) \#2/0-500
N	800	Copper	(3) \#3/0-300
	700	Copper	(2) \#2/0-500
1000	Copper	(3) \#3/0-500	
	1200	Copper	(4) \#3/0-400

15. Painting and Special Coatings	18. Shunt Trip for Main or Branch Circuit Breaker
Standard boxes are codegauge galvanized sheet steel. Standard trims are codegauge sheet steel with a rust inhibiting phosphatized coating and finished with ANSI-61.	For tripping circuit breaker from a remote point. Voltage and frequency must be specified. Wiring to terminal blocks is not included. Standard leads extend 18 inches (457.2 mm) out of breaker.
Modification 15 Description	Circuit breakers with factory installed 120, 240 or 480 Vac shunt trips are available with UL listing as shown in table below.
Painted Boxes (ANSI-61)	
Painted Trims or Boxes (other than ANSI-61)	
16. Permanent Circuit Numbers	Modification 18 Description
Modification 16	Add per device
Description	
To provide permanently attached Micarta circuit numbers.	19. Touchup Paint
17. Service Entrance	Type
To provide a Service Entrance Label as detailed under the	12 oz. spray can ANSI-61 light gray Indoor
"Service Entrance Equipment" in application considerations. Only	Case lot of 12-12 oz. spray cans ANSI-61 light gray indoor Single style

panelboards meeting these requirements can be labeled as such. The requirement for a Service Entrance Label must be noted on order entry. Includes neutral disconnect link and Service Entrance Equipment Label. (Ground bar not includedsee Modification 10.)

Modification 17
Description
Add per panel
18. Shunt Trip for Main or Branch Circuit Breaker
or tripping circuit breaker and frequency must be specified. Wiring to terminal blocks is not included. Standard leads extend 18 inches (457.2 mm) out Circuit breakers with factory installed 120,240 or 480 Vac shunt trips are available with
UL listing as shown

Modification 18
Description
Add per device

9. Touchup Paint

Type
12 oz. spray can ANSI-6
ight gray Indoor

ANSI-61 light gray indoor
Single style

Technical Data and Specifications

PRL5P Maximum Component Unit Ampere Rating

Main Lug and Sub-Feed Lug Unit-PRL5P

Ampere Rating	"X" Space	Mechanical Lug Size and Number AI/Cu Rated
Single Bus Connection		

Dimensions

Approximate Dimensions in Inches (mm)
Layout Information - PRL5P Box Sizes

	Total "X" Space ${ }^{1}$	Box Width	Box Height
Bus Chassis Type	24 X	$30.00(762.0)$	$64.00(1625.6)$
Single-row bus	32 X	$30.00(762.0)$	$75.00(1905.0)$
	40 X	$30.00(762.0)$	$86.00(2184.4)$
Double-row bus	24 X	$48.00(1219.2)$	$64.00(1625.6)$
32 X	$48.00) 1219.2)$	$75.00(1905.0)$	
	40 X	$48.00(1219.2)$	$86.00(2184.4)$

Note
(1) Deduct " X " space for main breaker or lugs from the total available "X" spaces listed above.

Chassis Layout

PRL5P Chassis Layout-"X" Unit Layout of Circuit Breaker and Lug Units-X = 1.38 Inches ($\mathbf{3 4 . 9} \mathbf{~ m m}$)

Panelboards and Lighting Control

Elevator Control Panelboard

Product Description

- 600 Vac maximum
- Three-phase four-wire
- 800A maximum mains
- 30-200A branch devices
- Short-circuit current rating up to 200 kA rms symmetrical
- Elevator controls including shunt trip, CPT, indicating lights and keyed selector switch

Application Description

- Instrument protection
- Fully rated
- Interrupting ratings up to 200 kA symmetrical when protected by fuse
- Provides selective coordination to 0.01 seconds with the appropriate upstream overcurrent protective device
- Eaton's Elevator Control Panelboard provides significant space savings in the elevator control room when compared to traditional installations
- Factory assembled

Contents

Description

Elevator Control Panelboard
Product Selection.
Options V2-T3-97
Box Sizing and Selection

Standards and Certifications

- UL 67 panelboards
- UL 50 enclosures
- UL 98 fusible switches

Elevator Control Panelboard is intended to meet the:

- NFPA 70 (National Electrical Code)
- NFPA 72 (National Fire Alarm Code)
- ANSI/ASME A17.1
(Safety Code for Elevators and Escalators)
- NFPA 13 (Installation of Sprinkler Systems)

Product Selection

Elevator Control Panelboard

Ampere Rating	Interrupting Rating (kA Symmetrical) 600 Vac	Main Type	Fuse Clip ${ }^{1}{ }^{1}$
Main Lug Only			
400	200	-	-
600	200	-	-
800	200	-	-
Main Fusible Switch $\mathbf{6 0 0}$ Vac			
400	200	FDPW	Class J
600	200	FDPW	Class J
800	200	FDPB	Class J

Branch Elevator Control Modules (2)

Ampere	Interrupting Rating (kA Symmetrical)	Breaker Type	Fuse Clip ${ }^{1}$)
30	200	FDPB	Class J
60	200	FDPB	Class J
100	200	FDPB	Class J
200	200	FDPB	Class J

Options

Elevator Control Options

Description	
Fused control power transformer	
Fire safety interface relay	
ON pilot light	
Isolated neutral termination	
200\% isolated neutral termination	
Fire alarm voltage monitoring relay (monitors shunt trip voltage)	
NEMA Type 3R enclosure	
Surge Protective Devices	
120 kA	Basic
	Standard
	Standard with surge counter
160 kA	Basic
	Standard
	Standard with surge counter
200 kA	Basic
	Standard
	Standard with surge counter
250 kA	Basic
	Standard
	Standard with surge counter

Notes

(1) Fuses provided by others
(2) Standard features include, fused switch with 120 Vac shunt trip, control power terminals ground termination, 120 Vac key test switch, 1NO and 1NC 120 Vac class mechanically interlocked auxiliary contact for hydraulic elevators with automatic recall.

Box Sizing and Selection

- Refer to Bid Manager ${ }^{T M}$ drawings for your specific configuration

Panelboards and Lighting Controls

Contents

 DescriptionTypes PRL1a, 2a, 3a, 3E, 4, Column
Modifications Selection Guide
V2-T3-98

Types PRL1a, 2a, 3a, 3E, 4, Column

Modifications Selection Guide

Modifications-Alphabetical Index

Modification	Item	Available on Panelboard Types			PRL3E	PRL4B	PRL4F	Column Type
		PRL1a	PRL2a	PRL3a				
Ambient compensating breakers	1	No	No	Yes	No	Yes	-	No
Bus density	2	Yes						
Cabinets—special: Types 2, 3R, 4, 4X, 12	3	Yes	Yes	Yes	Yes	Yes	Yes	No
Complete assembly	4	Yes						
Compression type lugs, mains only	5	Yes						
Concealed trim clamps (LT trim)	6	Yes	Yes	Yes	Yes	No	No	No
Conduit covers	7	Yes	Yes	Yes	Yes	Yes	Yes	No
Copper lugs	8	Yes						
Copper main bus	9, 9a, 9b	Yes	Yes	Yes	Yes	Yes	Yes	Standard
Directory frame-metal	10	Yes	Yes	Yes	Yes	Yes	Yes	No
Doors, special	11	Yes						
Fungus-proof	12	Yes						
Ground bar	13	Yes						
Electronic trip units	14	No	No	No	Yes	Yes	-	No
Ground fault protection (zero sequence)	15	No	No	No	No	Yes	Yes	No
Handle lockoff device	16	Yes	Yes	Yes	Yes	Yes	Std.	Yes
Hinges, special (LT trim)	17	Yes	Yes	Yes	Yes	Yes	Yes	No
Increased dimensions	18	Yes	Yes	Yes	Yes	No	No	No
Increased panel bus rating	19	Yes	Yes	Yes	Yes	No	No	No
Interiors to fit existing boxes	20	Yes	Yes	Yes	Yes	Yes	Yes	No
Locks, special (LT trim)	21	Yes	Yes	Yes	Yes	Yes	Yes	No
Molded case switches	22	Yes	Yes	Yes	Yes	Yes	No	Yes
Nameplates engraved	23	Yes						

Types PRLla, 2a, 3a, 3E, 4 and Column Modifications

Modifications-Alphabetical Index, continued

Available on Panelboard Types								
Modification	Item	PRL1a	PRL2a	PRL3a	PRL3E	PRL4B	PRL4F	Column Type
Neutral rated 200\%	24	Yes						
Painting and special coating	25	Yes						
Permanent circuit numbers	26	Yes						
Remote control switches (ASCO 920)	27	No	No	Yes	Yes	No	No	No
Service entrance	28	Yes	Yes	Yes	Yes	Yes	Yes	No
Shunt trips	29	Yes						
Split bus or meter loop	30	No	No	Yes	No	No	No	No
Metering devices	31	No	No	No	Yes	Yes	Yes	No
Sub-metering, IQ Energy Sentinel	32	No	No	No	No	Yes	No	No
Sub-feed breakers	33	Yes	Yes	Yes	Yes	No	No	Yes
Sub-feed lugs	34	Yes	Yes	Yes	Yes	Yes	Yes	No
Tamperproof screws (LT trim)	35	Yes						
Through-feed lugs	36	Yes						
Time clock space only	37	Yes	Yes	Yes	Yes	-	-	No
Touchup paint	38	Yes						
Surge protective device (SPD)	39	Yes	Yes	Yes	Yes	Ye	Yes	No
Terminals, copper only for breakers	40	Yes	Yes	Yes	Yes	Yes	-	Yes

1. Ambient Compensating Breakers

For ambient compensating breakers (where available) in lieu of standard breakers, add 10 percent to panelboard branch breaker and to main breaker list prices, if required. (Not UL listed.)

2. Bus Density

Main bus ampere rating is determined by UL listed temperature test. For 750A per square inch aluminum or 1000A per square inch copper, make price addition as follows:

Modification 2

Panel Type	Maximum Amperes
Aluminum-750 A per Square Inch	
PRL1a, 2a	100
	225
	400
PRL3a	250
	400
PRL4	400
	800
Copper-1000 A per Square Inch	
PRL1a, 2a	100
	225
	400,600
PRL3a	250
	600
PRL4	400
	1200

3. Special Cabinet (Box) Construction

Modification 3
Modification

Type 1 Enclosure

28-inch (711.2 mm) wide in place of standard 20-inch
$(508.0 \mathrm{~mm}$) wide PRL1a, PRL2a, PRL3a, PRL3E

Type 2 Enclosure

(Drip-proof with gasketed trim) PRL1a, PRL2a, PRL3a, PRL3E 20-inch (508.0 mm) wide

Type 3R Enclosure

PRL1a, PRL2a 20-inch (508.0 mm) wide
PRL1a, PRL2a 28-inch (711.2 mm) wide
PRL3a © ${ }^{1}$, PRL3E 20 -inch (508 mm) wide
(600A maximum)
PRL3a (1), PRL3E 28-inch (711.2 mm) wide
(600A maximum)
PRL4 24-inch (609.6 mm) or 36-inch (914.4) wide only
Type 12 Enclosure
PRL1a, PRL2a 20-inch (508.0 mm) wide
PRL1a, PRL2a 28-inch (711.2 mm) wide
PRL3a (1), PRL3E 20-inch (508 mm) wide
(600A maximum)
PRL3a (1), PRL3E 28-inch (711.2 mm) wide
(600A maximum)
PRL4 24 -inch (609.6 mm) or 36 -inch (914.4) wide only
Must also add bus density price from Modification 2 for PRL4
Type 4 Enclosure or Type 4X Stainless Steel Enclosure
Refer to Eaton

4. Complete Assembly

Complete assembly of panelboard box, interior and trim prior to shipment when required.

5. Compression Main Lugs-Al/Cu Burndy Range Taking

For other terminal types and box sizes, refer to Eaton.
Modification 5-Compression Lug Data

Main Amperes	Wire Range by Pan PRL1a and PRL2a	el Type PRL3E	PRL3a	PRL4
100	(1) \#1-1/0 or (1) 2/0-300 kcmil	-	-	-
125	-	(1) \#4-2/0 or (1) 2/0-300 kcmil	(1) \#4-2/0 or (1) 2/0-300 kcmil	-
225	(1) 2/0-300 kcmil or (1) $4 / 0-500 \mathrm{kcmil}$	-	-	-
250	-	(1) 2/0-350 kcmil or (1) $4 / 0-500 \mathrm{kcmil}$	(1) $2 / 0-350 \mathrm{kcmil}$ or (1) $4 / 0-500 \mathrm{kcmil}$	(2) 500-750 kmil
400	(2) $4 / 0-300 \mathrm{kcmil}$ or (2) $500-750 \mathrm{kcmil}$	(2) $4 / 0-300 \mathrm{kcmil}$ or (2) $500-750 \mathrm{kcmil}$	(2) $4 / 0-300 \mathrm{kcmil}$ or (2) $500-750 \mathrm{kcmil}$	(2) 500-750 kmmil
600	-	(2) $2 / 0-500 \mathrm{kcmil}$ or (2) $500-750 \mathrm{kcmil}$	(2) $2 / 0-500 \mathrm{kcmil}$ or (2) $500-750 \mathrm{kcmil}$	(2) 500-750 kmmil
800	-	-	-	(3) $500-750 \mathrm{kcmil}$
1200	-	-	-	(4) \#2-600 kcmil or (4) $500-750 \mathrm{kcmil}$

Modification 5-Box Height Additions

Main Amperes	PRL1a, PRL2a	PRL3E, PRL3a without Neutral	PRL3E, PRL3a with Neutral
100	0	$0 X$	$0 X$
225	0	-	-
250	-	$2 X$	$5 X$
400	0	$0 X$	$0 X$
600	0	$0 X$	$0 X$

Maximum size for PRL1a and PRL2a panels:
1-750 kcmil per phase, or 2-500 kcmil per phase.
For PRL4 panels, see layout pages.

6. Concealed Trim Clamps-LT Trim

Modification 6

Description
Add per panel PRL1a, PRL2a, PRL3a, PRL3E

7. Conduit Covers

Fabricated sheet metal to cover open conduits above and/or below standard Type 1 box.

Modification 7
Cover Type
Conduit Enclosing Shield (open back)
PRL1a, PRL2a, PRL3a, PRL3E, PRL4—Refer to Eaton
Conduit Enclosure (solid back)
PRL1a, PRL2a, PRL3a, PRL3E, PRL4-Refer to Eaton

Note

(1) At 600A, PRL3a requires the addition of density rated copper bus for Type 3R or 12 enclosure.

8. Copper Lugs

Optional copper mechanical main lugs only. (Includes main incoming neutral lug.)

Modification 8

Main Amperes	Wire Range and Number of Lugs Per Phase
100	(1) \#14-1/0
225	(1) \#6-250 kcmil
250	(1) \#6-250 kcmil
400	(2) \#1/0-600 kcmil
600	(2) \#1/0-600 kcmil
800	(2) \#1/0-600 kcmil
1200	(3) \#1/0-600 kcmil

Main Amperes	PRL1a, PRL2a	PRL3E, PRL3a without Neutral	PRL3E, PRL3a with Neutral	PRL4
100	0	0x	0X	-
225	0	-	-	-
250	-	0x	0x	0x
400	0	0x	0X	0X
600	-	1X	1X	0x
800	-	-	-	0X
1200	-	-	-	0X

9. Copper Main Bus

Modification 9

Available in PRL1a, PRL2a, PRL3a, PRL3E, PRL4, PRL1aF, PRL2aF, PRL1R, PRL2R, PRL1a-LX and PRL2a-LX

9a. Silver-Plated Copper Main Bus

Modification 9a

Available in PRL1a, PRL2a, PRL3a, PRL3E, PRL4, PRL1aF, PRL2aF, PRL1R, PRL2R, PRL1a-LX and PRL2a-LX

9b. Tin-Plated Copper Main Bus (PRL1a, 2a, 3a, Only)

Modification 9b
Panel Type
PRL1a, PRL2a, PRL3a, PRL3E

10. Directory Frame—Metal

Modification 10
Frame Type
Metal frame, plastic cover

11. Trim and Door Modifications-Special Fronts and Doors

Modification 11
Description
Door-in-door, one door over interior and one which exposes gutter. (LT Trim) (PRL1a, PRL2a, PRL3a, PRL3E only)
Common trim for two section panels with boxes bolted together. (LT Trim) (PRL1a, PRL2a, PRL3a, PRL3E only)

Standard flush lock with quarter turn fasteners at top and bottom of trim door (LT Trim) (standard on doors 48-inch (1219.2 mm) high and over). (PRL1a, PRL2a, PRL3a,
PRL3E only)
To provide a trim with a lockable door for PRL4 panels (door-in-door is standard with this adder). Includes National lock with standard keying. (1)
Add per panel

12. Fungus Proofing

For fungus proofing external portions of circuit breakers and all non-metallic parts, add 10 percent of total panelboard list price. For fungus proofing fusible switches and all non-metallic parts, add 20 percent of total panelboard list price.

13. Ground Bar

Modification 13

	Description	Bar Type
Panel Type		
PRL1a PRL2a PRL3a PRL3E PRL4	Aluminum terminal bar for aluminum or copper cable	Standard, insulated/isolated (2)
	Copper terminal bar for copper cable only	Standard, insulated/isolated (2)
Column Type		
In Pull Box In Gutter	Aluminum terminal bar for aluminum or copper cable	Standard, insulated/isolated (2)
	Copper terminal bar for copper cable only	Standard, insulated/isolated (2)

Notes
(1) Extra depth box is required. Box will be 12.82 -inch (325.6 mm) deep.
(2) For PRL1a, 2a, 3a and Column Type panelboards. The insulated/isolated ground bar includes a standard ground bar.

Panelboards and Lighting Control
Types PRLla, 2a, 3a, 3E, 4 and Column Modifications

14. Electronic Trip Units

Modification 14-Applies to Digitrip 310 and 310+ Trip Units Description

3

K-, L- and M-Frame Circuit Breaker (three-pole only)
Digitrip RMS310 LS
Digitrip RMS310 LSI
Digitrip RMS310 LSG (1)
Digitrip RMS310 LSIG (1)
N-Frame circuit breaker
Digitrip RMS310 LS
Digitrip RMS310 LSI
Digitrip RMS310 LSG (1)
Digitrip RMS310 LSIG (1)
Digiview Ammeter for 310+ Trip Unit

15. Zero Sequence Ground Fault Protection

For main devices only (circuit breakers or FDPW switch) in PRL4 assembled panels. Available in 250-1200A panels.

Price includes current monitors, ground bar, static sensor, shunt trip, necessary space, mounting and connecting in panelboards. Price does not include circuit breaker or FDPW switch.
Zero sequence ground fault is available with the following family of main devices:

Modification 15
Main Device
JD, KD, LD, MDL, ND, LCL, LA-P, NB-P
FDPW switches
(400-1200A)

16. Circuit Breaker Handle Lockoff Devices

Modification 16
Breaker Types
Non-Padlockable

JD, KD, MDL, ND

Padlockable

EHD, FDB, FD, HFD, FDC, ED, EDH, EDC, GHB, BAB, QBHW, HQP, QPHW, EGB, EGS, EGH JD, KD, LD, MDL, ND, FDE, HFDE

17. Special Hinges-LT Trim

Piano hinges in lieu of standard hinges.

18. Increased Dimensions (PRL1a, PRL2a, PRL3a and PRL3E Only) Type 1 Enclosure Only

Modification 18	
Description	
Increased End Gutters	
4 inch (101.6 mm) Top or Bottom	
7 inch (177.8 mm) Top or Bottom	
12 inch (304.8 mm) Top or Bottom	
Increased Side Gutters	
4 inch (101.6 mm) Left or Right	
7 inch (177.8 mm) Left or Right	
12 inch (304.8 mm) Left or Right	
19. Increased Panel Main Bus Rating (Three-Phase Four-Wire, Single-Phase Three-Wire)	
Modification 19	
Main Bus Ampere Rating	Panel Type
100-225/250	PRL1a, PRL2a, PRL3a, PRL3E
225-400	
600 (PRL3a)	
250-400	PRL4
400-600	
600-800	
800-1200	

20. Interior and Fronts to Fit Existing Boxes

Refer to Eaton.

21. Special Locks

Modification 21

Description
LT Type Trim
Yale 511S with rosette
Master keying (LL803 Key)
Corbove locks or standard lock-per panelboard (Cat. \#60 Key)
PRL1a, PRL2a, PRL3a, PRL3E
Tee handle and 3-point catch
PRL1a, PRL2a, PRL3a, PRL3E
COMPX metal lock with standard keying
PRL1a, PRL2a, PRL3a, PRL3E
COMPX metal lock with GE75 keyway
PRL1a, PRL2a, PRL3a, PRL3E, PRL4
EZ Type Trim
Standard Lock, Keyed GE75
Standard Lock, Keyed to Corbin TEU-1
Standard Lock, Keyed to Corbin Cat 60
Standard Lock, Keyed to Corbin WEM1
Notes
(1) Main breaker only.
PRL4 with door includes National lock with standard keying. See Modification 11.

22. Molded Case Switches (Three-Pole, Two-Pole)

Modification 22
Not UL Listed

Breaker Frame	Maximum Volts	Maximum Amperes
EHD	480	100
FD	600	225
JD	600	250
DK	240	400
KD	600	400
LD	600	600
MDL	600	800
ND	600	1200

23. Nameplates, Engraved

Modification 23
Type
Mastic back and installed by purchaser, per nameplate
Fixed to panel trim with two screws or rivets, per nameplate
PRL1a, PRL2a, PRL3a, PRL3E only

24. Neutral Rated 200\%

Modification 24

Main Bus Rating	Neutral Rating
100	225
225	450
250	500
400	800
600	1200

Modification 24-Box Height Additions

Main Bus Rating	Neutral Rating	PRL1a, PRL2a	PRL3a, PRL3E	PRL4
100	225	0	$0 X$	-
225	450	0	-	-
250	500	-	$3 X$	$0 X$
400	800	0	$3 X$	$0 X$
600	1200	-	$3 X$	$0 X$

Note: Dimensions based on mechanical lugs. For compression or copper lugs, refer to Eaton.

For 800 and 1200A PRL4 with 200% neutral, refer to Eaton.

25. Painting and Special Coatings

Standard boxes are code-gauge galvanized sheet steel. Standard trims are code-gauge sheet steel with a rust inhibiting phosphatized coating and finished with ANSI-61.

Modification 25
Description
Painted boxes (ANSI-61)
Painted trims or boxes (other than ANSI-61)

26. Permanent Circuit Numbers

Modification 26
Description
To provide permanently attached Micarta Xcircuit numbers.

27. Remote Control Switches-ASCO 920 (Three-Pole, Two-Pole)

Electrically operated, mechanically held remote control switch directly mounted to panelboard bus for total or split bus switching applications.
(For split bus applications, make price addition from Modification 30.)

480 Vac maximum short-circuit rating of panelboard is 22 kAIC maximum.

Includes complete installation in the panelboard with a screw cover over the switch compartment.

Pushbuttons or other control devices are not included.
For control circuit modifications, refer to Eaton.
Modification 27-Remote Control Switches (PRL3a and PRL3E Only)

Switch Rating Amperes
$30,60,75,100,150,200,225$
Modification 27-Remote Control Switch Modifications Description
Two-wire control relay
Three-wire control relay
Control power transformer
To provide hinged cover in place of standard screw cover

28. Service Entrance

To provide a Service Entrance Label as detailed under the "Service Entrance Equipment" in application considerations. Only panelboards meeting these requirements can be labeled as such. The requirement for a Service Entrance Label must be noted on order entry. Includes neutral disconnect link and Service Entrance Equipment Label. (Ground bar not includedsee Modification 13.)

Modification 28

Panel Type
PRL1a, PRL2a, PRL3a, PRL3E, PRL4

Types PRLla, 2a, 3a, 3E, 4 and Column Modifications

29. Shunt Trip for Main or Branch Circuit Breaker and FDPW Switches

For tripping device from a remote point. Voltage and frequency must be specified. Wiring to terminal blocks is not included. Standard leads extend 18 -inches (457.2 mm) out of device.

Factory-installed 120, 240 or 480 Vac shunt trips are available with UL listing as shown in table below. Underwriters Laboratories listing is not available for shunt trip mounted on molded case switches.

Modification 29

Device

BAB, QBHW

Requires one additional pole space, i.e., single-pole is two-pole size, two-pole is three-pole size and three-pole is four-pole size.
GHB (three-pole only)
All other circuit breakers
FDPW switch (400-1200A)

30. Split Bus or Meter Loop (250A Max.,

3Ph 4W, 3Ph 3W, 1Ph 3W, 1Ph 2W)

Panel type PRL3a only. For enclosure size, refer to Eaton.
Modification 30
Main Bus Amperes
100-250

31. Metering Devices (PRL4 Only)

IQ digital metering for incoming service. Devices are installed in chassis mounted compartment with hinged door. Standard CTs (1200A maximum) are included with devices. Requires copper bus at 1200A.

Modification 31

Device	Box Height Addition
10130 with CTs and display	13X
IO 130 with CTs, no display	13X
10140 with CTs and display	13X
IO 140 with CTs, no display	13X
10150 with CTs and display	13X
IO 150 with CTs, no display	13X
10210 with CTs	13X
10220 with CTs	13X
10230 with CTs	13X
10230 M with CTs	13X
10250 with CTs and display	13X
IO 250 with CTs, no display	13X
10260 with CTs and display	13X
10260 with CTs, no display	13 X
PXM 2250 with CTs and display	13X
PXM 2250 with CTs, no display	13X
PXM 2260 with CTs and display	13X
PXM 2260 with CTs, no display	13X
PXM 2270 with CTs and display	13X
PXM 2270 with CTs, no display	13X

32. Sub-Metering IQ Multi-Point Submeter II (PRL4 OnIy)

Microprocessor-based breaker-mounted device to monitor power and energy (kW, kWH, kW demand). Device mounts on the load side of three-pole F-, J- and K-Frame feeder breakers. Units are shipped with the interior for field installation. Minimum box width of 36 inches (914.4 mm) is required.

Modification 32
IO Energy Sentinel
F-Frame three-pole (150A maximum)
J-Frame three-pole
K-Frame three-pole

33. Sub-Feed Breakers

Modification 33-Panel Types PRL1a, PRL2a, PRL3a, PRL3E. One Breaker Per Panel

Maximum Amperes	Number of Poles	Breaker Type	Interrupting Rating (kA Symmetrical)		Box Height Addition PRL3a
			240V	480V	
100	2	EHD	18	14	NA
150	2	FDB	18	14	NA
225	2	FD	65	35	NA
225	2	HFD	100	65	NA
225	2	FDC	200	100	NA
225	2	EDB	22	-	NA
225	2	EDS	42	-	NA
225	2	ED	65	-	NA
225	2	EDH	100	-	NA
225	2	JD	65	35	14 X
225	2	HJD	100	65	14 X
225	2	JDC	200	100	14 X
250	2	JD	65	35	14 X
250	2	HJD	100	65	14 X
250	2	JDC	200	100	14X
400	2	DK	65	-	15X
400	2	KD	65	35	15X
400	2	HKD	100	65	15X
400	2	KDC	200	100	15X
100	3	EHD	18	14	NA
150	3	FDB	18	14	NA
225	3	FD	65	35	NA
225	3	HFD	100	65	NA
225	3	FDC	200	100	NA
225	3	EDB	22	-	NA
225	3	EDS	42	-	NA
225	3	ED	65	-	NA
225	3	EDH	100	-	NA
225	3	JD	65	35	14 X
225	3	HJD	100	65	14 X
225	3	JDC	200	100	14 X
250	3	JD	65	35	14 X
250	3	HJD	100	65	14 X
250	3	JDC	200	100	14 X
400	3	DK	65	-	15X
400	3	KD	65	35	15X
400	3	HKD	100	65	15X
400	3	KDC	200	100	15X

Note: 225A maximum on Column Type panels. Sub-feed breaker not available on PRL3a panel with subchassis.

Modification 33-Panel Type PRL3a Only. Two Breakers Per Panel-Twin Mounted

Maximum Amperes	Number of Poles	Breaker Type	Interrupting Rating (kA Symmetrical) $\mathbf{2 4 0}$ Volts	480 Volts	Box Height Addition PRL3a
225	2	JD	65	35	$20 X$
225	2	HJD	100	65	$20 X$
225	2	JDC	200	100	$20 X$
250	2	JD	65	35	$20 X$
250	2	HJD	100	65	$20 X$
250	2	JDC	200	100	$20 X$
225	3	JD	65	35	$20 X$
225	3	HJD	100	65	$20 X$
225	3	JDC	200	100	$20 X$
250	3	JD	65	35	$20 X$
250	3	HJD	100	65	$20 X$
250	3	JDC	200	100	$20 X$

34. Sub-Feed Lugs (3Ph 4W, 3Ph 3W, 1Ph 3W, 1Ph 2W)

Note: Not available on service entrance panels with main lugs only (six disconnect rule).

Mechanical AI/Cu lugs. Compression or copper lugs requires additional price adder from Modification 5-Compression Lug Data or Modification 8 as appropriate.

Available on main lug panels only.
Modification 34

Main Amperes	Box Height Addition
Panel Types PRL1a, PRL2a	
$100-225$	$0 X$
Panel Type PRL3a, PRL3E	
$100-250$	$1 X$
Panel Type PRL4 ${ }^{1}$	
$250-400$	$0 X$
600	$4 X$

35. Tamperproof Screws-LT Trim

Modification 35
Description
Tamperproof screws for trims, in lieu of standard screws.

36. Through-Feed Lugs (3Ph 4W, 3Ph 3W, 1Ph 3W, 1Ph 2W)

Note: 225 amperes maximum on Column Type panels. Not available on service entrance panels with main lugs only (six disconnect rule).

Mechanical Al/Cu lugs. Compression or copper lugs requires additional price adder from Modification 5-Compression Lug Data or Modification 8 as appropriate.

Not available on panels with sub-feed breaker.
Modification 36

Main Amperes	Box Height Addition
Panel Types PRL1a, PRL2a	
100	${ }^{2} 2$
225	${ }^{2}{ }^{2}$
400	${ }^{2}$
600	${ }^{2}$
Panel Type PRL3a, PRL3E	
100	$2 X$
250	$5 X$
400	$8 X$
600	$8 X$
800	$14 X$
Panel Type PRL4 ${ }^{2}$	$7 X$
250	$7 X$
400	$7 X$
600	$7 X$
800	$5 X$
1200	

37. Time Clock Space Only

Includes box, trim, door and mounting pan.
Modification 37
Enclosure Type

Type 1
PRL1a, PRL2a, PRL3a, PRL3E (24-inch (609.6 mm) space)
PRL1a, PRL2a, PRL3a, PRL3E (36-inch (914.4mm) space)
Type 3R
PRL1a, PRL2a, PRL3a, PRL3E (24-inch (609.6 mm) space)
38. Touchup Paint
Modification 38

Description

12 oz. spray can. ANSI-61 light gray indoor
Case Lot of 12—12 oz. spray cans. ANSI-61 light gray indoor single style

Notes

(1) Refer to PRL4 layout.
(2) Refer to panelboard sizing charts.

39. Surge Protective Device (SPD)

Type PRL1a, PRL2a, PRL 3a and PRL3E Panelboards

Package includes SPD unit connected to the panelboard bus.
Available for all enclosure types.
Sizing:
PRL1a, PRL2a, PRL3E: Add 7 inches (177.8 mm) to the standard box height.
PRL3a: Add 4X for 100-200 kA SPD units.
PRL3E: AdVisor/SuperVisor display (200 kA maximum) add 8 inches. SML TVSS add 7 inches.

Type PRL4 and Elevator Control Panelboards

Package includes SPD unit and integral circuit breaker disconnect (30A) connected to the panel bus.
Available for all enclosure types.
The SPD unit and integral circuit breaker disconnect will require $7 X$ of chassis space. (Only available in 36 -inches (914.4 mm) or $44-\mathrm{inches}$ (1117.6 mm) wide enclosure.)

Modification 39

Description	kA/Phase								
Surge Current Rating	50	80	100	120	160	200	250	300	400
SPD Package Options									
Basic LEDs monitor L-N, L-G, L-L and N-G									
PRL1a, PRL2a, PRL3a, PRL3E	\square	\square	\square	\square	\square	\square	-	-	-
PRL4, Elevator Control Panelboard	\square								
Standard Feature Package LEDs monitor L-N, L-G, L-L and N-G EMI/RFI filtering Audible alarm with disable switch Form C relay contact									
PRL1a, PRL2a, PRL3a, PRL3E	\square	\square	\square	\square	\square	\square	-	-	-
PRL4, Elevator Control Panelboard	\square								
Standard Package LEDs monitor L-N, L-G, L-L and N-G EMI/RFI filtering Audible alarm with disable switch Form C relay contact Six digit LCD display Counts surges in all modes Non-volatile memory (no battery backup) Reset button designed to prevent accidental resets									
PRL1a, PRL2a, PRL3a, PRL3E	\square	\square	\square	\square	\square	\square	-	-	-
PRL4, Elevator Control Panelboard	\square								

40. Copper Wire Only Terminals for Molded Case Circuit Breakers

(To replace standard AI/Cu terminals.)
Modification 40

Breaker Frame	Maximum Breaker Ampere Rating	Terminal Material	Wire Range
F	225	Copper	\#4-4/0
J	250	Stainless Steel	\#4-350
K	225	Copper	(1) \#3-350
	350	Copper	(1) 250-500
	400	Copper	(2) 3/0-250
L	600	Copper	(2) 250-500
N	600	Copper	(2) \#2/0-500
800	Copper	(3) \#3/0-300	
	700	Copper	(2) \#2/0-500
	Copper	(3) \#3/0-500	
	1000	Copper	(4) \#3/0-400

Note
(1) Requires 15A branch breaker for cable connection-three-pole (three-phase) or two-pole (single-phase). (Add breaker separately, not included in price.)

Pow-R-Command Family

Contents

| Description | |
| :--- | :--- | ---: |
| Features . | Page
 V2-T3-108 |
| V2-T3-111 | |
| Product Selection . | V2-T3-121 |

Product Overview

Pow-R-Command ${ }^{\text {TM }}$ is a lighting control and energy management system that integrates branch circuit protection, control (switching and dimming) and metering into a single panelboard enclosure. The integrated design simplifies electrical distribution and control systems design, and eliminates separate equipment enclosures and associated wiring. Other benefits include reducing equipment wall space, installation labor and total installed cost. Pow-RCommand systems are designed to meet or exceed ASHRAE, IECC and LEED® requirements.
Pow-R-Command Intelligent Panelboards use Eaton Pow-RLine ${ }^{\circledR} 1$ a and 2 a lighting panelboard platforms to mount Pow-R-Command electronics and solenoid-operated controllable circuit breakers. Panelboard mains include 100 A to 400 A main lug and main circuit breaker configurations. Available voltages include 120/240, 208Y/120 and 480Y/277, single-phase and three-phase. Panelboard options include installation of controllable and non-controllable circuit breakers, 200\% rated neutral, metering and surge protection devices (SPDs).
Pow-R-Command Intelligent
Panelboards are assembled in two basic configurations, Pow-R-Command Master and Expansion Panelboard.
Pow-R-Command Master
Panelboards are designed for
standalone and networked systems. Master Panelboard components include controller with low voltage power supply, Breaker Control Bus (BCB) and solenoid-operated controllable circuit breakers.
Expansion Panelboards (PRCEP) are designed to directly connect to Master Panelboard via controller SLAN communications. Expansion Panelboard includes BCB and solenoid-operated controllable circuit breakers. Pow-R-
Command systems are scalable using both Master and Expansion Panelboards to provide the right amount of control with reduced installed cost.

System Electronics

The 5th generation PRC "E" Series controller family includes PRC2000E,
PRC1500E, PRC1000E and PRC750E models. Specifiers and users select the controller to meet specific control and communication requirements. PRC-E controllers offer a broad range of schedule and occupant-based control. Network options include RS-485 and Ethernet. PRC-E controllers communicate with each other using powerful Pow-R-Command peer-to-peer protocol. All PRC-E controllers can be programmed, monitored and overridden using the onboard Web pages through the controller maintenance Ethernet port using an industry standard patch cable. The PRC2000E model includes access to onboard Web pages through
the Ethernet network connector. Both PRC1500E and PRC2000E models include BACnet/IP for simple and straightforward integration with building management systems. All Pow-R-Command controllers can control up to 168 solenoid-operated controllable circuit breakers by connecting PRCEP panelboards using the controller SLAN sub-network communications port.
Breaker Control Bus electronics come in 9-, 18- and 21-circuit lengths depending on the size of the panelboard and are directly mounted to panelboard interior rails. BCBs are connected to the controller SLAN via 4-conductor cable and act as the interface between controller and controllable circuit breaker for providing status and control. Onboard power switching circuitry signals the controllable circuit breaker solenoid to switch the controllable circuit breaker ON and OFF. Each BCB is addressable between 1 and 8, allowing the controller to monitor and control up to 168 controllable circuit breakers. Pow-R-Command panelboards are assembled with one or two BCBs to offer the right amount of control.

Controllable Circuit Breakers

Controllable circuit breakers include standard circuit protection and control. Solenoid mechanism provides control, mechanical and electronic status and override lever.

Controllable circuit breakers are available in 15-30 A, single-pole and two-pole configurations and are suitable for electrical distribution systems up to 480Y/277 Vac Special application controllable circuit breakers include emergency and plug load. Emergency controllable circuit breakers are used for controlling dual purpose emergency lighting fixtures Plug load controllable circuit breakers are used to meet new energy codes requiring 50% of receptacles to switched ON and OFF using schedule- or occupancy-based control systems. The two-pole device includes a standard non-controlled and controllable circuit breaker pole for connecting to split receptacles. The common handle tie disconnect and common trip mechanism allows for shared neutrals and meets NEC requirements.

Accessories

Pow-R-Command system accessories include digital switches (PRCDS) and low voltage switches (PRCLS) to provide local occupant override and light level scene control. Switches are available in 2-, 4and 6-button configurations in white, black and almond colors.

Software

Programming, monitoring and control software includes Lighting Optimization Software (LOS), Building Graphics Software (BGS) custom graphics and Site Server (WSS).

Pow-R-Command

Features

Pow-R-Command Master Panelboard Mounted Components

Pow-R-Command Expansion Panelboard
Expansion Panelboard (PRCEP) includes Breaker Control Bus electronics and solenoid-operated controllable circuit breakers. Master and Expansion Panelboards are connected via SLAN communications sub-network to provide a scalable system architecture for cost-effective control solutions.

Pow-R-Command Controllers

Pow-R-Command Intelligent Panelboards integrate branch circuit protection and control into a single panelboard enclosure to eliminate the need for mounting external time clocks with contactors or relay panels. Four 5th generation PRC-E series controller models are available to allow users and specifiers to select the controller that best fits the application.

PRC750E

- Microprocessor-based programmable lighting and energy management system intended for standalone applications
- Designed with the electrical contractor in mind, it offers integral back-lit color LCD touchscreen display for simple, straightforward commissioning and startup
- Front panelboard programming can also be achieved by connecting the controller maintenance port to a laptop using an industry standard Ethernet patch cable
- Preconfigured Web pages or PC software can be used to program, monitor and override the system
- Control options include schedule-based, occupant override and photocell control
- Sixteen two-wire low voltage inputs are available for connecting wall stations, occupancy sensors and photocells
- Each controller can be connected to three Expansion Panelboards via SLAN communications to control and monitor up to 168 solenoid-operated circuit breakers

PRC1000E

Includes all the features of the PRC750E controller with the addition of:

- Up to 120 controllers can be connected to the same Pow-R-Command RS-485 peer-to-peer network
- Powerful peer-to-peer protocol and network architecture allows schedules and external wiring device signals to be broadcast over the network to control any or all of the solenoid-operated controllable circuit breakers connected to the system. This system capability eliminates the need for changing the same schedule in multiple panelboards and requiring additional wiring devices to be directly connected to specific controllers
- Eight universal inputs can be programmed to accept either digital or analog external wiring devices. Compatible with Iow voltage digital wiring devices like wall stations, occupancy sensors and photocells when programmed as digital inputs. When programmed as $0-10 \mathrm{Vdc}$ analog inputs, indoor and outdoor photosensors can be connected for dimming and daylight harvesting applications
- Eight analog 0-10 Vdc outputs for connecting to fluorescent and LED lighting fixtures equipped with $0-10 \mathrm{Vdc}$ dimming circuitry to meet dimming and daylight harvesting application requirements
- Compatible with existing PRC1000 systems

PRC1500E

Includes all the features of the PRC1000E controller with the addition of:

- Ethernet communications
- BACnet/IP communications protocol for integrating into building management systems

PRC2000E

Includes all the features of the PRC1500E controller with the addition of:

- Remote access to preconfigured Web pages for programming, system monitoring and override control via Ethernet network connection
- Compatible with existing PRC2000 systems

Pow-R-Command

PRC-E Controller Features

3

Controller	PRCEP	PRC750E	PRC1000E	PRC1500E	PRC2000E
Inputs					
Dry contact inputs		16	8	8	8
Universal (dry contact or analog 0-10 Vdc)			8	8	8
Switch Override Controller (SOC) compatible			60	60	60
Outputs					
Analog (0-10 Vdc)			8	8	8
Maximum number of dimming ballasts/drivers per analog output			40	40	40
Power supply for external devices (100 mA)			$12 \mathrm{Vdc} / 30 \mathrm{Vac}$	$12 \mathrm{Vdc} / 30 \mathrm{Vac}$	$12 \mathrm{Vdc} / 30 \mathrm{Vac}$
Maximum number of breaker control bus		8	8	8	8
Maximum number of controllable breakers		168	168	168	168
Control Logic					
Maximum number of logic control groups		16	100	100	100
365-day time clock		■	■	■	■
Astronomical time clock with sunrise and sunset offsets		\square	\square	\square	\square
Schedules		250	250	250	250
On/Off per schedule per day		250	250	250	250
Holidays		30	30	30	30
Automatic daylight savings time		■	■	■	■
Blink notice		\square	\square	\square	\square
Override time for switch inputs (min./max.)		1 min to 10 hrs			
Dimming and daylight harvesting			■	■	■
Configurable source logic using software (OR, AND, XOR, XNOR, NAND, LAST EVENT) (1)			\square	\square	\square
Communications					
Expansion Panelboard SLAN		■	■	■	■
Maximum Breaker Control Bus (BCB) per SLAN		8	8	8	8
Digital Switch Network			■	■	■
Pow-R-Command peer-to-peer RS-485			■	■	\square
Maximum controllers per RS-485 network			120	120	120
Pow-R-Command peer-to-peer Ethernet				■	■
Remote access to preconfigured Web pages using Ethernet network connection (TCP/IP server)					\square
BACnet/P				■	\square
Modbus RTU RS-485 (Breaker Control Bus addresses 1-16)	\square				
Front Panelboard Programming					
Front Maintenance Port (Ethernet)		■	■	■	■
4.3-inch backlit color LCD touchscreen		■	\square	■	\square
Access to preconfigured Web pages via maintenance port (TCP/IP)		■	■	■	\square
Software		■	■	■	■
Password protection		■	■	■	■
Memory					
RAM memory for programs and configuration (MB)		128	128	128	128
Flash memory for kernel, programs and file system (MB)		256	256	256	256
SD card for logs and programming database (GB)		4	4	4	4
USB port for firmware upgrades, etc.		■	■	■	■
On-board capacitor to power clock chip during power outage (days)		10	10	10	10
Standards					
UL 916 energy management equipment		■	■	■	■
California Title 24		\square	\square	\square	\square
UL 67 panelboards		■	■	■	\square
CSA C22.2 \#29 panelboards		■	\square	\square	\square
UL 489 circuit breakers		■	■	■	■

Note

(1) Requires software.

Product Selection

PRC-E Controller connecting occupancy
Pow-R-Command "E" Series controllers are available in four models and offer a range of features to meet a broad range of applications and meet energy codes. Each
PRC-E controller includes a backlit color LCD touchscreen, SLAN expansion network, schedulebased controls and two-wire low voltage inputs for
sensors, wallstations and other building control signals.
The PRC-E Controller
Selection Guide may be used to quickly identify the controller that best fits the application. The PRC-E Controller Features table on the previous page provides greater detail for the specifier that may be interested in specific controller details.

PRC-E Controller Selection Guide (1)

Description	Catalog Number
Standalone operation, schedule-based control, occupant override control and Master/Expansion SLAN	PRC750E
RS-485 network, digital switch network, dimming and daylight harvesting control	PRC1000E
PRC1000E features plus Ethernet network and BACnet/IP protocol	PRC1500E
PRC1500E features plus remote accessible preconfigured Web pages	PRC2000E

Note
(1) PRC-E controllers are compatible and recommended for existing Pow-R-Command systems with the same preceding model number, i.e., PRC1000 is compatible with PRC1000E.

Externally Mounted Controllers

Externally mounted

 controllers (PRCEEC) are available for retrofit and renovation projects when existing panelboards do not have required controller mounting space. Externally mounted controllers include controller and control power transformer mounted in a NEMA 1 enclosure. Eaton Pow-R-Line 1a and 2a lighting panelboards can beconverted to Pow-R-
Command Expansion Panelboards (PRCEP) in the field by mounting Breaker Control Bus (BCB) and controllable circuit breakers directly to the interior. Externally mounted controllers are connected to the retrofitted PRCEP panelboard using the SLAN communications network.

PRCE Externally Mounted Controllers

Controller Type	Connected System Voltage	Catalog Number
PRC750E with display	120 Vac	PRC750EECD-120
PRC750E with display	277 Vac	PRC750EECD-277
PRC1000E with display	120 Vac	PRC1000EECD-120
PRC1000E with display	277 Vac	PRC1000EECD-277
PRC1500E with display	120 Vac	PRC1500EECD-120
PRC1500E with display	277 Vac	PRC1500EECD-277
PRCCO00E w with display	120 Vac	PRCCO00EECD-120
PRC2000E with display	277 Vac	PRC2000EECD-277

PRC-E Controller Backlit Color LCD Touchscreen

PRC-E controller backlit color LCD touchscreen display (PRCELCD) provides the user with a means for front panel programming, status monitoring and override control. PRCELCD is compatible with PRC-E controllers and can be factory or field installed. Users can safely access the controller low voltage compartment by loosening two captive screws located on the top corners of the display and folding the display down.

PRCELCD features include:

- Mounting plate and hardware
- High image quality a-Si TFT LCD module
- Resistive type touch panel
- 4.3-inch diagonal display with 16:9 aspect
- 16.7 M colors
- High contrast, high brightness
- Captive screws and hinge for easy access to controller low voltage compartment

PRC-E Controller LCD Touchscreen
Description Catalog Number
PRCE backlit LCD touchscreen with mounting plate PRCELCD

Breaker Control Bus

Breaker Control Bus (BCB) provides the electronic interface and power switching signal between the controller and solenoidoperated controllable circuit breaker. BCB comes in three lengths to fit standard lighting panelboards and is mounted to the panelboard interior rails. Each BCB has a set
of DIP switches to configure the device SLAN address between 1 and 8 . BCBs are connected to the PRC-E controller using PRC-to-BCB and BCB-to-BCB SLAN cables in a daisy-chain network architecture. RUN, SLAN and PWR LEDs indicate $B C B$ operating status.

Controller and Breaker Control Bus SLAN Cables

Controller and BCB SLAN cables are used for connecting controllers to associated BCBs. Each cable type is made in three lengths using Alpha 1064 4-conductor
\#16 AWG wire. One pair of wires used for 30 Vac power with the second pair used to transmit and receive communications with connected controller.

Controller and Breaker Control Bus SLAN Cables	Controller and Breaker Control Bus SLAN Cables	
	Description	Catalog Number
	Controller-to-BCB / 42-circuit	PRCSLAN42
	Controller-to-BCB / 30-circuit	PRCSLAN30
	Controller-to-BCB / 18-circuit	PRCSLAN18
	Controller-to-BCB / 42-circuit with right BCB only	PRCSLAN42R
	Controller-to-BCB / 30-circuit with right BCB only	PRCSLAN30R
	Controller-to-BCB / 18-circuit with right BCB only	PRCSLAN18R
	BCB-to-BCB / 42-circuit	PRCSLAN42B
	BCB-to-BCB / 30-circuit	PRCSLAN30B
	BCB-to-BCB / 18-circuit	PRCSLAN18B

Auxiliary Power Supply

Auxiliary Power Supply (PRCPS) is used to boost power on the SLAN. Master and Expansion Panelboards communicate over the SLAN via Alpha 1064 4-conductor \#16 AWG cable. Recommended maximum SLAN length is 150 ft . One pair of wires provides power to BCB for switching controllable circuit breakers
with the second pair used for controller to BCB RS-485 communications. The PRCPS can be used to power a single Expansion Panelboard or extend the SLAN an additional 150 ft . The SLAN can be extended up to 4,000 ft by using a PRCPS in each PRCEP.

Auxiliary Power Supply
Description Catalog Number
PRC power supply 96 VA with $120 / 277$ Vac input and PRCPS
30 Vac output voltage

Controllable Circuit Breakers

GHORD (1)

Note
(1) Not recommended for existing PRC25, PRC100, PRC750, PRC1000 and PRC2000 systems. GHORSP controllable circuit breakers are compatible with these systems.

GHORSP (${ }^{(1)}$

BABRSP (2)

Notes

(1) Compatible with existing PRC25, PRC100, PRC750(E), PRC1000(E), PRC1500(E) and PRC2000(E) systems. Recommend using GHORD controllable circuit breakers for PRC-E systems.
(2) Compatible with PRC25, PRC100, PRC750(E), PRC1000(E), PRC1500(E) and PRC2000(E) systems. Recommend using BABRP controllable circuit breakers for PRC25 systems.

Panelboards and Lighting Control

Pow-R-Command

BABRP ${ }^{(1)}$

	Number of Poles	Ampere Rating	Interrupting Capacity (Symmetrical Amperes) Vac ($50 / 60 \mathrm{~Hz}$)		
			120	120/240	Catalog Number
Single-Pole	1	15	10,000	----	BABRP1015
		20	10,000	----	BABRP1020
$\stackrel{\square}{\square}$		30	10,000	----	BABRP1030
Two-Pole	2	15	--	10,000	BABRP2015
18		20	----	10,000	BABRP2020
		30	----	10,000	BABRP2030
\ddot{z}		40	----	10,000	BABRP2040

Emergency Circuit Breaker

The GHORDEL and GHORSPEL controllable circuit breakers are designed to meet NEC 700.12(F) for sources of power in unit equipment used for emergency lighting applications. The controllable circuit breaker includes both
switched circuit for controlling lighting and standard non-switched circuit to provide power to the unit emergency charging and detection circuitry. Controllable circuit breaker includes a common handle tie and a common trip mechanism.

Emergency Circuit	GHORD Emergency Circuit Breaker ${ }^{(2)}$				
	Number of Poles	Ampere Rating	Interrupting Capacity (Symmetrical Amperes) Vac ($50 / 60 \mathrm{~Hz}$)		
			277	277/480	Catalog Number
	2	15	14,000	-	GHORDEL2015
		20	14,000	-	GHORDEL2020
Emergency Circuit Breaker	GHQRSP Emergency Circuit Breaker 3				
			Interrupting Capacity (Symmetrical Amperes) Vac ($50 / 60 \mathrm{~Hz}$)		
	Number of Poles	Ampere Rating	277	277/480	Catalog Number
	2	15	14,000	-	GHORSPEL2015
		20	14,000	-	GHORSPEL2020

Notes
(1) Not compatible with PRC750(E), PRC1000(E), PRC1500(E) and PRC2000(E) systems.
(2) Compatible with PRC750E, PRC1000E, PRC1500E and PRC2000E systems. Not recommended for existing PRC100, PRC750, PRC1000 and PRC2000 systems. GHORSPEL controllable circuit breakers are compatible with these systems.
(3) Compatible with PRC750(E), PRC1000(E), PRC1500(E) and PRC2000(E) systems. Not recommended for existing PRC100, PRC750, PRC1000 and PRC2000 systems. GHQRSP controllable circuit breakers are compatible with these systems.

Pow-R-Command Switches

Digital Switches

Pow-R-Command Digital Switches (PRCDS) are used for occupant override and light level control. PRCDS include digital and analog I/O and 12 Vdc external power source for connecting field wiring devices. The 12 Vdc external power source is used to power an occupancy sensor and digital input for monitoring occupancy status. Analog input is used to connect a light level sensor analog output for controlling up to 30 fluorescent ballasts or LED drivers. Digital switches are connected to controllers' Digital Switch Network (DSN) via CAT6 cable with 23 AWG wire using standard RJ45 connectors. Each controller DSN supports connecting up to 99 digital switches. Onboard rotary switches allow addresses to be set in the field. LED backlit buttons provide real-time breakers and/or groups status. Each digital switch can have a title description using up to 16 characters. Pushbutton labels can have up to four characters. Standard font type is Helvetica regular bold.

[^27]Panelboards and Lighting Control
Pow-R-Command

Digital Switch I/O Configuration

Pushbutton Configuration	Analog Input $0-10$ Vdc	Digital Input $0-10$ Vdc	Analog Output $0-10 \mathrm{Vdc}$	12 Vdc Output 20 mA Maximum
Two-button	\square	■	\square	\square
Four-button	\square	\square	\square	\square
Six-button	\square	-	\square	\square

Digital Switch Network Splitter

Digital Switch Network	If there are more than 50
Splitter (PRCDSNS) is used as	Digital Switches connected to
a convenient way to split the	a controller, a splitter is
DSN into 2 legs to span in	recommended.

Consult factory for applications that may require this device. two directions.

Digital Switch Network Splitter

Description	Catalog Number
Digital Switch Network Splitter	PRCDSNS

Digital Switch Network Power Injector

Digital Switch Network
Power Injector (PRCDSNPI) is used to provide 24 Vac power on the DSN. A PRCDSNPI
should be installed on the

DSN before every 16th
PRCDS or before the total
length of DSN reaches 500 ft (whichever comes first).

Digital Switch Network Power Injector

Description
Digital Switch Network Power Injector
Description Catalog Number PRCDSNPI

Low Voltage Switch

Pow-R-Command Low Voltage Switch (PRCLS) includes momentary drycontact pushbuttons used for inputs into the controller.
ach PRCLS can have a title description using up to 16 characters. Pushbutton labels can have up to four characters. Standard font type is Helvetica regular bold. controller digital and universal inputs.

Low Voltage Switch	Low Color	Number of Buttons	Catalog Number
	Black	2	PRCLS2B
2		4	PRCLS4B
		6	PRCLS6B
	White	2	PRCLS2W
		4	PRCLS4W
		6	PRCLS6W
Termination Board	Almond	2	PRCLS2A
8		4	PRCLS4A
$\%=$		6	PRCLS6A
	Ivory	2	PRCLS2V
		4	PRCLS4V
Fact		6	PRCLS6V

Switch Wallplates

Fits rocker-style Decorator,
Decora style switches.
Screwless design is available
in black, white, almond and ivory for 1-, 2- and 3-switch
designs.

Switch Wallplates	Swit Color	Number of Switches	Catalog Number
	Black	1	PRCSWP1B
		2	PRCSWP2B
		3	PRCSWP3B
	White	1	PRCSWP1W
		2	PRCSWP2W
		3	PRCSWP3W
	Almond	1	PRCSWP1A
		2	PRCSWP2A
		3	PRCSWP3A
	Ivory	1	PRCSWP1V
		2	PRCSWP2V
		3	PRCSWP3V

Note
(1) Consult factory for custom labeling.

Pow-R-Command Switch Override Controller

The Pow-R-Command Switch Override Controller (PRCSOC) can be used to connect digital and analog I/O to Pow-RCommand systems. This device is recommended when controller onboard digital and analog I/O has been exceeded or when there is an advantage to connecting remote I/O via a network connection. The PRCSOC is supplied with the controller, termination board in a NEMA 1 enclosure. Dual voltage 120/277 Vac power supply and 32 -status LED output card are optional.

The PRCSOC is connected to the Pow-R-Command system via the RS-485 network. Status and command signals are sent to the system using Pow-RCommand peer-to-peer protocol. The PRCSOC is configured using Pow-RCommand Lighting Optimization Software.

All digital and analog I/O is connected using \#18 AWG with maximum of 500 ft length. The PRCSOC features include:

- Sixty low voltage two-wire switch inputs for connecting wall stations, occupancy sensors and control relay outputs from building management systems
- Eight low voltage two-wire universal (digital or analog) inputs. Analog field devices like light level sensors with $0-5$ Vdc outputs can be connected for dimming and daylight harvesting applications
- Three low voltage 0-10 Vdc analog outputs for controlling fluorescent and LED light fixtures equipped dimming circuitry; maximum of 40 each per output with optional dimmer cables
- Sixteen low voltage twowire 24 Vdc outputs to power status LEDs; optional to add 32 low voltage two-wire 24 Vdc outputs to power status LEDs
- External 15 Vdc power source for powering occupancy and light level sensors and PRC auxiliary devices
- Connects to Pow-RCommand RS-485 network
- Communicates to the system using Pow-RCommand peer-to-peer protocol
- Configured by using Pow-R-Command Lighting Optimization Software
- Provided in a NEMA 1 enclosure
- Not compatible with PRC750(E) controllers

Pow-R-Command Switch Override Controller	Pow-R-Command Switch Override Controller Description	Catalog Number
	PRC Switch Override Controller without power supply mounted in NEMA 1 enclosure	PRCSOCC
	PRC Switch Override Controller w/ 120/277 Vac power supply mounted in a NEMA 1 enclosure	PRCSOCEC
1	PRC Switch Override Controller w/ 120/277 Vac power supply, pilot output card mounted in a NEMA 1 enclosure	PRCSOCECO

Accessories

Ethernet Interface Module

Pow-R-Command Ethernet Interface Module (PRCEIM) allows access to the PRC controller RS-485 network when using a PC connected directly to the EIM Ethernet port or connected on a facility's Ethernet network.

PRCEIM can be used as the master scheduler and includes 250 unique schedules. The PRCEIM can be programmed to sync controller time clocks. This device is connected to the Ethernet network using standard CAT5 cable. The three-pin connector is used to directly connect to the Pow-R-Command RS-485 controller network.

The PRCEIM comes in a table top enclosure and should be physically located near an Ethernet hub or repeater, but the PC can be located anywhere on the Ethernet network. The PRCEIM will communicate at 10Base-T and must have a fixed IP address assignment on the Ethernet network.

Ethernet Interface Module	Ethernet Interface Module (1) Description	Catalog Number
	PRC Ethernet Interface Module mounted in table top enclosure	PRCEIM

Note

(1) Not compatible with PRC750(E) controllers. Recommended for PRC100 and PRC1000(E) controllers.

BACnet Interface Module

Pow-R-Command BACnet Interface Module (PRCBIM-1) is designed for simple BACnet integration without the need for extensive BACnet knowledge. The device maps Pow-RCommand controller points to BACnet/IP points of any RS-485 network connected Pow-R-Command controller. The PRCBIM-1 can map up to

50 points. These points include status and control of individual controllable circuit breakers and groups of controllable circuit breakers. Input status is also included in the points map.
Programming the device is accomplished by using Pow-
R-Command Lighting Optimization Software (PRCLOS). The PRCBIM-1
includes two network connections. The RS-485 connection is used for connecting the Pow-RCommand RS-485 network while the Ethernet 10Base-T connection is used for connecting to the facility Ethernet network. The device requires a fixed IP address to be configured before connecting to the network.

Description	Catalog Number
PRC BACnet Interface Module	PRCBIM-1

BACnet Shadow Server

Pow-R-Command BACnet Shadow Server (PRCSS) is designed for simple BACnet integration without the need for extensive BACnet knowledge. The PRCSS maps Pow-R-Command controller points to BACnet/IP points. Up to 120 devices can be connected to a system. Each PRCSS has full access to all 150 points of the directly connected Pow-R-Command controller. These points include status and control of individual controllable circuit
breakers and groups of controllable circuit breakers. Input status is also included in the points map. Programming the device is accomplished by using Pow-R-Command Lighting Optimization Software (PRCLOS). The PRCSS includes two network connections. The RS-485 connection is used for connecting the Pow-RCommand RS-485 network while the Ethernet 10Base-T connection is used for
connecting to the facility Ethernet network.
The PRCBIM-1 includes two network connections. The RS-485 connection is used for connecting the RS-485 network while the Ethernet 10Base-T connection is used for connecting to the facility Ethernet network. The device requires a fixed IP address to be configured before connecting to the network. Device power is supplied by controller 12 Vdc external power source.

BACnet Shadow Server ©
Description
PRC BACnet Shadow Server
Catalog Number
PRCSS

Note
(1) Not compatible with PRC750(E) controllers. Recommended for PRC100 controllers. Consult factory for PRC1000(E) controllers.

Universal Ethernet Interface

The Pow-R-Command
Universal Ethernet Interface (PRCUEI) is used in conjunction with the PRC5000 Advanced Lighting Controller to connect multiple RS-485 networks using the facility's Ethernet network via

TCP protocol. The PRC5000 can connect up to 16 Pow-RCommand RS-485 networks using a PRCUEI to connect each network. The PRCUEI supports up to 120 Pow-RCommand devices on each RS-485 network.

The device power is supplied by the controller 12 Vdc external power connection.

PC Central Software (PRCPCC01) is required for configuration and programming.

Universal Ethernet Interface ©
Description Catalog Number
PRC Universal Ethernet Interface PRCUEI

Universal Ethernet Router

Universal Ethernet Router PRCUER is intended for facilities where an Ethernet network is already installed.

The PRCUER extends the Pow-R-Command controller network by tunneling Pow-RCommand controller LAN control packets over existing Ethernet network using UDP Ethernet protocol. PRCUER devices extend the controller

LAN transparently across Ethernet segments within the same subnet, allowing segments of the controller network to be physically separated from each other within a facility. Programming the device is accomplished by using Pow-R-Command Lighting Optimization Software (PRCLOS). The PRCUER includes two network connections.

The RS-485 connection is used for connecting the Pow-R-Command RS-485 network while the Ethernet 10Base-T connection is used for connecting to the facility Ethernet network. The device can be configured for DHCP or be assigned a static IP address. Device power is supplied by controller 12 Vdc external power source.

Universal Ethernet Router (1)
Description Catalog Number
PRC Universal Ethernet Router PRCUER

Note
(1) Not compatible with PRC750(E) controllers. Recommended for PRC100 and PRC1000(E) controllers RS-485 networks.

Panelboards and Lighting Control

Pow-R-Command

PRC5000 Building Automation Controller

Pow-R-Command 5000
(PRC5000) is a microprocessor-based lighting control and energy management controller. It is capable of communicating with other Pow-R-Command system devices for providing advanced control strategies including master schedules and demand response.

Custom equipment performance and energy usage reports can be configured and automatically sent to the facility manager via email notification. These reports may be used to measure and verify that equipment is performing as designed and delivering expected energy savings.

The PRC5000 controller is commonly used to serve facility custom graphics via Web pages. Authorized users can log into the device using a standard Web browser for viewing the custom graphics. System schedule changes and override controls can be made at the click of a button.

PRC5000E		PRC5000 Building Automation Controller Description	Catalog Number	
	PRC5000 Building Automation Controller	PRC5000E		
			PRC5000 Building Automation Controller with modem	PRC5000EM

PRC25 Controller

PRC25 controller and
associated system
components are available
for repair and replacement.
Consult factory for more
information.

PRC25	PRC25 Controller	
	Description	Catalog Number
	PRC25 4-channel controller	MTM-4
	PRC25 6-channel controller	MTM-6

Lighting Optimization

Software

Lighting Optimization Software (PRCLOS) is recommended for Pow-RCommand system users. It is compatible with PRC100, PRC750(E) ©, PRC1000(E), PC1500(E) and PRC2000(E) systems. PRCLOS controllers only through the front Maintenance port using a PRCSmartCable. allows users to set up, program and monitor their system. This basic software package is capable of recognizing and saving databases for a single site.

Building Graphics Software

Building Graphics Software (PRCBGS) is a fully interactive object oriented graphics interface for controlling and monitoring Pow-R-Command lighting control and energy management systems. The integrator can create and depict objects such as light fixtures, switches, occupancy sensors, light sensors, floor plans, etc. PRCBGS provides server graphic Web pages over local Ethernet connection to any computer using a standard Internet browser. PRCBGS requires the installation of PC Central (PRCPCC01/
PRCPCC10).

Lighting Optimization Software ©

Description	Catalog Number
PRC Lighting Optimization Software	PRCLOS

Building Graphics Software

Description	Catalog Number
PRC Building Graphics Software	PRCBGS

Note
(1) Remote network connection not available. Requires direct connection to controller Maintenance port. PRC750 connection requires PRCSmartCable. PRC750E connection requires industry standard patch cable.

PC Central Software

PC Central Software (PRCPCC) is recommended for field technicians responsible for maintaining Pow-R-Command systems. It is compatible with PRC100, PRC750 (E) ©, PRC1000(E), PC1500(E) and PRC2000(E) systems. PRCPCC allows
users to set up, program and monitor their system with the added features of advanced diagnostics and programming capabilities. This advanced software package is capable of recognizing and saving databases for single or multiple sites.

Site Server Software

Pow-R-Command Site Server (PRCSSS) integrates the PC Central suite of management tools with the Internet or Intranet. The users have realtime global access to the Pow-R-Command systems through the Internet. PRCSSS allows multiple users access to historical data, device status and control, and graphical display interfaces.

Any computer on the network with PRCSSS can access realtime dynamically refreshed data using a browser implementing appropriate Web standards (Netscape Navigator or Internet Explorer). Special software other than the browser is not required. PC Central is required to run this application software.

Desktop Computer

Recommended Minimum Computer Specifications

Although it is difficult to guarantee compatibility with all PC-compatible equipment, the basic installation is generally compatible with the following minimum specifications:

- Microsoft® Windows ${ }^{\circledR}$ operating system
- 1 GHz processor or better
- At least 40 MB of unused RAM
- Hard drive with at least 100 MB of free space plus 50 MB for each site to be managed
- Ethernet network adapter
- 800×600 monitor
- CD-ROM drive

Smart Cable Programming Tool

Pow-R-Command Smart Cable (PRCSmartCable) is used for front panelboard programming PRC100, PRC750, PRC1000 and

Lighting Optimization Software and PC Central Software is compatible with the following operating systems:

- Windows 98 Second Edition
- Windows 2000 Professional
- Windows 2000 Server
- Windows 2003 Server
- Windows XP Home Edition
- Windows XP Professional Edition
- Windows Vista (all versions)
- Windows 7
- Windows 10

PRC2000 controllers. The PRCSmartCable connects the local laptop USB port to controller maintenance port.

PC Central Software

Description	Catalog Number
PC Central Software (single site)	PRCPCC01
PC Central Software (10 sites)	PRCPCC10

Site Server Software

Description	Catalog Number
PRC Site Server Software	PRCSSS

Desktop Computer	
Description	Catalog Number
PRC desktop computer	PRCDesktop
PRC Laptop Computer	PRCLaptop

Smart Cable Programming Tool

Description	Catalog Number
PRC smart cable	PRCSmartCable

Note

(1) Remote network connection not available. Requires direct connection to controller maintenance port. PRC750 connection requires PRCSmartCable. PRC750E connection requires industry standard patch cable.

Product Description

- 600 Vac maximum
- Three-phase four-wire, three-phase three-wire, single-phase three-wire.
- Service entrance panel combining a main disconnect with a power company metering compartment
- Circuit breaker or fusible switch disconnect
- 400-1200A ratings
- Provision for power company metering:
- Hinged sealable door over CT section
- Arranged for bar-type, 200-1200A utilityfurnished CTs
- Barriered CT compartment
- Factory assembled
- Wallmounted enclosure

Application Description

- For use in areas where the disconnect and current transformer combination is required by utilities
- Suitable for use as Service Entrance Equipment
- Top or bottom entrance
- Hot or cold sequence metering
- The current transformer compartment will accommodate the following 12-inch (304.8 mm) bar-type CTs:

Bar-Type CTs

	General		
ABB	Electric	Sangamo	Astra
CTB	JCT-10	R6B	TAB, TA
CSF	JCM-0	R6BA	TCB, AA
CMF	JCW-0	R6M	AB
CBH	JAK-0		

Contents

Description Page
Metering Service Sections
Catalog Number Selection V2-T3-128
Product Selection . V2-T3-128
Technical Data and Specifications. V2-T3-129
Dimensions . V2-T3-129

Standards and Certifications
 - UL 67, UL 50
 - NEC

Catalog Number Selection

Panelboard Catalog Number Selection Guide ${ }^{(1)}$

Example: WBMDK24A
WBM = Circuit breaker type, DK = Circuit breaker type from table below, $\mathbf{2}=$ Single-phase three-wire, $4=400 \mathrm{~A}, \mathbf{A}=$ Aluminum bus bar

Product Selection

Metering Service Section	Type WBM Circuit Breaker Sections					
	Max. Ampere Rating	Interrupting Rating (kA Symmetrical)				
		240 Vac	480 Vac	600 Vac	Breaker Type ${ }^{(2) 3}$	Catalog Number
	400	65	-	-	DK	WBMDK
	400	65	35	25	KD	WBMKD
	400	100	65	35	HKD	WBMHKD
	400	200	100	50	KDC	WBMKDC
	400	200	200	-	LCL	WBMLCL
	600	65	35	25	LD	WBMLD
	600	100	65	35	HLD	WBMHLD
	600	200	100	50	LDC	WBMLDC
	800	65	50	25	MDL	WBMMDL
	800	100	65	35	HMDL	WBMHMDL
	800	65	50	25	ND	WBMND800
	800	100	65	35	HND	WBMHND800
	1200	65	50	25	ND	WBMND1200
	1200	65	50	25	NDG ©	WBMNDG1200
	1200	100	65	35	HND	WBMHND1200
	1200	100	65	35	HNDG © ${ }^{\text {® }}$	WBMHNDG1200

Notes

(1) Refer to Hartford Satellite Plant.
(2) For other breaker types, refer to Hartford Satellite Plant.
(3) In cold sequence metering only, a 10X or 18X feeder breaker section can be supplied downstream from the CT compartment. Refer to Hartford Satellite Plant.
(4) Complete catalog number according to Catalog the Number Selection Guide-table above.
(5) Integral ground fault.

Technical Data and Specifications

FDPW Switch Ratings, 250 or 600 Vac

Ampere Rating	Fuse Class Used ${ }^{(1)}$	Short-Circuit Ratings (kA Sym.)
400,600	R	200
400,600	$\mathrm{~J}^{3}$	200
800,1200	L	200

Dimensions

Approximate Dimensions in Inches (mm)
Note: Not to be used for construction purposes unless approved.

Type 1 Enclosure-Metering Service Section

Type 1 Enclosure

Panelboard Type	Ampere Rating	Enclosure Dimensions Height	Width	Depth	Box Catalog Number
WBM,	$400-1200$	$73.50(1866.9)$	$36.00(914.4)$	$11.31(287.0)$	BX3673
Circuit breaker					
WSM,	$400-1200$	$90.50(2286.0)$	$36.00(914.4)$	$11.31(287.0)$	BX3690
Fusible					

Notes

(1) Fuses are not included.
(2) Complete catalog number according to Catalog Number Selection GuidePage V2-T3-128.
(3) Class J Fuse provisions are applicable only to 600 V units. When required, use price and dimensions of 600 V units for all voltages 600 and below.

Pow-R-Stock Plus

Product Description

Offering two options to meet the demanding schedule requirements of today's customers.

Type PRL1a Panelboard

- Factory-assembled panelboards available from your local satellite plant in 24 to 72 hours
- Unassembled panelboards in stock at authorized Pow-R-Stock Plus distributors

The Product Offering

Pow-R-Stock Plus panels, available either as factoryassembled or as unassembled from distributor stock, are based on the most frequently ordered panelboards, including:

- 120/240V, 208Y/120V and $480 \mathrm{Y} / 277 \mathrm{~V}$ ratings
- 100-400A mains
- Single- and three-phase
- Surface and flush mounted
- Aluminum or copper bus
- Type 1 or Type 3R enclosures
- Service entrance available
- Options for 200\% neutrals and isolated ground bars
- Full menu of branch breakers available

Factory-Assembled Panelboard Option

The Pow-R-Stock Plus factoryassembled panelboard option offers key advantages over programs that offer only unassembled panelboards.

Reduced Installation Time

Unassembled panelboards must be assembled at the job site before the true installation process can begin, adding time and labor cost to the process. Pow-RStock Plus assembled panelboards are ready to install the moment they arrive at the job site.

Reduced On-Site Material Handling

A typical 42-circuit unassembled panelboard has a minimum of 46 parts to receive and handle, taking up valuable time at the job site. A Pow-R-Stock Plus assembled panelboard is just one item to receive and handle (two if the box is shipped ahead).

Factory Warranty

Field assembly of unassembled panelboards adds to contractor warranty responsibility. Pow-R-Stock Plus assembled panelboards carry a full factory warranty.

Simplicity

Order your Pow-R-Stock Plus Panelboard by description and it will arrive at the job site complete. No need to worry about matching catalog number kits at the job site or chasing after miscellaneous parts and pieces.

Contact your local satellite plant (see next page for a listing) for more information on the Pow-R-Stock Plus factory-assembled panelboard option.

Pow-R-Stock Plus Program Includes the EZ Trim and EZ Box
Unassembled
Panelboard Option

Pow-R-Line 1a and 2a Panelboards are Designed to Provide Application Flexibility with Off-the-Shelf Service
The Pow-R-Stock Plus unassembled panelboard interior is designed specifically for distributor stock and field assembly. Its modular design allows for easy configuration in the field.

Top or bottom incoming, main lugs or main breaker...all with the same Pow-R-Stock Plus unassembled interior. Lug and breaker kits provide greater flexibility with fewer boxes, interiors and trims to stock.

Color-Coded Package Labels

The box, interior and trim packaging are clearly identified with brightly colored labels (a different color for each box size). This facilitates stocking, filling orders, and matching components in the field.
Contact your local Eaton distributor for more details on the Pow-R-Stock Plus unassembled panelboard option.

Eaton Distributors

Contact your Eaton sales office or local satellite manager and arrange to review the program details and criteria for qualification as a Pow-R-Stock Plus distributor.

Manufacturing Plant Locations

Main Plant

Sumter
845 Corporate Circle
P.O. Box 2258

Sumter, SC 29151
(803) 481-3131

Satellite Plants

Atlanta

7000 Highlands Parkway SE Suite 103
Smyrna, GA 30082
Fax (770) 433-1863
Phone (678) 309-4260

Baltimore

7451 Coca Cola Drive
Suite C
Hanover, MD 21076
Fax (410) 796-7755
Phone (410) 796-7777

Chicago

220 Windy Point Drive
Glendale Heights, IL 60139
Fax (630) 690-7453
Phone (630) 260-6303

Cleveland

12875 Corporate Drive
Suite E
Parma, OH 44130
Fax (216) 433-0545
Phone (216) 433-0616

Dallas

631 Westport Parkway
Suite 100
Grapevine, TX 76051
Fax (817) 251-6249
Phone (817) 251-6797

Denver

2450 Airport Road
Suite C
Aurora, CO 80011
Fax (303) 366-9993
Phone (303) 366-2080

Hartford

40A International Drive
Windsor, CT 06095
Fax (860) 298-1305
Phone (860) 298-1306

Houston

14825 Northwest Freeway
\#100-C
Houston, TX 77040
Fax (713) 744-7531
Phone (713) 744-7530

Los Angeles

11120 Philadelphia Street Suite A
Mira Loma, CA 91752
Fax (951) 685-3775
Phone (951) 685-5788

New Jersey

96 Stemmers Lane
Westampton, NJ 08060
Fax (609) 835-4777
Phone (609) 835-4230

Orlando

9436 Southridge Park Court
Suite 100
Orlando, FL 32819
Fax (407) 264-9310
Phone (407) 264-9300

Phoenix

560 N. 54th Street
Chandler, AZ 85226
Fax (480) 449-4223
Phone (480) 449-4222

Raleigh

9400 Globe Center Drive
Suite 121
Morrisville, NC 27560
Fax (919) 572-9751
Phone (919) 544-7074

St. Louis

56 Soccer Park Road
Fenton, MO 63026
Fax (636) 717-3505
Phone (636) 717-3500

San Francisco

20923 Cabot Boulevard
Hayward, CA 94545
Fax (510) 784-8980
Phone (510) 784-8981

Seattle

1604 15th Street SW
Suite 114
Auburn, WA 98001
Fax (253) 833-5058
Phone (253) 833-5021

Customer Manufacturing Solution Centers

A unique concept of facilities close to customer locations, assuring fast delivery of standard- and custom-assembled equipment when it's needed.

Located at strategic locations throughout the United States, these facilities manufacture and deliver standard or custom-assembled panelboards, switchboards and enclosed circuit breakers... when and where you need them. And, when you have an emergency, they can have your equipment ready in hours.

Highly trained and experienced personnel will manage your order and ensure that you receive ontime delivery of high quality equipment that meets your specifications.

Special Configurations

The unique capabilities of these plants and people can provide solutions for special products to meet special needs.

Typical examples include special dimensions, retrofit equipment and panelboard interiors to fit existing boxes.

Speedy Delivery

- Panelboards: from one to five days.
- Switchboards: between five and 10 days.
- Assembled Enclosed Circuit Breakers: from one to 10 days.

Save Time and Money

No matter your location, you will save time and money when ordering from a CMSC location. For more information, contact your Eaton representative or authorized distributor.

4.1 Group-Mounted Switchboards
Pow-R-Line ${ }^{\circledR}$ Distribution Switchboards
Product Description V2-T4-2
Application Description V2-T4-2
Features, Benefits and Functions V2-T4-2
Standards and Certifications V2-T4-2
Product Selection V2-T4-2
Commercial Metering Switchboards
Product Description V2-T4-3
Application Description V2-T4-3
Features, Benefits and Functions V2-T4-4
Standards and Certifications V2-T4-5
Product Selection V2-T4-5
Technical Data and Specifications V2-T4-5
4.2 Integrated Facility Switchboards ${ }^{\text {TM }}$
Product Description V2-T4-6
Application Description V2-T4-6
Features, Benefits and Functions V2-T4-7
Standards and Certifications V2-T4-7
Product Selection V2-T4-7
4.3 Pow-R-Line Drawout Molded Case Circuit Breaker Switchboards Product Description V2-T4-8
Application Description V2-T4-8
Features, Benefits and Functions V2-T4-8
Standards and Certifications V2-T4-8
Product Selection V2-T4-9
Dimensions V2-T4-10
Options, Accessories and Modifications V2-T4-12
4.4 Compartmentalized Switchboards
Pow-R-Line i Distribution Switchboards Product Description V2-T4-14
Application Description V2-T4-14
Features, Benefits and Functions V2-T4-14
Standards and Certifications V2-T4-15
4.5 Instant Service Switchboards
Product Description V2-T4-16
Application Description V2-T4-16
Features, Benefits and Functions V2-T4-16
Standards and Certifications V2-T4-16
Product Selection V2-T4-17
Accessories V2-T4-19
Technical Data and Specifications V2-T4-20
Dimensions V2-T4-20
4.6 Roll-Up Generator Termination Box
Product Description V2-T4-21
Features V2-T4-21
Standards and Certifications V2-T4-21
Technical Data and Specifications V2-T4-22
Dimensions V2-T4-35
4.7 Multipoint Meter (MPM)
Overview V2-T4-36
Pow-R-Line Multipoint Meter V2-T4-37
PRC7500—Tenant Metering. V2-T4-38

Pow-R-Line Distribution Switchboards

Product Description

Eaton's Pow-R-Line
distribution switchboards combine a space-saving design with modular construction and increased system ratings to provide economical and dependable electrical system distribution and protection.

Application Description

Refer to Eaton's Consulting Application Guide.

Features, Benefits and Functions

- 6000A maximum main bus rating
- 600 Vac and below
- 600 Vdc and below
- Front or rear accessible
- Type 1 or Type 3R enclosures
- ANSI-61 gray powder coat paint finish
- Microprocessor-based metering and monitoring devices
- Utility metering provisions
- Surge protective devices (SPD)
- Ground fault protection on mains and distribution devices
- Busway and transformer connections
- Complete protective device accessory capability
- 65 kAIC bus bracing standard; optional 100 or 200 kAIC
- Standard tin-plated aluminum bus; optional copper- or silver-plated copper bus
- Standard bus ampacities based on UL® heat test ratings. Optional density rated bus systems are also available

Contents

Description
Page
Pow-R-Line Distribution Switchboards
Commercial Metering Switchboards.
V2-T4-3

Main and Individually
 Mounted Devices

- Magnum ${ }^{\circledR}$ SB insulated case circuit breakers, 8005000A, fixed or drawout
- Magnum DS power circuit breakers, 800-5000A, fixed or drawout
- Molded case circuit breakers, 400-2500A, fixed mounted
- Bolted pressure switches, 800-5000A
- FDPW fusible switches, 400-1200A

Group-Mounted

 Distribution Devices- Molded case circuit breakers, 15-1200A
- FDPW fusible switches, 30-1200A

Standards and Certifications

- Meets NEMA® ${ }^{\circledR}$ Standard PB-2 and UL 891
- Seismically qualified

(U)

Product Selection

For complete application and pricing information, contact your local Eaton sales office.

Commercial Metering Switchboards

Product Description

Eaton's commercial metering switchboards provide electrical system distribution and metering for shopping centers, office buildings and other commercial multimetering applications.

Using standard Pow-R-Line construction and features, these switchboards incorporate metering sections with tenant feeder circuits using meter sockets to meet local utility or customer requirements.

All meter sockets and associated feeder devices are completely factory prewired and shipped ready for the installation of the meters.

Application Description

Type WWCMS

For EUSERC serviced areas. The self-contained meter sockets include a test bypass/disconnect block per EUSERC requirements, and are arranged, typically, for hot sequence metering.

Socket and Test Block Assembly

Contents

Description
 Page

Pow-R-Line Distribution Switchboards V2-T4-2
Commercial Metering Switchboards

| Features, Benefits and Functions | V2-T4-4 |
| :--- | :--- | :--- |
| Standards and Certifications | V2-T4-5 |
| Product Selection | |

Product Selection . V2-T4-5
Technical Data and Specifications V2-T4-5

Type WCMS

For other than EUSERC serviced areas. Self-contained meter sockets are provided with manual lever bypass and can be arranged for either hot or cold sequence metering.

Socket with Manual Lever Bypass

Refer to Eaton's Consulting Application Guide.

Switchboards

Group-Mounted Switchboards

Features, Benefits and Functions

Pow-R-Line designates a family of distribution switchboards, incorporating design concepts that fit the ever-increasing need for applications on high short-circuit systems, while retaining maximum safety and convenience throughout the line.

Front Accessible

Front-accessible switchboards align at the rear, enabling them to be placed against a wall (Pow-R-Line front accessible). If the main section is deeper than others, due to physical size of the main device, the necessary off-set in line-up will occur in front, and the main section will be accessible from the side as well as from the front. Standard front accessible switchboards will align at the front and rear.

Rear Accessible

Rear-accessible switchboards align at the front and the rear. Bus maintenance and cable entry and exit require rear access. There are two types of rear accessible switchboards. Both types use the same incoming utility and/or main structures. The first type uses groupmounted feeder devices with panel construction (Pow-R-Line rear accessible). The second type uses individually compartmentalized feeder devices with load side insulated bus bar extensions (Pow-R-Line i).

Standard Switchboard Height

Standard Pow-R-Line
switchboard height is 90 inches (2286.0 mm).

Group Mounting

Group-mounted circuit protective devices are an assembly of units mounted on a panelboard type base (panelboard construction). Units may be molded case breakers, or FDPW fusible switches. Circuit protective devices are accessible from the front.

A main molded case breaker or main FDPW fusible switch, within the sizes listed for panelboard design, can be included in the panelmounted assembly in lieu of a separate, individually mounted unit.

Space Only for Future Devices Group-Mounted Construction

Where space only for future circuit protective devices is required, the proper space and a blank filler plate will be supplied. Connections and mounting hardware are not included.

Provision for Future Devices

Where provisions for future circuit protective devices are required, space for the device, corresponding vertical bus, device connectors and the necessary mounting hardware will be supplied.

Bus Bar System

Standard bus in the switchboards is tin-plated aluminum. Copper and silver-plated copper are also available.

Main bus and sub-main buses meet UL and NEMA standards for temperature rise on all Pow-R-Line switchboards. Special bus densities are available.

Overcurrent Devices

To properly select and size overcurrent devices for use in a switchboard, the allowable temperature rise must be taken into account as to its effect on the tripping characteristics of the devices in question.
Accordingly, Article 220 of the $\mathrm{NECC}^{\circledR}$ requires overcurrent devices to be rated not less than 125% of the continuous load they are protecting. To comply with this, an 80% derating factor must be used with all overcurrent devices such as molded case breakers and FDPW fusible switches unless they are tested and marked as 100\% rated devices.

Short-Circuit Rating

Standard bus and connectors on all switchboards are rated for use on systems capable of producing up to 65,000A rms symmetrical short-circuit current at the incoming terminals.

Increased bus short-circuit ratings equal to that of connected switchboard devices, up to 200,000A rms symmetrical, are available in most Pow-R-Line switchboards when approved main devices are installed. Contact Eaton for more information. UL labeled switchboard sections are marked with their applicable short-circuit rating.

Provision for Busway Entrance and Exit

Busway connections to switchboard sections include cutout and drilling in the top of the switchboard with riser connections from the switchboard device or bus, up to the point where the bus duct enters the switchboard. No connections are furnished external to the switchboard.

Note: In all transactions involving busway attached to switchboards, it is essential that information regarding orientation of the busway with respect to the front of the switchboard be supplied to the coordinating assembly plant.

On Pow-R-Line switchboards, solid bus bar is used to connect the bus duct to the individually mounted main device, main or sub-main switchboard bus, or vertical main bus of panel mounted circuit protective device panels. Busway fed by groupmounted branch devices are cable connected.

Aluminum riser connections are standard. Copper- or silver-plated copper is available as a modification.

Transitions

Transition structures are required for connecting switchboards to the secondary of power center transformer (dry or fluid filled), motor control centers, and for other special switchboard configurations such as "L" or "U" shaped lineups. In some application, an extra structure complete with connections is required; in others, where switchboard depth and space permit, only the connection conductors are required. Refer to factory for these applications.

Standards and Certifications

- UL 891
- NEMA PB-2
- Seismically qualified

Product Selection

For complete application and pricing information, contact your local Eaton sales office.

Technical Data and Specifications

Service

- 120/240V, single-phase, three-wire
- 240/120V, 208Y/120V, $415 \mathrm{Y} / 240 \mathrm{~V}, 480 \mathrm{Y} / 277 \mathrm{~V}$ or $600 \mathrm{Y} / 347 \mathrm{~V}$ three-phase, four-wire
- 600 Vdc

Main Bus Rating

- 400-4000A

Service Section

- Main circuit breaker, 400-4000A
- Main fusible switch, 400-4000A
- Main lugs only, 400-6000A

Metering Sections

- Tenant main disconnects and meter sockets (200A maximum self-contained metered circuits)
- Hot sequence metering circuits
- Cold sequence metering circuits (WCMS only)
- Optional rear barriered wireways or load side pull sections for cable exit requirements
- Sections for metered circuits larger than 200A available with 400A continuous rated selfcontained sockets or with CT compartment and transformer rated socket in combination with disconnect

Switchboards
Integrated Facility Switchboards

Integrated Facility Switchboard

Contents

Description
Page
Integrated Facility Switchboards
Features, Benefits and Functions
V2-T4-7
Standards and Certifications
Product Selection.
V2-T4-7

Other associated equipment can also be integrated into the assembly, including dry-type distribution transformers, time clock space, lighting control, electronic controls, surge protective devices, metering and energy monitoring devices. Depending upon the application, other userdefined equipment such as a subsystem control package may also be incorporated.

Application Description

Eaton's Integrated Facility Switchboards are designed to meet specific needs for:

- Retail chain stores
- Commercial offices
- High rise buildings
- Correctional facilities
- Agricultural facilities
- Industrial facilities
- Hospitals/healthcare facilities
- Educational facilities

Whether the application is a multi-site prototype or single application, integrated switchboards offer time and space-saving features.

For complete application description, refer to Eaton's Consulting Application Guide.

Features, Benefits and Functions

Front Accessible
Integrated Facility Switchboards are front accessible and align at the rear, enabling them to be placed against a wall. Most switchboards align at the front and the rear. If the main section is deeper than others, due to physical size of the main device, the necessary off-set in line-up will occur in front, and the main section will be accessible from the side as well as from the front.
Standard Switchboard Height
Switchboard height is 90 inches (2286.0 mm).

A limited offering of 78-inch (1981.2 mm) high equipment is available. Consult the factory for specific applications.

Switchboard Shipping Splits

The sections can be shipped as specified by the customer to meet specific requirements.

For retrofit applications, single-piece switchboard structures can be shipped to facilitate movement through limited access doorways, etc.

Factory Interconnections

Most sub-panels are fed from the main distribution panel feeder circuit breakers using copper cable sized per the NEC and UL.

Space Savings

The space-saving switchboard installation provides additional usable floor space. For example:

- Retail stores-floor space for sales
- Offices-additional storage, cubicle
- Healthcare-additional work area
- Retrofits-ability to fit existing rooms

Site Construction Savings

Timely installation of the electrical system typically is a key element on the critical path for any project.
Along with the time to install the equipment, other expenses include the time to handle all of the loose pieces of equipment arriving on a job site and ensuring it reaches the proper trades person. With Eaton's Integrated Facility Switchboards, one piece of equipment is typically shipped to a job site virtually eliminating these issues.

The equipment may also be used for temporary power on job sites, further reducing construction expenses and times.
Construction Savings

Standards and Certifications

- Meets NEMA Standard PB-2 and UL 891
- Panelboards mounted inside the sections meet NEMA PB-1 and UL 67
- Other equipment is UL listed as applicable and appropriate

Product Selection

For complete application and pricing information, contact your local Eaton sales office.

Pow-R-Line Drawout Molded Case Circuit Breaker Switchboards

Contents

Description
Pow-R-Line Drawout Molded Case Circuit Breaker Switchboards
\qquad
Dimensions
Options, Accessories and Modifications

Product Description

- Drawout molded case circuit breaker switchboard
- Front accessible
- Front connected
- Through-the-door design drawout mechanism through 600A
- Insulated case UL 489 breakers up to 1200A
- Visual indication of breaker status and position
- Large grab handles for easy removal
- 600 Vac maximum
- 600A maximum, groupmounted, drawout molded case feeder breakers
- Individually mounted insulated UL 489 breakers through 1200A

Application Description

- Drawout feeders in UL 891 distribution switchboards
- Rated as Service Entrance Equipment when appropriately equipped
- Ideal for:
- Data centers
- Industrial facilities
- Process equipment manufacturing
- Anywhere that requires quick change of feeder devices is needed

Features, Benefits and Functions

Eaton's Pow-R-Line Drawout switchboard design is listed and labeled to the UL 891 standard. Switchboards may be rated up to 4000A. Main breakers are available up to 4000A in both fixed-mounted and drawout configurations. Main breakers may be Magnum DS® power circuit breakers or Magnum SB insulated case circuit breakers in either drawout or fixed-mounted configurations. Both are front-accessible configurations. Fixedmounted molded case circuit breaker mains are available up through 2500A.

Utility and customer-owned metering is available.
Customer metering includes Web-enabled communicating systems.

Standards and Certifications

- UL 891 listed

Instructions

On an interim basis until Bid Manager ${ }^{\text {TM }}$ is updated, please use the Pow-R-Line C ${ }^{\circledR}$ switchboard Bid Manager take-off as the basis for the following:

- Utility compartments
- Service entrance or nonservice entrance information
- Voltage
- Bus rating
- Bus material
- Nameplate
- Ground bus material
- Short-circuit current rating
- Top or bottom entrance
- Incoming cable location
- Customer metering
- Surge protective device
- Bus bracing

Product Selection

Select drawout molded case circuit breaker and UL 489 listed insulated case circuit breakers from the following pages.

- Always select front access/ rear aligned
- IFS sections are permissible but will be bolt-on devices only
- Use the existing Pow-R-

Line C switchboard take-off to select main devices

Drawout Branch/Feeder Breakers

Single-Mount Two-Pole and Three-Pole

Ampere Rating	Interrupting Rating (kA Symmetrical)				
	240 Vac	480 Vac	600 Vac	Breaker Type	"X" Space
Single-Mount Breakers with Thermal-Magnetic Trip Units					
70-250	85	35	18	JGS	7X
70-250	100	65	25	JGH	7X
70-250	200	100	35	JGC	7X
250-600	85	35	18	LGS	9X
250-600	100	65	35	LGH	9X
250-600	200	100	50	LGC	9X

Single-Mount Breakers with Electronic 310+ Trip Units (Three-Pole Only)

20-50	85	35	18	JGS	$7 \times$
20-50	100	65	25	JGH	7X
20-50	200	100	35	JGC	7 X
40-100	85	35	18	JGS	$7 \times$
40-100	100	65	25	JGH	7X
40-100	200	100	35	JGC	$7 \times$
80-150	85	35	18	JGS	$7 \times$
80-150	100	65	25	JGH	$7 \times$
80-150	200	100	35	JGC	$7 \times$
100-250	85	35	18	JGS	7X
100-250	100	65	25	JGH	$7 \times$
100-250	200	100	35	JGC	$7 \times$
100-250	85	35	18	LGS	9X
100-250	100	65	35	LGH	9X
100-250	200	100	50	LGC	9X
200-400	85	35	18	LGS	9 X
200-400	100	65	35	LGH	9X
200-400	200	100	50	LGC	9X
250-600	85	35	18	LGS	9X
250-600	100	65	35	LGH	9X
250-600	200	100	50	LGC	9X

Provision for Future (Includes Factory-Installed Base Cassette)

$20-250$	Any JG family branch/feeder breaker		$7 \times$	
$100-600$	Any LG family branch/feeder breaker		9 X	
Individually $\mathbf{M o u n t e d ~ N X ~ B r e a k e r s ~}$				
800	85	65	42	NX
1000	85	65	NX	$1 / 2$ Structure
1200	85	65	NX	$1 / 2$ Structure

Switchboards
Pow-R-Line Drawout Molded Case Circuit Breaker Switchboards

Dimensions

Approximate Dimensions in Inches (mm)

Select the appropriate	All breakers are front
distribution section(s) for	accessible and front
drawout MCCB feeder	connected.

Drawout Molded Case Circuit Breaker Feeder Devices

Notes

All four sections widths 36 -inch minimum.
See distribution layout Guides Page V2-T4-11 for actual minimum structure width and for feeder device "X" requirements.
(1) Drawout NX Insulated Case UL 489 breaker. 1200A maximum. Select breaker from Page V2-T4-9.

Pow-R-Line Drawout Molded Case Circuit Breaker Switchboards

Layout for Group-Mounted Drawout Molded Case Circuit Breaker Feeder Devices

Instructions

Determine the structure width by the group-mounted drawout MCCB feeder devices below.
The width of the structure is determined by the maximum structure size shown for each device.

Note

(1) Preferred location of SPD is mounted at the top of the first distribution section.

Options, Accessories and Modifications

1. Ambient Compensating
 Breakers

For ambient compensating
breakers (where available) in
lieu of standard breakers, add
10% to panelboard branch
breaker and to main breaker
list prices, when required.
Panels with this option can
not be UL listed.
2. JG and LG Breaker Accessories-Internal (Only One Accessory
Per Position)

Accessories

Breaker Type	Device Mounting	Internal Breaker Accessory
JG family	Drawout (1)	Auxiliary switch 1A-1B
JG family	Drawout (1)	Auxiliary switch 2A-2B
JG family	Drawout (1)	Bell alarm
JG family	Drawout (1)	High load alarm w/trip
JG family	Drawout (1)	Ground fault alarm w/trip
JG family	Drawout (2)	Undervoltage release
JG family	Drawout (2)	Zone selective interlock
LG family	Drawout (1)	Auxiliary switch 1A-1B
LG family	Drawout (1)	Auxiliary switch 2A-2B
LG family	Drawout (1)	Bell alarm
LG family	Drawout (1)	High load alarm w/trip
LG family	Drawout (1)	Ground fault alarm w/trip
LG family	Drawout (2)	Undervoltage release (3)
LG family	Drawout (2)	Zone selective interlock

Notes

(1) Accessories wired to a pull-apart terminal block. Right position only.
(2) Accessories wired to a pull-apart terminal block. Left position only.
${ }^{3}$ Not available when breaker is equipped with ARMS trip unit.

3. Drawout NX Internal

Modification 3
Internal NX Breaker Accessories

Shunt trip (specify voltage)
Undervoltage release
Auxiliary switch
Motor operator
Trip indicator
Bell alarm
Shutters

4. Compression Main Lugs

Al/Cu Burndy Range Taking Type.

Modification 4	
Main Lug	PRL4D Lug
Amperes	Wire Range
800	(3) $500-750 \mathrm{kcmil}$
1200	(4) \#2-600 kcmil (4) $500-750 \mathrm{kcmil}$

5. Copper Lugs/Terminals

Optional copper mechanical main lugs only and includes main incoming neutral lug.

Modification 5

Main Lug Amperes	PRL4D Lug Wire Range
600	(2) $1 / 0-600 \mathrm{kcmil}$
800	(2) $1 / 0-600 \mathrm{kcmil}$
1200	(3) $1 / 0-600 \mathrm{kcmil}$

6. Copper Main Busbars

Optional copper busbars are available in all ampere ratings.

Modification 6

Ampere Range	Bare Copper Chassis Bus	Silver-Plated Copper Bus
800		
1200		
1600		
2000		
2500		
3000		
4000		

7. Density Rated Bus

Standard main bus ampere rating is determined by UL listed temperature rise testing. Density rated bus is defined at 750A per square inch for aluminum bus and 1000A per square inch for copper bus. Adder for aluminum density rated bus is in addition to the base price. Adder for copper density rated bus is in addition to the base price plus the appropriate adder for copper bus. See Modification 7.

Modification 7
Ampere Rating

Aluminum-750A per Square Inch
800
1200
1600
2000
2500
3000
4000
Copper-1000A per Square Inch
800
1200
1600
2000
2500
3000
4000

8. Electronic Trip Units

Thermal-magnetic trip units are standard. For electronic trip units, select appropriate breaker from the electronic trip section of Pages
V2-T4-9 and V2-T4-11. See selection below for electronic trip units.

Modification 8

Breaker Frame Family	Trip Unit Type
Drawout Feeder JGS, JGH, JGC	Digitrip 310+LS
	Digitrip 310+ LSI
	Digitrip 310+ LSG
	Digitrip 310+ LSIG
LGS, LGH, LGC	Digitrip 310+ LS
	Digitrip 310+ LSI
	Digitrip 310+ LSG
	Digitrip 310+ LSIG
	Digitrip 310+ LS with ARMS
	Digitrip 310+ LSI with ARMS
	Digitrip 310+ LSG with ARMS
	Digitrip 310+ LSIG with ARMS
Drawout NX	520 LI
	520 LSI
	520 LSI with ZSI
	520 LSIG
	520 LSIG with ZSI
	520 M LSI
	520M LSI with ZSI
	520M LSIA
	520M LSIA with ZSI
	520M LSIG
	520M LSIG with ZSI
	520 M LSI with ARMS
	520M LSI with ZSI and ARMS
	520M LSIA with ARMS
	520M LSIA with ZSI and ARMS
	520M LSIG with ARMS
	520M LSIG with ZSI and ARMS

Notes

L = Adjustable long time pickup
S = Adjustable short time pickup w/ fixed short time delay
I = Adjustable instantaneous pickup
G =Adjustable ground fault pickup
A = Adjustable ground fault alarm only (no trip)
ARMS = Arcflash Reduction Maintenance System
ZSI = Zone selective interlocking

9. Ground Bus

Copper or silver-plated copper ground bus in lieu of standard aluminum.

Modification 9

Bus Material	Size in Inches (mm)
Copper	$0.25(6.4) \times 1.50(38.1)$ $0.25(6.4) \times 2.00(50.8)$ Silver-plated copper $0.25(6.4) \times 1.50(38.1)$

10. Ground Fault Protection

Refer to Modification 8 for ground fault trip units.
11. Infrared (IR) Viewing Windows
Infrared viewing windows for main devices and drawout single-mounted feeder devices.

Modification 11

Overcurrent Device	IR Window Manufacturer
All fixed mount	lriss
mains	Hawk (Fluke)
Single drawout feeder breakers (1)	lriss

Pow-R-Line Drawout Molded Case Circuit Breaker Switchboards

12. Nameplates, Engraved

Field-attached nameplates.

Modification 12
Description
Mastic back, engraved, black with
white lettering
Mastic back, engraved, colors other
than black
Nameplates, screw attached

13. Seismically Qualified

For seismically qualified PRL drawout switchboard, request seismic labeling on order.
14. Service Entrance Equipment

Service Entrance labeling as detailed under the "Service Entrance Equipment" per UL and NEC. Only switchboards meeting these requirements may be labeled as such. The requirement or service entrance labeling must be noted on the order. Includes neutral disconnect link and labeling "Suitable Only For Use as Service Equipment" (SUSE).

15. Surge Protective Devices

(SPD)
Package includes SPD unit and integral circuit breaker disconnect (30A) connected to the chassis bus.

Modification 15 Surge Current Rating
So
SPD Package Options-Basic Package

| Standard Package | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| LED monitor, L-N, L-G, L-L and | ■ | ■ | ■ | ■ | $\boldsymbol{\square}$ | $\boldsymbol{\square}$ | $\boldsymbol{\square}$ | $\boldsymbol{\square}$ | $\boldsymbol{\square}$ |

-L and
N-G. EMI/RFI filtering. Audible
alarm with disable switch.
Form C relay contact.
Premium Package
LED monitor, L-N, L-G, L-L and
N-G. EMI/RFI filtering. Audible
alarm with disable switch.
Form C relay contact. Six-digit
LCD display. Counts surges in
all modes. Nonvolatile memory
(no battery backup). Reset
button designed to prevent
accidental resets.

16. Touchup Paint

Modification 16
Description
12 oz spray can. ANSI-61 light gray indoor
Case lot of 12-12 oz spray can. ANSI-61
light gray indoor

Note

(1) Available on only single-mounted drawout. Not available on dual-mounted feeder devices.

Compartmentalized Feeder Sections

Front View—Circuit Breakers

Front View—Fusible Units

Contents

Description
Compartmentalized Switchboards
Standards and Certifications.
V2-T4-15

Product Description

Eaton's Pow-R-Line i switchboards are engineered in a new compartmentalized design for applications where a greater degree of safety is required. A wide variety of configurations is possible, including utility metering, customer metering, main devices, branch devices, accessories and enclosures.

Application Description

Refer to Eaton's Consulting Application Guide.

Features, Benefits and Functions

Significant safety features include:

- Individual compartments for branch devicesglass polyester for circuit breakers and steel for fusible switches. These compartments help eliminate possible contact with the main bus and reduce fault propagation
- Three-section construction with each section barriered from the other
- Device section-each device is mounted in its own compartment
- Bus bar sectioncontains both horizontal and vertical buses
- Rear cable compartmentcompletely isolated from the bus bars
- Insulated copper runback. Power is taken from the protective device by the insulated copper runback through a standard full height glass polyester barrier to the rear cable compartment. This design virtually eliminates the possibility of accidental contact with the main buses during installation or maintenance

Main devices are available from 400-4000A and can include molded case circuit breakers, Magnum SB, Magnum DS circuit breakers, FDPW fusible switches or bolted pressure switches. Main buses are rated up to 6000A.

Branch circuit breakers range from 15-1200A frames. When circuit breakers are used, higher ratings and increased series ratings will be achieved. Branch fusible switches are available from 100-1200A.

Interrupting ratings up to 200,000A are UL listed and the bus bar system may be braced from a standard 65,000A up to a maximum 200,000A.

Integrated Monitoring Protection and Control Communications Systems

The capabilities of distribution and control assemblies can be expanded by tying together multiple devices in electrical distribution systems. From a central location (on-site or off-site), an operator uses a personal computer (master control unit) to monitor, control and communicate with compatible devices on a distribution system. These microprocessor-based devices, designed and built by Eaton, perform monitoring, protection and control functions.

Ground Fault Test Panels

Pow-R-Line i switchboards can accommodate either integral or zero sequence types of ground fault protection. Depending on the specific application, a test panel can be mounted in the circuit breaker compartment, which may eliminate the need for an auxiliary structure.

Fusible Switches

Pow-R-Line i switchboards have been designed to accommodate fusible switches. Safety is provided by steel compartments that insulate each horizontally mounted switch from the vertical and main buses. As with switchboards using circuit breakers, insulated copper runbacks carry power into the spacious, glass polyester barriered rear cable compartment.

UL Listed Shunt Trip and Fusible Switches

Shunt trip attachments for use with ground fault protection devices can be installed on 400-1200A Type FDPW fusible switches. Both are UL listed when the shunt trip is factory installed.

High Durability Finish

A baked-on polyester powder coating system protects all structural steel parts. It provides excellent mechanical strength and resistance to chalking normally caused by the sun's ultraviolet rays and meets the salt spray requirements of ASTM B-117.

Pow-R-Line \boldsymbol{i} Quality Assurance

Final testing helps ensure that each Pow-R-Line i switchboard performs in accordance with UL standards and customer specifications. Each assembly is shipped with a "Switchboard Verification Report" that documents completion of every inspection and test.

Provisions for the Future

Future expansion provisions include line side connectors, load side runbacks, terminals, and glass polyester compartments and covers (for circuit breakers). Space only for "both circuit breakers and fusible switches is also available.

Standards and Certifications

Pow-R-Line i switchboards are UL 891 listed and meet all applicable requirements of NEMA and NEC. They are rear accessible and front and rear aligned. Both indoor and outdoor enclosures are available.

- Meets NEMA Standard PB-2 and UL 891
- Seismically qualified

Product Description

Eaton’s Instant ${ }^{\circledR}$ Service Switchboards are designed as stocked units to provide fast delivery to match the needs of the construction market.

Suitable for use as service entrance equipment, they combine utility metering provisions with a fused main switch in a single compact section that can also include a distribution panel for feeder and branch circuit breakers.

Application Description

Typical applications for these versatile switchboards include small office buildings and factories, stores, supermarkets and shopping centers.

Features, Benefits and Functions

These switchboards are available in either indoor or outdoor enclosures manufactured of code-gauge steel with a durable light gray finish. All units are completely enclosed with front, rear and side covers. Outdoor units include a front hinged door.

The service section includes:

- Main lugs mounted at the top (two \#4-600 kcmil per phase) for overhead feed or for use with an underground pull section
- A sealable metering and CT compartment with bussing for utility bar type CTs and two 15-inch $(381.0 \mathrm{~mm}$) high meter compartment doors-one with provisions for meter socket and test block, one blank (meter socket is ordered separately)
- A 400 or 600A T-Type fused main switch or 400, 600 or 800A main circuit breaker with either load lugs (same as main lugs) or with connections to a factory installed distribution panel

Underground pull sections are available with lug landing kits providing studs for incoming cables per EUSERC standards and

Contents

Description

Page

Instant Service Switchboards
Product Selection. V2-T4-17
Accessories . V2-T4-19
Technical Data and Specifications V2-T4-20
Dimensions . V2-T4-20
two \#4-600 kcmil lugs per phase for cable connection to the service section.
Distribution panels can be included for 240 Vac maximum (single-phase three-wire or three-phase four-wire), 480Y/277 Vac (three-phase four-wire) or 480 Vac (three-phase threewire). The 240 V panels have provisions for four Type ED 225A frame circuit breakers and 24 poles of Type BAB 100A frame circuit breakers. The 480Y/277V panel has provisions for four Type FD 225A frame circuit breakers and 24 poles of Type GHB 100A frame circuit breakers. The bolt-on type circuit breakers are ordered separately.

For applications that require the load circuit conductors to exit at the top, a loadside wireway compartment is available that bolts to the service section.

Standard switchboards include two 15.00-inch $(381.0 \mathrm{~mm}$) high meter compartment doors, one with meter socket provisions and one blank. For other arrangements, accessory units are available. Check utility requirements.

Standards and Certifications

Eaton's Instant Service Switchboards are listed by Underwriters Laboratories and comply with all applicable industry standards.
These switchboards meet EUSERC standards as well as other local utility codes.

Seismic Qualified

Eaton's Instant Service Switchboards are seismically tested, seismically qualified and meet or exceed requirements of the Uniform Building Code ${ }^{\circledR}$ (UBC), the California Building Code (CBC) and the International Building Code (IBC) for all seismic zones.

Product Selection

Main Fused Switch Only

Service	Main Ampere Rating	Type 1—Indoor Catalog Number	Type 3R-Outdoor Catalog Number
240 Vac Maximum	400	MSB423	
Single-phase three-wire	600	MSB623	RMSB423
Three-phase four-wire	400	MSB424	RMSB623
480Y/277 Vac	MSB624	RMSB424	
Three-phase four-wire	400	RMSB624	

Main Fused Switch with Distribution Panel

Service	Main Ampere Rating	Type 1—Indoor Catalog Number	Type 3R-Outdoor Catalog Number
$\mathbf{2 4 0 ~ V a c ~ M a x i m u m ~}{ }^{(1)}$			
Single-phase three-wire	400	MSBP423	RMSBP423
Three-phase four-wire	600	MSBP623	RMSBP623
480Y/277 Vac ${ }^{(2)}$	600	MSBP424	RMSBP424
Three-phase four-wire	MSBP624	RMSBP624	

Main Breaker Switch Only

Service	Main Ampere Rating	Type 1—Indoor Catalog Number	Type 3R-Outdoor Catalog Number
240 Vac Maximum ${ }^{(1)}$			
Single-phase three-wire	400	MBB423	RMBB423
	600	MBB623	RMBB623
	800	MBB823	RMBB823
Three-phase four-wire	400	MBB424	RMBB424
	600	MBB624	RMBB624
	800	MBB824	RMBB824
480Y/277 Vac ${ }^{(2)}$			
Three-phase four-wire	400	MBB444	RMBB444
	600	MBB644	RMBB644
	800	MBB844	RMBB844

Notes

(1) 240 V distribution panels have double branch provisions for four Type ED 225 A frame circuit breakers and 24 poles of Type BAB 100A frame circuit breakers.
(2) $480 \mathrm{Y} / 277 \mathrm{~V}$ distribution panels have double branch provisions for four Type FD 225 A frame circuit breakers and 24 poles of Type GHB 100A frame circuit breakers.
Circuit breakers for distribution panels are ordered separately.

Switchboards
Instant Service Switchboard

Main Breaker Only with Distribution Panel

Service	Main Ampere Rating	Type 1—Indoor Catalog Number	Type 3R-Outdoor Catalog Number
240 Vac Maximum			
Single-phase three-wire	400	MBBP423 ${ }^{\text {® }}$	RMBBP423 (1)
	600	MBBP623 ${ }^{\text {(}}$	RMBBP623 (1)
	800	MBBP823 ${ }^{\text {(}}$	RMBBP823 ${ }^{\text {2 }}$
	800	MBBP823-P ${ }^{\text {8 }}$	RMBBP823-P ${ }^{\text {(3) }}$
	800	MBBP823-K ${ }^{\text {(}}$	RMBBP823-K ${ }^{\text {© }}$
Three-phase four-wire	400	MBBP424 ${ }^{\text {(}}$	RMBBP424 (1)
	600	MBBP624 ${ }^{\text {(}}$	RMBBP624 (1)
	800	MBBP824 ${ }^{\text {(}}$	RMBBP824 ${ }^{\text {(2) }}$
	800	MBBP824-P ${ }^{\text {(3) }}$	RMBBP824-P ${ }^{\text {(3)}}$
	800	MBBP824-K ${ }^{\text {(}}$	RMBBP824-K ${ }^{\text {® }}$
480Y/277 Vac			
Three-phase four-wire	400	MBBP444 ${ }^{\text {® }}$	RMBBP444 (8)
	600	MBBP644 ${ }^{\text {® }}$	RMBBP644 ${ }^{\text {(}}$
	800	MBBP844 ${ }^{\text {(}}$	RMBBP844 (2)
	800	MBBP844-K ${ }^{\text {© }}$	RMBBP844-K ${ }^{\text {© }}$

Underground Pull Sections-Same Depth as Switchboard with Provisions for Lug Landing Kit

Section Width Inches (mm)	Type 1—Indoor Catalog Number	Type 3R—Outdoor Catalog Number
$24.00(609.6)^{6}$	UG24W	RUG24W
$30.00(762.0)$	UG30W	RUG30W

NEMA Type 1 pull section can be installed separate from service section. Add side closer plate, catalog number UGCP.

Lug Landing Kits for Underground Pull Sections

Maximum Ampere Rating	Service	Catalog Number
400	Single-phase three-wire	LL4003
	Three-phase four-wire	LL4004
800	Single-phase three-wire	LL8003 (7)
	Three-phase four-wire	LL8004 © ${ }^{\text {P }}$

Load Side Wireway-12 Inches (304.8 mm) Wide Same Depth as Switchboard

Type	Catalog Number
Type 1—Indoor	LSS12W
Type 3R—Outdoor	RLSS12W

Notes

(1) 240V distribution panels have double branch provisions for four Type ED 225A frame circuit breakers and 24 poles of Type BAB 100A frame circuit breakers.
(2) 800A distribution panels have double branch provision for six Type FD 225A frame circuit breakers only
(3) Suffix-P: four Type FD 225A frame circuit breakers and 24 poles of Type GHB 100A frame circuit breakers.
(4) Suffix-K: one Type KD OR HKD 400A frame circuit breakers and four Type FD 225A frame circuit breakers.
(5) $480 \mathrm{Y} / 277 \mathrm{~V}$ distribution panels have double branch provisions for four Type FD 225A frame circuit breakers and 24 poles of Type GHB 100A frame circuit breakers.
(6) Check utility requirements-most EUSERC utilities require 30 -inch (762.0 mm) width.
(7) Mounts in 30 -inch (762.0 mm) wide section only.

Circuit breakers for distribution panels are ordered separately.

Accessories

Meter Compartment Doors - (Meter Sockets Not Included)			
Height	Width	Drilling	Catalog Number
15.00 (381.0)	32.00 (812.8)	Blank	MD150
		One socket	MD151
30.00 (762.0)	32.00 (812.8)	Blank	MD300
		Two sockets	MD302

Meter Sockets—For Field Installation

Number of Jaws	Catalog Number	Number of Jaws	Catalog Number
4	M4	8	M8
$5{ }^{(1)}$	M5	13	M13
$6^{(2)}$	M6	$15^{(3)}$	M15

Circuit Breakers for Distribution Panels 240 Vac
Three-Phase Four-Wire Maximum

Ampere Rating	Single-Pole 120/240 Vac Catalog Number	Two-Pole 120/240 Vac Catalog Number	Two-Pole 240 Vac Catalog Number	Three-Pole 240 Vac Catalog Number
15	BAB1015I	BAB2015	BAB2015HI	BAB3015HI
20	BAB1020I	BAB20201	BAB2020HI	BAB3030HI
30	BAB10301	BAB20301	BAB2030HI	BAB3030HI
40	BAB1040I	BAB20401	BAB2040HI	BAB3040HI
50	BAB1050I	BAB20501	BAB2050HI	BAB3050HI
60	BAB10601	BAB20601	BAB2060HI	BAB3060HI
70	-	BAB20701	BAB2070HI	BAB3070HI
90	-	BAB20901	BAB2090HI	BAB3090HI
100	-	BAB2100I	BAB2100HI	BAB3100HI
100	-	-	ED21001	ED31001
125	-	-	ED2125I	ED31351
150	-	-	ED2150I	ED31501
175	-	-	ED21751	ED31751
200	-	-	ED22001	ED32001
225	-	-	ED22251	ED2225I
300	-	-	KD23001	KD33001
350	-	-	KD23501	KD33501
400	-	-	KD24001	KD34001

Circuit Breakers for Distribution Panels 480Y/277 Vac (Three-Phase Four-Wire)

Ampere Rating	Single-Pole Catalog Number	Two-Pole Catalog Number	Three-Pole Catalog Number
15	GHB1015I	GHB2015I	GHB3015I
20	GHB1020I	GHB2020I	GHB3030I
30	GHB1030I	GHB2030I	GHB3030I
40	GHB1040I	GHB2040I	GHB3040I
50	GHB1050I	GHB2050I	GHB3050I
60	GHB1060I	GHB2060I	GHB3060I
70	-	GHB2070I	GHB3070I
90	-	GHB2090I	GHB3090I
100	-	GHB2100I	GHB3100I
100	-	FD2100I	FD3100I
125	-	FD2125I	FD3135I
150	-	FD2150I	FD3150I
175	-	FD2175I	FD3175I
200	-	FD2200I	FD3200I
225	-	FD2225I	FD2225I
300	-	HKD2300I	HKD3300I
350	-	HKD2350I	HKD3350I
400	-	HKD2400I	HKD3400I

Special Utility Options-Select for the Following Utilities	
Utility Company	Catalog Number
City of Anaheim	ISTAHEIM
City of Burbank	ISTBANK

Special Bus Options	
Maximum Ampere Rating	Catalog Number
Density Bus Kit	
400	DBK400
600	DBK600
800	DBK800
Copper Bus Kit	
400	CUK400
600	CUK800
800	

Notes

(1) 240V distribution panels have double branch provisions for four Type ED 225A frame circuit breakers and 24 poles of Type BAB 100A frame circuit breakers.
(2) 800A distribution panels have double branch provision for six Type FD 225A frame circuit breakers only.
(3) Suffix-P: four Type FD 225A frame circuit breakers and 24 poles of Type GHB 100A frame circuit breakers.

Switchboards

Instant Service Switchboards

Technical Data and Specifications

- 120/240 Vac, single-phase three-wire
- 208Y/120V or 240/120 Vac, three-phase four-wire
- 240 Delta/120 Vac, three-phase four-wire
- 480Y/277 Vac, three-phase four-wire
- 480 Vac, three-phase three-wire

Interrupting Ratings (Series Rating)

- 65,000 rms symmetrical amperes at 240 Vac, using Types BAB and ED branch circuit breakers
- $65,000 \mathrm{rms}$ symmetrical amperes at $480 \mathrm{Y} / 277 \mathrm{Vac}$, using Types GHB and FD branch circuit breakers

Dimensions

| Approximate Dimensions in Inches (mm)
 Instant Service Switchboards
 Height | Width |
| :--- | :--- |\quad Depth | Indoor | |
| :--- | :--- |
| $90.00(2286.0)$ | $32.00(812.8)$ |
| Outdoor | |
| $90.00(2286.0)$ | $38.00(965.2)$ |

Product Description

Eaton's roll-up generator termination boxes (RUGTB) are designed as an intermediate termination cabinet between temporary, portable roll-up generator and the facility being served. The RUGTB is designed for permanent installation and is secured to a concrete pad with bolts.

The RUGTB includes line terminations for the temporary connection of the portable generator and permanent connections on the load side to the secondary disconnect in the facility, which is interlocked with the main overcurrent device in a manner that ensures that only one (either the service main or the generator main) can be energized at any one time. The conductors and conduits must be sized and suitable for carrying the load ratings marked on the equipment per the National Electrical Code.

Features

Enclosure

The enclosure is freestanding with feet on the bottom, providing access to the cable connections for temporary roll-up generator terminations. The enclosure is made from code gauge steel and is suitable for either outdoor or indoor installation (Type 3R construction). The enclosure is powder coat painted ANSI 61 gray. Each enclosure houses line and load phase, neutral and ground connections. Access is provided at the bottom of the enclosure for both the temporary connections to the roll-up generator and permanent connections to the facility's generator overcurrent disconnecting means. The permanent connection section at the bottom of the enclosure contains a fixed mounting plate. The temporary generator connection to the RUGTB contains a hinged cover that allows access to the enclosure for generator conductors.

Contents

Description
Roll-Up Generator Termination Box
Technical Data and Specifications
V2-T4-22
Dimensions . V2-T4-35

The enclosure uses feet that raise the termination compartment off finished grade by 18 inches (457.2 mm). Enclosure feet have provisions for anchoring the RUGTB. Anchor bolts secure the RUGTB and shall be encased in a concrete pad by the installer in a manner that is suitable as a permanent base for the unit. A template for anchor bolt installation is available from the manufacturer.

The enclosure contains a sturdy, lockable, hinged door for access to the termination compartment by qualified personnel as described in NFPA 70E and the National Electrical Code. Feeder conductor entry is provided in the bottom of the enclosure for the line side (generator). A hinged bottom plate is provided on the line side for access to line terminations. The permanent load connections (feeding to the facility overcurrent device) exit the enclosure from the bottom.

Terminations

All roll-up generator termination boxes contain a termination/lug landing for three phases and neutral plus ground. Line termination options include mechanical lugs, one-hole and two-hole compression lugs, one-hole and two-hole compression lug provisions, and quick disconnect.

Lug provisions are provided with bolt configurations as described in the catalog data on the following pages. Where lug provisions are ordered, lugs are supplied by others.

Standards and Certifications

- UL 1773 listedtermination boxes
- 600 Vac maximum
- Amperage ratings: 800, 1200, 1600, 2000 and 2500
- Assembly short-circuit rating: 25,000A rms symmetrical
- Marked "Suitable for use on the line side of service equipment" per UL 1773

Switchboards

Roll-Up Generator Termination Box

Technical Data and Specifications

Approximate Dimensions in Inches (mm)
Roll-Up Generator Termination Box with Line and Load Mechanical Box Lugs (${ }^{1}$

Ampere Rating	Dimensions Height	Width	Depth	Mechanical Box Lugs Line Termination Number, Range and Type	Mechanical Box Lugs Load Termination Number, Range and Type	Catalog Number
800	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(3) 4/0-500 kcmil Al/Cu	(3) 4/0-500 kcmil Al/Cu	GTB08MAMA
				(3) 4/0-500 kcmil Al/Cu	(2) 3/0-750 kcmil Al/Cu	GTB08MAMB
				(2) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	(3) 4/0-500 kcmil Al/Cu	GTB08MBMA
				(2) 3/0-750 kcmil Al/Cu	(2) 3/0-750 kcmil Al/Cu	GTB08MBMB
1200	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(4) 4/0-500 kcmil Al/Cu	(4) 4/0-500 kcmil Al/Cu	GTB12MCMC
				(4) 4/0-500 kcmil Al/Cu	(3) $3 / 0-750 \mathrm{kcmil} \mathrm{Al/Cu}$	GTB12MCMD
				(3) $3 / 0-750 \mathrm{kcmil}$ Al/Cu	(4) $4 / 0-500 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB12MDMC
				(3) $3 / 0-750 \mathrm{kcmil}$ Al/Cu	(3) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB12MDMD
1600	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(5) 4/0-500 kcmil Al/Cu	(5) 4/0-500 kcmil Al/Cu	GTB16MEME
				(5) 4/0-500 kcmil Al/Cu	(4) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB16MEMF
				(4) $3 / 0-750 \mathrm{kcmil}$ Al/Cu	(5) 4/0-500 kcmil Al/Cu	GTB16MFME
				(4) 3/0-750 kcmil Al/Cu	(4) 3/0-750 kcmil Al/Cu	GTB16MFMF
2000	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(6) 4/0-500 kcmil Al/Cu	(6) 4/0-500 kcmil Al/Cu	GTB20MGMG
				(6) $4 / 0-500 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	(5) 3/0-750 kcmil Al/Cu	GTB20MGMH
				(5) 3/0-750 kcmil Al/Cu	(6) 4/0-500 kcmil Al/Cu	GTB20MHMG
				(5) 3/0-750 kcmil Al/Cu	(5) 3/0-750 kcmil Al/Cu	GTB20MHMH
2500	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(8) 4/0-500 kcmil Al/Cu	(8) $4 / 0-500 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB25MJMJ
				(8) 4/0-500 kcmil Al/Cu	(7) 3/0-750 kcmil Al/Cu	GTB25MJMK
				(7) 3/0-750 kcmil Al/Cu	(8) 4/0-500 kcmil Al/Cu	GTB25MKMJ
				(7) 3/0-750 kcmil Al/Cu	(7) 3/0-750 kcmil Al/Cu	GTB25MJMJ

Roll-Up Generator Termination Box with Line Mechanical Box Lugs; Load Single-Hole Compression Lugs (12)

Ampere Rating	Dimensions Height	Width	Depth	Mechanical Box Lugs Line Termination Number, Range and Type	Single-Hole Compression Load Termination Number, Range and Type	Catalog Number
800	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(3) 4/0-500 kcmil Al/Cu	(3) 4/0-500 kcmil Al/Cu	GTB08MACA
				(3) 4/0-500 kcmil Al/Cu	(2) 3/0-750 kcmil Al/Cu	GTB08MACB
				(2) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	(3) 4/0-500 kcmil Al/Cu	GTB08MBCA
				(2) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	(2) 3/0-750 kcmil Al/Cu	GTB08MBCB
1200	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(4) 4/0-500 kcmil Al/Cu	(4) 4/0-500 kcmil Al/Cu	GTB12MCCC
				(4) 4/0-500 kcmil Al/Cu	(3) 3/0-750 kcmil Al/Cu	GTB12MCCD
				(3) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	(4) 4/0-500 kcmil Al/Cu	GTB12MDCC
				(3) 3/0-750 kcmil Al/Cu	(3) 3/0-750 kcmil Al/Cu	GTB12MDCD
1600	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(5) 4/0-500 kcmil Al/Cu	(5) 4/0-500 kcmil Al/Cu	GTB16MECE
				(5) 4/0-500 kcmil Al/Cu	(4) $3 / 0-750 \mathrm{kcmil} \mathrm{Al/Cu}$	GTB16MECF
				(4) 3/0-750 kcmil Al/Cu	(5) 4/0-500 kcmil Al/Cu	GTB16MFCE
				(4) 3/0-750 kcmil Al/Cu	(4) 3/0-750 kcmil Al/Cu	GTB16MFCF
2000	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(6) 4/0-500 kcmil Al/Cu	(6) 4/0-500 kcmil Al/Cu	GTB20MGCG
				(6) 4/0-500 kcmil Al/Cu	(5) 3/0-750 kcmil Al/Cu	GTB20MGCH
				(5) 3/0-750 kcmil Al/Cu	(6) 4/0-500 kcmil AI/Cu	GTB20MHCG
				(5) 3/0-750 kcmil Al/Cu	(5) 3/0-750 kcmil Al/Cu	GTB20MHCH
2500	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(8) 4/0-500 kcmil Al/Cu	(8) $4 / 0-500 \mathrm{kcmil} \mathrm{Al/Cu}$	GTB25MJCJ
				(8) $4 / 0-500 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	(7) 3/0-750 kcmil Al/Cu	GTB25MJCK
				(7) 3/0-750 kcmil Al/Cu	(8) $4 / 0-500 \mathrm{kcmil} \mathrm{Al/Cu}$	GTB25MKCJ
				(7) 3/0-750 kcmil Al/Cu	(7) 3/0-750 kcmil Al/Cu	GTB25MJCJ

Notes

(1) Line side mechanical lugs are factory selected and installed.
(2) Load side Anderson, single-hole compression lugs are factory selected and installed.

Roll-Up Generator Termination Box

Approximate Dimensions in Inches (mm)
Roll-Up Generator Termination Box with Line Mechanical Box Lugs; Load Two-Hole Compression Lugs (12)

Ampere Rating	Dimensions Height	Width	Depth	Mechanical Box Lugs Line Termination Number, Range and Type	Two-Hole Compression Load Termination Cu Only Wire Size	Catalog Number
800	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(3) 4/0-500 kcmil Al/Cu	(3) 350 kcmil Cu only	GTB08MACL
				(3) 4/0-500 kcmil Al/Cu	(3) 400 kcmil Cu only	GTB08MBCM
				(2) 3/0-750 kcmil Al/Cu	(3) 350 kcmil Cu only	GTB08MBCL
				(2) 3/0-750 kcmil Al/Cu	(3) 400 kcmil Cu only	GTB08MACL
1200	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(4) 4/0-500 kcmil Al/Cu	(4) 500 kcmil Cu only	GTB12MCCN
				(4) 4/0-500 kcmil Al/Cu	(3) 600 kcmil Cu only	GTB12MCCP
				(4) 4/0-500 kcmil Al/Cu	(3) 750 kcmil Cu only	GTB12MCCO
				(3) 3/0-750 kcmil Al/Cu	(4) 500 kcmil Cu only	GTB12MDCN
				(3) 3/0-750 kcmil Al/Cu	(3) 600 kcmil Cu only	GTB12MDCP
				(3) 3/0-750 kcmil Al/Cu	(3) 750 kcmil Cu only	GTB12MDC0
1600	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(5) 4/0-500 kcmil Al/Cu	(5) 500 kcmil Cu only	GTB16MECR
				(5) 4/0-500 kcmil Al/Cu	(4) 600 kcmil Cu only	GTB16MECS
				(5) 4/0-500 kcmil Al/Cu	(4) 750 kcmil Cu only	GTB16MECT
				(4) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	(5) 500 kcmil Cu only	GTB16MFCR
				(4) $3 / 0-750 \mathrm{kcmil} \mathrm{Al/Cu}$	(4) 600 kcmil Cu only	GTB16MFCS
				(4) 3/0-750 kcmil Al/Cu	(4) 750 kcmil Cu only	GTB16MFCT
2000	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(6) 4/0-500 kcmil Al/Cu	(6) 500 kcmil Cu only	GTB20MGCU
				(6) 4/0-500 kcmil Al/Cu	(5) 600 kcmil Cu only	GTB20MGCV
				(6) 4/0-500 kcmil Al/Cu	(5) 750 kcmil Cu only	GTB20MGCW
				(5) 3/0-750 kcmil Al/Cu	(6) 500 kcmil Cu only	GTB20MHCU
				(5) 3/0-750 kcmil Al/Cu	(5) 600 kcmil Cu only	GTB20MHCV
				(5) 3/0-750 kcmil Al/Cu	(5) 750 kcmil Cu only	GTB20MHCW
2500	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(8) 4/0-500 kcmil Al/Cu	(7) 500 kcmil Cu only	GTB25MJCX
				(8) 4/0-500 kcmil Al/Cu	(6) 600 kcmil Cu only	GTB25MJCY
				(8) 4/0-500 kcmil Al/Cu	(6) 750 kcmil Cu only	GTB25MJCZ
				(7) 3/0-750 kcmil Al/Cu	(7) 500 kcmil Cu only	GTB25MKCX
				(7) 3/0-750 kcmil Al/Cu	(6) 600 kcmil Cu only	GTB25MKCY
				(7) 3/0-750 kcmil Al/Cu	(6) 750 kcmil Cu only	GTB25MKCZ

Notes

(1) Line side mechanical lugs are factory selected and installed.
(2) Load side factory installed Burndy, two-hole, short barrel compression lugs suitable for copper wire only requires a 45 -inch (1143.0 mm) wide enclosure.

Switchboards

Roll-Up Generator Termination Box

Approximate Dimensions in Inches (mm)

Roll-Up Generator Termination Box with Line Mechanical Box Lugs; Load Provisions Only, Single-Hole Compression Lugs (1)

Ampere Rating	Dimensions Height	Width	Depth	Mechanical Box Lugs Line Termination Number, Range and Type	Single-Hole Compression Load Provisions Only Number and Range	Catalog Number
800	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(3) 4/0-500 kcmil Al/Cu	(3) Provisions per phase	GTB08MAP1
				(2) 3/0-750 kcmil Al/Cu	(3) Provisions per phase	GTB08MBP1
1200	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(4) $4 / 0-500 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	(4) Provisions per phase	GTB12MCP2
				(3) 3/0-750 kcmil Al/Cu	(4) Provisions per phase	GTB12MDP2
1600	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(5) 4/0-500 kcmil Al/Cu	(5) Provisions per phase	GTB16MEP3
				(4) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	(5) Provisions per phase	GTB16MFP3
2000	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(6) 4/0-500 kcmil Al/Cu	(6) Provisions per phase	GTB20MGP4
				(5) 3/0-750 kcmil Al/Cu	(6) Provisions per phase	GTB20MHP4
2500	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(8) 4/0-500 kcmil Al/Cu	(8) Provisions per phase	GTB25MJP5
				(7) 3/0-750 kcmil Al/Cu	(8) Provisions per phase	GTB25MKP5

Roll-Up Generator Termination Box with Line Mechanical Box Lugs; Load Provisions Only, Two-Hole Compression Lugs (1)(4)
\(\left.$$
\begin{array}{llllllll}\begin{array}{l}\text { Ampere } \\
\text { Rating }\end{array} & \begin{array}{l}\text { Dimensions } \\
\text { Height }\end{array} & \text { Width } & \text { Depth } & \begin{array}{l}\text { Mechanical Box Lugs Line } \\
\text { Termination Number, Range and Type }\end{array}
$$ \& \begin{array}{l}Two-Hole Compression Load

Provisions Only Number and Range\end{array} \& Catalog Number\end{array}\right]\)| 800 | $78.00(1981.2)$ | $45.00(1143.0)$ | $24.00(609.6)$ | $(3) 4 / 0-500 \mathrm{kcmil} \mathrm{Al/Cu}$ | (3) Provisions per phase |
| :--- | :--- | :--- | :--- | :--- | :--- |

Notes

(1) Line side mechanical lugs are factory selected and installed.
${ }^{2}$ Load side factory installed $3 / 8$-inch bolt provisions for single-hole compression lugs (lugs furnished by others).
(3) Load side factory installed $1 / 2$-inch bolt provisions on $1-3 / 4$-inch hole centers for two-hole compression lugs (lugs furnished by others).
(4) Requires $45-\mathrm{inch}(1143.0 \mathrm{~mm})$ wide enclosure

Switchboards
 Roll-Up Generator Termination Box

4.6

Approximate Dimensions in Inches (mm)
Roll-Up Generator Termination Box with Line Single-Hole Compression Lugs and Load Mechanical Box Lugs (1)

Ampere Rating	Dimensions Height	Width	Depth	Single-Hole Compression Line Termination Number, Range and Type	Mechanical Box Lugs Load Termination Number, Range and Type	Catalog Number
800	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(3) 4/0-500 kcmil Al/Cu	(3) 4/0-500 kcmil Al/Cu	GTB08CAMA
				(3) 4/0-500 kcmil Al/Cu	(2) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB08CAMB
				(2) 3/0-750 kcmil Al/Cu	(3) 4/0-500 kcmil Al/Cu	GTB08CBMA
				(2) 3/0-750 kcmil Al/Cu	(2) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB08CBMB
1200	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(4) 4/0-500 kcmil Al/Cu	(4) $4 / 0-500 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB12CCMC
				(4) 4/0-500 kcmil Al/Cu	(3) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB12CCMD
				(3) 3/0-750 kcmil Al/Cu	(4) $4 / 0-500 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB12CDMC
				(3) 3/0-750 kcmil Al/Cu	(3) 3/0-750 kcmil Al/Cu	GTB12CDMD
1600	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(5) 4/0-500 kcmil Al/Cu	(5) 4/0-500 kcmil Al/Cu	GTB16CEME
				(5) 4/0-500 kcmil Al/Cu	(4) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB16CEMF
				(4) $3 / 0-750 \mathrm{kcmil}$ Al/Cu	(5) 4/0-500 kcmil Al/Cu	GTB16CFME
				(4) 3/0-750 kcmil Al/Cu	(4) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB16CFMF
2000	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(6) 4/0-500 kcmil Al/Cu	(6) 4/0-500 kcmil Al/Cu	GTB20CGMG
				(6) 4/0-500 kcmil Al/Cu	(5) 3/0-750 kcmil Al/Cu	GTB20CGMH
				(5) 3/0-750 kcmil Al/Cu	(6) $4 / 0-500 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB20CHMG
				(5) 3/0-750 kcmil Al/Cu	(5) 3/0-750 kcmil Al/Cu	GTB20CHMH
2500	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(8) 4/0-500 kcmil Al/Cu	(8) 4/0-500 kcmil Al/Cu	GTB25CJMJ
				(8) 4/0-500 kcmil Al/Cu	(7) 3/0-750 kcmil Al/Cu	GTB25CJMK
				(7) 3/0-750 kcmil Al/Cu	(8) $4 / 0-500 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB25CKMJ
				(7) 3/0-750 kcmil Al/Cu	(7) 3/0-750 kcmil Al/Cu	GTB25CJMK

Roll-Up Generator Termination Box with Line and Load Single-Hole Compression Lugs ${ }^{3}$

Ampere Rating	Dimensions Height	Width	Depth	Single-Hole Compression Line Termination Number, Range and Type	Single-Hole Compression Load Termination Number, Range and Type	Catalog Number
800	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(3) 4/0-500 kcmil Al/Cu	(3) 4/0-500 kcmil Al/Cu	GTB08CACA
				(3) 4/0-500 kcmil Al/Cu	(2) $3 / 0-750 \mathrm{kcmil} \mathrm{Al/Cu}$	GTB08CACB
				(2) $3 / 0-750 \mathrm{kcmil} \mathrm{Al/Cu}$	(3) 4/0-500 kcmil Al/Cu	GTB08CBCA
				(2) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	(2) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB08CBCB
1200	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(4) $4 / 0-500 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	(4) 4/0-500 kcmil Al/Cu	GTB12CCCC
				(4) 4/0-500 kcmil Al/Cu	(3) 3/0-750 kcmil Al/Cu	GTB12CCCD
				(3) 3/0-750 kcmil Al/Cu	(4) 4/0-500 kcmil Al/Cu	GTB12CDCC
				(3) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	(3) 3/0-750 kcmil Al/Cu	GTB12CDCD
1600	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(5) $4 / 0-500 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	(5) 4/0-500 kcmil Al/Cu	GTB16CECE
				(5) 4/0-500 kcmil Al/Cu	(4) $3 / 0-750 \mathrm{kcmil} \mathrm{Al/Cu}$	GTB16CECF
				(4) $3 / 0-750 \mathrm{kcmil} \mathrm{Al/Cu}$	(5) 4/0-500 kcmil Al/Cu	GTB16CFCE
				(4) 3/0-750 kcmil Al/Cu	(4) $3 / 0-750 \mathrm{kcmil} \mathrm{Al/Cu}$	GTB16CFCF
2000	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(6) 4/0-500 kcmil Al/Cu	(6) 4/0-500 kcmil Al/Cu	GTB20CGCG
				(6) 4/0-500 kcmil Al/Cu	(5) 3/0-750 kcmil Al/Cu	GTB20CGCH
				(5) 3/0-750 kcmil Al/Cu	(6) 4/0-500 kcmil AI/Cu	GTB20CHCG
				(5) 3/0-750 kcmil Al/Cu	(5) 3/0-750 kcmil Al/Cu	GTB20CHCH
2500	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(8) 4/0-500 kcmil Al/Cu	(8) 4/0-500 kcmil Al/Cu	GTB25CJCJ
				(8) $4 / 0-500 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	(7) 3/0-750 kcmil Al/Cu	GTB25CJCK
				(7) 3/0-750 kcmil Al/Cu	(8) 4/0-500 kcmil Al/Cu	GTB25CKCJ
				(7) 3/0-750 kcmil Al/Cu	(7) 3/0-750 kcmil Al/Cu	GTB25CJCK

Notes

(1) Line side Anderson, single-hole compression lugs are factory selected and installed.
(2) Load side mechanical lugs are factory selected and installed
(3) Line side and load Anderson, single-hole compression lugs are factory selected and installed.

Switchboards

Roll-Up Generator Termination Box

Approximate Dimensions in Inches (mm)
Roll-Up Generator Termination Box with Line Single-Hole Compression Lugs; Load Two-Hole Compression Lugs ©®®

Ampere Rating	Dimensions Height	Width	Depth	Single-Hole Compression Line Termination Number, Range and Type	Two-Hole Compression Load Termination Cu Only Wire Size	Catalog Number
800	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(3) 4/0-500 kcmil Al/Cu	(3) 350 kcmil Cu only	GTB08CACL
				(3) 4/0-500 kcmil Al/Cu	(3) 400 kcmil Cu only	GTB08CACM
				(2) 3/0-750 kcmil Al/Cu	(3) 350 kcmil Cu only	GTB08CBCL
				(2) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	(3) 400 kcmil Cu only	GTB08CBCM
1200	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(4) 4/0-500 kcmil Al/Cu	(4) 500 kcmil Cu only	GTB12CCCN
				(4) 4/0-500 kcmil Al/Cu	(3) 600 kcmil Cu only	GTB12CCCP
				(4) 4/0-500 kcmil Al/Cu	(3) 750 kcmil Cu only	GTB12CCCO
				(3) 3/0-750 kcmil Al/Cu	(4) 500 kcmil Cu only	GTB12CDCN
				(3) 3/0-750 kcmil Al/Cu	(3) 600 kcmil Cu only	GTB12CDCP
				(3) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	(3) 750 kcmil Cu only	GTB12CDCO
1600	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(5) 4/0-500 kcmil Al/Cu	(5) 500 kcmil Cu only	GTB16CECR
				(5) 4/0-500 kcmil Al/Cu	(4) 600 kcmil Cu only	GTB16CECS
				(5) 4/0-500 kcmil Al/Cu	(4) 750 kcmil Cu only	GTB16CECT
				(4) 3/0-750 kcmil Al/Cu	(5) 500 kcmil Cu only	GTB16CFCR
				(4) 3/0-750 kcmil Al/Cu	(4) 600 kcmil Cu only	GTB16CFCS
				(4) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	(4) 750 kcmil Cu only	GTB16CFCT
2000	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(6) 4/0-500 kcmil Al/Cu	(6) 500 kcmil Cu only	GTB20CGCU
				(6) 4/0-500 kcmil Al/Cu	(5) 600 kcmil Cu only	GTB20CGCV
				(6) 4/0-500 kcmil Al/Cu	(5) 750 kcmil Cu only	GTB20CGCW
				(5) 3/0-750 kcmil Al/Cu	(6) 500 kcmil Cu only	GTB20CHCU
				(5) 3/0-750 kcmil Al/Cu	(5) 600 kcmil Cu only	GTB20CHCV
				(5) 3/0-750 kcmil Al/Cu	(5) 750 kcmil Cu only	GTB20CHCW
2500	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(8) $4 / 0-500 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	(7) 500 kcmil Cu only	GTB25CJCX
				(8) 4/0-500 kcmil Al/Cu	(6) 600 kcmil Cu only	GTB25CJCY
				(8) 4/0-500 kcmil Al/Cu	(6) 750 kcmil Cu only	GTB25CJCZ
				(7) 3/0-750 kcmil Al/Cu	(7) 500 kcmil Cu only	GTB25CKCX
				(7) 3/0-750 kcmil Al/Cu	(6) 600 kcmil Cu only	GTB25CKCY
				(7) 3/0-750 kcmil Al/Cu	(6) 750 kcmil Cu only	GTB25CKCZ

Roll-Up Generator Termination Box with Line Single-Hole Compression Lugs; Load Provisions Only, Single-Hole Compression Lugs ©(4)

Ampere Rating	Dimensions Height	Width	Depth	Single-Hole Compression Line Termination Number, Range and Type	Single-Hole Compression Load Provisions Only Number and Range	Catalog Number
800	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(3) 4/0-500 kcmil Al/Cu	(3) Provisions per phase	GTB08CAP1
				(2) 3/0-750 kcmil Al/Cu	(3) Provisions per phase	GTB08CBP1
1200	$78.00 \text { (1981.2) }$	36.00 (914.4)	24.00 (609.6)	(4) $4 / 0-500 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	(4) Provisions per phase	GTB12CCP2
				(3) 3/0-750 kcmil Al/Cu	(4) Provisions per phase	GTB12CDP2
1600	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(5) 4/0-500 kcmil Al/Cu	(5) Provisions per phase	GTB16CEP3
				(4) 3/0-750 kcmil Al/Cu	(5) Provisions per phase	GTB16CFP3
2000	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(6) 4/0-500 kcmil Al/Cu	(6) Provisions per phase	GTB20CGP4
				(5) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	(6) Provisions per phase	GTB20CHP4
2500	78.00 (1981.2)	36.00 (914.4)	$24.00 \text { (609.6) }$	(8) 4/0-500 kcmil Al/Cu	(8) Provisions per phase	GTB25CJP5
				(7) 3/0-750 kcmil Al/Cu	(8) Provisions per phase	GTB25CKP5

Notes

(1) Line side Anderson, single-hole compression lugs are factory selected and installed.
(2) Load side factory installed Burndy, two-hole, short barrel compression lugs suitable for copper wire only.
(3) Requires 45 -inch (1143.0 mm) wide enclosure.
(4) Load side factory installed $3 / 8$-inch bolt provisions for single-hole compression lugs (lugs furnished by others).

Approximate Dimensions in Inches (mm)
Roll-Up Generator Termination Box with Single-Hole Compression Lugs; Load Provisions Only, Two-Hole Compression Lugs) (123)

Ampere Rating	Dimensions Height	Width	Depth	Single-Hole Compression Line Termination Number, Range and Type	Two-Hole Compression Load Provisions Only Number and Range	Catalog Number
800	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(3) 4/0-500 kcmil Al/Cu	(3) Provisions per phase	GTB08CAPA
				(2) 3/0-750 kcmil Al/Cu	(3) Provisions per phase	GTB08CBPA
1200	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(4) 4/0-500 kcmil Al/Cu	(4) Provisions per phase	GTB12CCPB
				(3) 3/0-750 kcmil Al/Cu	(4) Provisions per phase	GTB12CDPB
1600	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(5) 4/0-500 kcmil Al/Cu	(5) Provisions per phase	GTB16CEPC
				(4) 3/0-750 kcmil Al/Cu	(5) Provisions per phase	GTB16CGPC
2000	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(6) 4/0-500 kcmil Al/Cu	(6) Provisions per phase	GTB20CGPD
				(5) 3/0-750 kcmil Al/Cu	(6) Provisions per phase	GTB20CHPD
2500	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(8) 4/0-500 kcmil Al/Cu	(8) Provisions per phase	GTB25CJPE
				(7) 3/0-750 kcmil Al/Cu	(8) Provisions per phase	GTB25CKPE

Roll-Up Generator Termination Box with Line Two-Hole Compression Lugs and Load Mechanical Box Lugs ®®

Ampere Rating	Dimensions Height	Width	Depth	Two-Hole Compression Line Termination Cu Only Wire Size	Mechanical Box Lugs Load Termination Number, Range and Type	Catalog Number
800	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(3) 350 kcmil Cu only	(3) 4/0-500 kcmil Al/Cu	GTB08CLMA
				(3) 350 kcmil Cu only	(2) 3/0-750 kcmil Al/Cu	GTB08CLMB
				(3) 400 kcmil Cu only	(3) $4 / 0-500 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB08CMMA
				(3) 400 kcmil Cu only	(2) 3/0-750 kcmil Al/Cu	GTB08CMMB
1200	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(4) 500 kcmil Cu only	(4) 4/0-500 kcmil Al/Cu	GTB12CNMC
				(4) 500 kcmil Cu only	(3) 3/0-750 kcmil Al/Cu	GTB12CNMD
				(3) 600 kcmil Cu only	(4) 4/0-500 kcmil Al/Cu	GTB12CPMC
				(3) 600 kcmil Cu only	(3) 3/0-750 kcmil Al/Cu	GTB12CPMD
				(3) 750 kcmil Cu only	(4) $4 / 0-500 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB12C0MC
				(3) 750 kcmil Cu only	(3) 3/0-750 kcmil Al/Cu	GTB12C0MD
1600	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(5) 500 kcmil Cu only	(5) 4/0-500 kcmil Al/Cu	GTB16CRME
				(5) 500 kcmil Cu only	(4) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB16CRMF
				(4) 600 kcmil Cu only	(5) 4/0-500 kcmil Al/Cu	GTB16CSME
				(4) 600 kcmil Cu only	(4) 3/0-750 kcmil Al/Cu	GTB16CSMF
				(4) 750 kcmil Cu only	(5) 4/0-500 kcmil Al/Cu	GTB16CTME
				(4) 750 kcmil Cu only	(4) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB16CTMF
2000	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(6) 500 kcmil Cu only	(6) 4/0-500 kcmil Al/Cu	GTB20CUMG
				(6) 500 kcmil Cu only	(5) 3/0-750 kcmil Al/Cu	GTB20CUMH
				(5) 600 kcmil Cu only	(6) 4/0-500 kcmil Al/Cu	GTB20CVMG
				(5) 600 kcmil Cu only	(5) 3/0-750 kcmil Al/Cu	GTB20CVMH
				(5) 750 kcmil Cu only	(6) 4/0-500 kcmil Al/Cu	GTB20CWMG
				(5) 750 kcmil Cu only	(5) 3/0-750 kcmil Al/Cu	GTB20CWMH
2500	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(7) 500 kcmil Cu only	(8) 4/0-500 kcmil Al/Cu	GTB25CXMJ
				(7) 500 kcmil Cu only	(7) 3/0-750 kcmil Al/Cu	GTB25CXMK
				(6) 600 kcmil Cu only	(8) 4/0-500 kcmil Al/Cu	GTB25CYMJ
				(6) 600 kcmil Cu only	(7) 3/0-750 kcmil Al/Cu	GTB25CYMK
				(6) 750 kcmil Cu only	(8) 4/0-500 kcmil Al/Cu	GTB25CZMJ
				(6) 750 kcmil Cu only	(7) 3/0-750 kcmil Al/Cu	GTB25CZMK

Notes

(1) Line side Anderson, single-hole compression lugs are factory selected and installed.
(2) Load side factory installed $1 / 2$-inch bolt provisions on $1-3 / 4$-inch hole centers for two-hole compression lugs (lugs furnished by others).
(3) Requires 45 -inch (1143.0 mm) wide enclosure.
(4) Line side factory installed Burndy, two-hole, short barrel compression lugs suitable for copper wire only.
(5) Load side mechanical lugs are factory selected and installed.

Switchboards
Roll-Up Generator Termination Box

Approximate Dimensions in Inches (mm)

Roll-Up Generator Termination Box with Line Two-Hole Compression Lugs and Load Single-Hole Compression Lugs

Ampere Rating	Dimensions Height	Width	Depth	Two-Hole Compression Line Termination Cu Only Wire Size	Single-Hole Compression Load Termination Number, Range and Type	Catalog Number
800	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(3) 350 kcmil Cu only	(3) 4/0-500 kcmil Al/Cu	GTB08CLCA
				(3) 350 kcmil Cu only	(2) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB08CLCB
				(3) 400 kcmil Cu only	(3) $4 / 0-500 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB08CMCA
				(3) 400 kcmil Cu only	(2) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB08CMCB
1200	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(4) 500 kcmil Cu only	(4) 4/0-500 kcmil Al/Cu	GTB12CNCC
				(4) 500 kcmil Cu only	(3) 3/0-750 kcmil Al/Cu	GTB12CNCD
				(3) 600 kcmil Cu only	(4) 4/0-500 kcmil Al/Cu	GTB12CPCC
				(3) 600 kcmil Cu only	(3) 3/0-750 kcmil Al/Cu	GTB12CPCD
				(3) 750 kcmil Cu only	(4) 4/0-500 kcmil Al/Cu	GTB12COCC
				(3) 750 kcmil Cu only	(3) 3/0-750 kcmil Al/Cu	GTB12COCD
1600	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(5) 500 kcmil Cu only	(5) 4/0-500 kcmil Al/Cu	GTB16CRCE
				(5) 500 kcmil Cu only	(4) 3/0-750 kcmil Al/Cu	GTB16CRCF
				(4) 600 kcmil Cu only	(5) 4/0-500 kcmil Al/Cu	GTB16CSCE
				(4) 600 kcmil Cu only	(4) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB16CSCF
				(4) 750 kcmil Cu only	(5) 4/0-500 kcmil Al/Cu	GTB16CTCE
				(4) 750 kcmil Cu only	(4) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB16CTCF
2000	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(6) 500 kcmil Cu only	(6) 4/0-500 kcmil Al/Cu	GTB20CUCG
				(6) 500 kcmil Cu only	(5) 3/0-750 kcmil Al/Cu	GTB20CUCH
				(5) 600 kcmil Cu only	(6) 4/0-500 kcmil Al/Cu	GTB20CVCG
				(5) 600 kcmil Cu only	(5) 3/0-750 kcmil Al/Cu	GTB20CVCH
				(5) 750 kcmil Cu only	(6) 4/0-500 kcmil Al/Cu	GTB20CWCG
				(5) 750 kcmil Cu only	(5) 3/0-750 kcmil Al/Cu	GTB20CWCH
2500	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(7) 500 kcmil Cu only	(8) 4/0-500 kcmil Al/Cu	GTB25CXCJ
				(7) 500 kcmil Cu only	(7) 3/0-750 kcmil Al/Cu	GTB25CXCK
				(6) 600 kcmil Cu only	(8) 4/0-500 kcmil Al/Cu	GTB25CYCJ
				(6) 600 kcmil Cu only	(7) 3/0-750 kcmil Al/Cu	GTB25CYCK
				(6) 750 kcmil Cu only	(8) 4/0-500 kcmil Al/Cu	GTB25CZCJ
				(6) 750 kcmil Cu only	(7) 3/0-750 kcmil Al/Cu	GTB25CZCK

Notes

Line side factory installed Burndy, two-hole, short barrel compression lugs suitable for copper wire only.
Load side Anderson, single-hole compression lugs are factory selected and installed.
Requires 45 -inch (1143.0 mm) wide enclosure.

Roll-Up Generator Termination Box

Approximate Dimensions in Inches (mm)
Roll-Up Generator Termination Box with Line Two-Hole Compression Lugs; Load Two-Hole Compression Lugs

Ampere Rating	Dimensions Height	Width	Depth	Two-Hole Compression Line Termination Cu Only Wire Size	Two-Hole Compression Load Termination Cu Only Wire Size	Catalog Number
800	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(3) 350 kcmil Cu only	(3) 350 kcmil Cu only	GTB08CLCL
				(3) 350 kcmil Cu only	(3) 400 kcmil Cu only	GTB08CLCM
				(3) 400 kcmil Cu only	(3) 350 kcmil Cu only	GTB08CMCL
				(3) 400 kcmil Cu only	(3) 400 kcmil Cu only	GTB08CMCM
1200	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(4) 500 kcmil Cu only	(4) 500 kcmil Cu only	GTB12CNCN
				(4) 500 kcmil Cu only	(3) 600 kcmil Cu only	GTB12CNCP
				(4) 500 kcmil Cu only	(3) 750 kcmil Cu only	GTB12CNCO
				(3) 600 kcmil Cu only	(4) 500 kcmil Cu only	GTB12CPCN
				(3) 600 kcmil Cu only	(3) 600 kcmil Cu only	GTB12CPCP
				(3) 600 kcmil Cu only	(3) 750 kcmil Cu only	GTB12CPC0
				(3) 750 kcmil Cu only	(4) 500 kcmil Cu only	GTB12COCN
				(3) 750 kcmil Cu only	(3) 600 kcmil Cu only	GTB12COCP
				(3) 750 kcmil Cu only	(3) 750 kcmil Cu only	GTB12COCO
1600	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(5) 500 kcmil Cu only	(5) 500 kcmil Cu only	GTB16CRCR
				(5) 500 kcmil Cu only	(4) 600 kcmil Cu only	GTB16CRCS
				(5) 500 kcmil Cu only	(4) 750 kcmil Cu only	GTB16CRCT
				(4) 600 kcmil Cu only	(5) 500 kcmil Cu only	GTB16CSCR
				(4) 600 kcmil Cu only	(4) 600 kcmil Cu only	GTB16CSCS
				(4) 600 kcmil Cu only	(4) 750 kcmil Cu only	GTB16CSCT
				(4) 750 kcmil Cu only	(5) 500 kcmil Cu only	GTB16CTCR
				(4) 750 kcmil Cu only	(4) 600 kcmil Cu only	GTB16CTCS
				(4) 750 kcmil Cu only	(4) 750 kcmil Cu only	GTB16CTCT
2000	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(6) 500 kcmil Cu only	(6) 500 kcmil Cu only	GTB20CUCU
				(6) 500 kcmil Cu only	(5) 600 kcmil Cu only	GTB20CUCV
				(6) 500 kcmil Cu only	(5) 750 kcmil Cu only	GTB20CUCW
				(5) 600 kcmil Cu only	(6) 500 kcmil Cu only	GTB20CVCU
				(5) 600 kcmil Cu only	(5) 600 kcmil Cu only	GTB20CVCU
				(5) 600 kcmil Cu only	(5) 750 kcmil Cu only	GTB20CVCW
				(5) 750 kcmil Cu only	(6) 500 kcmil Cu only	GTB20CWCU
				(5) 750 kcmil Cu only	(5) 600 kcmil Cu only	GTB20CWCV
				(5) 750 kcmil Cu only	(5) 750 kcmil Cu only	GTB20CWCW
2500	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(7) 500 kcmil Cu only	(7) 500 kcmil Cu only	GTB25CXCX
				(7) 500 kcmil Cu only	(6) 600 kcmil Cu only	GTB25CXCY
				(7) 500 kcmil Cu only	(6) 750 kcmil Cu only	GTB25CXCZ
				(6) 600 kcmil Cu only	(7) 500 kcmil Cu only	GTB25CYCX
				(6) 600 kcmil Cu only	(6) 600 kcmil Cu only	GTB25CYCY
				(6) 600 kcmil Cu only	(6) 750 kcmil Cu only	GTB25CYCZ
				(6) 750 kcmil Cu only	(7) 500 kcmil Cu only	GTB25CZCX
				(6) 750 kcmil Cu only	(6) 600 kcmil Cu only	GTB25CZCY
				(6) 750 kcmil Cu only	(6) 750 kcmil Cu only	GTB25CZCZ

Notes

Line and load side factory installed Burndy, two-hole, short barrel compression lugs suitable for copper wire only. Requires 45-inch (1143.0 mm) wide enclosure.

Switchboards

Roll-Up Generator Termination Box

Approximate Dimensions in Inches (mm)

Roll-Up Generator Termination Box with Line Two-Hole Compression Lugs; Load Provisions Only, Single-Hole Compression Lugs (12)(3)

4

Ampere Rating	Dimensions Height	Width	Depth	Two-Hole Compression Line Termination Cu Only Wire Size	Single-Hole Compression Load Provisions Only Number and Range	Catalog Number
800	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(3) 350 kcmil Cu only	(3) Provisions per phase	GTB08CLP1
				(3) 400 kcmil Cu only	(3) Provisions per phase	GTB08CMP1
1200	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(4) 500 kcmil Cu only	(4) Provisions per phase	GTB12CNP2
				(3) 600 kcmil Cu only	(4) Provisions per phase	GTB12CPP2
				(3) 750 kcmil Cu only	(4) Provisions per phase	GTB12COP2
2000	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(6) 500 kcmil Cu only	(6) Provisions per phase	GTB20CUP4
				(5) 600 kcmil Cu only	(6) Provisions per phase	GTB20CVP4
				(5) 750 kcmil Cu only	(6) Provisions per phase	GTB20CWP4
2500	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(7) 500 kcmil Cu only	(8) Provisions per phase	GTB25CXP5
				(6) 600 kcmil Cu only	(8) Provisions per phase	GTB25CYP6
				(6) 750 kcmil Cu only	(8) Provisions per phase	GTB25CZP6

Roll-Up Generator Termination Box with Two-Hole Compression Lugs; Load Provisions Only, Two-Hole Compression Lugs ©

Ampere Rating	Dimensions Height	Width	Depth	Two-Hole Compression Line Termination Cu Only Wire Size	Two-Hole Compression Load Provisions Only Number and Range	Catalog Number
800	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(3) 350 kcmil Cu only	(3) Provisions per phase	GTB08CLPA
				(3) 400 kcmil Cu only	(3) Provisions per phase	GTB08CMPA
1200	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(4) 500 kcmil Cu only	(4) Provisions per phase	GTB12CNPB
				(3) 600 kcmil Cu only	(4) Provisions per phase	GTB12CPPB
				(3) 750 kcmil Cu only	(4) Provisions per phase	GTB12COPB
1600	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(5) 500 kcmil Cu only	(5) Provisions per phase	GTB16CRPC
				(4) 600 kcmil Cu only	(5) Provisions per phase	GTB16CSPC
				(4) 750 kcmil Cu only	(5) Provisions per phase	GTB16CTPC
2000	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(6) 500 kcmil Cu only	(6) Provisions per phase	GTB20CUPD
				(5) 600 kcmil Cu only	(6) Provisions per phase	GTB20CVPD
				(5) 750 kcmil Cu only	(6) Provisions per phase	GTB20CWPD
2500	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(7) 500 kcmil Cu only	(8) Provisions per phase	GTB25CXPE
				(6) 600 kcmil Cu only	(8) Provisions per phase	GTB25CYPE
				(6) 750 kcmil Cu only	(8) Provisions per phase	GTB25CZPE

Notes
(1) Line side factory installed Burndy, two-hole, short barrel compression lugs suitable for copper wire only.
${ }^{2}$ Load side factory installed $3 / 8$-inch bolt provisions for single-hole compression lugs (lugs furnished by others).
(3) Requires 45 -inch (1143.0 mm) wide enclosure
(4) Load side factory installed $1 / 2$-inch bolt provisions on 1-3/4-inch hole centers for two-hole compression lugs (lugs furnished by others).

Roll-Up Generator Termination Box

Approximate Dimensions in Inches (mm)
Roll-Up Generator Termination Box with Line Single-Hole Compression Lug Provisions; Load Mechanical Box Lugs (12)

Ampere Rating	Dimensions Height	Width	Depth	Single-Hole Compression Line Provisions Only Number and Range	Mechanical Box Lugs Load Termination Number, Range and Type	Catalog Number
800	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(3) Provisions per phase	(3) 4/0-500 kcmil Al/Cu	GTB08P1MA
				(3) Provisions per phase	(2) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB08P1MB
1200	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(4) Provisions per phase	(4) 4/0-500 kcmil Al/Cu	GTB12P2MC
				(4) Provisions per phase	(3) 3/0-750 kcmil Al/Cu	GTB12P2MD
1600	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(5) Provisions per phase	(5) 4/0-500 kcmil Al/Cu	GTB16P3ME
				(5) Provisions per phase	(4) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB16P3MF
2000	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(6) Provisions per phase	(6) 4/0-500 kcmil Al/Cu	GTB20P4MG
				(6) Provisions per phase	(5) 3/0-750 kcmil Al/Cu	GTB20P4MH
2500	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(8) Provisions per phase	(8) 4/0-500 kcmil Al/Cu	GTB25P5MJ
				(8) Provisions per phase	(7) 3/0-750 kcmil Al/Cu	GTB25P5MK

Roll-Up Generator Termination Box with Line Single-Hole Compression Lug Provisions; Load Single-Hole Compression Lugs ©(3)

Ampere Rating	Dimensions Height	Width	Depth	Single-Hole Compression Line Provisions Only Number and Range	Single-Hole Compression Load Termination Number, Range and Type	Catalog Number
800	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(3) Provisions per phase	(3) 4/0-500 kcmil Al/Cu	GTB08P1CA
				(3) Provisions per phase	(2) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB08P1CB
1200	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(4) Provisions per phase	(4) $4 / 0-500 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB12P2CC
				(4) Provisions per phase	(3) 3/0-750 kcmil Al/Cu	GTB12P2CD
1600	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(5) Provisions per phase	(5) 4/0-500 kcmil Al/Cu	GTB16P3CE
				(5) Provisions per phase	(4) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB16P3CF
2000	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(6) Provisions per phase	(6) 4/0-500 kcmil Al/Cu	GTB20P4CG
				(6) Provisions per phase	(5) 3/0-750 kcmil Al/Cu	GTB20P4CH
2500	78.00 (1981.2)	36.00 (914.4)	24.00 (609.6)	(8) Provisions per phase	(8) 4/0-500 kcmil Al/Cu	GTB25P5CJ
				(8) Provisions per phase	(7) 3/0-750 kcmil Al/Cu	GTB25P5CK

Notes

(1) Line side factory installed $3 / 8$-inch bolt provisions for single-hole compression lugs (lugs furnished by others).
${ }^{2}$ Load side mechanical lugs are factory selected and installed.
(3) Load side Anderson, single-hole compression lugs are factory selected and installed.

Switchboards

Roll-Up Generator Termination Box

Approximate Dimensions in Inches (mm)

Roll-Up Generator Termination Box with Line Single-Hole Compression Lug Provisions; Load Two-Hole Compression Lugs (12)(3)

4

Ampere Rating	Dimensions Height	Width	Depth	Single-Hole Compression Line Provisions Only Number and Range	Two-Hole Compression Load Termination Cu Only Wire Size	Catalog Number
800	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(3) 4/0-500 kcmil	(3) 350 kcmil Cu only	GTB08P1CL
				(3) $4 / 0-500 \mathrm{kcmil}$	(3) 400 kcmil Cu only	GTB08P1CM
1200	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(4) 4/0-500 kcmil	(4) 500 kcmil Cu only	GTB12P2CN
				(4) $4 / 0-500 \mathrm{kcmil}$	(3) 600 kcmil Cu only	GTB12P2CP
				(4) $4 / 0-500 \mathrm{kcmil}$	(3) 750 kcmil Cu only	GTB12P2C0
1600	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(5) 4/0-500 kcmil	(5) 500 kcmil Cu only	GTB16P3CR
				(5) 4/0-500 kcmil	(4) 600 kcmil Cu only	GTB16P3CS
				(5) 4/0-500 kcmil	(4) 750 kcmil Cu only	GTB16P3CT
2000	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(6) $4 / 0-500 \mathrm{kcmil}$	(6) 500 kcmil Cu only	GTB20P4CU
				(6) 4/0-500 kcmil	(5) 600 kcmil Cu only	GTB20P4CU
				(6) $4 / 0-500 \mathrm{kcmil}$	(5) 750 kcmil Cu only	GTB20P4CW
2500	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(8) $4 / 0-500 \mathrm{kcmil}$	(7) 500 kcmil Cu only	GTB25P5CX
				(8) $4 / 0-500 \mathrm{kcmil}$	(6) 600 kcmil Cu only	GTB25P5CY
				(8) $4 / 0-500 \mathrm{kcmil}$	(6) 750 kcmil Cu only	GTB25P5CZ

Roll-Up Generator Termination Box with Line Single-Hole Compression Lug Provisions; Load Single-Hole Compression Lugs ©

Ampere Rating	Dimensions Height	Width	Depth	Single-Hole Compression Line Provisions Only Number and Range	Single-Hole Compression Load Provisions Only Number and Range	Catalog Number

Notes
(1) Line side factory installed $3 / 8$-inch bolt provisions for single-hole compression lugs (lugs furnished by others).
(2) Load side factory installed Burndy, two-hole, short barrel compression lugs suitable for copper wire only.
3. Requires 45 -inch (1143.0 mm) wide enclosure.
(4) Line and load side factory installed $3 / 8$-inch bolt provisions for single-hole compression lugs (lugs furnished by others).

Roll-Up Generator Termination Box

Approximate Dimensions in Inches (mm)
Roll-Up Generator Termination Box with Line Single-Hole Compression Lug Provisions; Load Provisions Only, Two-Hole Compression Lugs (12)

Ampere Rating	Dimensions Height	Width	Depth	Single-Hole Compression Line Provisions Only Number and Range	Two-Hole Compression Load Provisions Only Number and Range	Catalog Number

Roll-Up Generator Termination Box with Line Single-Hole Compression Lug Provisions; Load Mechanical Box Lugs (23(4)

Ampere Rating	Dimensions Height	Width	Depth	Two-Hole Compression Line Provisions Only Number and Range	Mechanical Box Lugs Load Termination Number, Range and Type	Catalog Number
800	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(3) Provisions per phase	(3) 4/0-500 kcmil	GTB08PAMA
				(3) Provisions per phase	(2) $3 / 0-750 \mathrm{kcmil}$	GTB08PAMB
1200	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(4) Provisions per phase	(4) 4/0-500 kcmil	GTB12PBMC
				(4) Provisions per phase	(3) $3 / 0-750 \mathrm{kcmil}$	GTB12PBMD
1600	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(5) Provisions per phase	(5) 4/0-500 kcmil	GTB16PCME
				(5) Provisions per phase	(4) $3 / 0-750 \mathrm{kcmil}$	GTB16PCMF
2000	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(6) Provisions per phase	(6) $4 / 0-500 \mathrm{kcmil}$	GTB20PDMG
				(6) Provisions per phase	(5) 3/0-750 kcmil	GTB20PDMH
2500	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(8) Provisions per phase	(8) $4 / 0-500 \mathrm{kcmil}$	GTB25PEMJ
				(8) Provisions per phase	(7) 3/0-750 kcmil	GTB25PEMK

Roll-Up Generator Termination Box with Line Two-Hole Compression Lug Provisions; Load Single-Hole Compression Lugs (23(6)

Ampere Rating	Dimensions Height	Width	Depth	Two-Hole Compression Line Provisions Only Number and Range	Single-Hole Compression Load Termination Number, Range and Type	Catalog Number
800	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(3) Provisions per phase	(3) 4/0-500 kcmil Al/Cu	GTB08PACA
				(3) Provisions per phase	(2) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB08PACB
1200	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(4) Provisions per phase	(4) 4/0-500 kcmil Al/Cu	GTB12PBCC
				(4) Provisions per phase	(3) 3/0-750 kcmil Al/Cu	GTB12PBCD
1600	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(5) Provisions per phase	(5) 4/0-500 kcmil Al/Cu	GTB16PCCE
				(5) Provisions per phase	(4) $3 / 0-750 \mathrm{kcmil} \mathrm{Al} / \mathrm{Cu}$	GTB16PCCF
2000	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(6) Provisions per phase	(6) 4/0-500 kcmil Al/Cu	GTB20PDCG
				(6) Provisions per phase	(5) 3/0-750 kcmil Al/Cu	GTB20PDCH
2500	78.00 (1981.2)	45.00 (1143.0)	24.00 (609.6)	(8) Provisions per phase	(8) $4 / 0-500 \mathrm{kcmil} \mathrm{Al/Cu}$	GTB25PECJ
				(8) Provisions per phase	(7) 3/0-750 kcmil Al/Cu	GTB25PECK

Notes

(1) Line side factory installed $3 / 8$-inch bolt provisions for single-hole compression lugs (lugs furnished by others).
(2) Load side factory installed $1 / 2$-inch bolt provisions on $1-3 / 4$-inch hole centers for two-hole compression lugs (lugs furnished by others).
(3) Requires 45 -inch (1143.0 mm) wide enclosure.
(4) Load side mechanical lugs are factory selected and installed.
(5) Load side Anderson, single-hole compression lugs are factory selected and installed.

Switchboards

Roll-Up Generator Termination Box

Approximate Dimensions in Inches (mm)

Roll-Up Generator Termination Box with Line TWo-Hole Compression Lug Provisions; Load Two-Hole Compression Lugs ©巳®
$\left.\begin{array}{lllllll}\begin{array}{llll}\text { Ampere } \\ \text { Rating }\end{array} & \begin{array}{l}\text { Dimensions } \\ \text { Height }\end{array} & \text { Width } & \text { Depth } & \begin{array}{l}\text { Two-Hole Compression Line Provisions } \\ \text { Only Number and Range }\end{array} & \begin{array}{l}\text { Two-Hole Compression Load } \\ \text { Termination Cu Only Wire Size }\end{array} & \text { Catalog Number }\end{array}\right]$

Roll-Up Generator Termination Box with Line Two-Hole Compression Lug Provisions; Load Single-Hole Compression Lugs ©®(4)

Ampere Rating	Dimensions Height	Width	Depth	Two-Hole Compression Line Provisions Only Number and Range	Single-Hole Compression Load Provisions Only Number and Range	Catalog Number

Roll-Up Generator Termination Box with Line Two-Hole Compression Lug Provisions; Load Two-Hole Compression Lugs Provisions ${ }^{3}$ ©

Ampere Rating	Dimensions Height	Width	Depth	Two-Hole Compression Line Provisions Only Number and Range	Two-Hole Compression Load Provisions Only Number and Range	Catalog Number

Notes

(1) Line side factory installed $1 / 2$-inch bolt provisions on 1-3/4-inch hole centers for two-hole compression lugs (lugs furnished by others).
${ }^{2}$ L Load side factory installed Burndy, two-hole, short barrel compression lugs suitable for copper wire only.
(3) Requires 45 -inch (1143.0 mm) wide enclosure.

4 Load side factory installed $3 / 8$-inch bolt provisions for 1 -hole compression lugs (lugs furnished by others).
(5) Line and load side factory installed $1 / 2$-inch bolt provisions on $1-3 / 4$-inch hole centers for two-hole compression lugs (lugs furnished by others).

Dimensions

Approximate Dimensions in Inches (mm)

Enclosure

Termination/Lug Landing

Enclosure Dimensions ©

Structure Width	A	B	C	D
$36.00(914.4)$	$28.00(711.2)$	$11.75(298.5)$	$14.50(368.3)$	$20.50(520.7)$
$45.00(1143.0)$	$45.00(1143.0)$	$18.25(463.6)$	$18.00(457.2)$	$28.50(723.9)$

Termination/Lug Landing Dimensions

Structure Width	A
$36.00(914.4)$	$36.00(914.4)$
$45.00(1143.0)$	$45.00(1143.0)$

Note
(1) Conduit landing surface will be 20.00 (508.0) above finished grade.

Pow-R-Line Multipoint Meter / PRC7500

Overview

Allocation of energy consumption in a residential or commercial application is a tremendous task for a property owner, management firm or electrical energy manager. To assist in allocation or direct billing of consumed energy, use Eaton's Pow-R-Line Multipoint Meter or Pow-R-Command ${ }^{\text {TM }} 7500$ (PRC7500) low cost solutions. The Pow-R-Line Multipoint Meter / PRC7500 provides a cost-effective energy tabulation system for residential or commercial metering installations. These installations can include:

- High-rise buildings
- Universities and campuses
- Office buildings
- Apartment and condominium complexes
- Shopping malls
- Airports
- System commissioning is required and priced separately

When there is a need for accurate information of consumed energy for monthly invoicing statements, use Eaton's Multipoint Meter solution. Using the Multipoint Meter for utility allocation maximizes revenue by effectively measuring, allocating and recovering utility expenditures. The Multipoint Meter solution can interface with a third-party utility allocation service and offers the following advantages:

- Purchase energy at bulk rates while charging consumer rates
- Capitalize on naturally variable tenant loads by purchasing energy at a lower coinciding load
- Capture and allocate common area maintenance cost
- Promote tenant retention with accurate and defensible billing
- Eliminate subsidization of other tenants

Contents

Description
Multipoint Meter (MPM)

Overview . \quad V2-T4-36	
Pow-R-Line Multipoint Meter	V2-T4-37

PRC7500-Tenant Metering

Application Description

Refer to Eaton's Consulting
Application Guide. For complete application and pricing information, contact your local Eaton sales office.

Standards and Certifications

- UL listed

Features and Benefits

- Factory-wired system
- Saves floor space
- Lower installed cost
- Network compatible
- Tenant sub-billing

Contents

Description
Page
Overview.
V2-T4-36
Pow-R-Line Multipoint Meter
PRC7500—Tenant Metering
V2-T4-38

Pow-R-Line Multipoint Meter

Product Description

Using Eaton's Pow-R-Line Multipoint Meter design, multiple tenant submetering has never been easier. The Pow-R-Line Multipoint Meter combines the Power Xpert ${ }^{\circledR}$ Multi-Point Meter and Eaton's PRL4, PRLC or Integrated Facility System ${ }^{\text {TM }}$ (IFS ${ }^{\text {TM }}$) to provide a space-saving, cost-effective energy tabulation system for residential or commercial metering installations.

Application Description

With energy cost on the rise, it is vital to proactively monitor and conserve electrical energy. Documentations of electrical energy usage can promote energy conservation for tenants or business departments. When the need for accurate energy consumption information for monthly tenant invoicing arises, use Eaton's Pow-RLine Multipoint Meter solution.

Using the Multipoint Meter for utility allocation maximizes revenue by effectively measuring, allocating and recovering utility expenditures. The Pow-R-Line Multipoint Meter, using Eaton's costallocation software or a thirdparty billing software, can generate single-rate or multirate billing.

Features, Benefits and Functions

The Pow-R-Line Multipoint Meter offers the property owner or the property management firm the ability to:

- Capture and allocate common area maintenance cost
- Promote tenant retention with accurate billing
- Eliminate subsidization of other tenants

The Pow-R-Line Multipoint Meter space-saving design reduces the need for multimetering equipment for each tenant. Additionally, the Pow-R-Line Multipoint Meter can monitor loads up to 5000A for energy billing or cost allocation. The meter is rated per ANSI C12.20 for revenue metering grade accuracy. With built-in communications capabilities, the Pow-R-Line Multipoint Meter can be connected to a local PC or network. The Pow-R-Line Multipoint Meter can connect to a third-party billing service to provide monthly energy consumption charges used by tenants. Additionally, unit status and communication activity are provided by a display on the metering compartment front panel.

The Pow-R-Line Multipoint Meter device can measure up to 60 total poles in any combination of single-, two- or three-pole breakers. The meters and current sensors are factory mounted with the current sensors factory wired to the meter inside the host structure. The meter monitors power and energy including instantaneous (kW), demand and cumulative (kWh) measurements for each load. The meter provides the following:

- Interval energy data logging
- Time-of-use energy registers
- Coincident peak demand storage
- Schedule remote meter reading data in non-volatile memory
- Measure bus voltage

Options

- Energy Portal Module or Ethernet-based communications plus Modbus ${ }^{\circledR}$ TCP and BACnet/lP
- Pulse input module for WAGES inputs
- Digital output module for programmable alarm functions

Multipoint Meter (MPM)

PRC7500-Tenant Metering

Product Description

Leading property management companies around the world are realizing the time and cost savings of tenant metering in residential, commercial and industrial applications.

Allocating energy consumption can be a tremendous task for any property owner, management firm or electrical energy manager. Eaton's PRC7500 is a solution that combines Eaton's IFS switchboards with Quadlogic ${ }^{\circledR}$ electrical meters and current transformers for a cost-effective energy tracking system perfect for many applications.

Application Description

Imagine the success of tenant metering in these installations:

- Apartments, town homes, condominium complexes
- Shopping malls
- High-rise office buildings
- Universities and campuses
- Airports
... and more!

Contents

Description
Page
Overview
V2-T4-36
Pow-R-Line Multipoint Meter
V2-T4-37
PRC7500—Tenant Metering
Layout Guide
V2-T4-39

Features, Benefits and Functions

Eaton's reliable IFS is integrated with Quadlogic's Power Line Communications technology, that transmits meter data over a building's existing power lines. That means:

- Factory-assembledsaves time
- No additional wiring
- No meter readers required

This system proves to provide reliable and accurate data needed to bill tenants, allocate energy costs and make smart energy decisions.
In addition, PRC7500 Tenant Metering also affords the following benefits:

- Energy costs allocated to individual tenants or departments within the building
- Allocate common area electric charges
- Create revenue by purchasing bulk rate energy
- Retain happy tenants with fair and accurate allocation of energy costs
- Commercial, residential or industrial applications
- Meters up to 12 (two-pole) tenants or eight (threepole) tenants per meter
- Reliable power line communications
- Interval data and time-of-use capability
- Event profiling (power down, demand resets, tampers, etc.)
- Load profiling
- Collects data from water and gas meters
- Easy to install
- Proven accuracyANSI compliant
- Cost-effective-saves on equipment cost and installation

Switchboards

- Integrated Pow-R-Line Communications-uses existing electrical wiring for communications; requires no dedicated hard wires, additional modules or attachments for communications
- Flexible data programming-interval data down to 5 minutes allows for flexible load profiling and time-of-use billing options
- Accurate-meets ANSI C12.1 specifications and stringent requirements of Measurement Canada (AE-1148)
- Comprehensive information-event reporting with date and time stamps regarding power consumption, demand reset, power-ups and power-downs, time changes and tampers
- Liquid crystal display LCD—provides consumption readings for each tenant
- Multi-utility submetering system—integrates and stores pulse data from gas and water meters
- Power quality datameasures four-quadrant energy to analyze power quality
- Data integrity—uses flash memory for accurate storage and integrity without battery reliance
- Installation verification display-allows on-site verification of proper installation

Layout Guide

Refer to Eaton's Consulting
Application Guide.
The MiniCloset-5 has a display incorporated into the meter.
A shorting terminal block is provided to connect between the MiniCloset-5 and the current transformers. An optional component for collecting data from the MiniCloset-5 meters is the Scan Transponder-5 (mounted separately) $-13.50 \mathrm{H} \times 8.50 \mathrm{~W}$ x 4.50 D in inches (342.9 Hx 215.9 W x 114.3 D in mm).

5.1 Transfer Switch Equipment
Product Selection Guide V2-T5-2
Product Description V2-T5-5
Application Description V2-T5-5
5.2 Contactor-Based Designs
Automatic Open Transition, 40-1600 A V2-T5-8
Automatic Closed Transition, 40-1200 A V2-T5-13
Bypass Isolation Transfer Switches, 40-1600 A, Dual Drawout V2-T5-17
Bypass Isolation Transfer Switches, 40-1200 A, Fixed Bypass V2-T5-22
Service Entrance Rated Automatic Open Transition, 40-1600 A V2-T5-27
5.3 Breaker-Based Designs
Molded Case Switches—Manual Wallmount, 30-1000 A V2-T5-35
Molded Case Switches—Non-Automatic Wallmount, 30-1000 A V2-T5-39
Molded Case Switches—Automatic Wallmount, 30-1000 A V2-T5-42
Maintenance Bypass Switches-Type MBHE 100-1000 A V2-T5-48
5.4 Magnum-Based Designs
Power Case Switch—Floorstanding, 200-5000 A V2-T5-51
Bypass Isolation Transfer Switch, 200-5000 A V2-T5-60
5.5 Automatic Transfer Controllers
Product Selection Guide V2-T5-66
ATC-100 Controller V2-T5-70
ATC-300+ Controller V2-T5-72
ATC-900 Controller V2-T5-76
Controller Replacement Guide V2-T5-87
5.6 Standard and Optional Features
Standard and Optional Features V2-T5-93
5.7 Remote Annunciator Controller
Product Description V2-T5-118
Features V2-T5-118
Dimensions V2-T5-120
Wiring Diagram V2-T5-120
5.8 kW ConversionskW Conversion Chart.V2-T5-121

Automatic Transfer Switches

Contents

Description	Page
Product Description .	V2-T5-5
Application Description . . .	

Product Selection Guide

Transfer Switch Product

Transfer Switch Product Guide, continued

Catalog Numbering System	Manual Molded Case Switch (600 Vac) (30-1000 A)		Non-Automatic Molded Case Switch (600 Vac) (30-1000 A)	Automatic (Wallmount) Molded Case Switch (600 Vac) (30-1000 A)	Maintenance Bypass (480 Vac) ($100-1000 \mathrm{~A}$)
Type	$\begin{aligned} & \text { MT = Manual } \\ & \text { Refer to Page V2-T5-35 } \end{aligned}$		NT = Non-automatic Refer to Page V2-T5-39	AT = Automatic Refer to Page V2-T5-42	MB = Maintenance bypass Refer to Page V2-T5-48
Orientation	$\begin{aligned} & \text { H= Horizontal } \\ & \text { V = Vertical } \end{aligned}$		$\begin{aligned} & \mathrm{H}=\text { Horizontal } \\ & \mathrm{V}=\text { Vertical } \end{aligned}$	H = Horizontal V = Vertical	H = Horizontal
Logic	X = No Logic		$\mathrm{E}=$ Electromechanical	$\begin{aligned} & 1=\text { ATC- } 100 \\ & 3=\text { ATC-300+ } \\ & 9=\text { ATC- } 900 \end{aligned}$	$\mathrm{E}=$ Electromechanical
Frame	Molded case device $\begin{aligned} & \mathrm{FD}=30-150 \mathrm{~A} \\ & \mathrm{KD}=150-300 \mathrm{~A} \\ & \mathrm{LD}=400-600 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{MD}=600-800 \mathrm{~A} \\ & \mathrm{NB}=800-1000 \mathrm{~A} \end{aligned}$	Molded case device FD $=30-150 \mathrm{~A}$ $K D=150-300 \mathrm{~A}$ $L D=400-600 \mathrm{~A}$ $M D=600-800 \mathrm{~A}$ $N B=800-1000 \mathrm{~A}$	Molded case device $F D=30-200 \mathrm{~A}$ $K D=150-300 \mathrm{~A}$ $\text { LD }=400-600 \mathrm{~A}$ $\mathrm{MD}=600-800 \mathrm{~A}$ $N B=800-1000 \mathrm{~A}$ (FD $=200 \mathrm{~A}$ available on ATH3 only)	Molded case device $F D=100-150 \mathrm{~A}$ $K D=150-300 \mathrm{~A}$ $L D=400-600 \mathrm{~A}$ $M D=600-800 \mathrm{~A}$ $N B=800-1000 \mathrm{~A}$
Switch	$\begin{aligned} & \text { Fixed mount } \\ & A=F M, N(M C S), E(M C S) \\ & B=F M, N(M C B), E(M C B) \end{aligned}$	$\begin{aligned} & C=F M, N(M C B), \\ & E(M C S) \\ & D=F M, N(M C S), \\ & E(M C B) \end{aligned}$	Fixed mount $\mathrm{A}=\mathrm{FM}, \mathrm{N}$ (MCS), E (MCS) $B=F M, N(M C B), E(M C B)$ $\mathrm{C}=\mathrm{FM}, \mathrm{N}(\mathrm{MCB}), \mathrm{E}(\mathrm{MCS})$ $\mathrm{D}=\mathrm{FM}, \mathrm{N}(\mathrm{MCS}), \mathrm{E}(\mathrm{MCB})$	Fixed mount $A=F M, N(M C S), E(M C S)$ $B=F M, N(M C B), E(M C B)$ $\mathrm{C}=\mathrm{FM}, \mathrm{N}(\mathrm{MCB}), \mathrm{E}(\mathrm{MCS})$ $D=F M, N(M C S), E(M C B)$	Fixed mount $\mathrm{A}=\mathrm{FM}, \mathrm{N}(\mathrm{MCS}), \mathrm{E}(\mathrm{MCS})$
Poles	$\begin{aligned} & 2=\text { Two-pole } \\ & 3=\text { Three-pole } \\ & 4=\text { Four-pole } \end{aligned}$		$\begin{aligned} & 2=\text { Two-pole } \\ & 3=\text { Three-pole } \\ & 4=\text { Four-pole } \end{aligned}$	$\begin{aligned} & 2=\text { Two-pole } \\ & 3=\text { Three-pole } \\ & 4=\text { Four-pole } \end{aligned}$	$\begin{aligned} & 2=\text { Two-pole } \\ & 3=\text { Three-pole } \\ & 4=\text { Four-pole } \end{aligned}$
Amperes	$\begin{aligned} & 0030=30 \mathrm{~A} \\ & 0070=70 \mathrm{~A} \\ & 0100=100 \mathrm{~A} \\ & 0150=150 \mathrm{~A} \\ & 0225=225 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0300=300 \mathrm{~A} \\ & 0400=400 \mathrm{~A} \\ & 0600=600 \mathrm{~A} \\ & 0800=800 \mathrm{~A} \\ & 1000=1000 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0030=30 \mathrm{~A} \\ & 0070=70 \mathrm{~A} \\ & 0100=100 \mathrm{~A} \\ & 0150=150 \mathrm{~A} \\ & 0225=225 \mathrm{~A} \\ & 0300=300 \mathrm{~A} \\ & 0400=400 \mathrm{~A} \\ & 0600=600 \mathrm{~A} \\ & 0800=800 \mathrm{~A} \\ & 1000=1000 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0030=30 \mathrm{~A} \\ & 0070=70 \mathrm{~A} \\ & 0100=100 \mathrm{~A} \\ & 0150=150 \mathrm{~A} \\ & 0200=200 \mathrm{~A} \\ & 0225=225 \mathrm{~A} \\ & 0300=300 \mathrm{~A} \\ & 0400=400 \mathrm{~A} \\ & 0600=600 \mathrm{~A} \\ & 0800=800 \mathrm{~A} \\ & 1000=1000 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0100=100 \mathrm{~A} \\ & 0150=150 \mathrm{~A} \\ & 0225=225 \mathrm{~A} \\ & 0300=300 \mathrm{~A} \\ & 0400=400 \mathrm{~A} \\ & 0600=600 \mathrm{~A} \\ & 0800=800 \mathrm{~A} \\ & 1000=1000 \mathrm{~A} \end{aligned}$
Voltage	$\mathrm{E}=600 \mathrm{~V}, 60 \mathrm{~Hz}$		$\begin{aligned} & \mathrm{B}=208 \mathrm{~V}, 60 \mathrm{~Hz} \\ & \mathrm{E}=600 \mathrm{~V}, 60 \mathrm{~Hz} \\ & \mathrm{G}=220 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & \mathrm{H}=380 \mathrm{~V}, 50 \mathrm{~Hz} \\ & \mathrm{~K}=600 \mathrm{~V}, 50 \mathrm{~Hz} \\ & 0=415 \mathrm{~V}, 50 \mathrm{~Hz} \\ & \mathrm{~W}=240 \mathrm{~V}, 60 \mathrm{~Hz} \\ & \mathrm{X}=480 \mathrm{~V}, 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \mathrm{B}=208 \mathrm{~V}, 60 \mathrm{~Hz} \\ & \mathrm{E}=600 \mathrm{~V}, 60 \mathrm{~Hz} \\ & \mathrm{G}=220 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & \mathrm{H}=380 \mathrm{~V}, 50 \mathrm{~Hz} \\ & \mathrm{~K}=600 \mathrm{~V}, 50 \mathrm{~Hz} \\ & 0=415 \mathrm{~V}, 50 \mathrm{~Hz} \\ & \mathrm{~W}=240 \mathrm{~V}, 60 \mathrm{~Hz} \\ & \mathrm{X}=480 \mathrm{~V}, 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & B=208 / 120 \mathrm{~V} \\ & W=240 \mathrm{~V} \\ & W=240 / 120 \mathrm{~V} \\ & X=480 \mathrm{~V} \\ & X=480 / 277 \mathrm{~V} \end{aligned}$
Enclosure	$\begin{aligned} & \text { K = Open } \\ & \mathrm{S}=\text { NEMA } 1 \\ & \mathrm{~J}=\text { NEMA } 12 \end{aligned}$	$\begin{aligned} & R=\text { NEMA 3R } \\ & D=\text { NEMA } 4 X \end{aligned}$	$\begin{aligned} & \mathrm{K}=\text { Open } \\ & S=\text { NEMA } 1 \\ & R=\text { NEMA } 3 R \\ & J=\text { NEMA } 12 \\ & D=\text { NEMA 4X } \end{aligned}$	$\begin{aligned} & \mathrm{K}=\text { Open } \\ & \mathrm{S}=\text { NEMA } 1 \\ & \mathrm{~J}=\text { NEMA } 12 \\ & \mathrm{R}=\text { NEMA } 3 R \\ & \mathrm{D}=\text { NEMA } 4 X \end{aligned}$	$\begin{aligned} & K=0 \text { pen } \\ & S=\text { NEMA } 1 \\ & J=\text { NEMA } 12 \\ & R=\text { NEMA } 3 R \\ & D=\text { NEMA } 4 X \end{aligned}$
Listing	$\begin{aligned} & U=U L \text { listed } \\ & R=U L \text { recognized } \\ & X=\text { No listing } \end{aligned}$		$\begin{aligned} & U=U L \text { listed } \\ & R=U L \text { recognized } \\ & X=\text { No listing } \end{aligned}$	$\begin{aligned} & U=U L \text { listed } \\ & R=U L \text { recognized } \\ & X=\text { No listing } \end{aligned}$	$\begin{aligned} & U=U L \text { listed } \\ & R=U L \\ & \text { recognized } \\ & X=\text { No listing } \end{aligned}$

Key: D0 = Drawout
FM = Fixed mounted
MCB $=$ Molded case breaker
MCS = Molded case switch

Transfer Switch Product Guide, continued

Bypass Isolation and Closed Transition Bypass Isolation ($<100 \mathrm{~ms}$) (600 Vac) (200-5000 A)
$\mathrm{BI}=$ Open transition bypass isolation
$\mathrm{CB}=$ Closed transition bypass isolation
Refer to Page V2-T5-60

Orientation	$V=$ Vertical	$V=$ Vertical
Logic	9 = ATC-900	9 = ATC-900
Frame	Power case device (Magnum ${ }^{\circledR}$) $M G=600-5000 \mathrm{~A}$	Power case device (Magnum) $M G=600-5000 \mathrm{~A}$
Switch	Fixed mount Drawout mount $A=F M, N$ (MPS), $E(M P S)$ $E=D O, N(M P S), E(M P S)$ $B=F M, N(M P B), E(M P B)$ $F=D O, N(M P B), E(M P B)$ $C=F M, N(M P B), E(M P S)$ $G=D O, N(M P B), E(M P S)$ $D=F M, N(M P S), E(M P B)$ $H=D O, N(M P S), E(M P B)$	Drawout mount $\mathrm{E}=\mathrm{DO}, \mathrm{N}$ (MPS), E (MPS) $\mathrm{F}=\mathrm{DO}, \mathrm{N}(\mathrm{MPB}), \mathrm{E}(\mathrm{MPB})$ $\mathrm{G}=\mathrm{DO}, \mathrm{N}(\mathrm{MPB}), \mathrm{E}(\mathrm{MPS})$ $H=D 0, N(M P S), E(M P B)$
Poles	$\begin{aligned} & 2=\text { Two-pole } \\ & 3=\text { Three-pole } \\ & 4=\text { Four-pole } \end{aligned}$	$\begin{aligned} & 2=\text { Two-pole } \\ & 3=\text { Three-pole } \\ & 4=\text { Four-pole } \end{aligned}$
Amperes	$\begin{aligned} & 0200=200 \mathrm{~A} \\ & 0300=300 \mathrm{~A} \\ & 0400=400 \mathrm{~A} \\ & 0600=600 \mathrm{~A} \\ & 0800=800 \mathrm{~A} \\ & 1000=1000 \mathrm{~A} \\ & 1200=1200 \mathrm{~A} \\ & 1600=1600 \mathrm{~A} \\ & 2000=2000 \mathrm{~A} \\ & 2500=2500 \mathrm{~A} \\ & 3000=3000 \mathrm{~A} \\ & 3200=3200 \mathrm{~A} \\ & 4000=4000 \mathrm{~A} \\ & 5000=5000 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0200=200 \mathrm{~A} \\ & 0300=300 \mathrm{~A} \\ & 0400=400 \mathrm{~A} \\ & 0600=600 \mathrm{~A} \\ & 0800=800 \mathrm{~A} \\ & 1000=1000 \mathrm{~A} \\ & 1200=1200 \mathrm{~A} \\ & 1600=1600 \mathrm{~A} \\ & 2000=2000 \mathrm{~A} \\ & 2500=2500 \mathrm{~A} \\ & 3200=3200 \mathrm{~A} \\ & 4000=4000 \mathrm{~A} \\ & 5000=5000 \mathrm{~A} \end{aligned}$
Voltage	$\begin{aligned} & \mathrm{E}=600 \mathrm{~V}, 60 \mathrm{~Hz} \\ & \mathrm{E}=600 / 347,50 \mathrm{~Hz} \\ & X=480 / 277,60 \mathrm{~Hz} \\ & X=480 / 240,60 \mathrm{~Hz} \\ & X=480,60 \mathrm{~Hz} \\ & 0=415 / 240,50 \mathrm{~Hz} \\ & \mathrm{H}=380 / 220,50 \mathrm{~Hz} \\ & \mathrm{~W}=240 / 120,60 \mathrm{~Hz} \\ & \mathrm{~W}=240,60 \mathrm{~Hz} \\ & G=220 / 127,50 \mathrm{~Hz} \\ & G=220,50 \mathrm{~Hz} \\ & \mathrm{~B}=208 / 120,60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \mathrm{E}=600 \mathrm{~V}, 60 \mathrm{~Hz} \\ & \mathrm{E}=600 / 347,50 \mathrm{~Hz} \\ & X=480 / 277,60 \mathrm{~Hz} \\ & X=480 / 240,60 \mathrm{~Hz} \\ & X=480,60 \mathrm{~Hz} \\ & 0=415 / 240,50 \mathrm{~Hz} \\ & \mathrm{H}=380 / 220,50 \mathrm{~Hz} \\ & \mathrm{~W}=240 / 120,60 \mathrm{~Hz} \\ & \mathrm{~W}=240,60 \mathrm{~Hz} \\ & \mathrm{G}=220 / 127,50 \mathrm{~Hz} \\ & \mathrm{G}=220,50 \mathrm{~Hz} \\ & \mathrm{~B}=208 / 120,60 \mathrm{~Hz} \end{aligned}$
Enclosure	$\begin{aligned} & \text { K = Open (up to } 3200 \text { A fixed mount only) } \\ & S=\text { NEMA } 1 \\ & \text { R }=\text { NEMA } 3 R \\ & T=\text { NEMA } 1 \text { (through the door) } \end{aligned}$	$\begin{aligned} & \text { S = NEMA } 1 \\ & \text { R = NEMA } 3 \text { R (non-walk-in) } \\ & \text { T = NEMA } 1 \text { (through the door) } \end{aligned}$
Listing	$\begin{aligned} & U=U L \text { listed } \\ & R=U L \text { recognized } \\ & X=\text { No listing } \end{aligned}$	$\begin{aligned} & U=\text { UL } 1008 \text { listed } \\ & X=\text { No listing } \end{aligned}$

Note

(1) Supplied as drawout design only.

Key: D0 = Drawout
FM = Fixed mounted
MPB = Magnum power breaker
MPS = Magnum power switch

Transfer Switch Equipment

Product Description

Eaton's automatic transfer switches are reliable, rugged, versatile and compact assemblies for transferring essential loads and electrical distribution systems from one power source to another.

Transfer switches can be supplied in separate enclosures for stand-alone applications or can be supplied as an integral component in the following equipment (see table below).

Product Type

Description	Section Reference
Magnum DS Switchgear	Vol. 3, Tab 4
DSII Switchgear	Vol. 3, Tab 4
Pow-R-Line ${ }^{\circledR}$ Switchboards	Vol. 2, Tab 4
Motor Control Centers	Vol. 3, Tab 3
Panelboards	Vol. 2, Tab 3

Typical Applications

All Eaton transfer switches are designed to meet the requirements set forth by UL 1008; however, all transfer switches are not created equal. You can be assured of safe and reliable operation from all types of transfer switches that Eaton offers.

Basic Components

The three basic components of a transfer switch are:

- Power switching device to shift the load circuits to and from the power source
- Transfer logic controller to monitor the condition of the power sources and provide the control signals to the power switching device
- Control power source to supply operational power to the controller and switching device

Application Description

A transfer switch is a critical component of any emergency or standby power system. When the normal (preferred) source of power is lost, a transfer switch quickly and safely shifts the load circuit from the normal source of power to the emergency (alternate) source of power. This permits critical loads to continue running with minimal or no outage. After the normal source of power has been restored, the retransfer process returns the load circuit to the normal power source.

Transfer switches are available with different operational modes including:

- Manual
- Non-automatic
- Automatic
- Bypass isolation
- Maintenance bypass

Switch Types

Manual transfer-This type of transfer is a non-automatic transfer switch manually initiated and manually operated. There is no motor operator or solenoid to initiate the transfer. The operator needs to open the enclosure door and operate the manual handle. Manual transfer is available only on a breakerbased design. Service entrance ratings are not available on manual transfer breaker-based designs.

Non-automatic transfer-

This type of transfer is manually initiated, but electrically operated via the solenoid in a contactor-based design and the motor operator in a breaker-based design.

Automatic transfer-This type of transfer takes place automatically per the programmable settings in the ATS controller. The ATS controller senses source availability and when the programmed conditions are met, initiates a command to start the transfer including the generator start command (when transferring from a utility to a generator source). An automatic transfer switch can be configured to perform a utility-to-utility transfer or a generator-to-generator transfer (provided the ATS controller has this capability).

Bypass isolation transfer

 switch-This type of transfer switch includes an automatic transfer switch and also includes the bypass switch that allows the capability to transfer the load to the bypass switch without interrupting the power.
Maintenance bypass

 transfer switch-A maintenance bypass transfer switch is a non-automatic (manually initiated and electrically operated) initiated transfer switch used for specific applications for a UPS.The power switching operation of transfer switches may be separated into the following transition modes:

Transition Types

Open transition-This is a "break-before-make" transfer. There is a definite break in power as the load is taken off one source and connected to the other source.

Open in-phase transition-
This is a "break-beforemake" transfer. There is a definite break in power as the load is taken off one source and connected to the other source. The ATS controller allows the transfer only when the phase difference between the two sources is near zero. The two position transfer switch is closed on Source 1 or closed on Source 2.

Open in-phase with default to time delay neutral-break-before-make operation using an in-phase monitor for source synchronization. If the in-phase does not initiate a transfer within a programmable time delay, then the transfer will default to a time delay neutral type of transfer.

Delayed transition-This is a "break-before-make" or open transition that also has a "center off" or neutral position with a programmable time delay setting for the neutral position. The three position transfer switch is either closed on Source 1, closed on Source 2, or in a center off, neutral position (not closed on either source).
Delayed transition with load voltage decay-This is a delayed transition with the optional feature to delay in the neutral position to point where the load voltage decays to a programmable voltage level. When the load voltage level reaches the programmable set point, the transfer from the neutral position initiates.
Closed transition-This is a "make-before-break" transfer. Both sources are connected to the load for less than 100 ms before the break occurs. The two power sources have to be in synchronism and be good sources for the transfer to take place. These programmable settings for relative phase angle difference, frequency and voltage difference are made in the ATS controller.

Transfer Switch Equipment

Switch Position Types

The power switching device in an automatic transfer switch may be designed as either a two-position or a three-position operation. A two-position switching device can only be closed on Source 1 or closed on Source 2. There is no center off or neutral position. A three-position switching device can be closed on Source 1, closed on Source 2, or be in the center off or neutral position.

5 Transition Types

Transition	Contactor-Based			
	Two Position	Three Position	Breaker- Based	Magnum- Based
Open	Yes	Yes	Yes	Yes
Open in-phase	Yes	No	No	Yes
Open in-phase default TDN	No	Yes	No	Yes
Delayed time delay neutral	No	Yes	Yes	Yes
Delayed load voltage decay	No	Yes	Yes	Yes
Closed	Yes	Yes	No	Yes

Fully Rated Fourth Pole (Switched Neutral)

Eaton provides a fully rated switched neutral or fourth pole, meaning that the fourth pole has withstand, interrupt and closing ratings identical to the power contacts. The neutral pole is operated on a common shaft with the power contacts, thereby ensuring simultaneous opening and closing of the switched neutral. Eaton's fully rated fourth pole eliminates typical problems with a three-pole overlapping neutral:

- Eliminates nuisance ground trips at the main due to circulating zero sequence harmonic current between sources
- Reduction in ground current due to isolated single ground point lowers arc-flash levels and reduces generator damage
- Eliminates potential for faults to propagate across overlapping neutral; fully rated fourth pole will handle as a normal operation
- Does not generate voltages that exceed normal phase voltage

Note: For more detail, reference Eaton White Paper IA08700002E.

UL 1008 Endurance Testing

The importance of specifying a UL 1008 transfer switch can be seen in the table below. When specifying any UL 1008 transfer switch, you can be assured the switch has met and passed the following endurance testing.

UL 1008 Endurance Testing

ATS Rating (Amperes)	Rate of Operation Per Minute	With Current	Without Current	Total
$0-300$	1	6000	-	6000
$301-400$	1	4000	-	4000
$401-800$	1	2000	1000	3000
$801-1600$	0.5	1500	1500	3000
$1601-4000$	0.25	1000	2000	3000

UL 1008 Life Expectancy

Transfer switch applications typically require a plant exerciser once a week or once a month. The table below demonstrates the life expectancy operating the UL 1008 switch once a week for the life of the switch.

UL 1008 Life Expectancy

ATS Rating (Amperes)	Minimum Operations Per Year	Life Expectancy in Years With Current Applied	Life Expectancy in Years Without Current Applied
$0-300$	52	115	115
$301-400$	52	76	76
$401-800$	52	38	57
$801-1600$	52	28	57
$1601-4000$	52	19	57

Utility—Generator

Transfer switches are traditionally applied between a utility and a generator set for emergency and standby power systems.

Generator-Generator

Transfer switches are sometimes applied between two generator sets for prime power use, often in remote installations. In such applications, source power is periodically alternated between the generator sets to equally share run time.

Service Entrance Rated Transfer Switches

Modifying the molded case switch in the transfer switch by adding trip units and optional ground fault, along with adding the service entrance option eliminates the need for separate upstream disconnect devices and their respective power interconnections. This means the automatic transfer switch (ATS) is installed directly at the point of service entrance, saving valuable space and cost.

Eaton service entrance rated transfer switches have a 100% integrated rating. The ATS as well as the supplied breaker may be applied at 100% of the ATS rating, thus eliminating the need to consider any de-rating factors based upon the breaker rating.

The Eaton service entrance rated ATSs have been tested to and have successfully passed the stringent requirements of UL 1008 and carry the integrated UL 1008 rating. This rating ensures the end user that the ATS has passed the dielectric test, endurance test, overload test, withstand rating test and temperature rise requirements of UL 1008.

Built-In Protection

All Eaton molded case switches are "self protected," such that under extreme fault conditions, the switch will open before destroying itself. This feature allows Eaton to offer "Maintenance-Free Contacts" on the molded case transfer switch. The molded case switches have instantaneous magnetic trip units installed in each switch. These trips are not accessible once installed by the factory to eliminate field tapering. The trips are set to a minimum of 12 to 15 times the rated current of the molded case device, well above any coordination set points. This means they will not interfere with the normal operation of the distribution system and will only trip if something is very wrong.

Typical Transfer Switch Installation

Built-In Protection
Example: 400 Ampere ATS With 500 Ampere T/M Breaker
400 FLA $\times 1.25=500$ Ampere Breaker
Compare 400 Ampere ATS and 500 Ampere LD Breaker

Note
(1) Magnetic Trip 12 x frame rating.

Contactor-Based ATS with ATC-300+ Controller

5

Automatic Open Transition, 40-1600 A

Product Description

The automatic open transition contactor-based transfer switch is the most basic design that will provide a fully functioning automatic transfer switch.

The power switching operation of Eaton's contactor-based transfer switches may be separated into the following key categories of:

- Open in-phase transition-break-before-make operation utilizing an inphase monitor for source synchronization
- Open delayed transition-break-before-make operation utilizing a programmable time delay (true neutral position)
- Open in-phase with default to time delay neutral—break-beforemake operation utilizing an in-phase monitor for source synchronization. If the in-phase does not initiate a transfer within a programmable time delay, then the transfer will default to a time delay neutral type of transfer

The open in-phase transition utilizes a two-position mechanism and the open delayed transition utilizes a three-position mechanism. The mechanism used to operate the Eaton electrical contactor is a momentarily energized solenoid consisting of a stationary core and a moving core that is magnetically driven by an electrical coil.

The mechanism can be electrically and mechanically operated. The design is such that the mechanism is inherently interlocked so the device cannot be closed on the Source 1 and Source 2 at the same time under any circumstances. When switching from Source 1 to Source 2, or Source 2 to Source 1, the mechanism will only allow a break-beforemake operation.

These contactor-based designs can be applied with the ATC-100 controller up to 400 A. The ATC-100 controller is recommended for residential or light commercial applications. Eaton recommends for emergency or legally required application that an ATC-300+ or ATC-900 controller be used. Applications requiring the ATC-300+ controller can be applied for applications 40-1600 A. Applications needing communication capability require the ATC$300+$ with communication or the ATC-900 controller.

Application Description

An automatic open transition transfer switch may be used for those applications where emergency backup power is required, but a momentary loss of power is acceptable on the retransfer from emergency to normal.

Features, Benefits and Functions

Standard Features

- Auxiliary relay contacts:
- Source 1 present 2NO and 2NC
- Source 2 present 2NO and 2NC
- Switch position indication contacts:
- Source 1 position 1NO and 1NC
- Source 2 position 1NO and 1NC
- Source 1 and Source 2 sensing:
- Undervoltage/ underfrequency
- Overvoltage/ overfrequency
- Three-phase rotation protection
- Three-phase voltage unbalance
- Pretransfer signal contacts 1NO/1NC (with threeposition mechanism)
- Go to emergency (Source 2)
- Seven field-programmable time delays
- LCD-based display for programming, system diagnostics and Help message display
- Mimic diagram with source available and connected LED indication
- Time-stamped history log
- System TEST pushbutton
- Programmable plant exerciser-OFF, daily, 7-, 14-, 28-day interval selectable run time 0-600 minutes no load/ load with fail-safe
- Modbus ${ }^{\circledR}$ RTU via RS-485

Optional Features

- Available surge suppression device for power/controller, engine start circuit, phone and cable connections
- Space heater with thermostat
- Eaton IQ and Power Xpert ${ }^{\circledR}$ series metering
- Stainless steel cover for controller
- Open in-phase transition, time delay neutral or inphase with a default to time delay neutral transfer
- ATC-100 and ATC-900 controllers available
- Source 2 inhibit
- Manual retransfer to normal
- Remote annunciator with control
- Ethernet communication (PXG 400 Gateway)

Commercial Design Highlights

- UL 1008 front access
- High withstand and closing ratings
- Compact design

1600 ATS with ATC-300+ Controller

Typical Contactor-Based ATS 100-400 A

200 A ATS with ATC-300+ Controller

1200 A ATS with ATC-300+ Controller

Catalog Number Selection

Automatic Transfer Switch

5

Technical Data and Specifications

UL 1008 Short-Circuit Withstand and Close-On Ratings (kA)

	480 V			600 V		
UL 1008 Ampere Rating	Mechanism	0.05 Seconds ${ }^{(3)}$	Specific Breaker	0.05 Seconds ${ }^{(3)}$	Specific Breaker	Specific Fuse
40, 80, 100	C2	10,000	30,000	10,000	22,000	100,000 (4)
150, 200	C2	10,000	30,000	22,000	35,000	100,000
225, 260,400	C2	30,000	50,000	-	-	200,000
40, 80, 100, 150, 200	C3, C5	30,000	50,000	22,000	35,000	200,000
225, 260, 400	C3, C5	30,000	50,000	50,000	65,000	200,000
600, 800, 1000, 1200	C3, C5	50,000	65,000	50,000	65,000	200,000
1600	C3, C5	50,000	65,000	-	-	-

Notes

(1) For application up to 400 A only.
(2) Up to 480 V .
(3) 0.025 seconds up through 200 A .
(4) Specific fuse rating at 480 V only.

Dimensions

Approximate Dimensions in Inches (mm)
Contactor-Based Transfer Switch 40-1200 A-Dimensions and Approximate Shipping Weight

Ampere Rating	Enclosure	A (Height)	B (Width)	C (Depth)	Load Side, Normal and Standby Source	Neutral Connection	Weight in Lb (kg)
40-100 at 480 V (1)	N1, N12, N3R	38.68 (982.5)	18.31 (465.1)	13.34 (338.8)	(1) \#14-2/0	(3) \#14-1/0	156 (71)
	N4X	37.50 (952.5)	17.50 (444.5)	14.34 (364.2)	(1) \#14-2/0	(3) \#14-1/0	156 (71)
40-100 at 600 V (1)	N1, N12, N3R	38.68 (982.5)	18.31 (465.1)	13.34 (338.8)	(1) \#14-2/0	(3) \#14-1/0	164 (74)
	N4X	37.50 (952.5)	17.50 (444.5)	14.34 (364.2)	(1) \#14-2/0	(3) \#14-1/0	164 (74)
$150-200$ at 480 V (1)	N1, N12, N3R	38.68 (982.5)	18.31 (465.1)	13.34 (338.8)	(1) \#6-250 kcmil	(3) $1 / 0-250 \mathrm{kcmil}$	164 (74)
	N4X	37.50 (952.5)	17.50 (444.5)	14.34 (364.2)	(1) \#6-250 kcmil	(3) $1 / 0-250 \mathrm{kcmil}$	164 (74)
150-200 at 600 V (1)	N1, N12, N3R	52.00 (1321.0)	19.81 (503.2)	16.75 (425.5)	(1) \#6-250 kcmil	(3) $1 / 0-250 \mathrm{kcmil}$	260 (118)
	N4X	52.00 (1321.0)	21.00 (533.4)	16.75 (425.5)	(1) \#6-250 kcmil	(3) $1 / 0-250 \mathrm{kcmil}$	260 (118)
$225-400$ at 480 V (1)	N1, N12, N3R	52.00 (1321.0)	19.81 (503.2)	16.75 (425.5)	(2) $3 / 0-250 \mathrm{kcmil}$ (1) $3 / 0-600 \mathrm{kcmil}$	(6) 250-500 kcmil	260 (118)
	N4X	52.00 (1321.0)	21.00 (533.4)	16.75 (425.5)	(2) $3 / 0-250 \mathrm{kcmil}$ (1) $3 / 0-600 \mathrm{kcmil}$	(6) 250-500 kcmil	260 (118)
$225-1200$ at 600 V (2)	N1, N3R	79.41 (2017.0)	29.19 (741.4)	22.46 (570.5)	(4) $1 / 0-750 \mathrm{kcmil}$	(12) 1/0-750 kcmil	600 (272) three-pole 650 (295) four-pole
	N12, N4X	84.75 (2152.7)	29.00 (737.0) three-pole 29.00 (737.0) four-pole	24.26 (616.2)	(4) 1/0-750 kcmil	(12) 1/0-750 kcmil	$\begin{aligned} & 700(318) \\ & 750(340) \end{aligned}$
$600-1200$ at 480 V (2)	N1, N3R	79.41 (2017.0)	25.25 (641.4) three-pole 29.19 (741.4) four-pole	22.46 (570.5)	(4) $1 / 0-750 \mathrm{kcmil}$	(12) 1/0-750 kcmil	600 (272) three-pole 650 (295) four-pole
	N12, N4X	84.75 (2152.7)	29.00 (737.0) three-pole 29.00 (737.0) four-pole	24.26 (616.2)	(4) 1/0-750 kcmil	(12) 1/0-750 kcmil	$\begin{aligned} & 700(318) \\ & 750(340) \end{aligned}$

Automatic, Non-Automatic Up to 400 AWallmount, N1 or N3R

Front View

Notes

(1) Wallmount.
(2) Floorstanding and wall-secured-height dimension includes the bottom bracket.

Automatic, Non-Automatic 600-1200 A Outline, N1 or N3R

Front View
Side View

1600 A Transfer Switch

Ampere Rating	Enclosure	A (Height)	B (Width)	C (Depth)	Load Side, Normal and Standby Source	Neutral Connection	Weight in Lb (kg)
1600 A at	N1	$90.00(2286.0)$	$40.00(1016.0)$	$28.73(729.7)$	$(4) 1 / 0-750 \mathrm{kcmil}$	$(12) 1 / 0-750 \mathrm{kcmil}$	$730(331)$ three-pole
480 V ©	N3R	$90.72(2304.3)$	$40.35(1024.9)$	$43.34(1100.8)$	$(4) 1 / 0-750 \mathrm{kcmil}$	$(12) 1 / 0-750 \mathrm{kcmil}$	$780(354)$ three-pole $830(377) ~ f o u r-p o l e ~$

Automatic, Non-Automatic Open Transition NEMA 1 Enclosure 1600 A

Automatic, Non-Automatic Open Transition NEMA 3R Enclosure 1600 A

Note
(1) Freestanding

Transfer Switches

Automatic Closed Transition, 40-1200 A

Product Description

Eaton's closed transition contactor-based automatic transfer switch is designed to avoid intentional interruption of power when both sources of power are available by momentarily paralleling both sources.

The controller is a comprehensive, multifunction, microprocessorbased controller, offering extensive monitoring, status reporting and transfer control operation.

The make-before-break contact sequence coupled with Eaton's ATC-900 provides a transfer switch that is useful in critical standby power applications available from 40-1200 A.

Application Description

A transfer switch designed for closed transition has make-before-break contacts that require the normal and alternate sources to be synchronized. The source contacts on Eaton's controller will parallel for 100 ms or less. The controller provides all-phase undervoltage, underfrequency, and overvoltage and overfrequency protection as a standard. Consult with the local utility company for permission and to verify the protection requirements as each utility may have different rules regarding closed transition applications. Protective relays may be available as an option upon request.

Contents

Description Page
Automatic Open Transition, 40-1600 A. V2-T5-8
Automatic Closed Transition, 40-1200 A
Features, Benefits and Functions V2-T5-14
Catalog Number Selection V2-T5-15
Technical Data and Specifications V2-T5-15
Dimensions V2-T5-16
Bypass Isolation Transfer Switches, 40-1600 A, Dual Drawout V2-T5-17
Bypass Isolation Transfer Switches, 40-1200 A, Fixed Bypass. V2-T5-22
Service Entrance Rated AutomaticV2-T5-27

Closed transition controls

The switch accomplishes the closed transition transfer by monitoring the voltage and frequency set point conditions of both power sources. Once the set point conditions are met, the controller will start the closed transition synchronization timer (TSCT). The TSCT is adjustable from 1-60 minutes in duration. This duration is the time during which the controller will monitor the phase angles to anticipate when they will be within 8 electrical degrees. The closed transition scheme is anticipatory, allowing the close contacts signal to be initiated before the sources are exactly in phase. If the TSCT times out and the transfer switch has not reached synchronization, the transfer switch will remain connected to the current power source and a failure to transfer alarm will be displayed.

The transfer switch can also be equipped with an optional open transition transfer method for situations where synchronization is not possible, but a transfer is required. One of the following transition features can be selected:

- Closed transition only
- Closed transition with default to load voltage decay
- Closed transition with default to time delay neutral
5.2
Transfer Switches
Contactor-Based Designs

Features, Benefits and Functions

Standard Features

- Auxiliary relay contacts:
- Source 1 present 1NO and 1NC
- Source 2 present 1 NO and 1NC
- Switch position indication contacts:
- Source 1 position 1NO and 1NC
- Source 2 position 1 NO and 1NC
- Source 1 and Source 2 sensing:
- Undervoltage/ underfrequency
- Overvoltage/ overfrequency
- Go to emergency (Source 2)
- Seven field-programmable time delays
- LCD-based display for programming, system diagnostics and Help message display
- Mimic diagram with source available and connected LED indication
- Time-stamped history log
- System TEST pushbutton
- Programmable plant exerciser-OFF, daily, 7-day interval selectable run time 0-600 minutes no load/load with fail-safe
- Multi-Tap transformer
- Closed transition parallel limit timer
- IBC/CBC seismic qualified

Optional Features

- Available surge suppression device for power/controller, engine start circuit, phone and cable connections
- Space heater with thermostat
- Ammeter-load side
- Power quality metering
- Steel cover for controller
- Closed transition with default to time delay neutral or default to load voltage decay
- Three-phase rotation protection
- Three-phase voltage unbalance
- Pretransfer signal contacts 1NO/1NC (with threeposition mechanism)

Commercial Design Highlights

- UL 1008 front access
- High withstand and closing ratings
- Compact design

Catalog Number Selection

Automatic Transfer Switch

Technical Data and Specifications

UL 1008 Short-Circuit Withstand and Close-On Ratings (kA)

| UL 1008 | $\mathbf{4 8 0} \mathbf{V}$ | $\mathbf{4 8 0} \mathbf{V}$ | $\mathbf{6 0 0} \mathbf{V}$ | $\mathbf{6 0 0} \mathbf{V}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ampere | | | | |
| Rating | | | | |

Note
(1) 0.025 seconds up through 200 A .

Contactor-Based Designs

Dimensions

Approximate Dimensions in Inches (mm)

Contactor-Based Transfer Switch 40-1200 A Closed Transition

	Enclosure			Bolt Pattern		Standard Terminals		
Ampere Rating	A (Height)	B (Width)	C (Depth)	G (Horizontal)	H (Vertical)	Load Side, Normal and Standby Source	Neutral Connection	Weight in Lb (kg)
$40-100$ at 480 V	52.74 (1339.6)	25.00 (635.0)	17.18 (436.4)	16.00 (406.4)	37.38 (949.5)	(1) \#14-2/0	(3) \#14-2/0	190 (86)
$40-100$ at 600 V	52.74 (1339.6)	25.00 (635.0)	17.18 (436.4)	16.00 (406.4)	37.38 (949.5)	(1) \#6-250 kcmil	(3) \#14-1/0	210 (95)
150-200 at 480 V	52.74 (1339.6)	25.00 (635.0)	17.18 (436.4)	16.00 (406.4)	37.38 (949.5)	(1) \#6-250 kcmil	(3) 1/0-250 kcmil	210 (95)
$150-200$ at 600 V (1)	71.02 (1803.9)	31.11 (790.2)	14.72 (373.9)	13.00 (330.2)	69.43 (1763.5)	(2) $3 / 0-250 \mathrm{kcmil}$	(6) 250-500 kcmil	800 (363)
$225-400$ at 480 V	71.02 (1803.9)	31.11 (790.2)	14.72 (373.9)	13.00 (330.2)	69.43 (1763.5)	(2) 3/0-250 kcmil	(6) 250-500 kcmil	420 (191)
225-1200 at 600 V (1)	90.00 (2286.0)	46.00 (1168.4)	32.00 (812.8)	N/A	N/A	(4) 1/0-750 Cu/Al	(12) $1 / 0-750 \mathrm{kcmil}$	800 (363)
$600-1200$ at 480 V (1)	90.00 (2286.0)	46.00 (1168.4)	32.00 (812.8)	N/A	N/A	(4) 1/0-750 Cu/Al	(12) $1 / 0-750 \mathrm{kcmil}$	800 (363)

Automatic Up to 400 A Wallmount NEMA 1 and NEMA 3R

Automatic 600-1200 A-Wallmount NEMA 1 and NEMA 3R

Note
(1) For NEMA 3R, add 17.00 inches (431.8 mm) to depth.

Bypass Isolation Transfer Switch

Contents

Description	Page
Automatic Open Transition, 40-1600 A.	V2-T5-8
Automatic Closed Transition, 40-1200 A.	V2-T5-13
Bypass Isolation Transfer Switches, 40-1600 A, Dual Drawout	
Standards and Certifications	V2-T5-19
Catalog Number Selection	V2-T5-19
Technical Data and Specifications	V2-T5-19
Diagram	V2-T5-20
Dimensions	V2-T5-21
Bypass Isolation Transfer Switches, 40-1200 A, Fixed Bypass	V2-T5-22
Service Entrance Rated Automatic	
Open Transition, 40-1600 A	V2-T5-2

Bypass Isolation Transfer Switches, 40-1600 A, Dual Drawout

Product Description

A bypass isolation transfer switch may be used to provide emergency power to life safety and other critical loads where maintenance of the main transfer switch, without interruption of power to the load, is either desirable or required

Application Description

Eaton's Automatic Transfer Switch is designed to provide unmatched performance, reliability and versatility for critical standby power applications. The switches can be equipped with the ATC-300+ or ATC-900 controllers to match your application needs.

A bypass isolation automatic transfer switch by application requirements and per UL 1008 requires the main automatic transfer switch contactor (ATS) to be a drawout design. Conventional designs allow the bypass contactor to be a fixed-mounted design. The Eaton premium design provides a drawout ATS and a drawout bypass contactor or a dual drawout design.

Features, Benefits and Functions

Industrial Design Highlights

- Front access is a standard feature on all ratings
- Entry:
- Top, bottom or both
- Isolated compartments
- Improved safety:
- Isolated compartments with barriers
- Single motion rack-out with doors closed
- Ability to test power switching elements during drawout process
- Dual ATS capabilitybypass contactor can be controlled by the ATS controller in the bypass mode of operation
- Installation flexibility:
- Field entry/exit locations can be modified in the field
- Interchangeable drawout contactors
- Field-selectable multi-tap transformer panel permits operation on a wide range of system voltages
- Dual drawout

Standard Features

- Drawout cassette design on both ATS and bypass
- No service interruption in bypass to the same source
- Source available contacts:
- Source 1 present 2NO and 2NC
- Source 2 present 2NO and 2NC
- Switch position contacts:
- Source 1 position 1NO and 1NC
- Source 2 position 1NO and 1NC
- Source 1 and Source 2 sensing:
- Undervoltage/ underfrequency
- Overvoltage/ overfrequency
- Three-phase rotation protection (ATC-300+ only)
- Three-phase voltage unbalance/loss (ATC-300+ only)
- Pretransfer signal contacts 1NO and 1NC (open transition only)
- Go to Source 2 (EMERGENCY)
- Field-programmable time delays:
- Time delay engine start: 0-1200 seconds
- Time delay normal to emergency: 0-1800 seconds
- Time delay emergency to normal: 0-1800 seconds
- Time delay engine cooldown: 0-1800 seconds
- Time delay emergency failure: 0-6 seconds
- LCD-based display for programming, system diagnostics and Help menu display
- Mimic diagram with source available and connected LED indication
- Time-stamped history log
- System TEST pushbutton
- Programmable plant exerciser-OFF, daily, 7-, 14-, 28-day interval selectable run time 0-600 minutes no load/ load with fail-safe

Optional Features

- Available UL 1448 Third Edition surge protection device (SPD)
- Eaton IQ and Power Xpert multi-function power quality metering
- Automatic transfer mode with selectable nonautomatic/automatic retransfer mode
- Modbus RTU via RS-485
- Remote annunciation with control
- Open in-phase transition, time delay neutral or inphase with a default to time delay neutral transfer
- ATC-900 controller
- Includes Modbus RTU via RS-485
- Includes four programmable inputs/ outputs
- Includes two plant exercisers
- Includes LCD color display with easy navigation tools to settings and event logs
- Expandable I/O (up to 20 I/O total)
- Optional integrated load metering
- Optional EtherNet TCP/ IP communications

Bypass Isolation Switch Components
 Front Access

Front access is a standard feature. Source 1 (NORMAL) Source and Load connections are set up as standard top entry and Source 2 (EMERGENCY) Source connections as bottom entry. These connections are located in their own separate compartments. These connections can be relocated in the field if necessary.

Multi-Tap Transformer

The industry-exclusive multitap system voltage selector allows the transfer switch to be applied on most system voltages by proper insertion of the selector plug.

Drawout Contactors

The ATS and the bypass drawout cassette power contactor designs are identical and interchangeable. This standard feature
allows the user the ability to withdraw, maintain or swap contactor assemblies, providing redundancy of ATS and bypass functions from one contactor assembly to the other.

Improved Safety

The unique Eaton design includes separation between control and power components. The ATS and bypass isolation contactors are mounted in separate compartments with protective barriers between them. This design prevents the possibility of contact with the rear-mounted power connections to the contactors. In addition, the top and bottom entry have separate compartment doors.

Ease of Maintenance

Transfer to the bypass power contactor is easily initiated and controlled via doormounted controls. Once the transfer to the bypass contactor is complete, the ATS contactor is easily racked out with the compartment door closed.

The ATS contactor may then be tested in the racked out position.

Ease of Transfer

The Eaton design allows the operator to make a quick and simple transfer from the ATS power contactor to the bypass contactor by initiating the electrically operated transfer via a two-position switch. Door-mounted indicating lights confirm that a successful transfer has taken place.

Dual ATS Capability

The controller on conventional bypass isolation switches only controls the ATS contactor The Eaton design allows the switch controller to remain active in both the ATS and bypass modes, thus providing control to either contactor. This ability of the controller to remain active and control the bypass isolation contactor provides " $\mathrm{N}+1$ " redundancy of a second fully functioning ATS, a feature unique to Eaton.

Bypass Isolation Switch Components

Standards and Certifications

- UL 1008 listed
- CSA C22.2 No. 178 certified

Catalog Number Selection

Automatic Bypass Isolation Contactor-Based Transfer Switch

Technical Data and Specifications

UL 1008 Short-Circuit Withstand and Close-On Ratings (kA)

UL 1008	480 V				Rating	d with	use	
Ampere Rating	0.05 Seconds ${ }^{(2)}$	Specific Breaker	0.05 Seconds ${ }^{(2)}$	Specific Breaker	Rating (kA)	Test Voltage	Fuse Type	Maximum Fuse Amperes
40	10	30	10	22	100	480	RK5	200
80	10	30	10	22	100	480	RK5	200
100	10	30	10	22	100	480	RK5	200
150	10	30	22	35	100	600	RK5	400
200	10	30	22	35	100	600	RK5	400
225	30	50	50	65	200	600	RK5	600
260	30	50	50	65	200	600	RK5	600
400	30	50	50	65	200	600	RK5	600
600	50	65	50	65	200	600	L	1200
800	50	65	50	65	200	600	L	1200
1000	50	65	50	65	200	600	L	1600
1200	50	65	50	65	200	600	L	1600
1600	50	65	-	-	200	480	L	1600

[^28]
5.2
 Transfer Switches
 Contactor-Based Designs

Diagram

Bypass Isolation
Shown as Normal Operation

1200 A Drawout Bypass

400 A Drawout Bypass

Dimensions

Approximate Dimensions in Inches (mm)

600-1200 A 480 V or 225-1200 A 600 V Dual Drawout Bypass NEMA 1

100-400 A 480 V or 100-200 A 600 V Dual Drawout Bypass NEMA 1

Note: Source 1 Normal and Load connections are top and Source 2 is bottom. These connections can be relocated in the field.

Contactor-Based Transfer Switch 100-1200 A - NEMA 1 Dimensions and Approximate Shipping Weight

	Enclosure Seismic ${ }^{(1)}$			Standard Terminals			
Ampere Rating ${ }^{2}$	Height	Width	Depth	Normal, Emergency and Load	Neutral	Metric Conversion $\left(\mathrm{mm}^{2}\right){ }^{3}$	Weight in Lb (kg)
100-200 A at 480 V (4)	78.07 (1983.0)	30.00 (762.0)	29.30 (744.2)	(1) \#6-350 Cu/Al	(3) \#6-350 Cu/Al	13-177 mm² Cu/Al	625 (283.8)
$100-200 \mathrm{~A}$ at 600 V (4)	78.07 (1983.0)	30.00 (762.0)	29.30 (744.2)	(1) \#6-350 Cu/AI	(3) \#6-350 Cu/AI	$13-177 \mathrm{~mm}^{2} \mathrm{Cu} / \mathrm{Al}$	625 (283.8)
$225-400 \mathrm{~A}$ at 480 V (4)	78.07 (1983.0)	30.00 (762.0)	29.30 (744.2)	(1) $3 / 0-600 \mathrm{Cu} / \mathrm{Al}$	(3) 3/0-600 Cu/Al	$85-304 \mathrm{~mm}^{2} \mathrm{Cu} / \mathrm{Al}$	625 (283.8)
$225-400 \mathrm{~A}$ at 600 V (5)	90.00 (2286.0)	40.00 (1016.0)	28.97 (735.8)	(2) $3 / 0-750 \mathrm{Cu} / \mathrm{Al}$	(6) $3 / 0-750 \mathrm{Cu} / \mathrm{Al}$	$85-304 \mathrm{~mm}^{2} \mathrm{Cu} / \mathrm{Al}$	1750 (794.5)
600 A at 480 V (5)	90.00 (2286.0)	40.00 (1016.0)	28.97 (735.8)	(2) $3 / 0-750 \mathrm{Cu} / \mathrm{Al}$	(6) $3 / 0-750 \mathrm{Cu} / \mathrm{Al}$	$85-380 \mathrm{~mm}^{2} \mathrm{Cu} / \mathrm{Al}$	1750 (794.5)
600 A at 600 V (5)	90.00 (2286.0)	40.00 (1016.0)	28.97 (735.8)	(2) $3 / 0-750 \mathrm{Cu} / \mathrm{Al}$	(6) $3 / 0-750 \mathrm{Cu} / \mathrm{Al}$	$85-380 \mathrm{~mm}^{2} \mathrm{Cu} / \mathrm{Al}$	1750 (794.5)
$800-1200 \mathrm{~A}$ at 480 V (5)	90.00 (2286.0)	40.00 (1016.0)	28.97 (735.8)	(4) $3 / 0-750 \mathrm{Cu} / \mathrm{Al}$	(12) 3/0-750 Cu/Al	$85-380 \mathrm{~mm}^{2} \mathrm{Cu} / \mathrm{Al}$	1850 (839.9)
$800-1200 \mathrm{~A}$ at 600 V (5)	90.00 (2286.0)	40.00 (1016.0)	28.97 (735.8)	(4) $3 / 0-750 \mathrm{Cu} / \mathrm{Al}$	(12) 3/0-750 Cu/Al	$85-380 \mathrm{~mm}^{2} \mathrm{Cu} / \mathrm{Al}$	1850 (839.9)

Notes

(1) For seismic applications, it is necessary to use 5-13 UNC Grade or better hex head bolts and washers torqued to 50 ft -lbs.
(2) NEMA 12 and $4 X$ dimensions are 90.00 inches $\mathrm{H} \times 46.00$ inches $W \times 38.00$ inches $D(2286.0 \mathrm{~mm} \mathrm{H} \times 1168.4 \mathrm{~mm} \mathrm{~W} \times 965.2 \mathrm{~mm}$ D). NEMA 4X enclosures are 304SS standard with an optional upgrade to 316SS
${ }^{3}$ Same number of terminals per phase will be supplied.
(4) For NEMA 3R dimensions, add 18.29 inches (464.6 mm).
(5) For NEMA 3R dimensions, add 18.59 inches (472.2 mm).

Contents
Description

Page

V2-T5-8

V2-T5-13

V2-T5-17

V2-T5-22

V2-T5-24

V2-T5-24

V2-T5-25

V2-T5-26

Service Entrance Rated Automatic

Open Transition, 40-1600 A

V2-T5-27

Bypass Isolation Transfer Switches, 40-1200 A, Fixed Bypass

Product Description

A bypass isolation transfer switch may be used to provide emergency power to life safety and other critical loads where maintenance of the main transfer switch, without interruption of power to the load, is either desirable or required.

Application Description

Eaton's Automatic Transfer Switch is designed to provide unmatched performance, reliability and versatility for critical standby power applications. The switches can be equipped with the ATC-300+ or ATC-900 controllers to match your application needs.

Features

Industrial Design Highlights

- Front access is a standard feature on all ratings
- Entry:
- Top, bottom or both
- Isolated compartments
- Improved safety:
- Isolated compartments with barriers
- Single motion rack-out with doors closed
- Ability to test power switching elements during drawout process
- Dual ATS capabilitybypass contactor can be controlled by the ATS controller in the bypass mode of operation
- Installation flexibility:
- Field entry/exit locations can be modified in the field
- Interchangeable drawout contactors
- Field-selectable multi-tap transformer panel permits operation on a wide range of system voltages
- Fixed-mounted bypass, drawout ATS

Standard Features

- Drawout cassette design on ATS with fixed-mounted bypass
- No service interruption in bypass to the same source
- Source available contacts:
- Source 1 present 2NO and 2NC
- Source 2 present 2NO and 2NC
- Switch position contacts:
- Source 1 position 1NO and 1NC
- Source 2 position 1NO and 1NC
- Source 1 and Source 2 sensing:
- Undervoltage/ underfrequency
- Overvoltage/ overfrequency
- Three-phase rotation protection (ATC-300+ only)
- Three-phase voltage unbalance/loss (ATC-300+ only)
- Pretransfer signal contacts 1 NO and 1 NC (open transition only)
- Go to Source 2 (EMERGENCY)
- Field-programmable time delays:
- Time delay engine start: 0-1200 seconds
- Time delay normal to emergency: 0-1800 seconds
- Time delay emergency to normal: 0-1800 seconds
- Time delay engine cooldown: 0-1800 seconds
- Time delay emergency failure: 0-6 seconds
- LCD-based display for programming, system diagnostics and Help menu display
- Mimic diagram with source available and connected LED indication
- Time-stamped history log
- System TEST pushbutton
- Programmable plant exerciser-OFF, daily, 7-, 14-, 28-day interval selectable run time 0-600 minutes no load/ load with fail-safe (ATC-300+ only)

Optional Features

- Available UL 1448 Third Edition surge protection device (SPD)
- Eaton IQ and Power Xpert multi-function power quality metering
- Automatic transfer mode with selectable nonautomatic/automatic retransfer mode
- Modbus RTU via RS-485
- Remote annunciation with control
- Open in-phase transition, time delay neutral or inphase with a default to time delay neutral transfer
- ATC-900 controller
- Includes Modbus RTU via RS-485
- Includes four programmable inputs/ outputs
- Includes two plant exercisers
- Includes LCD color display with easy navigation tools to settings and event logs
- Expandable I/O (up to 20 I/O total)
- Optional integrated load metering
- Optional EtherNet TCP/ IP communications

Bypass Isolation Switch Components
 Front Access

Front access is a standard feature. Source 1 (NORMAL), Source 2 (EMERGENCY) and Load connections are set up as bottom entry. These connections are located in their own separate compartments.

Multi-Tap Transformer

The industry-exclusive MultiTap system voltage selector allows the transfer switch to be applied on most system voltages by proper insertion of the selector plug.

Drawout ATS and FixedMounted Bypass

The ATS is designed as a drawout with the contactor mounted in a cassette with wheels. This allows the
user the ability to withdraw, maintain, inspect and re-insert the ATS.

The bypass unit is designed as a fixed-mounted design in its own separate compartment.

Improved Safety

The unique Eaton design includes separation between control and power components. The ATS and bypass isolation contactors are mounted in separate compartments with protective barriers between them. This design prevents the possibility of contact with the rear-mounted power connections to the contactors. In addition, the top and bottom entry have separate compartment doors.

Ease of Maintenance

Transfer to the bypass power contactor is easily initiated and controlled via doormounted controls. Once the transfer to the bypass contactor is complete, the ATS contactor is easily racked out with the compartment
door closed. The ATS contactor may then be tested in the isolated position.

Ease of Transfer

The Eaton design allows the operator to make a quick and simple transfer from the ATS power contactor to the bypass contactor by initiating the electrically operated transfer via a two-position switch. Door-mounted indicating lights confirm that a successful transfer has taken place.

Dual ATS Capability

The controller on conventional bypass isolation switches only controls the ATS contactor. The Eaton design allows the switch controller to remain active in both the ATS and bypass modes, thus providing control to either contactor. This ability of the controller to remain active and control the bypass isolation contactor provides " $\mathrm{N}+1$ " redundancy of a second fully functioning ATS, a feature unique to Eaton.

Bypass Isolation-Fixed Bypass Components

Catalog Number Selection

Automatic Bypass Isolation Contactor-Based Transfer Switch

Technical Data and Specifications

UL 1008 Withstand and Close-On Ratings (kA)

UL 1008	480 V	480 V	600 V	600 V	Rating When Used with Upstream Fuse			
Ampere Rating	0.05 Seconds ${ }^{\text {2 }}$	Specific Breaker	0.05 Seconds ${ }^{(2)}$	Specific Breaker	Rating (kA)	Test Voltage	Fuse Type	Maximum Fuse Amperes
100	30	50	22	35	100	480	RK5	200
150	30	50	22	35	100	600	RK5	400
200	30	50	22	35	100	600	RK5	400
225	30	50	50	65	200	600	RK5	600
260	30	50	50	65	200	600	RK5	600
400	30	50	50	65	200	600	RK5	600
600	50	65	50	65	200	600	L	1600
800	50	65	50	65	200	600	L	1600
1000	50	65	50	65	200	600	L	1600
1200	50	65	50	65	200	600	L	1600

Notes

(1) 1600 A is available on dual drawout only.
(2) 0.025 seconds up through 200 A .

Diagram

Bypass Isolation
Shown as Normal Operation

1200 A Fixed Bypass

400 A Fixed Bypass

Contactor-Based Designs

Dimensions

Approximate Dimensions in Inches (mm)

Note: Source 1 Normal, Source 2 Emergency and Load connections must be either ALL top or ALL bottom and are NOT field reconfigurable.

100-400 A 480 V or 100-225 A 600 V Fixed Bypass NEMA 1

Note: Source 1 Normal, Source 2 Emergency and Load connections are NOT factory or field reconfigurable. Sufficient wireway and bending space s available to come in from either top or bottom.

Contactor-Based Transfer Switch 100-1200 A - NEMA 1 Dimensions and Approximate Shipping Weight

	Enclosure Seismic (1)			Standard Terminals			
Ampere Rating	Height	Width	Depth	Normal and Emergency	Load	Neutral	Weight in Lb (kg)
$100-200 \mathrm{~A}$ at 480 V (2)	78.07 (1983.0)	30.00 (762.0)	29.30 (744.2)	(1) \#6-350 Cu/Al	(1) \#6-350 Cu/Al	(3) \#6-350 Cu/AI	625 (283.8)
$100-200 \mathrm{~A}$ at 600 V (2)	78.07 (1983.0)	30.00 (762.0)	29.30 (744.2)	(1) \#6-350 Cu/Al	(1) \#6-350 Cu/Al	(3) \#6-350 Cu/AI	625 (283.8)
$225-400 \mathrm{~A}$ at 480 V (2)	78.07 (1983.0)	30.00 (762.0)	29.30 (744.2)	(1) 3/0-600 Cu/Al	(1) 3/0-600 Cu/Al	(3) 3/0-600 Cu/Al	625 (283.8)
$225-400 \mathrm{~A}$ at 600 V (3)	90.00 (2286.0)	40.00 (1016.0)	28.97 (735.8)	(2) 3/0-750 Cu/Al	(2) $3 / 0-750 \mathrm{Cu} / \mathrm{Al}$	(6) $3 / 0-750 \mathrm{Cu} / \mathrm{Al}$	1550 (703.7)
600 A at 480 V (3)	90.00 (2286.0)	40.00 (1016.0)	28.97 (735.8)	(2) $3 / 0-750 \mathrm{Cu} / \mathrm{Al}$	(2) $3 / 0-750 \mathrm{Cu} / \mathrm{Al}$	(6) $3 / 0-750 \mathrm{Cu} / \mathrm{Al}$	1550 (703.7)
600 A at 600 V (3)	90.00 (2286.0)	40.00 (1016.0)	28.97 (735.8)	(2) 3/0-750 Cu/Al	(2) $3 / 0-750 \mathrm{Cu} / \mathrm{Al}$	(6) $3 / 0-750 \mathrm{Cu} / \mathrm{Al}$	1550 (703.7)
$800-1200 \mathrm{~A}$ at 480 V (3)	90.00 (2286.0)	40.00 (1016.0)	28.97 (735.8)	(4) $3 / 0-750 \mathrm{Cu} / \mathrm{Al}$	(4) $3 / 0-750 \mathrm{Cu} / \mathrm{Al}$	(12) 3/0-750 Cu/Al	1750 (794.5)
$800-1200 \mathrm{~A}$ at 600 V (3)	90.00 (2286.0)	40.00 (1016.0)	28.97 (735.8)	(4) 3/0-750 Cu/Al	(4) $3 / 0-750 \mathrm{Cu} / \mathrm{Al}$	(12) $3 / 0-750 \mathrm{Cu} / \mathrm{Al}$	1750 (794.5)

Notes

(1) For seismic applications, it is necessary to use 5-13 UNC Grade or better hex head bolts and washers torqued to 50 ft -lbs
(2) For NEMA 3 dimensions, add 18.29 inches (464.6 mm)
(3) For NEMA 3R dimensions, add 18.59 inches (472.2 mm).

Service Entrance Rated Contactor-Based ATS with ATC-900 Controller

Contents

Description
Page
Automatic Open Transition, 40-1600 A......... V2-T5-8
Automatic Closed Transition, 40-1200 A. V2-T5-13
Bypass Isolation Transfer Switches, 40-1600 A,
Dual Drawout . V2-T5-17
Bypass Isolation Transfer Switches, 40-1200 A,
Fixed Bypass. V2-T5-22
Service Entrance Rated Automatic
Open Transition, 40-1600 A
V2-T5-27
Features . V2-T5-28
Catalog Number Selection V2-T5-32
Technical Data and Specifications V2-T5-32
Dimensions . V2-T5-33

Service Entrance Rated Automatic Open Transition, 40-1600 A

Product Description

The service entrance rated automatic open transition contactor-based design transfer switch will provide a fully functioning automatic transfer switch with an integrated upstream breaker to be applied and installed directly at the point of service entrance.

Eaton's service entrance rated contactor design has been tested and is listed as a 100\% rated UL 1008 ATS (automatic transfer switch). In addition, the service entrance rated ATS will have a 100% load rating. The capability to provide a 100% load rating eliminates confusion in applying a 100% rated ATS with a breaker that is only rated for 80% load.

The combined package will provide the ATS in a separate compartment from the upstream breaker. The breaker compartment has a deadfront panel, allowing easy and safe access to the separate contactor compartment when the breaker is tripped to the off position and locked out. Line side connections are made in the breaker compartment and Source 2 and load connections are made in the contactor compartment. The main contactor compartment includes the main power switching device, auxiliary relays, control power and the controller.
The upstream breaker will use the Eaton 310+ trip unit, allowing the user to modify the continuous current rating, adjustable protection curve shaping with LSI or LSIG adjustability and optional selection of the Arcflash Reduction Maintenance System to address National Electrical Code ${ }^{\circledR}$ Section 240.87 for arc energy reduction.

Application Description

The service entrance rated contactor-based design can be used on applications requiring an integrated automatic transfer switch with an upstream breaker. The combined or integrated offering can be used and will come listed as a 100% rated to UL 1008 as suitable for use as service equipment. In addition, the transfer switch will be marked as
"Continuous load current not to exceed 100 percent of switch rating."

Contactor-Based Designs

Features

Standard Features-
 with ATC-300+ Controller

- Auxiliary relay contacts:
- Source 1 present 2NO and 2NC
- Source 2 present 2NO and 2NC
5
- Switch position indication contacts
- Source 1 position 1NO and 1NC
- Source 2 position 1NO and 1NC
- Source 1 and Source 2 sensing:
- Undervoltage/ underfrequency
- Overvoltage/ overfrequency
- Three-phase rotation protection
- Three-phase voltage unbalance
- Pretransfer signal contacts 1NO/1NC (with threeposition mechanism)
- Go to emergency (Source 2)
- Seven field-programmable time delays
- LCD-based display for programming, system diagnostics and Help message display
- Mimic diagram with source available and connected LED indication
- Time-stamped history log
- System TEST pushbutton
- Programmable plant exerciser-OFF, daily, 7-, 14-, 28-day interval selectable run time 0-600 minutes no load/load with fail-safe
- Modbus ${ }^{\circledR}$ RTU via RS-485
- Source 1 Eaton Series G breaker with 310+ electronic trip unit with LSI
- Deadfront compartment for breaker
- Series G breaker with shunt trip
- Separate switch compartment

Optional Features

- Available surge suppression device for power/controller, engine start circuit, phone and cable connections
- Space heater with thermostat
- Eaton IQ and Power Xpert series metering
- Open in-phase transition, time delay neutral or inphase with a default to time delay neutral transfer
- ATC-300+ and ATC-900 controllers available
- Source 2 inhibit
- Manual retransfer to normal
- Remote annunciator with control
- Ethernet communication (PXG 900 Gateway)
- Breaker with LSIG electronic trip units
- Breaker with Arcflash Reduction Maintenance System

Commercial Design Highlights

- Integrated service entrance rating listed to UL 1008 100\% rated
- Meets overload, endurance, temperature rise and withstand rating per UL 1008
- Separate ATS and breaker compartment permits safe access to the ATS
- Combined breaker/ATS reduces overall equipment size and installation cost
- Lockable breaker permits safe downstream maintenance
- Breaker with electronic trip units provide adjustable ratings and adjustable curve shaping

Design Features

Integrated Service

Entrance Rating

The service entrance rated contactor design has been tested and listed to UL 1008 as suitable for use as service equipment. In addition, per UL 1008, the switch is rated for 100% load ratings and eliminates application considerations when applying a 100% rated ATS with 100% load ratings.

Separate Compartment for ATS and Breaker
The standard design includes a separate deadfront compartment for the incoming breaker and separate compartment for the ATS. This innovative design provides simplified access to cable entrance areas and can reduce personal protection equipment (PPE) requirements when performing installation or routine maintenance.

Electronic Trip Unit on SE Breaker
The service entrance breaker is an Eaton Series G breaker with the 310+ trip unit that provides adjustable rating and breaker curve shaping. The trip unit comes with either LSI or LSIG curve shaping capability. The long delay and short delay functions enable the breaker curves to be manipulated for upstream and downstream breaker coordination.

Arcflash Reduction Maintenance System ${ }^{\text {TM }}$

The Eaton 310+ electronic trip units address the National Electrical Code ${ }^{\circledR}$ Section 240.87 for Arc Energy Reduction. These moldedcase circuit breakers provide two approved methods to reduce arc energy: energyreducing maintenance switching with local status indicator and zone selective interlocking.

ATC-300+ Controller
Eaton's ATC-300+ controller offers a full set of programmable time delays, source 2 inhibit and manual retransfer. The controller comes standard with Modbus communications.

ATC-900 Controller
Eaton's new ATC-900 controller brings ease of use, adaptability, supervisory and programming capabilities to mission-critical applications. The 4.3-inch color TFT display provides simple arrow keys for quick screen navigation. Event logging and recording of time-stamped events are viewed easily. Field configuration of I/O allows user adaptability to special requirements.

Multi-Tap Voltage Selector
Allows the transfer switch to be readily applied on most system voltages by connecting to the proper terminals. Available system voltages include 120, 208, $220,240,277$ or 480 Vac, 60 Hz . The non quick connect multi-tap transformer is standard on units up to 400 A and the quick re-connect version is standard on 600-1600 A.

Lockable Breaker

The upstream service rated breaker includes a doormounted keyed switch that will allow the breaker to be tripped to the OFF position and electrically locked out. The keyed switch has a Normal position and Disconnect position that indicates the breaker has been tripped. Once in the Disconnect position, the key may be removed. In addition there is a ship loose handle hasp that allows the breaker handle to be mechanically locked out.

ATC-300+ and ATC-900 Controller Features

Description	Automatic Controllers	
	ATC-300+	ATC-900
Basic transfer control, plant exerciser, time delays, self diagnostics and system settings	Standard	Standard
Source mimic diagram with LED indication	Standard	Standard
Engine test and start contact	Standard	Standard
Dual source control power input	Standard	Standard
Liquid crystal display (LCD)	Standard	Standard
Programmable set points and plant exerciser	Standard	Standard
Password protection	Standard	Standard
Time stamped history and event log	Standard	Standard
Time delay bypass	Standard	Standard
Go to source 2 control input	Standard	Standard
Pre-transfer and general alarm control outputs	Standard	Standard
Lockout and monitor modes	Standard	Standard
Source status output relay contacts	Standard	Standard
Modbus RTU communication	Standard	Standard
Manual retransfer control input	Optional	Standard
Source 2 input / load shed input	Optional	Standard
USB port-profile and data management	-	Standard
Preferred source selection	-	Standard
Dual generator capability	-	Standard
User configurable inputs/outputs	-	Standard
Advanced diagnostics and troubleshooting with pre-/postevent data capture	-	Standard
Integrated load metering	-	Optional
Load management with selective load shed	-	Optional
DC voltage control power input	-	Optional
Three source ATS master/slave control	-	Optional
Modbus TCP/IP communication (1)	Optional	Optional

40-200 A Service Entrance Contactor NEMA 1
Note
(1) Modbus TCP/IP resources use of Modbus RTU port.

225-400 A Service Entrance Contactor NEMA 1

Typical Service Entrance ATS Construction for 600-1000 A NEMA 1

600-1000 A Service Entrance Contactor NEMA 1 (ATS Door Open and Breaker Compartment Panel Removed)

1200-1600 A Service Entrance Rated Contactor Design NEMA 1

1200-1600 A Service Entrance Breaker Deadfront Not Shown

1200-1600 A Service Entrance ATS Compartment Door Open

Catalog Number Selection

Automatic Transfer Switch

5

Technical Data and Specifications

UL 1008 Short-Circuit Withstand and Close-On Ampere Ratings			UL 1008 Ratings (100\% Rated)				
					Current	No. of	NEMA Enclosure
		Withstand Current Ratings rms Symmetrical	Mounting Type	Voltage	Amperes	Poles (1)	
UL 1008 Ampere Rating	Mechanism		Fixed	480	40	2,3,4	NEMA 1
		480 V		480/277	80100		NEMA 3R
				480/240			
40, 80, 100	C2	30,000			$\begin{aligned} & 100 \\ & 150 \end{aligned}$		
150, 200	C2	30,000		415/240	200		
225, 260, 400	C2	50,000		240/120	225260		
40, 80, 100, 150, 200	C3, C5	50,000			260400		
225, 260, 400	C3, C5	50,000		220	600		
600, 800, 1000,1200	C3, C5	65,000		208/120	800		
1600	C3, C5	65,000			1200		
					1600		

Dimensions

Approximate Dimensions in Inches (mm)

Service Entrance Rated Contactor-Based Transfer Switch 40-1600 A, 100\% Load Rating

Ampere Rating	Enclosure	A (Height)	B (Width)	C (Depth)	Normal	Emergency	Load	Neutral	Weight in Lb (kg)
40-100 at 480 V	N1/N3R	52.00 (1320.8)	19.80 (502.9)	16.75 (425.5)	(1) \#14-2/0	(1) \#14-2/0	(1) \#14-2/0	(3) \#14-1/0	240 (109)
150-200 at 480 V	N1/N3R	52.00 (1320.8)	19.80 (502.9)	16.75 (425.5)	(1) \#6-250 kcmil	(1) \#6-250 kcmil	(1) \#6-250 kcmil	(3) \#6-250 kcmil	300 (136)
$225-400$ at 480 V	N1/N3R	79.00 (2006.6)	25.25 (641.4)	22.59 (573.8)	(2) 3/0-250 kcmil	(2) 3/0-250 kcmil	(2) 3/0-250 kcmil	(6) 250k-500 kcmil	500 (227)
$600-1000$ at 480 V	N1/N3R	79.00 (2006.6)	40.37 (1025.4)	22.59 (573.8)	(4) $1 / 0-750 \mathrm{kcmil}$	(4) 1/0-750 kcmil	(4) 1/0-750 kcmil	(12) $1 / 0-750 \mathrm{kcmil}$	900 (409)
1200 at 480 V	N1/N3R	79.00 (2006.6)	40.37 (1025.4)	22.59 (573.8)	(4) 1/0-750 kcmil	(4) 1/0-750 kcmil	(4) 1/0-750 kcmil	(12) 1/0-750 kcmil	900 (409)
1200 at 480 V	N1	90.00 (2286.0)	40.00 (1016.0)	48.22 (1224.8)	(4) 1/0-750 kcmil	(4) 1/0-750 kcmil	(4) 1/0-750 kcmil	(12) 1/0-750 kcmil	1400 (635)
	N3R			62.50 (1587.5)					1450 (658)
1600 at 480 V	N1	90.00 (2286.0)	40.00 (1016.0)	48.22 (1224.8)	(4) 1/0-750 kcmil	(4) 1/0-750 kcmil	(4) 1/0-750 kcmil	(12) 1/0-750 kcmil	1600 (726)
	N3R			52.50 (1587.5)					1650 (748)

Automatic, 40-200 A, NEMA 1 and NEMA 3R, Wall Mount

Note
(1) Two-pole is available up to 800 A .

Automatic, 225-400 A, NEMA 1 and NEMA 3R Floor Standing Wall Attached

Contactor-Based Designs

Automatic, 600-1000 A NEMA 1, 600-800 A NEMA 3R

Top View-Roof Removed

Front View——Doors Removed

Automatic, 1200 A and 1600 A, NEMA 1

Automatic 1000-1600 A, NEMA 3R

Manual Wallmount Transfer Switch

Molded Case Switches-Manual Wallmount, 30-1000 A

Description

Eaton's wallmount manually operated transfer switches are designed for a variety of standby power applications for critical loads. In the event of a primary power source interruption, the user can manually transfer the load circuits to the standby power source. Once primary power has been restored, the user can manually transfer the load circuits back to the primary power source.

Application Description

Manual transfer switches cover applications ranging from 30 to 1000 A through 600 Vac for standard manual configurations and open transition.
Manual transfer switches may be applied for those application where a manually initiated and manually operated transfer is suitable. The front door of the switch must be opened to operate the manual handle. The design comes standard with a deadfront design, allowing safe manual transfer under load. Should an application require a service entrance rating, then a non-automatic or automatic design needs to be selected.

Contents

Description	Page
Molded Case Switches-Manual Wallmount, 30-1000 A	
Standards and Certifications	V2-T5-36
Catalog Number Selection	V2-T5-36
Technical Data and Specifications	V2-T5-37
Dimensions	V2-T5-38
Molded Case Switches-Non-Automatic	
Wallmount	V2-T5-39
Molded Case Switches-Automatic	
Wallmount, 30-1000 A	V2-T5-34
Maintenance Bypass Switches-	
Type MBHE 100-1000 A.	V2-T5-48

Features and Benefits

Features

- Molded case switch power contact assemblies
- Positive mechanical interlocking
- Permanently affixed manual operating handle

Benefits

- High withstand, totally enclosed for maximum arc suppression and isolation during power transfer
- Optional trip units offer system overcurrent protection
- Prevents the paralleling of two sources of power
- Permits safe and convenient manual transfer of power
- Requires no control power

Note: If a service entrance rating is required, then a non-automatic type switch must be selected. Service entrance ratings are not available on a manual transfer switch.

5.3
 Transfer Switches
 Breaker-Based Design

Standards and Certifications

- Complies with UL 1008
and UL 489 standards
- IBC seismic qualified
(U)

Catalog Number Selection

Manual Breaker-Based Transfer Switch

Notes

(1) Horizontal is available only on ratings 150 A or less.

Service entrance is not available on a manual design.

Technical Data and Specifications

Wallmount Transfer Switch Standard Terminal Data for Power Cable Connections (1)

Switch Ampere Rating	Breaker Frame	Line Side (Normal and Standby Source)	Load Connection	Neutral Connection
$30-100$	HFD	(1) \#14-1/0	(1) \#14-1/0	(3) \#14-1/0
$150-225$	HFD	(1) \#6-300	(1) \#6-300	(3) \#4-300
$225-300$	HKD	(1) \#3-350	(1) \#6-350	(3) \#4-350
400	HLD	(1) 4/0-600	(2) \#1-500	(6) 250-350
600	HLD	(1) $3 / 0-350$	(2) \#1-500	(6) 250-350
600	HMDL	(2) \#1-500	(2) \#1-500	(12) 4/0-500
600 (four-pole)	NB	(3) $3 / 0-400$	(3) $3 / 0-400$	(3) $3 / 0-400$
800	HMDL	(3) $3 / 0-400$	(3) $3 / 0-400$	(12) 4/0-500
800	HNB	(4) 4/0-500	(4) 4/0-500	(12) 4/0-500
1000	HNB	(4) 4/0-500	(4) 4/0-500	(12) 4/0-500

UL 1008 Short Circuit Withstand and Close-On Ratings (kA)

Standard UL 1008 3-Cycle-Horizontal and Vertical Industrial						
ATS Ampere Rating	Short Circuit			Ratings When Used With Upstream Fuse (kA)		
	240 V	480 V	600 V	Maximum Fuse Rating	Fuse Type ${ }^{(2)}$	600 V
30	100	65	25	200	J,T	200
70	100	65	25	200	J,T	200
100	100	65	25	200	J,T	200
150	100	65	25	400	J,T	200
200	100	65	25	400	J, T	200
225	100	65	25	400	J,T	200
300	100	65	25	400	J,T	200
400	100	65	25	600	J,T	200
600	100	$65{ }^{(3)}$	25	800/1200	J,T	100/200
800	65	$50{ }^{3}$	25	1200/1600	L	100/200
1000	65	50 (3)	25	1600	L	200

Notes

(1) All terminals suitable for copper or aluminum conductors. For alternate terminal sizes, contact Eaton.
(2) Class RK5 fuse with 100 kA rating.
(3) Four-pole units rated 35 kA .

Breaker-Based Designs

Dimensions

Approximate Dimensions in Inches (mm)
30-1000 A Type MTVX-NEMA 1, 3R, $12{ }^{\text {(1) }}$

Switch Type	Enclosure			Gutter Space			Bolt Pattern					
	A	B	C	D	E	F	G		Standard T	erminals ${ }^{(2)}$		
	Height	Width	Depth	Width	Depth	Bending	Horizontal	Vertical	Line	Load	Neutral	Lb (kg)
HKD (150-225 A)	48.00 (1219.2)	20.81 (528.6)	16.65 (422.9)	8.00 (203.2)	4.00 (101.6)	10.59 (269.0)	11.00 (279.4)	45.50 (1155.7)	(1) \#3-350	(1) \#6-350	(3) \#4-350	305 (138)
HKD (300 A)	56.00 (1422.4)	20.81 (528.6)	16.65 (422.0)	8.00 (203.2)	4.00 (101.6)	13.59 (345.2)	11.00 (279.4)	53.50 (1358.9)	(1) \#3-350	(1) \#6-350	(3) \#4-350	305 (138)
HLD (400 A)	64.00 (1625.6)	25.81 (655.6)	16.65(422.9)	8.00 (203.2)	4.00 (101.6)	10.54 (267.7)	16.00 (406.4)	61.48 (1561.6)	(1) 4/0-600	(2) \#1-500	() 250-350	425 (193)
HLD (400 A) ${ }^{(3)}$	53.00 (1346.2)	25.81 (655.6)	16.65 (422.9)	8.00 (203.2)	4.00 (101.6)	11.85 (301.0)	16.00 (406.4)	50.48 (1282.2)	(2) $3 / 0-350$	(2) \#1-500	(6) 250-350	425 (193)
HLD (600 A)	64.00 (1625.6)	25.81 (655.6)	16.65 (422.9)	8.00 (203.2)	4.00 (101.6)	10.54 (267.7)	16.00 (406.4)	61.48 (1561.6)	(2) $3 / 0-350$	(2) \#1-500	(12) 4/0-500	425 (193)
HLD (600 A) ${ }^{(3)}$	64.00 (1625.6)	25.81 (655.6)	16.65 (422.9)	8.00 (203.2)	4.00 (101.6)	10.54 (267.7)	16.00 (406.4)	61.48 (1561.6)	(2) 400-500	(2) \#1-500	(12) 4/0-500	425 (193)
HMDL (600 A)	76.74 (1949.2)	25.81 (655.6)	17.75 (450.8)	8.00 (203.2)	4.00 (101.6)	17.73 (450.3)	16.00 (406.4)	75.15 (1908.8)	(2) \#1-500	(2) \#1-500	(12) 4/0-500	510 (232)
HMDL (800 A)	76.74 (1949.2)	25.81 (655.6)	17.75 (450.8)	8.00 (203.2)	4.00 (101.6)	17.73 (450.3)	16.00 (406.4)	75.15 (1908.8)	(3) $3 / 0-400$	(3) 3/0-400	(12) 4/0-500	510 (232)
NB (800-1000 A)	76.74 (1949.2)	25.81 (655.6)	17.75 (450.8)	8.00 (203.2)	4.00 (101.6)	17.58 (446.5)	16.00 (406.4)	75.15 (1908.8)	(4) $4 / 0-500$	(4) $4 / 0-500$	(12) 4/0-500	570 (259)

30-150 A Type MTHXFD Manual

Dimensions								
A	B	C	D	E	F	G	H	Weight $\mathbf{L b}(\mathbf{k g})$
22.88	13.13	22.74	22.62	24.50	9.78	10.28	32.31	143
(581.2)	(333.5)	(577.6)	(574.5)	(622.3)	(248.4)	(261.1)	(820.7)	(65)

Power Panel and Transformer Panel

Power Panel Type	Height	Width	Depth
Power Panel			
HFD	$11.00(279.4)$	$17.00(431.8)$	$6.81(173.0)$
HKD	$24.50(622.3)$	$11.88(301.8)$	$17.50(444.5)$
HLD	$26.00(660.4)$	$16.88(428.8)$	$17.50(444.5)$
HMDL	$36.25(920.8)$	$16.88(428.8)$	$17.50(444.5)$
NB	$36.25(920.8)$	$16.88(428.8)$	$19.00(482.6)$
Transformer Panel			
HFD	$22.00(558.8)$	$16.50(419.1)$	$6.50(165.1)$
HKD, HLD, HMDL and NB	$28.63(727.2)$	$8.25(209.6)$	$5.50(139.7)$

Notes

(1) Consult factory for NEMA 4X.
(2) Suitable for Cu or Al wire. Consult the factory for other available terminal sizes.
(3) Alternate line terminals

Dimensions are approximate and should not be used for construction purposes.

Non-Automatic Wallmount

Molded Case Switches-Non-Automatic Wallmount, 30-1000 A

Product Description

Eaton's wallmount nonautomatic transfer switches are designed for a variety of standby power applications for critical loads.

In the event of a primary power source interruption, the user can manually transfer the load circuits to the standby power source

Non-Automatic Switch with Doors Closed
Note: Optional service entrance rating shown for this photo.

Contents

Description	Page
Molded Case Switches-Manual Wallmount, 30-1000 A .	V2-T5-35
Molded Case Switches-Non-Automatic Wallmount	
Standards and Certifications	V2-T5-40
Catalog Number Selection	V2-T5-40
Technical Data and Specifications	V2-T5-40
Dimensions	V2-T5-41
Molded Case Switches—Automatic Wallmount, 30-1000 A	V2-T5-34
Maintenance Bypass SwitchesType MBHE 100-1000 A.	V2-T5-48

Application Description

Non-automatic transfer switches cover applications ranging from 30-1000 A through 600 Vac for manual configurations, open transition, standard or service entrance.

Non-automatic transfer switches are manually initiated, but electrically operated designs. Front door-mounted controls allow the operator to initiate the transfer. Overcurrent trips may be added to the design for either or both the normal and emergency source. Service entrance ratings are available. Note that the Eaton service entrance rated non-automatic transfer switch is a 100% rated and listed to UL 1008 as suitable for use for service entrance.

Features and Benefits

Features

- Molded case switch power contact assemblies
- Positive mechanical and electrical interlocking
- Permanently affixed manual operating handle
- Pushbutton operation

Benefits

- High withstand, totally enclosed for maximum arc suppression and isolation during power transfer
- Optional trip units offer system overcurrent protection
- Prevents the paralleling of two sources of power
- Permits safe and convenient manual transfer of power under load via external pushbutton initiated operation

Non-Automatic Transfer Switch

Device panel shows controls to initiate the manual transfer and control indicating lights. In addition, an optional service entrance rating may be specified. Keyed switch is mounted on the device panel.

Breaker-Based Designs

Standards and Certifications

- Complies with UL 1008 and UL 489 standards
- IBC seismic qualified

5

Catalog Number Selection

Non-Automatic Breaker-Based Transfer Switch

Technical Data and Specifications

Wallmount Transfer Switch Standard Terminal Data for Power Cable Connections (1)

Switch Ampere Rating	Breaker Frame	Line Side (Normal and Standby Source)	Load Connection	Neutral Connection
$30-100$	HFD	(1) \#14-1/0	(1) \#14-1/0	(3) \#14-1/0
$150-225$	HFD	(1) \#6-300	(1) \#6-300	(3) \#4-300
$225-300$	HKD	(1) \#3-350	(1) \#6-350	(3) \#4-350
400	HLD	(1) 4/0-600	(2) \#1-500	(6) 250-350
600	HLD	(1) $3 / 0-350$	(2) \#1-500	(6) 250-350
600	HMDL	(2) \#1-500	(2) \#1-500	(12) 4/0-500
600 (four-pole)	NB	(3) $3 / 0-400$	(3) $3 / 0-400$	(3) $3 / 0-400$
800	HMDL	(3) $3 / 0-400$	(3) $3 / 0-400$	(12) 4/0-500
800	HNB	(4) 4/0-500	(4) 4/0-500	(12) 4/0-500
1000	HNB	(4) 4/0-500	(4) 4/0-500	(12) 4/0-500

UL 1008 Short Circuit Withstand and Close-On Ratings (kA)

ATS	Short Circuit			Ratings When Used with Upstream Fuse (kA)		
Ampere Rating	240 V	480 V	600 V	Maximum Fuse Rating	Fuse Type (2)	600 V
30	100	65	25	200	J, T	200
70	100	65	25	200	J, T	200
100	100	65	25	200	J, T	200
150	100	65	25	400	J, T	200
200	100	65	25	400	J, T	200
225	100	65	25	400	J, T	200
300	100	65	25	400	J, T	200
400	100	65	25	600	J, T	200
600	100	$65{ }^{(3)}$	25	800/1200	J, T	100/200
800	65	50 (3)	25	1200/1600	L	100/200
1000	65	$50{ }^{(3)}$	25	1600	L	200

Notes

(1) All terminals suitable for copper or aluminum conductors. For alternate terminal sizes, contact Eaton
(2) Class RK5 fuse with 100 kA rating
(3) Four-pole units rated 35 kA .

Breaker-Based Designs

Dimensions

Approximate Dimensions in Inches (mm)
30-1000 A Types NTHE, NTVE-NEMA 1, 3R 12 (

Switch Type	Enclosure			Gutter Space			Bolt Pattern					
									Standard T	minals ${ }^{(2)}$		
	Height	Width	Depth	Width	Depth	Bending	Horizontal	Vertical	Line	Load	Neutral	Lb (kg)
HFD (30-100 A) ${ }^{(3)}$	47.74 (1213.0)	20.81 (528.6)	15.22 (386.6)	8.00 (203.2)	4.00 (101.6)	6.22 (157.9)	10.75 (273.0)	45.24 (1049.1)	(1) \#14-1/0	(1) \#14-1/0	(3) \#14-1/0	232 (105)
$\operatorname{HFD}(150 \mathrm{~A}){ }^{(3)}$	47.74 (1213.0)	20.81 (528.6)	15.22 (386.6)	8.00 (203.2)	4.00 (101.6)	6.22 (157.9)	10.75 (273.0)	45.24 (1049.1)	(1) \#6-300	(1) \#6-300	(3) \#4-300	232 (105)
HKD (150-225 A)	48.00 (1219.2)	20.81 (528.6)	16.65(422.9)	8.00 (203.2)	4.00 (101.6)	10.59 (269.0)	11.00 (279.4)	45.50 (1155.7)	(1) \#3-350	(1) \#6-350	(3) \#4-350	305 (138)
HKD (300 A)	56.00 (1422.4)	20.81 (528.6)	16.65(422.9)	8.00 (203.2)	4.00 (101.6)	13.59 (345.2)	11.00 (279.4)	53.50 (1358.9)	(1) \#3-350	(1) \#6-350	(3) \#4-350	305 (138)
HLD (400 A)	64.00 (1625.6)	25.81 (655.6)	16.65(422.9)	8.00 (203.2)	4.00 (101.6)	10.54 (267.7)	16.00 (406.4)	61.48 (1561.6)	(1) 4/0-600	(2) \#1-500	(6) 250-350	425 (193)
HLD (400 A) (4)	53.00 (1346.2)	25.81 (655.6)	16.65(422.9)	8.00 (203.2)	4.00 (101.6)	11.85 (301.0)	16.00 (406.4)	50.48 (1282.2)	(2) 3/0-350	(2) \#1-500	(6) 250-350	425 (193)
HLD (600 A)	64.00 (1625.6)	25.81 (655.6)	16.65(422.9)	8.00 (203.2)	4.00 (101.6)	10.54 (267.7)	16.00 (406.4)	61.48 (1561.6)	(2) 3/0-350	(2) \#1-500	(12) 4/0-500	425 (193)
HLD (600 A) ${ }^{4}$	64.00 (1625.6)	25.81 (655.6)	16.65 (422.9)	8.00 (203.2)	4.00 (101.6)	10.54 (267.7)	16.00 (406.4)	61.48 (1561.6)	(2) 400-500	(2) \#1-500	(12) 4/0-500	425 (193)
HMDL (600 A)	76.74 (1949.2)	25.81 (655.6)	17.75 (450.8)	8.00 (203.2)	4.00 (101.6)	17.73 (450.3)	16.00 (406.4)	75.15 (1908.8)	(2) \#1-500	(2) \#1-500	(12) 4/0-500	510 (232)
HMDL (800 A)	76.74 (1949.2)	25.81 (655.6)	17.75 (450.8)	8.00 (203.2)	4.00 (101.6)	17.73 (450.3)	16.00 (406.4)	75.15 (1908.8)	(3) $3 / 0-400$	(3) $3 / 0-400$	(12) 4/0-500	510 (232)
NB (800-1000 A)	76.74 (1949.2)	25.81 (655.6)	17.75(450.8)	8.00 (203.2)	4.00 (101.6)	17.58 (446.5)	16.00 (406.4)	75.15 (1908.8)	(4) $4 / 0-500$	(4) $4 / 0-500$	(12) 4/0-500	570 (259)

Power Panel and Transformer Panel

Power Panel Type	Height	Width	Depth
Power Panel			
HFD	$11.00(279.4)$	$17.00(431.8)$	$6.81(173.0)$
HKD	$24.50(622.3)$	$11.88(301.8)$	$17.50(444.5)$
HLD	$26.00(660.4)$	$16.88(428.8)$	$17.50(444.5)$
HMDL	$36.25(920.8)$	$16.88(428.8)$	$17.50(444.5)$
NB	$36.25(920.8)$	$16.88(428.8)$	$19.00(482.6)$
Transformer Panel			
HFD	$22.00(558.8)$	$16.50(419.1)$	$6.50(165.1)$
HKD, HLD, HMDL and NB	$28.63(727.2)$	$8.25(209.6)$	$5.50(139.7)$

Notes

(1) Consult factory for NEMA 4X.
(2) Suitable for Cu or Al wire. Consult the factory for other available terminal sizes.
(3) NTHE with multi-tap voltage selection panel.
(4) Alternate line terminals.

Contents

Description	Page
Molded Case Switches-Manual Wallmount, 30-1000 A.	V2-T5-35
Molded Case Switches-Non-Automatic Wallmount	V2-T5-39
Molded Case Switches—Automatic Wallmount, 30-1000 A	
Standards and Certifications	V2-T5-45
Catalog Number Selection.	V2-T5-45
Technical Data and Specifications	V2-T5-46
Dimensions	V2-T5-47
Maintenance Bypass Switches-	
Type MBHE 100-1000 A	V2-T5-48

Molded Case Switches-Automatic Wallmount, 30-1000 A

Product Description

Eaton's wallmount transfer switches are designed for a variety of standby power applications for critical loads. They provide flexibility, reliability and value in a compact package. In the event of a primary power source interruption, a transfer switch provides an effective means to transfer the load circuits to an alternate power source while reducing the possibility of injury or property damage.
Wallmount transfer switches meet or exceed all industry standards for endurance, reliability and performance.

These breaker-based designs can be applied with the ATC-100, ATC-300+ or ATC-900 controllers.

Application Description

Suitable for emergency and standby systems (all loads).

Features, Benefits and Functions

Industrial Design Highlights

- Double-throw,
mechanically interlocked transfer mechanism
- High withstand and closing ratings
- Seismic qualified (BOCA®, CBC, IBC, UBC)

Standard Features

- Auxiliary relay contacts:
- Source 1 present 2NO and 2NC
- Source 2 present 2NO and 2NC
- Switch position indication contacts:
- Source 1 position 1NO and 1NC
- Source 2 position 1NO and 1NC
- Source 1 and Source 2 sensing:
- Undervoltage/ underfrequency
- Overvoltage/ overfrequency
- Three-phase rotation protection
- Three-phase voltage unbalance/loss
- Pretransfer signal contacts 1NO/1NC
- Go to emergency (Source 2)
- Seven field-programmable time delays
- LCD-based display for programming, system diagnostic and Help message display
- Mimic diagram with source available and connected LED indication
- Time-stamped history log
- System TEST pushbutton
- Programmable plant exerciser-OFF, daily, 7-, 14-, 28-day interval selectable run time 0-600 minutes no load/ load with fail-safe
- Safe manual operation under full load with permanently affixed operating handle

Optional Features

- Suitable for use as service equipment in the standard enclosure size, 100% rated and listed to UL 1008
- Available SPD for power/ controller, engine start circuit, phone and cable connections
- Integrated distribution panels
- Field-selectable multi-tap transformer panel permits operation on a wide range of system voltages
- Integral overcurrent protection
- Not available on contactor transfer switch
- Space heater with thermostat
- Ammeter-load side
- Stainless steel cover for controller
- ATC-100 and ATC-900 controllers available
- Modbus RTU via RS-485
- Source 2 inhibit
- Manual retransfer to normal
- Remote annunciator with control
- Ethernet communication (PXG 400 Gateway)

Basic Components of Automatic Transfer Switches

Eaton's Superior Design Transfer Switch Characteristics Unmatched Performance and Versatility

Eaton's family of wallmount transfer switches offers unmatched performance, versatility and value for power switching applications. At the heart of these designs is Eaton's molded case switch, designed specifically to meet UL 1008.

Superior Main
 Contact Structure

All Eaton wallmount transfer switches meet or exceed the standards set forth in UL 1008 and UL 489. No other transfer switch manufacturer has met the rigid testing requirements of this combination of standards. Completely enclosed contacts add a measure of safety and reliability. It also ensures the integrity of the contact assemblies and minimizes the need for periodic maintenance of the contacts, reducing downtime.

Fast, Powerful and Safe Power Switching Mechanism
The power panel utilizes a unidirectional gear motor mechanism. The power panel can be operated manually under a FULL LOAD.

Molded Case Switch Features

- True four-pole switched neutral availability
- Totally enclosed contact assembly

Molded Case Switch

Optional Integral Overcurrent Protection Capability

For service entrance and other applications, trip units can be integrated into the power switching section. This eliminates the need for separate upstream protective devices, saving cost and space.

Optional Thermal-Magnetic or Electronic Trip Units

Optional Service Entrance Rated Automatic Transfer Switch
Eaton's service entrance rated molded case breaker design is a 100% rated ATS and UL 1008 Listed.

5.3

Transfer Switches

Mechanical Interlock

Wallmount transfer switches feature a rear-mounted, fail-safe mechanical interlock to prevent paralleling of sources. This is, in addition to software interlocking and the interlocking inherently provided by the transfer mechanism.

Triple Interlocks

Load Bus Assembly

The load bus can be oriented for either top or bottom access. Top entry is standard.

Multi-Tap Voltage Selector

Eaton's industry-exclusive Multi-Tap system voltage selector allows our transfer switch to be applied on most system voltages just by proper insertion of the selector plug. Available in two configurations: Worldwide Multi-Tap with 600, 480, 415, 380, 240, 220 and 208 Vac, single- and three-phase, 50 and 60 Hz taps. North American Multi-Tap with 600, 480, 240, 208 and 120 Vac, single- and threephase, 60 Hz taps.

Multi-Tap Voltage Selector

Ease of Maintenance

Keyed quick-disconnect plugs are provided for easy and complete isolation of the control circuitry.
Maintenance can be performed on the logic independent from the power sections and still allow the user to manually transfer power under full load conditions.

Logic Disconnect Plugs

North American

Voltage Selector

North American multi-tap transformer comes with 600, 480, 240, 208 and 120 Vac, single- and three-phase, and 60 Hz taps, which are all field selectable. Simply remove the steel cover and move the appropriate blue flag terminal to the desired voltage. All switches are shipped with the blue flag in the 600 V position.

Transformer Panel Opened

Typical (225-1000 A) Vertical Design Transfer Switch Equipment

Shown Without the Deadfront

Standards and Certifications

They are listed under
Underwriters Laboratories UL 1008 Standard for transfer switch equipment and are optionally available as suitable for emergency and standby systems as defined in NFPA 99 for healthcare facilities.

- UL 1008 listed
- CSA C22.2 No. 178 certified

Catalog Number Selection

Molded Case Transfer Switch

Notes
(1) HFD $=200$ and $225 \mathrm{~A}, \mathrm{HLD}=600 \mathrm{~A}, \mathrm{HMD}=800 \mathrm{~A}$ for $240 / 120$ Vac single-phase, three-wire and 208Y/120 Vac three-phase, four-wire systems only.
(2) Four-pole 600 A will use an NB breaker.
(3) $\mathrm{MCB}=$ Molded Case Breaker, MCS = Molded Case Switch.

Technical Data and Specifications

Electrical Ratings

- Molded case and circuit breaker 30-1000 A
- Two-, three- or four-pole
- Up to $600 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$
- NEMA 1, 3R, 4X, 12, open

5 Molded Case Transfer Switch and Circuit Breaker

UL 1008 Short Circuit Withstand and Close-On Ratings (kA)

Switch Ampere Rating	Short Circuit			Ratings When Used with Upstream Fuse		
	240 Vac	480 Vac	600 Vac	Maximum Fuse Rating	Fuse Type	600 Vac
30-100	100	65	25	200	J, T	200
150	100	65	25	400	J, T	200
225	100	65	25	400	J, T	200
300	100	65	25	400	J, T	200
400	100	65	25	600	J, T	200
600	100	65 (1)	25	800/1200	J, T	100/200
800	65	50 (1)	25	1200/1600	L	100/200
1000	65	50 (1)	25	1600	L	200

Wallmount Transfer Switch Standard Terminal Data for Power Cable Connections (2)

Switch Ampere Rating	Breaker Frame	Line Side (Normal and Standby Source)	Load Connection	Neutral Connection
$30-100$	HFD	(1) \#14-1/0	(1) \#14-1/0	(3) \#14-1/0
$150-225$	HFD	(1) \#6-300	(1) \#6-300	(3) \#4-300
$150-225$	HKD	(1) \#3-350	(1) \#6-350	(3) \#4-350
$225-300$	HKD	(1) \#3-350	(1) \#6-350	(3) \#4-350
400	HLD	(1) 4/0-600	(2) \#1-500	(6) 250-350
600	HLD	(1) $3 / 0-350$	(2) \#1-500	(6) 250-350
600	HMDL	(2) \#1-500	(2) \#1-500	(12) 4/0-500
600 (four-pole)	NB	(3) $3 / 0-400$	(3) $3 / 0-400$	(3) $3 / 0-400$
800	HMDL	(3) $3 / 0-400$	(3) $3 / 0-400$	(12) 4/0-500
800	HNB	(4) 4/0-500	(4) 4/0-500	(12) 4/0-500
1000	HNB	(4) 4/0-500	(4) 4/0-500	(12) 4/0-500

Notes
(1) For 600, 800 and 1000 A ratings, four-pole units are rated 35 kA at 480 volts.
(2) All terminals suitable for copper or aluminum conductors. For alternate terminal sizes, contact Eaton.

Dimensions

Approximate Dimensions in Inches (mm)
Dimension Views

Breaker-Based and Molded Case Transfer Switches-NEMA 1, 3R, 12 (1)

Switch Rating Amperes	Switch Type	Enclosure			Gutter Space		Bolt Pattern		Standard Terminals ${ }^{(2)}$			
		A Height	B Width	C Depth	D Width	E Depth	G Horizontal	H Vertical		al Load and Connection	Neutral Connection	Weight Lb (kg)
Molded Case												
30-100	HFD (3)	47.74 (1213.0)	20.81 (528.6)	15.22 (386.6)	8.00 (203.2)	4.00 (101.6)	10.75 (273.0)	46.44 (1180.0)	-	-	-	232 (105)
150-225	HFD (3)	47.74 (1213.0)	20.81 (528.6)	15.22 (386.6)	8.00 (203.2)	4.00 (101.6)	10.75 (273.0)	46.44 (1180.0)	-	-	-	32 (105)
30-100	HFD (4)	47.74 (1213.0)	20.81 (528.6)	15.22 (386.6)	8.00 (203.2)	4.00 (101.6)	10.75 (273.0)	46.44 (1180.0)	-	-	-	232 (105)
150	HFD (4)	47.74 (1213.0)	20.81 (528.6)	15.22 (386.6)	8.00 (203.2)	4.00 (101.6)	10.75 (273.0)	46.44 (1180.0)	-	-	-	232 (105)
150-225	HFD (3)	35.61 (904.0)	20.06 (509.5)	11.34 (288.0)	8.00 (203.2)	4.00 (101.6)	10.75 (273.0)	34.31 (904.0)	-	-	-	150 (68)
150-225	HKD	56.00 (1422.4)	20.81 (528.6)	16.65 (422.9)	8.00 (203.2)	4.00 (101.6)	11.00 (279.4)	45.50 (1155.7)	-	-	-	305 (134)
300	HKD	53.00 (1346.2)	25.81 (655.6)	16.65 (422.9)	8.00 (203.2)	4.00 (101.6)	16.00 (406.4)	53.50 (1358.9)	-	-	-	295 (134)
400	HLD	64.00 (1625.6)	25.81 (655.6)	16.65 (422.9)	8.00 (203.2)	4.00 (101.6)	16.00 (406.4)	61.48 (1561.6)	-	-	-	425 (193)
400	HLD (3)	53.00 (1346.0)	25.81 (655.6)	16.65 (422.9)	8.00 (203.2)	4.00 (101.6)	16.00 (406.4)	51.50 (1308.0)	-	-	-	425 (193)
600	HLD	64.00 (1625.6)	25.81 (655.6)	16.65 (422.9)	8.00 (203.2)	4.00 (101.6)	16.00 (406.4)	62.50 (1588.0)	-	-	-	475 (214)
600	HMDL	76.74 (1949.2)	25.81 (655.6)	17.75 (450.8)	8.00 (203.2)	4.00 (101.6)	16.00 (406.4)	75.15 (1908.8)	-	-	-	480 (218)
800	HMDL (3)	76.74 (1949.2)	25.81 (655.6)	17.75 (450.8)	8.00 (203.2)	4.00 (101.6)	16.00 (406.4)	75.15 (1908.8)	-	-	-	510 (232)
800-1000	HNB	76.74 (1949.2)	25.81 (655.6)	17.75 (450.8)	8.00 (203.2)	4.00 (101.6)	16.00 (406.4)	75.15 (1908.8)	-	-	-	570 (259)

Notes

(1) Consult factory for NEMA 4X.
(2) Suitable with copper only
(3) Alternate line terminals.
(4) With multi-tap voltage selection panel.

Contents

Description	Page
Molded Case Switches-Manual Wallmount, 30-1000 A.	V2-T5-35
Molded Case Switches-Non-Automatic Wallmount	V2-T5-39
Molded Case Switches-Automatic Wallmount, 30-1000 A.	V2-T5-42
Maintenance Bypass SwitchesType MBHE 100-1000 A	
Catalog Number Selection.	V2-T5-49
Technical Data and Specifications	V2-T5-49
Dimensions	V2-T5-50

Maintenance Bypass Switches-Type MBHE 100-1000 A

Product Description

Eaton's maintenance bypass switch is a UL 1008-listed device that provides a simple and effective means for bypassing un-interruptible power supplies while maintaining continuity of power to the critical computer loads. A maintenance bypass switch is a requirement on every UPS installation in order to accommodate the maintenance and testing of the UPS system.

Features and Benefits

- Make-before-break electrical operation
- Lockout circuit to be wired into the UPS bypass authorization
- Pilot devices to show UPS position "Normal" and "Bypassed"
- Pilot device to show "Lockout" enabled
- Reliable manually initiated electrical operation
- High interrupting ratings are standard
- Molded case switch designs are available
- Solid neutral connections are standard
- Safe and reliable operation is ensured due to the simple and durable switching design
- Unauthorized bypass is prevented by the need of UPS system to send the bypass authorized signal
- 100\% current ratings makes selection to the UPS kVA ratings easy to accomplish
- Use of interrupting rating switches makes the maintenance bypass switches adaptable to systems with high levels of available fault current

Standards and Certifications

- UL 1008 listingFile E61639

Diagram

Single Line Diagram of Maintenance Bypass Switch

Breaker-Based Designs

Catalog Number Selection

Transfer Switch Equipment

Technical Data and Specifications

Maintenance Bypass Switch

Standard Withstand, Closing and Interrupting Ratings (1)

Transfer Switch Ampere Rating	Rating When Used with Upstream Circuit Breaker			Rating When Used with Upstream Fuse		
	Suggested Breaker Rating (2)	240 V	480 V	Maximum Fuse Rating	Fuse Type	480 V
100	100	100	65	200	J, T	200
150	150	100	65	400	J, T	200
225	225	100	65	400	J, T	200
300	300	100	65	400	J, T ${ }^{3}$	200
400	400	65	35	600	J, T	200
600	600	65	50 (4)	800/1200	J, T	100/200
800	800	65	50 (4)	1200/1600	L	100/200
1000	1000	65	$50{ }^{4}$	1600	L	200

Notes

(1) Tested in accordance with UL 1008.
(2) For maximum breaker rating in circuits where the transfer switch is evaluated as a "motor branch circuit conductor" refer to the NEC Section 430.25 for sizing.
(3) Also can use Class RK5 fuse with 100 kA rating.
(4) Four-pole units rated 35 kA .

To attain the maximum rating shown in the chart, when protected by an upstream breaker, the upstream device must have an equivalent interrupting rating.

Dimensions

Approximate Dimensions in Inches (mm)

Manual Transfer and Maintenance Bypass Switches-100-150 A Type MTHXFD Manual /100-1000 A Type MBHE Maintenance Bypass

Manual and Maintenance Bypass Enclosures

Amperes	Dimensions					
	A	B	C	E	G	H
100-150	22.88 (581.2)	13.13 (333.5)	22.74 (577.6)	24.50 (622.3)	10.28 (261.1)	32.31 (820.7)
225-300	38.88 (987.6)	29.13 (739.9)	35.74 (907.8)	37.50 (952.5)	17.78 (438.9)	55.81 (1417.6)
400	38.88 (987.6)	29.13 (739.9)	35.74 (907.8)	37.50 (952.5)	17.78 (438.9)	55.81 (1417.6)
600	38.88 (987.6)	29.13 (739.9)	49.74 (1263.4)	51.50 (1308.1)	17.78 (438.9)	55.81 (1417.6)
800	38.88 (987.6)	29.13 (739.9)	49.74 (1263.4)	51.50 (1308.1)	17.78 (438.9)	55.81 (1417.6)
1000	38.88 (987.6)	29.13 (739.9)	59.74 (1517.4)	61.50 (1562.1)	17.78 (438.9)	55.81 (1417.6)

Manual and Maintenance Bypass Switches

Floor-Standing Magnum Transfer Switch

ContentsDescription
Power Case Switch—Floorstanding, 200-5000 A
Features, Benefits and Functions V2-T5-52
Product Selection V2-T5-55
Catalog Number Selection V2-T5-55
Standards and Certifications V2-T5-56
Technical Data and Specifications V2-T5-56
Dimensions V2-T5-57
Bypass Isolation Transfer Switch, 200-5000 A V2-T5-60

Automatic Transfer

Open Transition

Open transition type Magnum
transfer switches use the
Eaton programmable ATC-900
microprocessor-based
logic controller.

Automatic Transfer

 Closed TransitionClosed transition applications
feature the ATC-900 closed
transition logic controller.

Magnum-Based Design

Features, Benefits and Functions

Industrial Design Highlights

- Freestanding enclosure
- High withstand ratings
- 100 kA standard 3-cycle rating
- 85 kA standard 30-cycle rating
- Dual drawout on ATS and bypass
- Deadfront
- Safe manual transfer under load
- Electrically operated
- Magnum stored energy mechanism
- Quick make / quick break-switching times (<3 cycles)
- Multi-tap transformer
- True four-pole switched neutral
- Mechanically interlocked
- Integral overcurrent trip option
- Integrated service entrance rating option 100\% rated per UL 1008
- OSHPD listed

Standard Features

- ATC-900 controller
- Drawout cassette on ATS and bypass
- Source available contacts:
- Source 1 available 1NO/1NC
- Source 2 available 1NO/1NC
- Switch position contacts:
- Source 1 position 1NO/1NC
- Source 2 position 1NO/1NC
- Source 1 and Source 2 sensing:
- Undervoltage/ underfrequency
- Overvoltage/ overfrequency
- Field-programmable time delays
- Time delay engine start
- Time delay normal to emergency
- Time emergency to normal
- Time delay engine cooldown
- Time delay emergency failure
- LCD color-based display for programming, system diagnostics and Help menu
- Mimic diagram with source available and connected LED indication
- Four programmable inputs and outputs
- Standard Modbus 485
- USB port for set point downloads and event recording uploads
- Password-protected access to control functions and set point programming
- Two automatic plant exercisers-load or no load, daily, 7-, 14-, 28-day or calendar date operation, 0-600 minute runtime

Optional Features

- Available UL 1449 Third Edition surge protection device (SPD)
- Automatic transfer operation with selectable (via programming) nonautomatic or automatic retransfer with fail-safe
- Space heater with thermostat
- Digital multi-function power quality metering
- DC power input for uninterrupted monitoring of ATS status
- Integrated load metering
- Expandable I/O (up to 20 I/O total)
- EtherNet TCP/IP communications
- Integrated service entrance option with 100\% rated per UL 1008
- Optional remote annunciator

Unmatched Performance and Versatility

The Eaton family of Magnum transfer switches offers unmatched performance, versatility and value for standby power applications. At the heart of these designs is the Magnum switch with the following features:

Superior Main

Contact Structure

All Eaton Magnum Transfer Switches meet or exceed the standards set forth in UL 1008 and UL 489 with high withstand, totally enclosed Magnum switches. No other transfer switch manufacturer has met the rigid testing requirements of this combination of standards. Completely enclosed contacts add a measure of safety and reliability. They also ensure the integrity of the contact assemblies and minimize the need for periodic maintenance of the contacts, reducing downtime and maintenance time.

Fast, Powerful and Safe

 Switching MechanismThe mechanism uses a high speed less than or equal to a 3-cycle stored energy switching mechanism. This mechanism can be operated manually under a FULL LOAD.

Ease of Coordination and Application-

Short-Time Withstand

The use of electronic trips has allowed performance curve shaping to facilitate proper system coordination. The most significant is the "short time" rated trip unit.

These trip settings may be set for what are considered extremely high currents for much longer durations than the three-cycle withstand test required under UL 1008. To facilitate improved coordination, Eaton Magnum transfer switches have been tested and are provided with 30-cycle, extended withstand ratings.

Optional Integral Overcurrent Protection Capability

Optional Digitrip™ Magnum Trip Unit

UL 1008 100\% Rated Service Entrance

For service entrance and other applications, Digitrip solid-state trip units can be integrated into the power switching section. This eliminates the need for separate upstream protective devices, saving cost and space. Available with various combinations of long, short time, instantaneous, ground fault protection and communication. Overcurrent trip selection can be made from the series of Eaton Digitrip RMS trip units including the standard Digitrip 520 or optional 520 M , 520 MC or 1150.

Controller Logic

The ATC-900 Automatic Transfer Switch Controller from Eaton is a comprehensive, multifunction, microprocessorbased automatic transfer switch controller and meter. It is designed to accurately monitor power sources and provide the necessary intelligence to reliably operate a transfer switch through a series of programmed sensing and timing functions.
The ATC-900 provides an unmatched degree of programming flexibility to address the needs of any system.

Controller Primary
 \section*{Functions}

The ATC-900 Automatic Transfer Switch Controller offers these standard features:

- Monitor normal and emergency source voltages and frequencies
- Provide transfer and re-transfer control signals
- Provide engine/generator starting and shutdown signals
- Permit customer programming of operational set points
- Display real-time and historical information
- Permit system testing
- Store customer and factory-established parameters in nonvolatile memory
- Provide faceplate source status indication
- Provides an LCD-based display for programming and status readout

Controller Flexible

Configurations

The ATC-900 controller includes four programmable inputs and outputs as a standard offering. The inputs and outputs can be assigned functions from a preset list of options, either at the factory or in the field. Additional I/O can be added at any time by adding an external I/O module. Each I/O module contains four inputs and outputs, and up to four modules can be daisy chained to the ATC-900 controller.

Controller Diagnostics and Troubleshooting

Eaton's ATC-900 controller provides users with data required to quickly identify the root cause of a backup power system failure and minimize system downtime. With the DCT module, the ATC-900 stores 4 seconds of metered data every 20 msec for certain events. The data is captured 2 seconds before and 2 seconds after the event (except for a power failure, which is 4 seconds before). Oscillographic data for 10 events is stored in the controller and may be downloaded over USB or displayed graphically.

Controller Communications

Every ATC-900 controller includes a standard Modbus RTU communications interface with an option to upgrade to Modbus TCP/IP.
The ATC-900 is also compatible with Eaton's Power Xpert Gateway for web-based monitoring, Modbus TCP/IP, SNMP or BACnet $® / / \mathrm{P}$. The Power Xpert Gateway can be used to consolidate data from up to 64 devices, including communications ready transfer switch controllers, trip units and meters, as well as other Eaton devices.
Versions of the Power Xpert Gateway include email event notification and data-logging functionality.

Magnum Fixed Mount Transfer Switch

2000 A, Four-Pole, NEMA 1 Enclosed, Through-the-Door Design

2000 A Three-Pole Fixed Design NEMA Behind-the-Door Enclosure

Eaton's drawout Magnum switch should be considered for any systems requiring either greater redundancy, easier maintainability, or where true selective coordination is desired.
Eaton's drawout Magnum switch provides the capability to isolate either of the two power sources (Source 1 or Source 2) and its associated logic while maintaining power to the load.

Each switching section is independent and can be replaced either with a spare switch, or for less critical replacement needs, a replacement unit is available from the factory.

Ease of Maintenance

Keyed quick-disconnect plugs are provided for easy and complete isolation of the control circuitry.

Maintenance can be performed on the logic independent from the power sections and still allow the user to manually transfer power under full load conditions.

Logic Disconnect Plugs

Deadfronts

The Magnum transfer switch comes standard with two deadfront panels mounted over the Magnum power case switch or breaker. These deadfronts provide additional protection isolation from any power connections. The power connections for Source 1, Source 2 and Load connections are all in the back compartment of the transfer switch.

Interlocking for Open

 Transition ApplicationsThe open transition type Magnum transfer switches feature both mechanical (cable) and electrical interlocking to prevent paralleling of sources.

Multi-Tap Voltage Selector
Allows the transfer switch to be readily applied on most system voltages worldwide by connecting to the proper terminals. Available system voltages include 120, 208, 220, 230, 240, 380, 401, 415, 480 , or $600 \mathrm{Vac}, 50$ or 60 Hz .

Voltage Selection Terminals

5.4
 Transfer Switches
 Magnum-Based Design

Typical Layout

5

Basic Switch Components of Magnum Automatic Transfer Switches

Side View of Magnum
Side or Rear Access Required
(Half-High Side Panels and Back Panels are Not Shown)

Magnum-Based Transfer Switches

Product Selection

Eaton transfer switch equipment offers flexibility and versatility to the system designer and user. All switches include the basic features necessary for normal operation as standard. Eaton also offers an extensive array of optional features/ accessories that allows the user to customize a new transfer switch to match the application. Select the appropriate catalog number for the application. Then choose any optional features/accessories needed to complete the project requirements.

Catalog Number:

 ATV9MGB33200XRU with Optional Features 16B and 37BThe example above would specify the following:

- Automatic transfer switch
- Vertical configuration
- ATC-900 logic
- Magnum DS frame
- Fixed mount
- Three-pole
- 3200 A
- 480 V
- NEMA 1 enclosure
- UL listed
- ATC-900 transfer logic
- Integral overcurrent protection both sources
- Service entrance rated with ground fault protection if
was selected
- Seismic qualified

Catalog Number Selection

Using the catalog numbering system provides an overview of the ten basic style/feature categories that generate the 15 -digit catalog number.

Magnum Automatic and Non-Automatic Transfer Switches 200-5000 A

Notes

(1) 4000 A and 5000 A available as drawout configuration only.
${ }^{2}$ Available on fixed-mounted units up to 3200 A .

Magnum-Based Designs

Standards and Certifications

Eaton Magnum transfer switches meet or exceed all industry standards for endurance, reliability and performance. They are listed under Underwriters Laboratories UL 1008 Standard for transfer switch equipment. With certain options, they also comply with Source 2 and standby system requirements as defined in NFPA 99 for healthcare facilities.

- UL 1008—standard for safety for automatic transfer switches up to 4000 A; 5000 A available as UL 891 only
- UL 489-standard for circuit breakers and molded case switches
- CSA 22.2-178—Canadian transfer switch standard
- NEC Articles-code sections 517, 700, 701, 702-applicable switch equipment
- NFPA 110-Source 2 and Standby Power Systems
- NFPA 99—healthcare facilities
- EGSA 100S—standard for transfer switches
- NEMA ICS10-Standard for transfer switch equipment
- UBC-Uniform Building Code for Seismic Zone 4
- ISO® 9000-International Organization for Standardization
- CBC-California Building Code
- IBC-International Building Code
- BOCA—Building Officials Code Administrators

Technical Data and Specifications

Floor-Standing Magnum Transfer Switch

- Ambient temperature range: $-40^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ ($-40^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}$)
- Operating temperature range: $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ($-4^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}$)
- Operating humidity: up to 90%
- Relative humidity (noncondensing)

Magnum Drawout Transfer Switch

- 200-5000 A
- Two-, three-, four-pole (except 4000 A: threeand four-pole only)
- 120-600 Vac
- 100,000 A withstand/ closing/interrupting at 480 Vac
- Short-time withstand85,000 for 30 cycles

Magnum Fixed-Mount

Transfer Switch

- 200-3200 A
- Two-, three-, four-pole (except 3200 A: two- and three-pole only)
- 120-600 Vac
- 100,000 A withstand/ closing/interrupting at 3 cycle
- Short-time withstand85,000 for 30 cycles

Magnum Drawout Transfer Switches
 Automatic and
 Non-Automatic
 Transfer Switches

Enclosures meet all current applicable NEMA and UL standards for conduit entry, cable bending, gutter space and shielding of live components.
NEMA 1 and
NEMA 3R Enclosures
Magnum transfer switches are supplied with a front door only. The NEMA 3R are provided with a door within a door design.

The Magnum transfer switch requires rear access. If placed against a wall, then a minimum of 3 feet is needed as well as side access on at least one of the sides. Access to cable space can be via the side, bottom, top or rear.

Optional Service Entrance Rated Automatic Transfer Switch
Eaton's service entrance rated power case breaker design is a 100% rated ATS and UL 1008 Listed up to 4000 A .

Transfer Switch
 Withstand Ratings

Systems Coordination Information-Withstand, Closing and Interrupting Ratings

ansfe		
Switch	0.050 Seconds	0.5 Seconds ${ }^{(1)}$
Ampere	Short-Circuit	Short-Time
Rating	600 V (kA)	$600 \mathrm{~V}(\mathrm{kA})$
UL 1008		
800	100	85
1000	100	85
1200	100	85
1600	100	85
2000	100	85
2500	100	85
3000	100	85
3200	100	85
4000	100	-
UL 891		
4000	-	85 (2)
5000	-	$85{ }^{(2)}$
Notes		
(1) Ratings used for coordination with upstream breakers with short-time ratings.		

Magnum-Based Designs

Dimensions

Approximate Dimensions in Inches (mm)

Magnum Fixed-Mount Transfer Switches

Ampere Rating	Number of Poles	A Height	B Width	C Depth	Shipping Weight Lb (kg)
NEMA 1 Enclosed Fixed-Mount Transfer Switch					

NEMA 3R Enclosed Fixed-Mount Transfer Switch

$200-2000$	2	$90.00(2286.0)$	$32.00(812.8)$	$63.00(1600.2)$	$1600(726)$
$200-2000$	3	$90.00(2286.0)$	$32.00(812.8)$	$63.00(1600.2)$	$1600(726)$
$200-2000$	4	$90.00(2286.0)$	$32.00(812.8)$	$63.00(1600.2)$	$1800(817)$
$2500-3200$	2	$90.00(2286.0)$	$44.00(1117.6)$	$63.00(1600.2)$	$2400(1090)$
$2500-3200$	3	$90.00(2286.0)$	$44.00(1117.6)$	$63.00(1600.2)$	$2400(1090)$
$2500-3200$	4	$90.00(2286.0)$	$44.00(1117.6)$	$63.00(1600.2)$	$2500(1135)$
4000	-	(1)	(1)	(1)	-
5000	-	(1)	${ }^{(1)}$	(1)	-

Note

(1) At 4000 and 5000 A, the standard design is drawout. See drawout dimensions.

200-3200 A Fixed-Mount NEMA 1

200-3200 A Fixed-Mount NEMA 3R

Approximate Dimensions in Inches (mm)

5

Magnum Drawout Transfer Switches

Ampere Rating	Number of Poles	A	Height	B Width	C Depth
NEMA 1 Enclosed Drawout Transfer Switch	Shipping Weight Lb (kg)				
$200-2000$	2	$90.00(2286.0)$	$32.00(812.8)$	$60.00(1524.0)$	$1600(727)$
$200-2000$	3	$90.00(2286.0)$	$32.00(812.8)$	$60.00(1524.0)$	$1600(727)$
$200-2000$	4	$90.00(2286.0)$	$32.00(812.8)$	$60.00(1524.0)$	$1900(864)$
$2500-3200$	2	$90.00(2286.0)$	$44.00(1117.6)$	$60.00(1524.0)$	$2500(1136)$
$2500-3200$	3	$90.00(2286.0)$	$44.00(1117.6)$	$60.00(1524.0)$	$2500(1136)$
$2500-3200$	4	$90.00(2286.0)$	$44.00(1117.6)$	$60.00(1524.0)$	$2800(1273)$

NEMA 3R Enclosed Drawout Transfer Switch

$200-2000$	2	$90.00(2286.0)$	$32.00(812.8)$	$75.00(1905.0)$	$2100(953)$
$200-2000$	3	$90.00(2286.0)$	$32.00(812.8)$	$75.00(1905.0)$	$2100(953)$
$200-2000$	4	$90.00(2286.0)$	$32.00(812.8)$	$75.00(1905.0)$	$2400(1090)$
$2500-3200$	2	$90.00(2286.0)$	$44.00(1117.6)$	$75.00(1905.0)$	$3000(1362)$
$2500-3200$	3	$90.00(2286.0)$	$44.00(1117.6)$	$75.00(1905.0)$	$3000(1362)$
$2500-3200$	4	$90.00(2286.0)$	$44.00(1117.6)$	$75.00(1905.0)$	$3300(1498)$

Magnum-Based Designs

Approximate Dimensions in Inches (mm)

Magnum 4000-5000 A Units

Front View With Covers

Connection Type (4000-5000 A Only)

Connection Type Line	Emergency	Load	Wireway
Cable	Cable	Cable	Yes
Bus	Cable	Cable	Yes
Cable	Bus	Cable	Yes
Cable	Cable	Bus	Yes
Bus	Bus	Cable	No
Bus	Cable	Bus	No
Cable	Bus	Bus	No
Bus	Bus	Bus	No

Magnum Drawout Transfer Switches

Ampere Rating	No. of Poles	A Height	B Width	C ${ }^{(1)}$ Width	$\begin{aligned} & \text { D } \\ & \text { Depth } \end{aligned}$	Shipping Weight Lb (kg)
4000	3 or 4	$\begin{aligned} & 90.00 \\ & (2286.0) \end{aligned}$	$\begin{aligned} & 86.00 \\ & (2184.4) \end{aligned}$	$\begin{aligned} & 92.00 \\ & (2336.8) \end{aligned}$	$\begin{aligned} & 68.00 \\ & (1727.2) \end{aligned}$	(2)
5000	3 or 4	$\begin{aligned} & 90.00 \\ & (2286.0) \end{aligned}$	$\begin{aligned} & 86.00 \\ & (2184.4) \end{aligned}$	$\begin{aligned} & 92.00 \\ & (2336.8) \end{aligned}$	$\begin{aligned} & \hline 68.00 \\ & (1727.2) \end{aligned}$	(2)

Notes
(1) Seismic mounting adds 3.00 inches $(76.2 \mathrm{~mm})$ width to each side or additional 6.00 inches (152.4 mm) to width.
(2) Consult factory.

SP = Shipping Split.

Consult factory for dimensions.
Note: The typical Magnum ATS at 4000 and 5000 A ratings will include one cubicle with the Source 1 and Source 2 power case switches or breakers. A second cubicle called a wireway is required unless bus is used for the connections per Connection Type table above. Cable connections to the wireway cubicle can be made from the top or bottom. The wireway cubicle will have removable panels on the front, and cable connections may be made from the top or the bottom. Cable connections to the power case switch or breaker cubicle are made from the back. Consult factory for dimensions. The wireway width is 32.00 inches (812.8 mm).

Bypass Isolation Transfer Switch, 200-5000 A

Product Description

A bypass isolation switch utilizes loadbreak isolation and bypass transfer power contacts. Thus, should voltage be lost on the line to which the ATS is connected, and should a manual bypass be required to the other line, this can be accomplished safely and quickly as described below. With contactor designs utilizing non-loadbreak isolation and bypass switches, manual bypass to the other line is hindered by mechanical or electrical safety interlocking.

Application Description

The bypass isolation switch is designed for applications where maintenance, inspection and testing must be performed while maintaining continuous power to the load. This is typically required in critical life-support systems and standby power situations calling for safe system maintenance with no power disruptions. Such a design allows for the quick removal of the different switching devices for inspection, maintenance or replacement.

Contents

Description
Page
Power Case Switch—Floorstanding, 200-5000 A V2-T5-51
Bypass Isolation Transfer Switch, 200-5000 A

| Standards and Certifications | V2-T5-61 |
| :--- | :--- | :--- |
| Catalog Number Selection | V2-T5-62 |
| Product Selection. | |

Technical Data and Specifications V2-T5-63

Features, Benefits and Functions

Eaton's transfer switch is a rugged, compact design utilizing Magnum power switches or Magnum power circuit breakers to transfer essential loads from one power source to another. Open transition switching devices are interlocked to prevent both switching devices from being closed at the same time. The versatile design, in addition to standard transfer functions, offers an optional integral thermal and short-circuit protection in either or both switching devices.

The switching devices are in a compact vertical arrangement. The logic can be easily disconnected from the switching device without disturbing critical connections. The enclosure is free standing, and by using the specially supplied cleats, the switch is seismic approved (Option 42). The terminals are mounted in the rear of the switch, permitting rear, top, bottom or side cable or bus bar entrance.

The switching devices have a high withstand rating. The high-speed, stored-energy switching mechanism guarantees a transfer time of less than three cycles.

- Reliable microprocessor logic
- Designed to safely withstand fault currents
- Eliminates need for complex interlocks
- Most versatile bypass isolation transfer switch available
- Eaton drawout cassette design
- Overcurrent protection available
- No loadbreak when bypassing to the same source
- Drawout capabilities on both ATS and bypass portions
- Compact design
- Ability to test power switching elements during drawout process
- Power switching devices completely interchangeable between ATS and bypass portions

Magnum Bypass Isolation Front View without the Deadfront Panels-NEMA 1 Through the Door

Front Access Option 54 A is Available on All Magnum Designs

Standards and Certifications

Eaton transfer switch equipment is listed for application by UL and CSA. In addition, Eaton ATSs are listed in File E38116 by Underwriters Laboratories under Standard UL 1008. This standard covers requirements for ATSs intended for use in ordinary locations to provide for lighting and power as follows:
A. In emergency systems, in accordance with Articles 517 and 700 in the National Electrical Code (NEC), American National Standards Institute/National Fire Protection Association (ANSI/NFPA) 70 and the NFPA No. 76A and/or
B. In standby systems, in accordance with Article 702 of the NEC and/or
C. In legally required standby systems in accordance with Article 701 of the NEC. Eaton ATSs are available to meet NFPA 110 for emergency and standby power systems, and NFPA 99 for healthcare facilities when ordered with the appropriate options. Since Eaton ATSs utilize specially designed switches and/or switching devices as the main power switching contacts, these devices must also be listed under the additional UL Standard 1066. UL utilizes two basic types of listing programs:
a. Label Service, and
b. Re-examination. UL 1066 employs a label service listing program that requires an extensive follow-up testing program for listed devices. Standard UL 1008 for ATSs lists devices under the reexamination program that only requires a continual physical reexamination of the components used in the product to ensure consistency with the originally submitted device. Follow-up testing IS NOT required by UL 1008. Representative production samples of switches and switching devices used in Eaton ATSs are subjected to a complete test program identical to the originally submitted devices on an ongoing periodic basis per UL 1066. The frequency of such a resubmittal can be as often as every quarter for a low ampere device.

Note: IBC seismic qualified.

Catalog Number Selection

Using the catalog numbering system provides an overview of the ten basic style/feature categories that generate the 15 -digit catalog number.

Magnum Bypass, Transfer Switches 200-5000 A

5

Product Selection

Eaton transfer switch equipment offers flexibility and versatility to the system designer and user. All switches include the basic features necessary for normal operation as standard. Eaton also offers an extensive array of optional features/ accessories that allows the user to customize a new transfer switch to match the application. Select the appropriate catalog number for the application. Then choose any optional features/accessories needed to complete the project requirements.

Catalog Number:

 BIV9MGE33200XRUThe example above would specify the following:

- Bypass isolation
- Vertical configuration
- ATC-900 controller
- Magnum DS frame
- Power case switch normal and emergency
- Drawout
- Three-pole
- 3200 A
- 480 V
- NEMA 3R enclosure
- UL listed

Technical Data and Specifications

Typical Bypass Isolation Switch Schematic

Systems Coordination Information - Withstand, Closing and Interrupting Ratings

Transfer		
Switch	0.050 Seconds	0.50 Seconds ${ }^{(1)}$
Ampere	Short-Circuit	Short-Time
Rating	600 V (kA)	600 V (kA)
UL 1008		
800	100	85
1000	100	85
1200	100	85
1600	100	85
2000	100	85
2500	100	85
3000	100	85
3200	100	85
4000	100	-
UL 891		
4000	-	85 (2)
5000	-	$85{ }^{(2)}$

Notes
(1) Ratings used for coordination with upstream breakers with short-time ratings.
(2) UL 1066 short-time withstand rating

Approximate Dimensions in Inches (mm)

Magnum Bypass Isolation Drawout Transfer Switches

Ampere Rating	Number of Poles	Height	B	Width	C Depth
NEMA 1 Enclosed Drawout Transfer Switch	Weight Lb (kg)				
$200-2000$	2	$90.00(2286.0)$	$64.00(1625.6)$	$60.00(1524.0)$	$3100(1409)$
$200-2000$	3	$90.00(2286.0)$	$64.00(1625.6)$	$60.00(1524.0)$	$3100(1409)$
$200-2000$	4	$90.00(2286.0)$	$64.00(1625.6)$	$60.00(1524.0)$	$3700(1682)$
$2500-3200$	2	$90.00(2286.0)$	$64.00(1625.6)$	$60.00(1524.0)$	$4700(2136)$
$2500-3200$	3	$90.00(2286.0)$	$64.00(1625.6)$	$60.00(1524.0)$	$4700(2136)$
$2500-3200$	4	$90.00(2286.0)$	$64.00(1625.6)$	$60.00(1524.0)$	$5500(2500)$

NEMA 3R Enclosed Drawout Transfer Switch

$200-2000$	2	$90.00(2286.0)$	$64.00(1625.6)$	$75.00(1905.0)$	$4100(1861)$
$200-2000$	3	$90.00(2286.0)$	$64.00(1625.6)$	$75.00(1905.0)$	$4100(1861)$
$200-2000$	4	$90.00(2286.0)$	$64.00(1625.6)$	$75.00(1905.0)$	$4700(2134)$
$2500-3200$	2	$90.00(2286.0)$	$64.00(1625.6)$	$75.00(1905.0)$	$5700(2588)$
$2500-3200$	3	$90.00(2286.0)$	$64.00(1625.6)$	$75.00(1905.0)$	$5700(2588)$
$2500-3200$	4	$90.00(2286.0)$	$64.00(1625.6)$	$75.00(1905.0)$	$6500(2951)$

Note: Add 3.00 inches (76.2 mm) to the height, 6.00 inches (152.4 mm) to the width and 3.00 inches (76.2 mm) to the depth to all enclosure dimensions to account for the seismic mounting brackets.

200-3200 A Drawout NEMA 1

200-3200 A Drawout NEMA 3R

Magnum-Based Designs

Approximate Dimensions in Inches (mm)

Magnum 4000-5000 A Units-NEMA 1

Note: The 4000 and 5000 A bypass isolation ATS will include two cubicles for the Source 1 and Source 2 Normal and the Bypass power case switch.
An additional cubicle called a wireway is provided for the Normal and Load connections. The wireway cubicle will have removable panels on the front, and cable connections may be made from the top or the bottom. Cable connections for Emergency are made in the rear. The wireway width is 32.00 inches (812.8 mm).

SP = Shipping Split.
Consult factory for dimensions.

NEMA 1 Magnum Drawout Transfer Switches

Ampere Rating	Number of Poles	A Height	B Width	C (1) Width	D Depth	Shipping Weight Lb (kg)
4000	3 or 4	90.00	137.00	146.00	60.00	(2)
		(2286.0)	(3479.8)	(3708.4)	(1524.0)	
5000	3 or 4	90.00	137.00	146.00	60.00	(2)
		(2286.0)	(3479.8)	(3708.4)	(1524.0)	

Magnum Bypass Isolation Drawout Transfer Switches

Ampere Rating	Number of Poles	A Height	B Width	C Depth	Shipping Weight Lb (kg)
NEMA 1 Enclosed Drawout Transfer Switch					
4000	2 or 3	$90.00(2286.0)$	$137.00(3479.8)$	$60.00(1524.0)$	$6900(3133)$
	4	$90.00(2286.0)$	$137.00(3479.8)$	$60.00(1524.0)$	$7600(3450)$
5000	2 or 3	$90.00(2286.0)$	$137.00(3479.8)$	$60.00(1524.0)$	$7900(3587)$
	4	$90.00(2286.0)$	$137.00(3479.8)$	$60.00(1524.0)$	$8600(3904)$
NEMA 3R Enclosed Drawout Transfer Switch					
4000	2 or 3	$90.00(2286.0)$	$137.00(3479.8)$	$75.00(1905.0)$	$7900(3587)$
	4	$90.00(2286.0)$	$137.00(3479.8)$	$75.00(1905.0)$	$8600(3904)$
5000	2 or 3	$90.00(2286.0)$	$137.00(3479.8)$	$75.00(1905.0)$	$8900(4041)$
	4	$90.00(2286.0)$	$137.00(3479.8)$	$75.00(1905.0)$	$9600(4358)$

Notes

(1) Seismic mounting adds 3.00 inches (76.2 mm) width to each side or additional 6.00 inches $(152.4 \mathrm{~mm})$ to width.
(2) Consult factory.

Contents

Description

Page

Product Selection Guide
Automatic Transfer Controllers Feature Selection Chart

V2-T5-67
ATC-100 Controller . V2-T5-70
ATC-300+ Controller . V2-T5-72
ATC-900 Controller . V2-T5-76
Controller Replacement Guide V2-T5-87

Product Selection Guide

Automatic Transfer Controllers Feature Selection Chart

Feature Description	ATC-100	ATC-300+	ATC-900
Transition			
Open transition	Standard	Standard	Standard
Closed transition	Not available	Not available	Standard
Timers			
Time delay normal to emergency (TDNE)	Standard	Standard	Standard
Time delay engine start (TDES)	Standard	Standard	Standard
Time delay emergency to normal (TDEN)	Standard	Standard	Standard
Time delay engine cooldown (TDEC)	Standard	Standard	Standard
Time delay emergency fail (TDEF)	Standard	Standard	Standard
Engine/Generator Exerciser			
Plant exerciser (PE) with fail-safe	Selectable—OFF, 7-, 14-, 28-day interval fixed run time 15 minutes no load/load with fail-safe	Selectable—OFF, 7-, 14-, 28-day interval, 0-600 minutes, no load/load with fail-safe	Two independent exerciser modes-OFF, daily, 7-, 14-, 28-day interval or by calendar date (up to 12 independent calendar dates). Test operations include independent transfer time delays
Source 1 Sensing			
All-phase undervoltage and underfrequency protection	Standard	Standard	Standard
All-phase overvoltage and overfrequency protection	Standard	Standard	Standard
Three-phase rotation sensing	Not available	Standard	Standard
Three-phase voltage unbalance	Not available	Standard	Standard
Source 2 Sensing			
All-phase undervoltage and underfrequency protection	Standard	Standard	Standard
All-phase overvoltage and overfrequency protection	Standard	Standard	Standard
Three-phase rotation sensing	Not available	Standard	Standard
Three-phase voltage unbalance	Not available	Standard	Standard

Automatic Transfer Controllers Feature Selection Chart, continued

Feature Description	ATC-100	ATC-300+	ATC-900
Manual Controls			
Test operators	Standard	Standard	Standard
Four-position test selector switch (FPSS)	Not available	Not available	Optional
Time delay bypass pushbutton	Not available	Standard	Standard
Maintenance selector switch (MSS)	Not available	Optional	Optional
Automatic/manual operation selector switch	Not available	Optional	Optional
Automatic/manual retransfer selector switch	Not available	Not available	Optional
Manual retransfer pushbutton	Not available	Optional	Optional
Indications / Status Display			
Source 1 connected / Source 2 connected	Standard	Standard	Standard
Source 1 available / Source 2 available	Standard	Standard	Standard
Source 1 tripped / Source 2 tripped	Standard	Standard	Standard
Customer Outputs			
Source 1 / Source 2 present contacts	Not available	Standard-2NO and 2NC	Not available
Source 1 available / Source 2 available contacts	Not available	Not available	Standard-1 Form C
Load sequence	Not available	Not available	Configurable-1 Form C
Selective load shed	Not available	Not available	Configurable-1 Form C
Load bank control	Not available	Not available	Configurable-1 Form C
Pre-transfer	Not available	Standard-1 Form C	Configurable-1 Form C
Pre-/post-transfer	Not available	Not available	Configurable-1 Form C
Source 1 connected	Not available	Not available	Configurable-1 Form C
Source 2 connected	Not available	Not available	Configurable-1 Form C
ATS not in automatic	Not available	Not available	Configurable-1 Form C
General alarm	Not available	Standard	Configurable-1 Form C
ATS in test	Not available	Not available	Configurable-1 Form C
Engine test aborted	Not available	Not available	Configurable-1 Form C
Cooldown in process	Not available	Not available	Configurable-1 Form C
Engine start contact status	Not available	Not available	Configurable-1 Form C
Emergency inhibit on	Not available	Not available	Configurable-1 Form C
Switch Position Indication Contact			
Source 1 position indication contact	Not available	Standard-1 Form C	Standard-1 Form C
Source 2 position indication contact	Not available	Standard-1 Form C	Standard-1 Form C

Automatic Transfer Controllers

Automatic Transfer Controllers Feature Selection Chart, continued

Feature Description	ATC-100	ATC-300+	ATC-900
Customer Inputs			
Go to emergency (Source 2)	Not available	Standard	Standard-configurable input
Load shed / emergency inhibit	Not available	Standard	Standard-configurable input
Monitor mode	Not available	Optional	Standard-configurable input
Bypass timers	Not available	Not available	Standard-configurable input
Lockout	Not available	Optional	Standard-configurable input
Manual retransfer on/off	Not available	Programmed	Standard-configurable input
Manual retransfer	Not available	Standard	Standard-configurable input
Slave in	Not available	Not available	Standard-configurable input
Remote engine test	Not available	Not available	Standard-configurable input
Preferred source selection	Not available	Not available	Standard-configurable input
Remote load test	Not available	Not available	Standard-configurable input
ATS on bypass	Not available	Not available	Standard-configurable input
Integrated Metering			
DCT metering-load side	Not available	Not available	Optional
Communications			
Modbus 485	Not available	Optional	Standard
Modbus TCP/IP	Not available	Optional	Optional
Transfer Mode Open Transition			
Delayed-time delay neutral	Standard-based on construction	Standard-based on construction	Standard-based on construction
In-phase monitoring	Standard-based on construction	Standard-based on construction	Standard-based on construction
Load voltage decay	Not available	Not available	Standard-based on construction
Transfer Mode Closed Transition			
Closed transition	Not available	Not available	Standard-based on construction
Closed transition/In-phase	Not available	Not available	Standard-based on construction
Closed transition/In-phase/ Time delay neutral	Not available	Not available	Standard-based on construction
Closed transition/In-phase/ Load voltage delay	Not available	Not available	Standard-based on construction
Service Entrance Rating			
Source 1, Source 2 or both, and with and without ground fault protection	Not available	Optional	Optional
Stainless Steel Cover			
SS lockable cover for controller		Optional	Optional

Automatic Transfer Controllers Feature Selection Chart, continued

Feature Description	ATC-100	ATC-300+	ATC-900
Programming Selections			
Time delay normal to emergency	3 seconds (fixed)	0-1800 seconds	0-9999 seconds
Time delay emergency to normal	5 minutes (fixed)	0-1800 seconds	0-9999 seconds
Time delay engine cooldown	5 minutes (fixed)	0-1800 seconds	0-9999 seconds
Time delay engine start	3 seconds (fixed)	0-120 seconds	0-120 seconds
Time delay neutral	Not available	0-120 seconds	0-120 seconds or based on load voltage decay of 2-30\% of nominal
Time delay Source 2 fail	Not available	0-6 seconds	0-6 seconds
Time delay voltage unbalance	Not available	10-30 seconds	10-30 seconds
Voltage unbalance three-phase	Not available	0 or 1 (1 = enabled)	Enabled or disabled
Phase reversal three-phase	Not available	$\begin{aligned} & \text { Dropout 5-20\% } \\ & \text { Pickup (D0 -2\%) -3\% } \end{aligned}$	$\begin{aligned} & \text { Dropout 5-20\% } \\ & \text { Pickup (DO-2\%) -3\% } \end{aligned}$
In-phase	Not available	0 or 1 (1 = enabled)	
Load sequencing	Not available	Not available	0-120 seconds (up to xx devices)
Pre-transfer signal	Not available	1-120 seconds	0-120 seconds
Plant exerciser	Selectable-OFF, 7-, 14-, 28-day interval, fixed run time 15 minutes, no load/load with fail-safe	Selectable—OFF, 7-, 14-, 28-day interval, 0-600 minutes, no load/ load with fail-safe	Two independent exerciser modes-OFF, daily, 7-, 14-, 28-day interval or by calendar date (up to 12 independent calendar dates). Test operations include independent transfer time delays
Preferred source selection	Not available	Not available	Source 1, Source 2 or None
Commitment to transfer in TDNE	Not available	Not available	Enabled or disabled
Retransfer mode N/A automatic or manual	Not available	Optional	Enabled or disabled
Auto daylight saving time adjustment	Not available	Not available	Enabled or disabled
System selection	Utility/generator	Utility/generator or dual utility	Utility/generator, dual utility, dual generator or three source
Voltage Specification			
System application voltage	Up to 480 Vac	Up to 600 Vac	Up to 600 Vac
Voltage measurements	Source 1 and 2	Source 1 and 2-VAB, VBC and VCA	Source 1, 2 and load-VAB, VBC and VCA
Voltage measurement range	120-480 Vac	0-790 Vac rms	0-700 Vac rms
Operating power	95-145 Vac	65-145 Vac	$\begin{aligned} & 65-160 \mathrm{Vac} \\ & 24 \mathrm{Vdc}(\pm 10 \%) \end{aligned}$
Frequency Specifications			
Frequency measurements	Source 2	Source 1 and 2	Source 1 and 2
Frequency measurement range	$50-60 \mathrm{~Hz}$	$40-70 \mathrm{~Hz}$	$40-70 \mathrm{~Hz}$
Environmental Specifications			
Operating temperature range	-20 to $+70^{\circ} \mathrm{C}$	-20 to $+70^{\circ} \mathrm{C}$	-20 to $+70^{\circ} \mathrm{C}$
Storage temperature range	-30 to $+85^{\circ} \mathrm{C}$	-30 to $+85^{\circ} \mathrm{C}$	-30 to $+85^{\circ} \mathrm{C}$
Operating humidity	0 to 95\% relative humidity (noncondensing)	0 to 95\% relative humidity (noncondensing)	0 to 95\% relative humidity (noncondensing)
Operating environment	Resistant to ammonia, methane, nitrogen, hydrogen and hydrocarbons	Resistant to ammonia, methane, nitrogen, hydrogen and hydrocarbons	Resistant to ammonia, methane, nitrogen, hydrogen and hydrocarbons
Front Panel Indication			
Mimic diagram with LED indication	Unit status, Source 1 and 2 available and connected (five total)	Unit status, Source 1 and 2 available and connected (five total)	Unit status, Source 1 and 2 available and connected (seven total)
Main display	N/A	LCD-based display, 2 lines, 16 characters	LCD display, 4.3 inch color TFT (480x272)
Display language	N/A	English, French and Spanish	English, French and Spanish
Communications capable	N/A	Modbus 485	Modbus 485 or Ethernet TCP/IP
Enclosure compatibility	NEMA 1 and 3R	NEMA 1, 12, 3R and 4X UV resistant faceplate	NEMA 1, 12, 3R and 4X UV resistant faceplate

ATC-100 Controller

ATC-100 Controller

Product Description

The ATC-100 Controller is a comprehensive, multifunction, microprocessor-based ATS controller. It is a compact, self-contained, panelmounted device designed to replace traditional relay and solid-state logic panels.

Application Description

The ATC-100 Controller provides both fixed and jumper-selectable settings to allow for a range of applications. It operates from all system voltages between 120 and 480 Vac , singlephase and three-phase, at 50 or 60 Hz . In addition, a period of no control power operation is provided. The ATC-100 Controller monitors the condition of the three-phase line-to-line voltage and frequency of both the utility and generator power sources. It can also be set up for single-phase operation. The ATC-100 controller provides the necessary intelligence to ensure that the transfer switch operates properly through a series of sensing and timing functions.

The ATC-100 controller can be used with both the breaker-based design and the contactor-based design up to 400 A single- or threephase. The ATC-100 controller is designed for residential or light commercial applications. If an application is defined as an Emergency or Legally required system, then Eaton recommends that an ATC-300+ or ATC-900 controller be used. See Page V2-T5-71 for ranges and factory settings.

Contents

Description

Page
Product Selection Guide . V2-T5-66
ATC-100 Controller
Standards and Certifications
V2-T5-71
Technical Data and Specifications V2-T5-71
ATC-300+ Controller . V2-T5-72
ATC-900 Controller . V2-T5-76
Controller Replacement Guide V2-T5-87

Features, Benefits and Functions

Standard Features

- Auxiliary relay contacts:
- Source 1 present 2NO and 2NC
- Source 2 present 2 NO and 2 NC
- Switch position indication contacts:
- Source 1 position 1NO and 1NC
- Source 2 position 1NO and 1NC
- Source 1 and Source 2 sensing:
- Undervoltage/under frequency
- Overvoltage/over frequency
- Controller settings via jumpers located at the rear of the unit
- Mimic diagram with source available and connected LED indication
- System TEST pushbutton
- Selectable-OFF, daily, 7-, 14-, 28-day interval fixed run time 15 minutes no load/load with fail-safe
- Monitor utility and generator power source voltages and generator power source frequency
- Provide undervoltage protection of the utility and generator power sources
- Provide underfrequency and overfrequency protection of the utility and generator power source
- Permit easy customer setup
- Permit system testing
- Provide faceplate source status indications

Standards and Certifications

- UL listed component
- IEC 61000-4-2, 61000-4-3, 61000-4-4, 61000-4-5, 61000-4-6, 61000-4-11
- CISPR 11, Class B
- FCC Part 15, Class B

Technical Data and Specifications

ATC-100 Controller Specifications

Description	Specification
Input control voltage	95 to $145 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$
Voltage measurements of	Utility V_{AB} Generator V_{AB} Utility $V_{B C}$ Generator $V_{B C}$ Utility V_{CA} Generator V_{CA}
Voltage measurement range	0 to 575 Vac rms ($50 / 60 \mathrm{~Hz}$)
Voltage measurement accuracy	$\pm 1 \%$ of full scale
Frequency measurements of	Generator
Frequency measurement range	40 Hz to 70 Hz
Frequency measurement accuracy	$\pm 0.3 \mathrm{~Hz}$ over the measurement range
Operating temperature range	-20° to $+70^{\circ} \mathrm{C}\left(-4^{\circ}\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$
Storage temperature range	-0° to $+85^{\circ} \mathrm{C}\left(-22^{\circ}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$
Operating humidity	0 to 95% relative humidity (noncondensing)
Operating environment	Resistant to ammonia, methane, nitrogen, hydrogen and hydrocarbons
Generator start relay	5A, 1/6 hp @ 250 Vac 5 A at 30 Vdc with a 150 W maximum load
K1, K2 relays	10 A, 1-3 hp @ 250 Vac $10 \mathrm{~A} @ 30 \mathrm{Vdc}$
Enclosure compatibility	NEMA 1, NEMA 3R and NEMA 12 UV-resistant ATC-100 faceplate

Adjustable Features with Range and Factory Default

| Set Point | Fixed/ | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Adjustable | Description | | Factory Default |
| Range | Breakers | Contactors | |

5

Contents
Description Page
Product Selection Guide V2-T5-66
ATC-100 Controller V2-T5-70
ATC-300+ Controller
Standards and Certifications V2-T5-73
Technical Data and Specifications V2-T5-73
ATC-900 Controller V2-T5-76
Controller Replacement Guide V2-T5-87

ATC-300+ Controller

Product Description

Transfer switches are equipped with the high-performance ATC-300+ digital transfer controller, receive rock-solid monitoring, status reporting and transfer control operation. Its superior design and robust construction make the ATC-300+ the industry benchmark for critical and distributed power systems.

Application Description

Eaton's ATC-300+ ControllerBased Automatic Transfer Switch is designed to provide unmatched performance, reliability and versatility for critical standby power applications.

Features, Benefits and Functions

Standard Features

- Auxiliary relay contacts:
- Source 1 present 2NO and 2NC
- Source 2 present 2 NO and 2 NC
- Switch position indication contacts:
- Source 1 position 1NO and 1NC
- Source 2 position 1 NO and 1NC
- Source 1 and Source 2 sensing:
- Undervoltage/ underfrequency
- Overvoltage/ overfrequency
- Three-phase rotation protection
- Three-phase voltage unbalance
- Pretransfer signal contacts 1NO/1NC
- Go to emergency (Source 2)
- Seven field-programmable time delays
- LCD-based display for programming, system diagnostic and Help message display
- Mimic diagram with source available and connected LED indication
- Time-stamped history log
- System TEST pushbutton
- Programmable plant exerciser-OFF, daily, 7-, 14-, 28-day interval selectable run time 0-600 minutes no load/ load with fail-safe

Optional Features

- Suitable for use as service equipment in the standard enclosure size when used with breaker-based design transfer switches
- Available UL 1449 3rd Edition compliant surge protection devices
- Integrated distribution panels
- Field-selectable multi-tap transformer panel permits operation on a wide range of system voltages
- Integral overcurrent protection available when used with breaker-based design transfer switches
- Space heater with thermostat
- Ammeter-load side
- Power quality metering
- Stainless steel cover for controller
- Manual retransfer from emergency to normal
- Communication via Modbus RTU—metering data, engine test, set point management system status
- Load shed/emergency inhibit
- Remote annunciator available

Standards and Certifications

- UL listed component
- Meets intent of UL 991, 1008
- Meets IEC 1000-4-2, 1000-4-3, 1000-4-4, 1000-4-5, 1000-4-6, 1000-4-11
- Meets CISPR 11, Class A
- Complies with FCC Part 15, Class A
(나)

Technical Data and Specifications

ATC-300+ Controller Specifications		
Description		Specification
Input control voltage		65 to $145 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$
Voltage measurements of		Source 1 $V_{A B}$ Source 2 $V_{A B}$ Source 1 $V B C$ Source 2 $V_{B C}$ Source 1 $V_{C A}$ Source 2 $V_{C A}$
Voltage measurement range		0 to 790 Vac RMS (50/60 Hz)
Voltage measurement accuracy		$\pm 1 \%$ of full scale
Frequency measurements of		Source 1 and Source 2
Frequency measurement range		40 Hz to 70 Hz
Frequency measurement accuracy		$\pm 0.3 \mathrm{~Hz}$ over the measurement range
Undervoltage dropout range:	Breaker/switch style ATS	50 to 97% of the nominal system voltage
	Contactor style ATS	78 to 97% of the nominal system voltage
Undervoltage pickup range:	Breaker/switch style ATS	(Dropout $+2 \%$) to 99\% of the nominal system voltage
	Contactor style ATS	(Dropout $+2 \%$) to 99\% of the nominal system voltage
Overvoltage dropout range:	Breaker/switch style ATS	105 to 120\% of the nominal system voltage
	Contactor style ATS	105 to 110\% of the nominal system voltage
Overvoltage pickup range:	Breaker/switch style ATS	103\% to (dropout -2\%) of the nominal system voltage
	Contactor style ATS	103% to (dropout -2\%) of the nominal system voltage
Underfrequency dropout range:	Breaker/switch style ATS	90 to 97% of the nominal system frequency
	Contactor style ATS	90 to 97% of the nominal system frequency
Underfrequency pickup range:	Breaker/switch style ATS	(Dropout +1 Hz) to 99\% of the nominal system frequency
	Contactor style ATS	(Dropout +1Hz) to 99\% of the nominal system frequency
Overfrequency dropout range:	Breaker/switch style ATS	103 to 110\% of the nominal system frequency
	Contactor style ATS	103 to 105\% of the nominal system frequency
Overfrequency pickup range:	Breaker/switch style ATS	101\% to (dropout -1 Hz) of the nominal system frequency
	Contactor style ATS	101% to (dropout -1 Hz) of the nominal system frequency
Operating temperature range		$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$
Storage temperature range		$-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$
Operating humidity		0 to 95\% relative humidity (noncondensing)
Operating environment		Resistant to ammonia, methane, nitrogen, hydrogen and hydrocarbons
Generator start relay		$5 \mathrm{~A}, 1 / 6 \mathrm{Hp}$ at 250 Vac
		5 A at 30 Vdc with a 150 W maximum Load
K1, K2, pretransfer, alarm relays		$10 \mathrm{~A}, 1-3 \mathrm{hp}$ at 250 Vac
K3, K4		10 A at 30 Vdc
Applicable testing		UL recognized component
		Meets UL 1008
		Meets Intent of UL 991
		Meets IEC 1000-4-2, 1000-4-3, 1000-4-4, 1000-4-5, 1000-4-6, 1000-4-11
		Meets CISPR 11, Class A
		Complies with FCC Part 15, Class A
Enclosure compatibility		NEMA 1, NEMA 3R and NEMA 12
		UV resistant ATC-300+ faceplate

Transfer Switches

Automatic Transfer Controllers

Closed Transition ATC-300+ Front Panel Display and Button Functions

Transfer Switches

Automatic Transfer Controllers

The following set points are programmable if the corresponding feature is programmed.
ATC-300+ Programming Features/Set Points ©

Set Point	Set Point Units	Description	Range	Factory Default
TDES	Minutes: seconds	Time delay engine start	0-120 seconds	0:03
TDNE	Minutes: seconds	Time delay normal to emergency	0-1800 seconds	0:00
TDEN	Minutes: seconds	Time delay emergency to normal	0-1800 seconds	5:00
TDEC	Minutes: seconds	Time delay engine cool-off	0-1800 seconds	5:00
TDN	Minutes: seconds	Time delay neutral	0-120 seconds	0:00
PLANT EXER	Days	Plant exerciser programming	Off, daily, 7-day, 14-day or 28 day	Off
TEST MODE	-	Test Mode	0,1 or 2 ($0=$ no load engine test, $1=$ load engine test, $2=$ disabled)	0
TER	Hours: minutes	Engine run test time	0-600 min	5:00
TPRE	Minutes: seconds	Pre-transfer delay timer	0-120 sec	0:00
PHASES	-	Three-phase or single-phase	1 or 3	As ordered
VOLT UNBAL	Volts	Voltage unbalanced	0 or 1 (1 = enabled)	1
UNBAL DROP \%	Percent	Percent for unbalanced voltage dropout	5-20\% of phase voltage unbalance	20\%
UNBAL PICK \%	Percent	Percent for unbalanced voltage pickup	Dropout minus (UNBAL DROP \% -2) to 3\%	10\%
UNBAL DELAY	Seconds	Unbalanced delay timer	10-30	0:20
TDEF	Seconds	Time delay emergency fail timer	0-6 sec	6
PHASE REV	-	Phase reversal	OFF, ABC or CBA	OFF

Note

(1) Complete list of programming selections found in IB01602009E.

ATC-900 Controller

Contents

Description	Page
Product Selection Guide	V2-T5-66
ATC-100 Controller	V2-T5-70
ATC-300+ Controller	V2-T5-72
ATC-900 Controller	
Technical Data and Specifications	V2-T5-86
Dimensions	V2-T5-86
Controller Replacement Guide	V2-T5-87

Primary Functions

The ATC-900 Automatic Transfer Switch Controller offers these standard features:

- Monitor normal and emergency source voltages and frequencies
- Provide transfer and retransfer control signals
- Provide engine/generator start and shutdown signals
- Permit user programming of operational set points
- Display real-time and historical information
- Permit system testing
- Store customer and factory established parameters in nonvolatile memory
- Provide faceplate source status indication
- Provide an LCD for programming and status readouts

Features and Benefits

- LCD screen for system status, programming, system diagnostics, help, and troubleshooting
- Event logging and recording, 450 time stamped events
- 0-600 V field programmable system voltage flexible configuration with assignable inputs and outputs
- Three-source ATS control-master and slave controller functionality
- Selective, automatic load shedding
- Industry standard communication protocols—Modbus RTU and/or Modbus TCP/IP communications interface
- USB drive for uploading and downloading of event data
- USB drive for uploading and downloading programmed set points

ATC-900 User Interface

ATC-900 Connections

Transfer Switches

Automatic Transfer Controllers

ATC-900 Features

Features	C-900
Hardware	
4.3-inch color TFT LCD display	■
UV-resistant faceplate	\square
Mimic diagram and LED status indicators	\square
Suitable for application over a wide range of environmental conditions	\square
Positive feedback membrane pushbuttons for application in harsh environments	\square
Help function for detailed description of displayed message	\square
Password protected system test pushbutton	\square
Bypass time delay pushbutton	\square
Form C engine start contact for Source 1 and Source 2	\square
S1 and S2 available Form C contacts	\square
Self-diagnostic and system diagnostic functions with LED indication	\square
DC power input	Optional
Metering	
True rms voltage sensing of Source 1, Source 2 and Load	\square
Frequency sensing of Source 1, Source 2 and Load	■
Voltage unbalance and phase rotation sensing	\square
Load current sensing	Optional
Sampling at 64 samples per cycle	Optional
Source 1 voltages (three-phase)	■
Source 2 voltages (three-phase)	\square
Load voltages (three-phase)	\square
Source 1 frequency	\square
Source 2 frequency	\square
Load frequency	\square
Load currents (three-phase)	Optional
Load kW	Optional
Load kvar	Optional
Load kVA	Optional
PF	Optional
Programming	
Programmable set points stored in nonvolatile memory	\square
System monitoring with historical data storage and display	\square
Digital set points for accurate and consistent performance	\square
Password-protected access to control functions and set point programming	\square
Four programmable control inputs	■
Four programmable control outputs	\square
Expandable I/0 modules (up to 20 1/0 total)	Optional
Automatic plant exerciser-two plant exerciser schedules, Off, daily, 7-day, 14-day, 28-day, calendar, separate TDNE, TDEN, TDEC timers from normal operation, control input provided for remotely initiating an engine test	■
Communications	
Modbus RTU	\square
Modbus TCP/IP	Optional
USB port for set point configuration and event-recording downloads	\square
Event History	
320 time-stamped events	\square
2 seconds of metered data stored before and after a transfer event	Optional

Automatic Transfer Controllers

ATC-900 Programmable Set Points

The table below lists only controller features; switch features are not listed, as they are defined by switch construction. Transition settings are specific to the transfer switch construction.

Features and Set Points

Option Number	Description	Range	Factory Default
General Settings			
-	Set new password	0000-9999	0900
-	Selected language	English, French or Spanish	English
-	Nominal frequency	50 or 60 Hz	As ordered
-	Nominal voltage	110-600 V	As ordered
-	Number of phases	1 or 3	As ordered
-	Number of generators	0,1 or 2	1
-	Preferred source	Source 1 or Source 2	Source 1
-	PT ratio	2:1-500:1	As ordered
-	CT ratio	200-5000	-
-	Daylight saving time	On or Off	1
-	Operating mode	Stand-alone/master or slave	Master
-	Phase sequence check	ABC, CBA or Off	Off
-	Commitment to transfer in TDNE	Yes or no	No
-	Manual retransfer	Auto, manual or external	As ordered
-	Modbus address	1-247	1
-	Modbus baud rate	$0=9600,1$, even	9600
		$1=9600,1$, odd	-
		$2=9600,2$, none	-
		$3=9600,1$, none	-
		$4=19,200,1$, even	-
		$5=19,200,1$, odd	-
		$6=19,200,2$, none	-
		$7=19,200,1$, none	-
Transition Settings			
47	Closed transition		
	Closed transition On or Off	On or Off	As ordered
	Closed voltage difference	1-5\%	2\%
	Closed frequency difference	$0.0-0.3 \mathrm{~Hz}$	0.3
32f/32d	Open-in-phase transition		
	In-phase-On or Off	Disable, in-phase default to alarm, in-phase default to open transition	As ordered
	In-phase frequency difference	$0.0-3.0 \mathrm{~Hz}$	1.0
-	Synchronization timer	1-60 minutes	5
32a/32d	Open-delayed transition		
	Time delay neutral	0-120 seconds	0
	Load voltage decay	2-30\% of nominal voltage	6\%
Time Delays			
1a	Time delay normal to emergency	0-9999 seconds	0:00
3 a	Time delay emergency to normal	0-9999 seconds	5:00
35 A	Time delay pre-transfer	0-120 seconds	0:01
35 C	Time delay post-transfer	0-120 seconds	0:10
2 A	Time delay engine 1 start	0-120 seconds	0:03
-	Time delay engine 2 start	0-120 seconds	0:03
4A	Time delay engine cool-off	0-9999 seconds	5:00
7 A	Time delay engine fail timer	0-6 seconds	0:06
-	Voltage unbalance time delay	10-30 seconds	0:30

Automatic Transfer Controllers

Features and Set Points, continued

Option Number	Description	Range	Factory Default
Source Settings			
26P	Source 1 undervoltage dropout	70-97\% of nominal	80\%
	Source 1 undervoltage pickup	(dropout $+2 \%$) to 99\% of nominal	90\%
5 P	Source 2 undervoltage dropout	70-97\% of nominal	80\%
	Source 2 undervoltage pickup	(dropout + 2\%) to 99\% of nominal	90\%
26K	Source 1 overvoltage dropout	105-120\% of nominal ($0=$ disabled)	115\%
	Source 1 overvoltage pickup	103\% of nominal to (dropout -2%) ($0=$ disabled)	105\%
5K	Source 2 overvoltage dropout	105-120\% of nominal ($0=$ disabled)	115\%
	Source 2 overvoltage pickup	103\% of nominal to (dropout -2%) ($0=$ disabled)	105\%
26 J	Source 1 underfrequency dropout	90-97\% of nominal ($0=$ disabled)	94\%
	Source 1 underfrequency pickup	(dropout + 1 Hz) to 99\% of nominal ($0=$ disabled)	96\%
5 J	Source 2 underfrequency dropout	90-97\% of nominal ($0=$ disabled)	94\%
	Source 2 underfrequency pickup	(dropout + 1 Hz) to 99\% of nominal ($0=$ disabled)	96\%
26 N	Source 1 overfrequency dropout	103-110\% (0 = disabled)	106\%
	Source 1 overfrequency pickup	101\% to (dropout -1 Hz) (0 = disabled)	104\%
5 N	Source 2 overfrequency dropout	103-110\% (0 = disabled)	106\%
	Source 2 overfrequency pickup	101\% to (dropout -1 Hz) (0 = disabled)	104\%
26L	Source 1 percent for unbalanced voltage dropout	5-20\% of phase-to-phase voltage unbalance ($0=$ disabled)	12\%
	Source 1 percent for unbalanced voltage pickup	3% to (dropout -2%) (0 = disabled)	10\%
5L	Source 2 percent for unbalanced voltage dropout	5-20\% of phase-to-phase voltage unbalance (0 = disabled)	12\%
	Source 2 percent for unbalanced voltage pickup	3% to (dropout -2%) (0 = disabled)	10\%
Engine Test/Plant Exerciser (PE1 and PE2 are independently programmable)			
6B	Engine test pushbutton on panel		
	Test mode	No load, load transfer, disabled	Load transfer
	Engine run test time	0-600 minutes	Load transfer
23M	PE time delay normal to emergency	0-9999 seconds	1 minute
	PE time delay emergency to normal	0-9999 seconds	1 minute
	PE time delay engine cooldown	0-9999 seconds	5 minutes
	PE1/PE2 test mode	No load, load transfer, disabled	Disabled
	PE1/PE2 run time	0-600 minutes	30 minutes
	PE1/PE2 schedule	Off, daily, 7-day, 14-day, 28-day or calendar date (up to 12 user-specified dates)	30 minutes
	PE1/PE2 calendar date	Month: 1-12; Day: 1-31	30 minutes
	PE1/PE2 day of week	1 Sunday, 2 Monday, 3 Tuesday, 4 Wednesday, 5 Thursday, 6 Friday or 7 Saturday	30 minutes
	PE1/PE2 plant start time	HH:MM AM/PM	30 minutes
Accessory I/O			
-	Accessory I/O modules	0-4	-

Flexible Configuration

Designed for scalability, the ATC-900 can be configured for a wide variety of applications. A mix-and-match approach to features allows the user to build a transfer switch controller that meets the precise application needs.
The ATC-900 controller includes four user configurable inputs and outputs. The inputs and outputs can be assigned functions from a predefined list of options either at the factory or in the field.

- Inputs
- Monitor mode
- Bypass timers
- Lockout
- Manual retransfer On or Off
- Manual retransfer
- Slave in
- Remote engine test
- Preferred source selection
- Go to emergency
- Emergency inhibit
- ATS on bypass
- Go to neutral
- Outputs (control)
- Load sequence
- Selective load shed
- Load bank control
- Pre-/post-transfer
- Pre-transfer
- Post-transfer
- User remote control
- Outputs (status/alarms)
- Source 1 available (standard)
- Source 2 available (standard)
- Source 1 connected
- Source 2 connected
- ATS not in automatic
- General alarm
- ATS in test
- Engine test aborted
- Cooldown in process
- Engine start contact status
- Generator 1 start status
- Generator 2 start status
- Emergency inhibit on
- ATS on bypass

Additional I/O can be added at any time by adding an external I/O module. Each I/O module contains four inputs and outputs and up to four modules can be daisy chained to the ATC-900 controller.

I/O Module—The ATC-900 optional I/O module provides users with four module provides users with four
additional assignable inputs and outputs. Up to four I/O modules can be added to an ATC-900 controller providing a total of 20 inputs and outputs.

Transfer Switches

Automatic Transfer Controllers

ATC-900 Metering

ATC-900 Main Screen Shows Current Values

The DCT module incorporates a current transformer interface to the ATC-900, allowing current to be metered along with voltage and frequency. Combined with the ATC-900, the DCT module serves as a multifunction power meter and provides measurement of the listed electrical parameters. Readings are displayed on the ATC-900 controller display or can be monitored through Modbus 485.

DCT Module Attached

Metering Units	Accuracy	Notes
Current		
IA, IB, IC Amps	$\pm 1 \%$ of reading	Accuracy range 5-100\%
Voltage		
VAB, VBC, Volts VCA	$\pm 1 \%$ of reading	Applicable to volt range of 34-721 Vac
Frequency		
Frequency Hz	$\pm 0.2 \mathrm{~Hz}$ of reading	Range is $20-255 \mathrm{~Hz}$

Power and Energy Metering Data			
Power			
Petering	Units Accuracy	Notes	
Power	kW	$\pm 2 \%$ of reading	Approx. 1 -second update
kVA	kVA	$\pm 2 \%$ of	
reading	Approx. 1 -second update		
kvar	kvar	$\pm 2 \%$ of	
reading	Approx. 1 -second update		
PF (power factor)	-	0 to ± 1.00	-

Features

Feature Overview	Integrated ATC-900 Meter
Instrumentation	
Current, per phase	\square
Current Demand	-
Voltage, per phase (L-L)	■
Min. Max. Readings	-
Frequency	\square
Power	
Real, reactive and apparent power total (W,VAR,VA)	\square
Power factor, total	\square
Energy	
Real, reactive and apparent energy, total (Wh,VAR,VAh)	-
Communications	
RS-485, Modbus RTU, Modbus ASCII	\square
Voltage Inputs (measurement category)	

Range: universal, auto-ranging up to $416 \mathrm{Vac} \mathrm{L}-\mathrm{N}, 721 \mathrm{Vac} \mathrm{L}-\mathrm{L}$
Supported hookups: 3-element wye or delta
Input impedance: 2 m ohm/phase
Burden: $0.0022 \mathrm{VA} /$ phase at 120 V
Fault withstand: meets IEEE C37.90.1

Current Inputs

5 A nominal, 10 A maximum
Burden: 0.005 VA per phase maximum at 11 A
Pickup current: 0.1\% of nomina
Connections: screw terminals
Maximum input wire gauge: AWG \#12/2.5 mm²
Fault withstand: $100 \mathrm{~A} / 10$ seconds, $300 \mathrm{~A} / 3$ seconds, $500 \mathrm{~A} / 1$ second

Isolation

All inputs are isolated to 2600 Vac
Measurement Methods
Voltage, current: true rms
Power: sampling at 64 samples per cycle on all channels measured readings simultaneously A/D conversion: 16 simultaneous 12-bit analog to digital converters

Load Metering

Event Summary

Event Summary Display
The ATC-900 controller stores 100 transfer summaries, 350 transfer details, 100 alarms and 20 time adjustments.

Events include:

- Actions of the transfer sequence
- Alarms
- Changes to the set points
- Changes to the time/date
- Resetting a historical counter
- Engine run test
- Time-stamping resolution of 1 second.

Event Details

Event Details Display

Each transfer event can be exploded to view a step by step, time stamped, sequence of operation for a transfer event. All metered values are also logged for each event and can be viewed on the event data screen. Time stamping resolution of 0.1 seconds.

Hi-Speed Capture

High Speed Capture Display, Pre and Post Event

The ATC-900 stores metered data updated on a continuous 20 millisecond basis for specific events. The data is captured 2 seconds before and 2 seconds after the event (except for a power failure, which is 4 seconds before). Oscillographic data for 10 events is stored in the controller and may be downloaded over USB or displayed graphically.

- Events include:
- Source unavailability actions that initiate a transfer sequence (undervoltage, overvoltage, etc.)
- Successful transfers (at the point of breaker/ contactor closure)
- Unsuccessful transfers (at the point of breaker/contactor failure to close or open)

Industry Standard Communication Protocol

Every ATC-900 controller includes a standard Modbus RTU communications interface with an option to upgrade to Modbus TCP/IP.

The ATC-900 is also compatible with Eaton's Power Xpert Gateway for web-based monitoring, Modbus TCP/IP SNMP, or BACnet/IP. The Power Xpert Gateway can be used to consolidate data from up to 64 devices, including communications ready transfer switch controllers, trip units and meters, as well as other Eaton devices. Versions of the Power Xpert Gateway include email event notification sand data-logging functionality.

HMi Remote Annunciator and Controller

The HMi Remote Annunciator and Controller monitors and controls up to eight transfer switches on a 7-inch LCD touch screen. It is compatible with either Modbus RTU or Modbus TCP/IP protocols. A basic mimic bus for each transfer switch displays source availability, source connected and preferred source. Users can drill down to metered source values and event history for each transfer switch. All control features are password-protected and include engine test, transfer to emergency (peak shaving), manual retransfer and bypass time delays.

HMi Remote Annunciator and Controller

USB Programming Port

Every ATC-900 transfer switch includes a front panel, NEMA 4X rated USB port for use in configuring set points or downloading event data to a USB flash drive. To reduce the time spent on site for commissioning, set points can be configured at a PC using the ATC-900 configuration software and saved to a USB flash drive to be uploaded to one or multiple controllers. Set points are also easily copied from one controller to another.

Downloading event capture data provides the user the ability to more thoroughly analyze high-speed capture data using a PC, or data can be emailed to Eaton's Technical Support Team when off site troubleshooting support is required.

USB Programming Port

Special Applications

Three-Source ATS Control

The ATC-900 Master/Slave controller functionality provides the user with the ability to use two independent transfer switches in three-source systems consisting of a utility and two generator sources. In a three-source system, the Master ATS controls the engine starting and stopping of the Slave ATS.

In the event of a Source 1 power failure, the Master ATS engine start relay closes signaling the Slave ATS to start both generators. (Note: The Slave ATS requires continuous power using either the DCT Module for a DC power input or a UPS input.) The Master ATS handles all transfer time delays between the utility to generator transfer. If the preferred generator does not start within the programmed time delay, the Slave ATC-900 will initiate a transfer to the non-preferred generator. If "None Preferred" is selected, then both generators will start and the Slave ATS will transfer to the first generator source available. The ATC-900 will sense the load is connected to a good source and shut down the second generator.

Load Management

The ATC-900 includes several features to enhance the user's ability to manage load while on the alternate source.

- Integrated load metering: provides metering data that allows the user to monitor energy utilization and manage system loading
- Selective load shedding: selectively drop non-essential loads when a user-defined kW level is reached. The transfer switch remains on generator
- Load shed to neutral (where ATS construction allows): provides the ability to load shed to a neutral position from a generator source
- Pre-/post-transfer signals: provides the ability to stop select loads during the transfer process
- Load bank disable output: disengages a load bank if utility power is lost during an engine test

Three-Source Transfer Switch Arrangement

Transfer Switches

Automatic Transfer Controllers

Technical Data and Specifications

Technical Specifications

Parameter	Specification
Control power	$120 \mathrm{Vac}(50 / 60 \mathrm{~Hz})$ (operating range $65-160 \mathrm{Vac})$ or $24 \mathrm{Vdc}(\pm 10 \%)$ with DCT module
Power consumption	18 VA
Environmental conditions	
Operating temperature	-4 to $+158{ }^{\circ} \mathrm{F}\left(-20\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
Operating humidity	Up to 90\% relative humidity (noncondensing)
Enclosure compatibility	NEMA 12 (standard mounting) NEMA 4/4X (mounted with gasket between panel and device faceplate) NEMA 3R (outdoor) UV resistant ATC-900 faceplate
System voltage application	120-600 Vac ($50 / 60 \mathrm{~Hz}$) (single- or three-phase)
Voltage measurements	Source 1, Source 2 and Load (VAB, VBC, VCA for three-phase system)
Voltage measurement range	0-700 Vac
Voltage measurement accuracy	$\pm 1 \%$ of reading
Frequency measurements	Source 1 and Source 2
Frequency measurement range	$40-80 \mathrm{~Hz}$
Frequency measurement accuracy	$\pm 0.1 \mathrm{~Hz}$
Applicable testing	UL recognized component 2009 IBC, 2010 CBC and OSHPD certified in ATS assemblies Complies with UL 991 environmental tests Complies with IEC 61000-4-2, 61000-4-3, 61000-4-4, 61000-4-5 and 61000-4-6 Complies with CISPR 11, Class A Complies with FCC Part 15, Subpart B, Class A
CSA conformance	C22.2 No. 178-1978 (reaffirmed 1992)
CE mark	European standards conformance

Dimensions

Approximate Dimensions in Inches (mm)
ATC-900

Additional Information

Instruction bulletin: IB01602088E
Web-based demo: www.eaton.com/ats

Controller Replacement Guide

Product Description

Automatic Transfer Switch Controller Replacement

Eaton automatic transfer switches use several different controller types. These automatic transfer controllers (ATCs) may be ordered as replacement for current manufacturer's existing automatic transfer switches. If vintage analog controller or controller parts are needed, then a separate renewal part data list needs to be referenced. The intent of this section is to address current controllers as listed in the table below.

It is important to note that the same controller type can be used on different switch types and the factory programmed firmware/ options will vary depending on the switch type. Thus it is very important to know the original switch type in order to select the correct controller replacement kit. If there is a question on which kit to select, then providing the factory with the original general order number and/or the 15 -character catalog number will eliminate any doubts regarding the correct kit selection.

Automatic Transfer Controllers		
Controller		
Type	Order via Style Number Only	Order via Replacement Kit Style Number and Feature List ${ }^{(1)}$
ATC-100	See ATC-100 Replacement Kits table on the right	
ATC-300	Superseded by ATC-300+	
ATC-300+	See ATC-300 Replacement Kits, Page V2-T5-88	
ATC-600	See ATC-600/800 Replacement Kits, Page V2-T5-89	
ATC-800	See ATC-600/800 Replacement Kits, Page V2-T5-89	
ATC-900	ATC-900 Controller Replacement Guide, Page V2-T5-91	

ATC-100 Controller Replacement Kits

The ATC-100 controller is primarily used on residential and light commercial applications up to 400 A . This controller may be used with either contactor-based or molded-case switch designs. The ATC-100 is only used on open transition type transfers. Replacement kits are ordered by style number (see table below).

ATC-100

ATC-100 Replacement Kits

Switch Type	Controller Type	Replacement Style Number
Magnum-Based Design	-	
ATC-100 controller is not available	ATC-100	$\mathbf{8 1 6 0 A 0 0 G 2 3}$
Breaker-Based Design		
Breaker open transition	ATC-100	$\mathbf{8 1 6 0 A 0 0 G 2 4}$
Contactor-Based Design	-	-
2-position open transition	-	-
2-position closed transition	-	-
3-position open transition		
3-position closed transition		
Note		

Automatic Transfer Controllers

ATC-300 Controller Replacement Kits

The ATC-300 controller has been in use for many years and was applied on moldedcase switch units up to 1000 A and contactor-based automatic transfer switches up to 1200 A. In 2012, the ATC-300 was replaced by the ATC-300+ controller. An ATC$300+$ replacement kit is used for replacement of older ATC-300s. When ordering the replacement kit, it is very important to identify that the existing application is either a molded-case switch design, a breaker-based design (has the lockout feature), or a contactor 2-position or 3-position design.
The ATC-300+ has two features-Emergency Inhibit and Manual Retransfer-that
were not available on the ATC-300. If these features were not previously supplied with the ATC-300, then the end user does not have to use these additional features. In addition, the ATC-300+ has communication capability for providing Modbus 485.

The ATC-300 and ATC-300+ have identical size and mounting dimensions. The J 8 pin is now an 8-pin connector versus a 4-pin connector on the older ATC-300. J8 pins 5-6 and 6-8 are the connections for Emergency Inhibit and Manual Retransfer. The replacement kit includes the 8 -pin connector.

ATC-300 Replacement Kits

Switch Type	Controller Type	Replacement Style Number ${ }^{(1)}$
Magnum-Based Design		-
ATC-300+ controller is not available	-	
Breaker-Based Design		$\mathbf{8 1 6 0 A 0 0 G 1 0 0 ~}{ }^{2}{ }^{2}$
Breaker open transition	ATC-300+	
Contactor-Based Design		$\mathbf{8 1 6 0 A 0 0 G 1 0 4}$
2-position open transition	ATC-300+	-
2-position closed transition	-	$\mathbf{8 1 6 0 A 0 0 G 1 0 8}$
3-position open transition	ATC-300+	-
3-position closed transition	-	

Examples: Replacement Kit Style Number Selection

Example 1-

Breaker-Based Design

Review 5th and 6th character in the ATS 15-character catalog number.

- If the 5 th and 6 th character is FD, KD, LD, MD, NB, then select 816000G100
- Example:

ATV3KDA30300XSU
implies 8160A00G100

Example 2-

Contactor-Based Design

Review 5th and 6th character to determine if the ATS is a two-position or a threeposition, and then select replacement kit accordingly

Note: C2 is two-position and C3 or C5 is a three-position.

- Example:

ATC3C2X30200XSU implies 8160A00G104

- Example:

ATC3C3X30400XSU implies 8160A00G108

- Example:

ATC3C5X30600XSU implies 8160A00G108

ATC-300+ Controller Replacement Kits

The ATC-300+ controller was first used in 2012 for molded-case switch, breaker-based (with lockout feature) and open transition contactor-based (2-position and 3 -position) designs. It is also used as the replacement kit for older ATC-300 controllers. It is critical to identify the application that needs a replacement kit. The ATC-300+ is NOT used on closed transition designs.

The ATC-300+ controller will have the lock out feature enabled. If not required, then the feature is jumpered out.

Ordering the breaker-based kit does not assure that the lockout feature (option 16) will be supplied. A note needs to be supplied with the order entry.

Note: This style number will not identify the replacement kit. The ATS catalog number is required to identify the replacement kit. The 15 -character catalog number is on the ATS nameplate located on interior door of the ATS.

ATC-300+ Rear View

Notes

(1) The replacement style number 8160A00Gxx will include the printed circuit board style number (6D32360Gxx) shown on back of the controller
(2) Identify if lockout feature 16 is required.

ATC-600 and ATC-800 Controller Replacement Kits

The ATC-600 is used on molded-case switch and breaker-based designs up to 1000 A . It is also used on open transition Magnum power case switch and breaker designs up to 5000 A.

The ATC-800 has been used on closed transition Magnum power case switch and breaker-based designs up to 5000 A. The ATC-800 is currently being used on open and closed transition contactor-based designs up to 1200 A.

Older automatic transfer switches may have used what is referred to as IO Controllers. Controller replacements for those units can be ordered as ATC-600 for open transition and ATC-800 for closed transition.

In some cases, both the ATC-600 and ATC-800 controllers have been used on medium voltage transfer switches.

When ordering the replacement kit, always provide the original GO\# of the ATS to correctly identify the features supplied with the controller. This feature set will then be used to program the replacement controller.

See the table below for the replacement kit style numbers for automatic transfer switches with ATC-600 or ATC-800 controllers. Because each controller was specifically supplied with the standard features and any order-specific optional features, there is no practical way to create a replacement kit style number for each variation of the features supplied. Thus, when ordering the replacement kit 8160A00GXX, the job-specific controller features must be specified. Order-specific features need to be included with the order entry.

See Feature List Steps table on Page V2-T5-90 for identifying the features to be supplied on the order entry.

On the back of the ATC-800/600 controllers is a style number similar to a 2 D 7858 GXX . This style number only identifies the basic control board that is included in the replacement kit per the table on this page. The replacement kit style number listed on this page must be used to order the replacement kit.

ATC-600/800 Replacement Kits

Switch Type	Controller Type	Replacement Style Number
Magnum-Based Design		
Magnum open transition	ATC-600	8160A00G03 ${ }^{\text {(1) }}$
Magnum open transition	ATC-600	8160A00G41 ${ }^{(2)}$
Magnum closed transition	ATC-800	8160A00G05 ${ }^{\text {(1) }}$
Magnum closed transition	ATC-800	8160A00G42 ${ }^{(2)}$
Breaker-Based Design		
Breaker open transition	ATC-600	8160A00G03 ${ }^{(1)}$
Breaker open transition	ATC-600	8160A00G41 ${ }^{(2)}$
Contactor-Based Design		
2-position open transition	ATC-800	8160A00G43 ${ }^{(2)}$
2-position closed transition	ATC-800	8160A00G43 ${ }^{2}$)
3 -position open transition	ATC-800	8160A00G43 ${ }^{(2)}$
3 -position closed transition	ATC-800	8160A00G43 ${ }^{(2)}$

Type	Replacement Style Number
ATC-600/800 Connectors	
J4 19-pin	67A2590H25
J5 22-pin	67A2590H26
Source 1 4-pin	$\mathbf{1 2 6 8 C 0 7 H 3 1}$
Source 2 4-pin	$\mathbf{1 2 6 8 C 0 7 H 3 1}$
Load 4-pin	$\mathbf{1 2 6 8 C 0 7 H 3 1}$
J7 4-pin	$\mathbf{1 2 6 8 C 0 7 H 3 1}$

Notes

(1) Kit includes one J4 (19-pin), one J5 (22-pin), four 4-pin connectors (S1, S2, Load, J7 Power) and pins.
(2) Kit does not include any connectors/pins.

Feature List

The replacement controller needs to match the features originally supplied. The easiest way to supply this list is to provide the original order number from the original shipment. The ATS product line maintains a database with the original feature list. The general order (GO) number is on the ATS nameplate located on the inside of the door. In addition, it is very helpful to also supply the $\mathbf{1 5}$-digit ATS catalog number that can be found on the ATS nameplate.

The existing controller also has a catalog number feature code that defines what features are included. Pressing the Help Lamp Test button will show this code on a scrolling display.
If this information is not supplied on order entry, then the order will be placed on manufacturing hold until the information is supplied.

Feature code example (3f-e3-31-032)

Press Help Lamp Test button to initiate the Display Screen Readout

Feature List Steps

Step	Action
A. 1	Identify replacement style number from table on Page V2-T5-89.
A.2	Identify original general order (GO) number. (1)(2)
A.3	Order style number with GO information in the order notes. (3) If the original GO number is hard to identify or is unavailable, then one of the following steps below can be taken.
B. 1	Provide the 9-digit feature code from the ATC-800 or ATC-600 controller. Feature code is viewable from ATC-600 or ATC-800 readout screen by pressing the Help button. Controller must be able to be powered up to view this feature code. On older controllers, the feature code may be 7 or 8 characters. Feature code example (3f-e3-31-032).
C. 1	If the above information is not available, then provide a detailed listing of features to be supplied with the controller. The following questions must be answered.

Notes

(1) Not replacement order number.
(2) If ATS is mounted in Eaton motor control center or Eaton switchboard, the ATS order number must be supplied, not the overall gear General Order number. This ATS order number is located on the ATS label.
(3) If the original GO number is not supplied on order entry, then the order will be placed on manufacturing hold until the feature list is supplied.

ATC-900 Controller Replacement Guide

The ATC-900 controller is used on any of Eaton's automatic transfer switches. It can be used on contactorbased, molded case switchbased, and Magnum power case switch-based designs. In addition, the ATC-900 is used on either open or closed transition type switches. The ATC-900 controller is provided as a replacement controller for existing designs. The selection guide below provides the different style number replacement kits.

ATC-900 Replacement Kit Selector Table

Switch Type	Number of Positions	Transition	Style Number Kit
Contactor-based	3	Open	$\mathbf{8 1 6 0 A 9 0 G 0 1}$
Contactor-based	2	Open	$\mathbf{8 1 6 0 A 9 0 G 0 7}$
Contactor-based	3	Closed	$\mathbf{8 1 6 0 A 9 0 G 1 3}$
Bypass contactor-based	3	Open	$\mathbf{8 1 6 0 A 9 0 G 1 9}$
Bypass contactor-based	3	Closed	$\mathbf{8 1 6 0 A 9 0 G 2 5}$
Molded case switch-based	3	Open	$\mathbf{8 1 6 0 A 9 0 G 3 1}$
Magnum-based	3	Open	$\mathbf{8 1 6 0 A 9 0 G 3 7}$
Magnum-based	3	Closed	$\mathbf{8 1 6 0 A 9 0 G 4 3}$
In addition, the ATC-900	Refer to the controller field		
controller can be used to	upgrade selection below.		
retrofit and upgrade existing	The upgrade kit includes the		
automatic transfer switches	ATC-900 controller and the		
using either an ATC-600 or an	Wire harness adapter kit.		
ATC-800 controller.			
Retrofit/Upgrade Selector Kit for	ATC-600 or ATC-800		
Switch Type		$\mathbf{8 1 6 0 A 9 1 G 0 1}$	
Contactor-based		$\mathbf{8 1 6 0 A 9 1 G 0 1}$	
Molded case switch-based		$\mathbf{8 1 6 0 A 9 1 G 0 1}$	
Magnum-based			

ATC-900 (Top Left and Right Side Views)

ATC-900 Mating Connectors (Plugs)

Connector Designation	Number of Pins	Connector Part Number
J1	3	1268C07H41
J2	3	1268C07H41
J3	3	1268C07H41
J4	19	67A2590H25
J5	3	66A8190H01
J6	12	67A2590H32
J7	4	1268C07H31
J8	USB	M22-USB-SA
J9	8	66A8190H04
J11	4	66A8190H02
J12	4	66A8190H02
J13	4	66A8190H02
J14	n/a	From DCT Module
J15	6	66A8190H03
DCT Module		
J18	2	66A8190H05
I/O Module		
J1 120 Vac Power	4	1268C07H31
J2 Inputs and GND	10	67A2590H28
J3 Communications	4	66A8190H02
J4 Outputs Form C	12	67A2590H32

Note

The connectors to the ATC- 900 can be ordered separately; however, connector kit style number 8160A92G01 can be ordered that includes connectors for $\mathrm{J} 4, \mathrm{~J} 6, \mathrm{~J} 9, \mathrm{~J} 11$ and J 15 plus the
USB port.

Contents

Description

Page

Standard and Optional Features

Contactor-Based—Automatic Transfer Switch Features	V2-T5-91
Breaker-Based—Automatic Transfer Switch	
Features	V2-T5-99
Magnum-Based—Automatic Transfer Switch	
Features	V2-T5-103
Feature Description	V2-T5-107
Glossary.	V2-T5-116

Contactor-Based-Automatic Transfer Switch Features

Feature Number	Description	Open Transition									
				AT			ATC			NTC	
		C2	C2	C2	C3	C5	C2	C3	C5	C2	C3
Timers											
1	Time delay normal to emergency (TDNE) fixed 2 or 15 seconds	S	S	-	-	-	-	-	-	-	-
1A	Adjustable 0-1800 seconds	-	-	S	S	S	-	-	-	-	-
1B	Adjustable 0-9999 minutes	-	-	-	-	-	S	S	S	-	-
2	Time delay engine start (TDES) fixed 3 seconds	S	S	-	-	-	-	-	-	-	-
2A	Adjustable 0-120 seconds	-	-	S	S	S	S	S	S	-	-
3	Time delay emergency to normal (TDEN) fixed 5 minutes	S	S	-	-	-	-	-	-	-	-
3A	Adjustable 0-1800 seconds	-	-	S	S	S	-	-	-	-	-
3B	Adjustable 0-9999 minutes	-	-	-	-	-	S	S	S	-	-
4	Time delay engine cooldown (TDEC) fixed 5 minutes	S	S	-	-	-	-	-	-	-	-
4A	Adjustable 0-1800 seconds	-	-	S	S	S	-	-	-	-	-
4B	Adjustable 0-9999 minutes	-	-	-	-	-	S	S	S	-	-
Emergency (S2) Source Sensing											
5 H	Phase reversal protection	-	-	S	S	S	S	S	S	-	-
5 J	All phase undervoltage/underfrequency	S	S	S	S	S	S	S	S	-	-
5 K	All phase overvoltage/overfrequency	-	-	S	S	S	S	S	S	-	-
5 L	All phase voltage unbalance	-	-	S	S	S	S	S	S	-	-
5M	All phase voltage phase loss	-	-	-	-	-	S	S	S	-	-
5N	All phase overfrequency	-	-	-	-	-	S	S	S	-	-
System or Engine Test											
6B	Engine test pushbutton	S	S	S	S	S	S	S	S	-	-
6C	Remote engine test input	-	-	-	-	-	C	C	C	-	-
6D	Maintained 2-position test switch	-	-	-	-	-	0	0	0	-	-
6 H	Maintained 4-position test switch	-	-	-	-	-	0	0	0	-	-
7	Time delay emergency fail (TDEF) fixed 6 seconds	S	S	-	-	-	-	-	-	-	-
7A	Adjustable 0-6 seconds	-	-	S	S	S	S	S	S	-	-

	Bypass										
8C	Bypass TDEN	-	-	S	S	S	S	S	S	-	-
8D	Bypass TDNE	-	-	S	S	S	S	S	S	-	-
8 E	Bypass TDNE/TDEN (input)	-	-	-	-	-	C	C	c	-	-

Maintenance Selector Switch

$9 B$	Electrical operator isolator switch	-	-	0	0	0	0	0	0	-	-

[^29]
Contactor-Based-Automatic Transfer Switch Features, continued

[^30]
Contactor-Based-Automatic Transfer Switch Features, continued

S = Standard, $0=$ Optional, C = Configurable
Note
(1) When these options are selected with the ATC-900 controller, the associated input or output will be factory fixed and cannot be reconfigured by the user.

Contactor-Based-Automatic Transfer Switch Features, continued

Feature	Description	Open Transition									
		RLC1	ATC1	ATC			ATC			NT	
Number		C2	C2	C2	C3	C5	C2	C3	C5	C2	C3
Communications											
48D	PXG400 gateway (includes Modbus)	-	-	0	0	0	0	0	0	-	-
48F	Modbus-MPONI module (PONI not required with ATC-300+)	-	-	0	0	0	-	-	-	-	-
48F	Modbus communication-no PONI required	-	-	S	S	S	S	S	S	-	-
48G	Modbus TCP/IP gateway	-	-	-	-	-	0	0	0	-	-
48P	Power supply for remote annunciator	-	-	0	0	0	0	0	0	-	-
48RAC	Remote annunciator with control (includes Modbus)	-	-	0	0	0	0	0	0	-	-
48MRAC	Remote annunciator with control multi-switch (includes Modbus)	-	-	0	0	0	-	-	-	-	-
48 U	USB port	-	-	-	-	-	S	S	S	-	-
49A	Sensing isolation transformer Magnum	-	-	-	-	-	0	0	0	-	-
49B	Sensing isolation transformer	-	-	0	0	0	0	0	0	-	-
49 C	Multi-tap voltage transformer (non AG only)	-	S	S	S	S	S	S	S	S	S
49C	Multi-tap voltage transformer (option only on fixed)	-	-	-	-	-	-	-	-	-	-

TVSS up to 480 V (Connected to Normal)

51D1	50 kA CVX	-	-	0	0	0	0	0	0	0
51F1	100 kA CVX	-	-	0	0	0	0	0	0	0

Surge Protection Device with 12 ft Cable (on Normal)

51 S1	50 kA -SPD (1)	-	-	-	-	-	-	-	-	-	-
51S2	80 kA -SPD ${ }^{(1)}$	-	-	-	-	-	-	-	-	-	-
51 S3	100 kA -SPD ${ }^{(1)}$	-	-	-	-	-	-	-	-	-	-
51 S4	120 kA -SPD (1)	-	-	-	-	-	-	-	-	-	-
5155	160 kA -SPD (1)	-	-	-	-	-	-	-	-	-	-
5156	200 kA -SPD (1)	-	-	-	-	-	-	-	-	-	-
51 S7	250 kA -SPD (1)	-	-	-	-	-	-	-	-	-	-
5158	300 kA -SPD ${ }^{(1)}$	-	-	-	-	-	-	-	-	-	-
5159	400 kA -SPD (1)	-	-	-	-	-	-	-	-	-	-
52B	24 V generator battery power	-	-	-	-	-	-	-	-	-	-
52 C	24 V onboard power supply (charger and batteries)	-	-	-	-	-	-	-	-	-	-
54 B	Upgrade to 316 stainless steel	-	-	0	0	0	0	0	0	0	0
60	Control power transformer (240/120 V single-phase and 208 V only)	-	0	0	-	-	-	-	-	-	-
61 A	UPS device	-	-	-	-	-	-	-	-	-	-
61 B	UPS 120 Vac terminal block input	-	-	-	-	-	-	-	-	-	-
80A	Emergency (S2) inhibit contact	-	-	-	0	0	C	C	C	-	-

Monitoring Outputs

81A	General alarm indication contact	-	-	-	-	-	C	C	C	-	-
81 B	ATS not in automatic	-	-	-	-	-	C	C	C	-	-
81 C	ATS in test	-	-	-	-	-	C	C	C	-	-
81 D	Engine test aborted	-	-	-	-	-	C	C	C	-	-
81 E	Cooldown in process	-	-	-	-	-	C	C	C	-	-
81F	Engine start contact status	-	-	-	-	-	C	C	C	-	-
81G	Emergency inhibit on	-	-	-	-	-	C	C	C	-	-
81GL	Emergency inhibit on with white indicating light (2)	-	-	-	-	-	0	0	0	-	-
81H	ATS on bypass	-	-	-	-	-	C	C	c	-	-

Inputs

81 J	Lockout	-	-	-	-	-	C	C	C	-
81K	Monitor mode	-	-	-	-	-	C	C	C	-
81L	Remote load test	-	-	-	-	-	C	C	C	-

Three Source ATS Control (Master/Slave)

90 A	Master control output	-	-	-	-	-	C	C	C	-
$90 B$	Slave input	-	-	-	-	-	C	C	C	-

S = Standard, $0=$ Optional, $\mathrm{C}=$ Configurable

Notes

(1) Add feature package B or C (e.g., 51S4B).

B: LED indication and audible alarm, Form C contact, EMI/RFI filtering (standard)
$\mathrm{C}: \mathrm{B}$ and surge counter with Reset button (standard with surge)
(2) When these options are selected with the ATC-900 controller, the associated input or output will be factory fixed and cannot be reconfigured by the user

Standard and Optional Features

Contactor-Based - Automatic Transfer Switch Features, continued

Feature	Description	Open Transition				Closed Transition		
		BIC3	BIC3	BIC9	BIC9	CBC9	CBC9	CTC9
Number		C	D	C	D	C	D	C3
Timers								
1A	Adjustable 0-1800 seconds	S	S	-	-	-	-	-
1B	Adjustable 0-9999 minutes	-	-	S	S	S	S	S
2A	Adjustable 0-120 seconds	S	S	S	S	S	S	S
3A	Adjustable 0-1800 seconds	S	S	-	-	-	-	-
3B	Adjustable 0-9999 minutes	-	-	S	S	S	S	S
4A	Adjustable 0-1800 seconds	S	S	-	-	-	-	-
4B	Adjustable 0-9999 minutes	-	-	S	S	S	S	S
Emergency (S2) Source Sensing								
5 H	Phase reversal protection	S	S	S	S	S	S	S
5J	All phase undervoltage/underfrequency	S	S	S	S	S	S	S
5 K	All phase overvoltage/overfrequency	S	S	S	S	S	S	S
5 L	All phase voltage unbalance	-	-	0	0	0	0	0
5M	All phase voltage phase loss	-	-	S	S	S	S	S
5N	All phase overfrequency	-	-	S	S	S	S	S

System or Engine Test

$6 B$	Engine test pushbutton	S						
6C	Remote engine test input	-	-	C	C	C	C	C
6D	Maintained 2-position test switch	-	-	0	0	0	0	0
6H	Maintained 4-position test switch	-	-	0	0	0	0	0
7A	Adjustable 0-6 seconds	S						

Pushbutton Bypass

8C	Bypass TDEN	S	S	S	S	S	S	S
8D	Bypass TDNE	S	S	S	S	S	S	S
8 E	Bypass TDNE/TDEN (input)	-	-	C	C	C	C	C
Maintenance Selector Switch								
9B	Electrical operator isolator switch	0	0	0	0	0	0	0
Preferred Source Selector								
	Preferred source selector (programmed)	-	-	S	S	S	S	S
10A	Preferred source selector input	-	-	C		C	C	C
10 C	Preferred source selector with selector switch	-	-	0	,	0	0	0
10B	Utility to utility or utility to generator	-	-	S	S	S	S	S
10D	Generator to generator	-	-	S	S	S	S	S

Indicating Lights/LEDs

12 C	Normal (S1) source connected	S	S	S	S	S	S	S
12D	Emergency (S2) source connected	S	S	S	S	S	S	S
12G	Normal (S1) source available	S	S	S	S	S	S	S
12 H	Emergency (S2) source available	S	S	S	S	S	S	S
12L	Normal (S1) source tripped (requires feature 16)	-	-	0	0	0	0	0
12M	Emergency (S2) source tripped (requires feature 16)	-	-	0	0	0	0	0

Source Available Contacts

14 C	Normal (S1) source available 4 Form C	0	0	0	0	0	0	0
14 D	Emergency (S2) source available 4 Form C	0	0	0	0	0	0	0
14E	Normal (S1) source available 1 Form C	-	-	S	S	S	S	S
14F	Emergency (S2) source available 1 Form C	-	-	S	S	S	S	S
14G	Normal (S1) source available 2 Form C	S	S	0	0	0	0	0
14 H	Emergency (S2) source available 2 Form C	S	S	0	0	0	0	0

[^31]| Feature | Description | Open Transition | | | Closed Transition | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | BIC3 | BIC3 | BIC9 | BIC9 | CBC9 | CBC9 | CTC9 |
| Number | | C | D | C | D | C | D | C3 |
| Position Contacts | | | | | | | | |
| 15E | Normal (S1) source position 1 Form C | S | S | S | S | S | S | S |
| 15 F | Emergency (S2) source position 1 Form C | S | S | S | S | S | S | S |
| 15G | Normal (S1) source position 3 Form C | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 15 H | Emergency (S2) source position 3 Form C | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 15R | Normal (S1) source position 1 Form C (relay OUTPUT) | - | - | C | C | C | C | C |
| 15S | Emergency (S2) source position 1 Form C (relay OUTPUT) | - | - | C | C | C | C | C |
| Integral Overcurrent Protection | | | | | | | | |
| 16N | Normal (S1) switch only | - | - | - | - | - | - | - |
| 16E | Emergency (S2) switch only | - | - | - | - | - | - | - |
| 16B | Normal (S1) and emergency (S2) switches | - | - | - | - | - | - | - |
| 16S | Service equipment/overcurrent protection normal (S1) and emergency (S2) | - | - | - | - | - | - | - |

Metering
(Specify normal (S1), emergency (S2) or load side for 18A thru E)

18	Integrated load metering (DCT module)	-	-	0	0	0	0	0
18A	$10250 / 260$	0	0	0	0	0	0	0
18B	PX4000/6000/8000	-	0	-	-	-		-
18 D	IC 130/140/150	0	0	0	0	0	0	0
18E	PXM2250/2260/2270	0	0	0	0	0	0	0
18J	Integrated metering (DCT module-load side only)	-	-	0	0	0	0	0
20A	Rear bus connections	-	-	-	-	-	-	-
21A	Non-standard terminals (optional in IES for centers)	-	-	-	-	-	-	-
22	Ground bus	S	S	-	-	-	-	-
22 C	Special ground bar-contact factory	-	-	-	-	-	-	-
22 D	16 conductor ground bus 500 or 750 kcmil	0	0	0	0	0	-	-

Plant Exerciser

23A	Selectable-disabled 7-, 14-, 28-day interval, fixed 15 minutes load/no load, with fail-safe	-	-	-	-	-	-	-
23K	Selectable-disabled 7-, 14-, 28-day interval, 0-600 minutes load/no load, with fail-safe	S	S	-	-	-	-	-
23L	24-hour, 7-day, 365-day programmable plant exerciser	0	0	-	-	-	-	-
23M	Selectable-disabled 7-, 14-, 28-, 365-day interval, 0-600 minutes load/no load, with fail-safe	-	-	S	S	S	S	S

Normal (S1) Source Sensing

26D	Go to emergency (S2) input	S	S	C	C	C	C	C
26E	Go to emergency (S2) input with selector switch (1)	-	-	0	0	0	0	0
26H	Phase reversal protection	S	S	S	S	S	S	S
26 J	All phase undervoltage/underfrequency	S	S	S	S	S	S	S
26K	All phase overvoltage/overfrequency	S	S	S	S	S	S	S
26L	All phase voltage unbalance and phase loss	-	-	0	0	0	0	0
26L	All phase voltage unbalance	S	S	S	S	S	S	S
Alternative Transfer Modes of Operation								
29D	Dual ATS bypass	S	S	S	S	S	S	-
29G	Selector switch for auto or non-auto operation (1)	0	0	0	0	0	0	0
29J	Manual (pushbutton) transfer E to N ; automatic N to $\mathrm{E}^{(1)}$	0	0	0	0	0	0	0
29L	Manual retransfer on/off input	-	-	C	C	C	C	C
29M	Manual retransfer on/off input with selector switch (1)	-	-	0	0	0	0	0
29K	Manual retransfer input	-	-	C	C	C	C	C

S = Standard, $0=$ Optional, C = Configurable

Note
(1) When these options are selected with the ATC-900 controller, the associated input or output will be factory fixed and cannot be reconfigured by the user.

Contactor-Based-Automatic Transfer Switch Features, continued

		Open Transition				Closed Transition		
Feature		BIC3	BIC3	BIC9	BIC9	CBC9	CBC9	
Number	Description	C	D	C	D	C	D	C3
Open Transfer Operation Modes								
32A	Time delay neutral adjustable 0-120 seconds (delayed transition)	S	S	C	C	-	-	-
32 B	Load voltage decay adjustable 2-30\% nominal voltage	-	-	C	C	-	-	-
32 C	In-phase transition defaults to load voltage decay	-	-	-	-	-	-	-
32D	In-phase transition defaults to time delay neutral	-	-	-	-	-	-	-
32E	Delay transition timer adjustable 3-60 seconds	-	-	-	-	-	-	-
32F	In-phase transition	-	-	-	-	-	-	-
32G	Time delay neutral fixed 0 or 2 seconds (delayed transition)	-	-	-	-	-	-	-
Load Control								
35 A	Pre-transfer signal contacts 1 Form C	S	S	C	C	C	C	C
35B	Pre-/post-transfer signal	-	-	C	C	C	C	C
36	Load shed from emergency (S2 inhibit)	S	S	C	C	C	C	C
36A	Load shed-S2 inhibit with keyed switch (INPUT)	-	-	0	0	0	0	0
37	Go to "isolated" position (not SE rated)	-	-	C	C	C	C	C
Suitable for Use as Service Equipment Requires 16B, N or S								
37A	Without ground fault protection	-	-	-	-	-	-	-
37B	With ground fault protection required at 1000 A or more if the electrical service is a solidly grounded wye system of more than 150 V to ground but not exceeding 600 V phase to phase	-	-	-	-	-	-	-

Stainless Steel Device Covers										
38A	SS cover for device plate or SE disconnect	0	0	0	0	0	0	0	0	0
$38 B$	SS cover for controller	0	0	0	0	0	0	0	0	0

Space Heater with Thermostat

41A	100 watts	0	0	0	0	0	0	0
41 E	375 watts	-	-	-	0	-	0	-
42	IBC/CBC seismic qualified	S	S	S	S	S	S	S
Load Management Contacts								
45A-K	Load sequencing contacts (1)	-	-	C	C	C	C	C
45L	Selective load shed (assignable to multiple out put contacts)	-	-	C	C	C	C	C

Closed Transition Operational Modes (User Must Specify)

47 C	Closed/in-phase transition default to load voltage decay	-	-	-	-	-	-	-
47 D	Closed transition	-	-	-	-	C	C	C
47E	Closed/in-phase transition default to time delay neutral	-	-	-	-	-	-	-
47F	Closed transition load voltage decay	-	-	-	-	C	C	C
47G	Closed transition time delay neutral	-	-	-	-	C	C	C
47-	Parallel limit timer	-	-	-	-	-	-	-

Commu	ations							
48A	INCOM-IPONI module	-	-	-	-	-	-	-
48D	PXG400 gateway (includes Modbus)	0	0	0	0	0	0	0
48F	Modbus-MPONI module (PONI not required with ATC-300+)	0	0	-	-	-	-	-
48F	Modbus communication-no PONI required	S	S	S	S	S	S	S
48 G	Modbus TCP/IP gateway	0	0	0	0	0	0	0
48P	Power supply for remote annunciator	0	0	0	0	0	0	0
48RAC	Remote annunciator with control (includes Modbus)	0	0	0	0	0	0	0
48MRAC	Remote annunciator with control multi-switch (includes Modbus)	-	-	-	-	-	-	-
48R	Remote annunciator	-	-	S	S	S	S	S
48 U	USB port	-	-	-	-	-	-	-
49A	Sensing isolation transformer Magnum	-	-	0	0	0	0	0
49B	Sensing isolation transformer	-	-	0	0	0	0	0
49 C	Multi-tap voltage transformer (non AG only)	-	-	-	-	-	-	S
49C	Multi-tap voltage transformer (option only on fixed)	S	S	S	S	S	S	S

[^32]
Contactor-Based-Automatic Transfer Switch Features, continued

		Open Transition				Closed Transition		
Feature		BIC3	BIC3	BIC9	BIC9	CBC9	CBC9	CTC9
Number	Description	C	D	C	D	C	D	C3
TVSS up to 480 V (Connected to Normal)								
$\begin{aligned} & \hline \text { 51D1 } \\ & \text { 51F1 } \end{aligned}$	$\begin{aligned} & 50 \mathrm{kA}-\mathrm{CVX} \\ & 100 \mathrm{kA}-\mathrm{CVX} \end{aligned}$	0 0	-	0	-	0	-	0

Surge Protection Device with 12 ft Cable (on Normal)

51 S1	50 kA -SPD (1)	-	0	-	0	-	0	-
51S2	$80 \mathrm{kA}-\mathrm{SPD}{ }^{(1)}$	-	0	-	0	-	0	-
51 S3	100 kA -SPD (1)	-	0	-	0	-	0	-
51 S4	120 kA -SPD (1)	-	0	-	0	-	0	-
5155	160 kA -SPD (1)	-	0	-	0	-	0	-
51S6	200 kA -SPD (1)	-	0	-	0	-	0	-
51 S7	250 kA -SPD (1)	-	-	-	-	-	-	-
5158	300 kA -SPD (1)	-	-	-	-	-	-	-
5159	400 kA -SPD (1)	-	-	-	-	-	-	-
52B	24 V generator battery power	-	-	-	-	-	-	-
52 C	24 V onboard power supply (charger and batteries)	-	-	-	-	-	-	-
54A	Front access cabinet	-	-	-	-	-	-	-
54B	Upgrade to 316 stainless steel	0	0	0	0	0	0	-
59A	Silver-plated bus	S	S	-	S	-	S	-
59B	Tin-plated bus	0	0	-	-	-	-	-
61 A	UPS device	0	0	-	-	-	-	-
61B	UPS 120 Vac terminal block input	S	S	-	-	-	-	-
80A	Emergency (S2) inhibit contact	S	S	C	C	C	C	C
Monitoring Outputs								
81A	General alarm indication contact	-	-	C	C	C	C	C
81B	ATS not in automatic	-	-	C	C	C	C	C
81C	ATS in test	-	-	C	C	C	C	C
81D	Engine test aborted	-	-		C	C	C	C
81 E	Cooldown in process	-	-	C	C	C	C	C
81F	Engine start contact status	-	-	C	C	C	C	C
81G	Emergency inhibit on	-	-	C	C	C	C	C
81GL	Emergency inhibit on with white indicating light ${ }^{(2)}$	-	-	0	0	0	0	0
81H	ATS on bypass	-	-	C	C	C	C	C

Inpu								
81J	Lockout	-	-	C	C	C	C	C
81K	Monitor mode	-	-	C	C	C	C	C
81L	Remote load test	-	-	C	C	C	C	C

Three Source ATS Control (Master/Slave)

90 A	Master control output	-	-	C	C	C	C	C
90B	Slave input	-	-	C	C	C	C	C

S = Standard, $0=$ Optional, $\mathrm{C}=$ Configurable

Notes

(1) Add feature package B or C (e.g., 51S4B).

B: LED indication and audible alarm, Form C contact, EMI/RFI filtering (standard)
$\mathrm{C}: \mathrm{B}$ and surge counter with Reset button (standard with surge)
${ }^{(2)}$ When these options are selected with the ATC-900 controller, the associated input or output will be factory fixed and cannot be reconfigured by the user.

Standard and Optional Features

Breaker-Based-Automatic Transfer Switch Features

		Open Transition			NTHE NTVE	MTHX MTVX	Closed Transition MBHE
Feature Number	Description	ATH1 ATV1	ATH3 ATV3	ATH9 ATV9			
Timers							
1	Time delay normal to emergency (TDNE) fixed 2 or 15 seconds	S	-	-	-	-	-
1A	Adjustable 0-1800 seconds	-	S	-	-	-	-
1B	Adjustable 0-9999 minutes	-	-	S	-	-	-
2	Time delay engine start (TDES) fixed 3 seconds	S	-	-	-	-	-
2A	Adjustable 0-120 seconds	-	S	S	-	-	-
3	Time delay emergency to normal (TDEN) fixed 5 minutes	S	S	-	-	-	-
3A	Adjustable 0-1800 seconds	-	-	-	-	-	-
3B	Adjustable 0-9999 minutes	-	-	S	-	-	-
4	Time delay engine cooldown (TDEC) fixed 5 minutes	S	-	-	-	-	-
4A	Adjustable 0-1800 seconds	-	S	-	-	-	-
4B	Adjustable 0-9999 minutes	-	-	S	-	-	-
Emergency (S2) Source Sensing							
5 H	Phase reversal protection	-	S	S	-	-	-
5 J	All phase undervoltage/underfrequency	S	S	S	-	-	-
5 K	All phase overvoltage/overfrequency	-	S	S	-	-	-
5 L	All phase voltage unbalance	-	-	0	-	-	-
5 L	All phase voltage phase loss	-	-	S	-	-	-
5 N	All phase overfrequency	S	-	S	-	-	-
System or Engine Test							
6B	Engine test pushbutton	S	S	S	-	-	-
6 C	Remote engine test input	-	-	C	-	-	-
6 D	Maintained 2-position test switch	-	-	0	-	-	-
6 H	Maintained 4-position test switch	-	-	0	-	-	-
7	Time delay emergency fail (TDEF) fixed 6 seconds	S	-	-	-	-	-
7 A	Adjustable 0-6 seconds	-	S	S	-	-	-
Pushbutton Bypass							
8 C	Bypass TDEN	-	S	S	-	-	-
8D	Bypass TDNE	-	S	S	-	-	-
8 E	Bypass TDNE/TDEN (input)	-	-	C	-	-	-
Maintenance Selector Switch							
	Electrical operator isolator switch	-	0	0	-	-	-
Preferred Source Selector							
	Preferred source selector (programmed)	-	-	S	-	-	-
10A	Preferred source selector input	-	-	C	-	-	-
10 C	Preferred source selector with selector switch	-	-	0	-	-	-
10B	Utility to utility or utility to generator	-	-	S	-	-	-
10D	Generator to generator	-	-	S	-	-	-
Indicating Lights/LEDs							
12 C	Normal (S1) source connected	S	S	S	S	-	S
12D	Emergency (S2) source connected	S	S	S	S	-	S
12G	Normal (S1) source available	S	S	S	S	-	-
12 H	Emergency (S2) source available	S	S	S	S	-	-
12L	Normal (S1) source tripped (requires feature 16)	-	0	0	0	-	-
12M	Emergency (S2) source tripped (requires feature 16)	-	0	0	0	-	-
Source Available Contacts							
14 C	Normal (S1) source available 4 Form C	-	0	0	0	-	-
14 D	Emergency (S2) source available 4 Form C	-	0	0	0	-	-
14E	Normal (S1) source available 1 Form C	-	-	S	-	-	-
14F	Emergency (S2) source available 1 Form C	-	-	S	-	-	-
14G	Normal (S1) source available 2 Form C	S	S	0	0	-	-
14 H	Emergency (S2) source available 2 Form C	S	S	0	0	-	-

[^33]| | | Open Transition | | | NTHE NTVE | MTHX MTVX | Closed Transition MBHE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Feature Number | Description | ATH1 ATV1 | ATH3
 ATV3 | ATH9
 ATV9 | | | |
| Position Contacts | | | | | | | |
| 15E | Normal (S1) source position 1 Form C | S | S | S | - | - | - |
| 15F | Emergency (S2) source position 1 Form C | S | S | S | - | - | - |
| 15G | Normal (S1) source position 3 Form C | 0 | 0 | 0 | - | - | - |
| 15 H | Emergency (S2) source position 3 Form C | 0 | 0 | 0 | - | - | - |
| 15R | Normal (S1) source position 1 Form C (relay OUTPUT) | - | - | C | - | - | - |
| 15S | Emergency (S2) source position 1 Form C (relay OUTPUT) | - | - | C | - | - | - |
| Integral Overcurrent Protection | | | | | | | |
| 16N | Normal (S1) switch only | - | 0 | 0 | 0 | 0 | - |
| 16E | Emergency (S2) switch only | - | 0 | 0 | 0 | 0 | - |
| 16B | Normal (S1) and emergency (S2) switches | - | 0 | 0 | 0 | 0 | - |
| Metering
 (Specify normal (S1), emergency (S2) or load side for 18A thru E) | | | | | | | |
| 18 | Integrated load metering (DCT module) | - | - | - | - | - | - |
| 18A | $10250 / 260$ | 0 | 0 | 0 | 0 | - | - |
| 18B | PX4000/6000/8000 | - | - | - | - | - | - |
| 18D | IO 130/140/150 | 0 | 0 | 0 | 0 | - | - |
| 18E | PXM2250/2260/2270 | 0 | 0 | 0 | 0 | - | - |
| 18 J | Integrated metering (DCT module-load side only) | - | - | 0 | 0 | - | - |
| 20A | Rear bus connections | - | 0 | 0 | 0 | 0 | - |
| 21 A | Non-standard terminals (optional in IES for centers) | 0 | 0 | 0 | 0 | 0 | 0 |
| 22 | Ground bus with provisions to attach to neutral | - | - | 0 | - | - | - |
| Plant Exerciser | | | | | | | |
| 23A | Selectable-disabled 7-, 14-, 28-day interval, fixed 15 minutes load/no load, with fail-safe | S | - | - | - | - | - |
| 23K | Selectable-disabled 7-, 14-, 28-day interval, 0-600 minutes load/no load, with fail-safe | - | S | - | - | - | - |
| 23L | 24 -hour, 7-day, 365-day programmable plant exerciser | - | 0 | - | - | - | - |
| 23M | Selectable-disabled 7-, 14-, 28-, 365-day interval, 0-600 minutes load/no load, with fail-safe | - | - | S | - | - | - |
| Normal (S1) Source Sensing | | | | | | | |
| 26 D | Go to emergency (S2) input | - | S | C | - | - | - |
| 26 E | Go to emergency (S2) input with selector switch (1) | - | - | 0 | - | - | - |
| 26 H | Phase reversal protection | - | S | S | - | - | - |
| 26 J | All phase undervoltage/underfrequency | - | S | S | - | - | - |
| 26K | All phase overvoltage/overfrequency | - | S | S | - | - | - |
| 26L | All phase voltage unbalance and phase loss | - | - | 0 | - | - | - |
| 26L | All phase voltage unbalance | - | S | S | - | - | - |
| 26M | Allows operation with generator with utility sensing | 0 | - | - | - | - | - |
| 26P | (available only through a field installed kit) (not in IES) | S | - | - | - | - | - |
| Alternative Transfer Modes of Operation | | | | | | | |
| 29G | Selector switch for auto or non-auto operation (1) | - | 0 | 0 | - | - | - |
| 29. | Manual (pushbutton) transfer E to N ; automatic N to E ${ }^{\text {(1) }}$ | - | 0 | 0 | - | - | - |
| 29L | Manual retransfer on/off input | - | - | C | - | - | - |
| 29M | Manual retransfer on/off input with selector switch (1) | - | - | 0 | - | - | - |
| 29K | Manual retransfer input | - | - | C | - | - | - |

[^34]
Note

(1) When these options are selected with the ATC-900 controller, the associated input or output will be factory fixed and cannot be reconfigured by the user.

Breaker-Based-Automatic Transfer Switch Features, continued

Feature Number	Description	Open Transition					Closed Transition MBHE
		ATH1	ATH3	ATH9	NTHE	MTHX	
		ATV1	ATV3	ATV9	NTVE	MTVX	
Open Transfer Operation Modes							
32A	Time delay neutral adjustable 0-120 seconds (delayed transition)	-	S	C	-	-	-
32B	Load voltage decay adjustable 2-30\% nominal voltage	-	-	C	-	-	-
32 C	In-phase transition defaults to load voltage decay	-	-	-	-	-	-
32D	In-phase transition defaults to time delay neutral	-	-	-	-	-	-
32 E	Delay transition timer adjustable 3-60 seconds	-	-	-	S	-	-
32 F	In-phase transition	-	-	-	-	-	-
32G	Time delay neutral fixed 0 or 2 seconds (delayed transition)	S	-	-	-	-	-

34A	48 inches (1219 mm)	-	-	0	0	-	-
34 C	96 inches (2438 mm)	-	-	0	0	-	-
34 E	144 inches (3658 mm)	-	-	0	0	-	-
34 F	100 inches (2540 mm) (fixed mount only)	-	-	-	-	-	-
35A	Pre-transfer signal contacts 1 Form C	-	S	C	-	-	-
35B	Pre-/post-transfer signal	-	-	C	-	-	-
36	Load shed from emergency (S2 inhibit)	-	0	C	-	-	-
36A	Load shed-S2 inhibit with keyed switch (INPUT)	-	-	0	-	-	-
37	Go to "isolated" position (not SE rated)	-	-	C	-	-	-
Suitable for Use as Service Equipment Requires 16B, N or S							
37A	Without ground fault protection	-	0	0	0	-	-
37B	With ground fault protection required at 1000 A or more if the electrical service is a solidly grounded wye system of more than 150 V to ground but not exceeding 600 V phase to phase	-	0	0	0	-	-

| Stainless Steel Device Covers | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 38 A | SS cover for device plate or SE disconnect | - | 0 | 0 | 0 | - | - |
| $38 B$ | SS cover for controller | 0 | 0 | 0 | - | - | - |

Distribution Panel (For 240/120 V Only)

39 A	225 A with (2) 200 A feeders	-	0	-	-	-
$39 B$	300 A with (3) 200 A feeders	-	0	-	-	-
$39 C$	400 A with (4) 200 A feeders	-	0	-	-	-

Space Heater with Thermostat

41 A	100 watts	0	0	0	0	0	0
42	IBC/CBC seismic qualified	S	S	S	S	S	S

Load Management Contacts

$\begin{aligned} & \text { 45A-K } \\ & 45 \mathrm{~L} \end{aligned}$	Load sequencing contacts (1) Selective load shed (assignable to multiple out put contacts)	-	-	C C	-	-	
Communications							
48D	PXG400 gateway (includes Modbus)	-	0	0	-	-	-
48F	Modbus communication-no PONI required	-	-	S	-	-	-
48G	Modbus TCP/IP gateway	-	-	0	-	-	-
48P	Power supply for remote annunciator	-	0	0	-	-	-
48RAC	Remote annunciator with control (includes Modbus)	-	0	0	-	-	-
48MRAC	Remote annunciator with control multi-switch (includes Modbus)	-	0	-	-	-	-
48 U	USB port	-	-	S	-	-	-
49B	Sensing isolation transformer	-	0	0	-	-	-
49 C	Multi-tap voltage transformer ${ }^{(1)}$	S	S	S	S	S	-
49 C	Multi-tap voltage transformer (option only on fixed)	-	-	-	-	-	-

S = Standard, $0=$ Optional, $\mathrm{C}=$ Configurable

Note
(1) On dedicated voltage 240 V or 208 V , multi-tap transformer is not included as standard.

Breaker-Based-Automatic Transfer Switch Features, continued

		Open Transition			NTHE NTVE	MTHX MTVX	Closed Transition MBHE
Feature Number	Description	ATH1 ATV1	ATH3 ATV3	ATH9 ATV9			
TVSS up to 480 V (Connected to Normal)							
51 D 1	50 kA -CVX	-	0	0	0	0	-
51 F 1	100 kA -CVX	-	0	0	0	0	-
Surge Protection Device with $12 \mathrm{ft} \mathrm{Cable} \mathrm{(on} \mathrm{Normal)}$							
51S1	50 kA -SPD (1)	-	-	-	-	-	-
51S2	80 kA -SPD (1)	-	-	-	-	-	-
51 S3	100 kA -SPD (1)	-	-	-	-	-	-
5184	120 kA -SPD (1)	-	-	-	-	-	-
51S5	160 kA -SPD (1)	-	-	-	-	-	-
$51 \mathrm{S6}$	200 kA -SPD (1)	-	-	-	-	-	-
51 S7	250 kA -SPD ${ }^{(1)}$	-	-	-	-	-	-
5158	300 kA -SPD ${ }^{(1)}$	-	-	-	-	-	-
5159	400 kA -SPD (1)	-	-	-	-	-	-
52B	24 V generator battery power	-	-	-	-	-	-
52 C	24 V onboard power supply (charger and batteries)	-	-	-	-	-	-
54A	Front access cabinet	-	-	-	-	-	-
54B	Upgrade to 316 stainless steel	-	0	0	0	0	-
55B	Source swap (normal—bottom / emergency-top)	-	-	-	-	-	-
60	Control power transformer (240/120 V single-phase and 208 V only)	0	0	-	-	-	-
61A	UPS device	-	-	-	-	-	-
61B	UPS 120 Vac terminal block input	-	-	-	-	-	-
80A	Emergency (S2) inhibit contact	-	0	C	-	-	-
Monitoring Outputs							
81A	General alarm indication contact	-	-	C	-	-	-
81B	ATS not in automatic	-	-	C	-	-	-
81C	ATS in test	-	-	C	-	-	-
81D	Engine test aborted	-	-	C	-	-	-
81 E	Cooldown in process	-	-	C	-	-	-
81F	Engine start contact status	-	-	C	-	-	-
81G	Emergency inhibit on	-	-	C	-	-	-
81GL	Emergency inhibit on with white indicating light (2)	-	-	0	-	-	-
81H	ATS on bypass	-	-	C	-	-	-
Inputs							
81J	Lockout	-	-	C	-	-	-
81K	Monitor mode	-	-	C	-	-	-
81L	Remote load test	-	-	C	-	-	-
Three Source ATS Control (Master/Slave)							
90A	Master control output	-	-	C	-	-	-
90B	Slave input	-	-	C	-	-	-

S = Standard, $0=$ Optional, $\mathrm{C}=$ Configurable

Notes

(1) Add feature package B or C (e.g., 51S4B).

B: LED indication and audible alarm, Form C contact, EMI/RFI filtering (standard)
$C: B$ and surge counter with Reset button (standard with surge)
(2) When these options are selected with the ATC-900 controller, the associated input or output will be factory fixed and cannot be reconfigured by the user.

Magnum-Based-Automatic Transfer Switch Features

Feature	Description	Open Transition		BIV9	Closed Transition	
		ATV9	NTVE		CTV9	CBV9
Number		MG	MG	MG	MG	MG
Timers						
1B	Adjustable 0-9999 minutes	S	-	S	S	S
2A	Adjustable 0-120 seconds	S	-	S	S	S
3A	Adjustable 0-1800 seconds	-	-	-	-	
3B	Adjustable 0-9999 minutes	S	-	S	S	S
4A	Adjustable 0-1800 seconds	-	-	-	-	-
4B	Adjustable 0-9999 minutes	S	-	S	S	S
Emergency (S2) Source Sensing						
5 H	Phase reversal protection	S	-	S	S	S
5J	All phase undervoltage/underfrequency	S	-	S	S	S
5 K	All phase overvoltage/overfrequency	S	-	S	S	S
5L	All phase voltage unbalance	0	-	0	0	0
5L	All phase voltage phase loss	S	-	S	S	S
5N	All phase overfrequency	S	-	S	S	S
System or Engine Test						
6B	Engine test pushbutton	S	-	S	S	S
6C	Remote engine test input	C	-	C	C	C
6 D	Maintained 2-position test switch	0	-	0	0	0
6 H	Maintained 4-position test switch	0	-	0	0	0
7 A	Adjustable 0-6 seconds	S	-	S	S	S
Pushbutton Bypass						
8C	Bypass TDEN	S	-	S	S	S
8 D	Bypass TDNE	S	-	S	S	S
8 E	Bypass TDNE/TDEN (input)	C	-	C	C	C
Maintenance Selector Switch						
9B	Electrical operator isolator switch	0	-	0	0	0
Preferred Source Selector						
	Preferred source selector (programmed)	S	-	S	S	S
10A	Preferred source selector input	C	-	C	C	C
10C	Preferred source selector with selector switch	0	-	0	0	0
10B	Utility to utility or utility to generator	S	S	S	S	S
10D	Generator to generator	S	S	S	S	S
Indicating Lights/LEDs						
12 C	Normal (S1) source connected	S	S	S	S	S
12D	Emergency (S2) source connected	S	S	S	S	S
12G	Normal (S1) source available	S	S	S	S	S
12 H	Emergency (S2) source available	S	S	S	S	S
12L	Normal (S1) source tripped (requires feature 16)	0	0	0	0	0
12M	Emergency (S2) source tripped (requires feature 16)	0	0	0	0	0
Source Available Contacts						
14 C	Normal (S1) source available 4 Form C	0	0	0	0	0
14D	Emergency (S2) source available 4 Form C	0	0	0	0	0
14E	Normal (S1) source available 1 Form C	S	-	S	S	S
14F	Emergency (S2) source available 1 Form C	S	-	S	S	S
14G	Normal (S1) source available 2 Form C	0	-	0	0	0
14 H	Emergency (S2) source available 2 Form C	0	-	0	0	0

[^35]| Feature | Description | Open Transition | | | Closed Transition | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | ATV9 | NTVE | BIV9 | CTV9 | CBV9 |
| Number | | MG | MG | MG | MG | MG |
| Position Contacts | | | | | | |
| 15E | Normal (S1) source position 1 Form C | S | - | S | S | S |
| 15F | Emergency (S2) source position 1 Form C | S | - | S | S | S |
| 15G | Normal (S1) source position 3 Form C | 0 | - | 0 | 0 | 0 |
| 15 H | Emergency (S2) source position 3 Form C | 0 | - | 0 | 0 | 0 |
| 15R | Normal (S1) source position 1 Form C (relay OUTPUT) | C | - | C | C | C |
| 15S | Emergency (S2) source position 1 Form C (relay OUTPUT) | C | - | C | C | C |
| Integral Overcurrent Protection | | | | | | |
| 16N | Normal (S1) switch only | 0 | 0 | 0 | 0 | 0 |
| 16E | Emergency (S2) switch only | 0 | 0 | 0 | 0 | 0 |
| 16B | Normal (S1) and emergency (S2) switches | 0 | 0 | 0 | 0 | 0 |
| Metering
 (Specify normal (S1), emergency (S2) or load side for 18A thru E) | | | | | | |
| 18 | Integrated load metering (DCT module) | 0 | - | 0 | 0 | 0 |
| 18A | $10250 / 260$ | 0 | 0 | 0 | 0 | 0 |
| 18B | PX4000/6000/8000 | - | 0 | - | - | - |
| 18D | IO 130/140/150 | 0 | 0 | 0 | - | - |
| 18E | PXM2250/2260/2270 | 0 | 0 | 0 | - | - |
| 18J | Integrated metering (DCT module-load side only) | 0 | 0 | 0 | 0 | 0 |
| 20 A | Rear bus connections | 0 | 0 | 0 | 0 | 0 |
| 21A | Non-standard terminals (optional in IES for centers) | 0 | 0 | 0 | 0 | 0 |
| 22 | Ground bus with provisions to attach to neutral | 0 | S | 0 | 0 | 0 |
| 22A | 18 conductor ground bus 500 or 750 kcmil | S | 0 | S | S | S |
| 22B | 30 conductor ground bus 500 or 750 kcmil | 0 | 0 | 0 | 0 | 0 |
| 22 C | Special ground bar-contact factory | 0 | 0 | 0 | 0 | 0 |
| 22D | 16 conductor ground bus 500 or 750 kcmil | - | - | - | - | - |
| Plant Exerciser | | | | | | |
| 23M | Selectable—disabled 7-, 14-, 28-, 365-day interval, 0-600 minutes load/no load, with fail-safe | S | - | S | S | S |
| Normal (S1) Source Sensing | | | | | | |
| 26 D | Go to emergency (S2) input | C | - | C | C | C |
| 26 E | Go to emergency (S2) input with selector switch (1) | 0 | - | 0 | 0 | 0 |
| 26 H | Phase reversal protection | S | - | S | S | S |
| 26J | All phase undervoltage/underfrequency | S | - | S | S | S |
| 26K | All phase overvoltage/overfrequency | S | - | S | S | S |
| 26L | All phase voltage unbalance and phase loss | 0 | - | 0 | 0 | 0 |
| 26 L | All phase voltage unbalance | S | - | S | S | S |
| Alternative Transfer Modes of Operation | | | | | | |
| 29 D | Dual ATS bypass | - | - | - | - | - |
| 29G | Selector switch for auto or non-auto operation (1) | 0 | - | 0 | 0 | 0 |
| 29J | Manual (pushbutton) transfer E to N ; automatic N to $\mathrm{E}^{(1)}$ | 0 | - | 0 | 0 | 0 |
| 29L | Manual retransfer on/off input | C | - | C | C | C |
| 29M | Manual retransfer on/off input with selector switch (1) | 0 | - | 0 | 0 | 0 |
| 29K | Manual retransfer input | C | - | C | C | C |

[^36]Note
(1) When these options are selected with the ATC-900 controller, the associated input or output will be factory fixed and cannot be reconfigured by the user.

Magnum-Based-Automatic Transfer Switch Features, continued

Feature Number	Description	Open Transition			Closed Transition	
		MG	MG	MG	MG	MG
Open Transfer Operation Modes						
32 A	Time delay neutral adjustable 0-120 seconds (delayed transition)	C	-	C	C	C
32B	Load voltage decay adjustable 2-30\% nominal voltage	C	-	C	C	C
32 C	In-phase transition defaults to load voltage decay	C	-	C	C	C
32D	In-phase transition defaults to time delay neutral	C	-	C	C	C
Logic Extender Cable (Open Enclosures Only)						
34F	100 inches (2540 mm) (fixed mount only)	0	0	-	-	-
35 A	Pre-transfer signal contacts 1 Form C	C	-	C	C	C
35B	Pre-/post-transfer signal	C	-	C	C	C
36	Load shed from emergency (S2 inhibit)	C	-	C	C	C
36A	Load shed-S2 inhibit with keyed switch (INPUT)	0	-	0	0	0
37	Go to "isolated" position (not SE rated)	C	-	C	C	C
Suitable for Use as Service Equipment Requires 16B, N or S						
37A	Without ground fault protection	0	0	0	0	0
	With ground fault protection required at 1000 A or more if the electrical service is a solidly grounded wye system of more than 150 V to ground but not exceeding 600 V phase to phase	0	0	0	0	0
Stainless Steel Device Covers						
38A	SS cover for device plate or SE disconnect	0	0	0	0	0
38B	SS cover for controller	0	0	0	0	0

Space Heater with Thermostat

41 A	100 watts	-	-	-	-
41 E	375 watts	0	0	0	0
42	$I B C / C B C$ seismic qualified	S	S	S	S

Load Management Contacts						
$45 \mathrm{~A}-\mathrm{K}$	Load sequencing contacts (1)	C	-	C	C	C
45 L	Selective load shed (assignable to multiple out put contacts)	C	-	C	C	C

Closed Transition Operational Modes (User Must Specify)

47 C	Closed/in-phase transition default to load voltage decay	-	-	-	C	C
47 D	Closed transition	-	-	-	C	C
47E	Closed/in-phase transition default to time delay neutral	-	-	-	C	C
47 F	Closed transition load voltage decay	-	-	-	-	-
47G	Closed transition time delay neutral	-	-	-	-	-
47H	Parallel limit timer	-	-	-	S	S
Communications						
48D	PXG400 gateway (includes Modbus)	0	-	0	0	0
48G	Modbus TCP/IP gateway	0	-	0	0	0
48 P	Power supply for remote annunciator	0	-	0	0	0
48RAC	Remote annunciator with control (includes Modbus)	0	-	0	0	0
48MRAC	Remote annunciator with control multi-switch (includes Modbus)	0	-	0	0	0
48 U	USB port	S	-	s	S	S
49A	Sensing isolation transformer Magnum	0	-	0	0	0
49B	Sensing isolation transformer	0	-	0	0	0
49 C	Multi-tap voltage transformer (non AG only)	S	S	S	S	S

[^37]Magnum-Based-Automatic Transfer Switch Features, continued

Feature	Description	Open Transition			Closed Transition	
				BIV9	CTV9	
Number		MG	MG	MG	MG	MG
Surge Protection Device with $12 \mathrm{ft} \mathrm{Cable} \mathrm{(on} \mathrm{Normal)}$						
51 S1	50 kA -SPD (1)	0	0	0	0	0
51S2	80 kA -SPD (1)	0	0	0	0	0
51 S3	100 kA -SPD ${ }^{(1)}$	0	0	0	0	0
5154	120 kA -SPD ${ }^{(1)}$	0	0	0	0	0
51S5	160 kA -SPD ${ }^{(1)}$	0	0	0	0	0
$51 \mathrm{S6}$	200 kA -SPD ${ }^{(1)}$	0	0	0	0	0
51 S7	250 kA -SPD (1)	0	0	0	0	0
5158	300 kA -SPD ${ }^{(1)}$	0	0	0	0	0
5159	400 kA -SPD (1)	0	0	0	0	0
52B	24 V generator battery power	-	-	-	-	-
52 C	24 V onboard power supply (charger and batteries)	-	-	-	-	-
54A	Front access cabinet	0	0	0	0	0
54B	Upgrade to 316 stainless steel	-	-	-	-	-
55B	Source swap (normal—bottom / emergency-top)	0	0	0	0	0
57A	Magnum breaker lift device (1) NEMA 1 only	0	0	-	-	-
57B	Magnum breaker lift device bypass (2) NEMA 1 only	-	-	0	0	0
58A	Shutterless cassette (drawout only)	S	S	S	S	S
58B	Shuttered cassette (drawout only)	0	0	0	0	0
59A	Silver-plated bus	S	S	S	S	S
59B	Tin-plated bus	0	0	0	0	0
61 A	UPS device	-	0	-	-	-
61B	UPS 120 Vac terminal block input	-	0	-	-	-
80A	Emergency (S2) inhibit contact	C	-	C	C	C

Monitoring Outputs						
81A	General alarm indication contact	C	-	C	C	C
81B	ATS not in automatic	C	-	C	C	C
81 C	ATS in test	C	-	C	C	C
81 D	Engine test aborted	C	-	C	C	C
81 E	Cooldown in process	C	-	C	C	C
81F	Engine start contact status	C	-	C	C	C
81G	Emergency inhibit on	C	-	C	C	C
81 GL	Emergency inhibit on with white indicating light ${ }^{(2)}$	0	-	0	0	0
81H	ATS on bypass	C	-	C	C	C

Inputs

81J	Lockout	C	-	C	C	C
81 K	Monitor mode	C	-	C	C	C
81 L	Remote load test	C	-	C	C	C
Three Source ATS Control (Master/Slave)						
90A	Master control output	C	-	C	C	C
90 B	Slave input	C	-	C	C	C

S = Standard, $0=$ Optional, $\mathrm{C}=$ Configurable

Notes

(1) Add feature package B or C (i.e., 51S4B).

B: LED indication + audible alarm, Form C contact, EMI/RFI filtering (standard)
C: B + surge counter with Reset button (standard with surge)
(2) When these options are selected with the ATC-900 controller, the associated input or output will be factory fixed and cannot be reconfigured by the user.

Feature Description

Timers

1. Time Delay Normal to Emergency (TDNE)

Provides a time delay to allow for the generator to warm up before transferring the load to the emergency source.
Timing begins only after the Emergency Source becomes available and is deemed good based on the programmable voltage and frequency set points in the controller.

2. Time Delay Engine Start (TDES)

Provides a time delay before initiating the generator start cycle. This is to account for momentary power outages or voltage fluctuations of the normal source. Provides a Form C contact to the generator starter circuit.

3. Time Delay Emergency to Normal (TDEN)

Provides a time delay of the retransfer operation to permit stabilization of the normal source. Timing begins only after the normal source becomes available and is deemed good based on the programmable voltage and frequency set points in the controller. This function is failsafe protected.

4. Time Delay Engine Cooldown (TDEC)

Provides a time delay before initiating the generator stop cycle after the retransfer operation. This allows the generator to cool down by running unloaded. Timing begins on completion of the retransfer cycle.

Source 2 Sensing

5. Source 2-Monitoring and Protection
Provides monitoring and protection based on the Source 2 voltage and/or frequency set points. All
Feature 5 monitoring and protection functions are failsafe operations.

5H. Three-Phase Rotation Protection

Provides three-phase reversal sensing in order to protect against transferring to an out-of-phase source. The controller will treat the opposite source as unavailable if the sources are out of phase, based on programmable set points in the controller.

5J. All-Phase Undervoltage/ Underfrequency Protection

Provides undervoltage/ underfrequency monitoring and protection based on programmable set points in the controller.

5K. All-Phase OvervoItage/

 Overfrequency ProtectionProvides overvoltage/ overfrequency monitoring and protection based on programmable set points in the controller.

5L. Three-Phase Voltage

 Unbalance/Phase LossProvides phase loss detection from blown fuses on the Source 2 supply circuit.

5M. All Phase Voltage

 Phase LossProvides phase loss detection on the Source 2 supply circuit.

6B. Test Operators

Automatic transfer switches are provided with a controller faceplate test pushbutton that simulates a loss of the Source 1 as standard. All programmed time delays (TDNE, TDEN, etc.) will be performed as part of the test. Engine run time of the test is equal to the plant exerciser programmed set point. All tests are fail-safe protected.

6C. Remote Engine Test (INPUT)

Provides an input to initiate a test to simulate a loss of the Source 1 as standard. All programmed time delays (TDNE, TDEN, etc.) will be performed as part of the test. Engine run time of the test is equal to the plant exerciser programmed set point. All tests are fail-safe protected. The test is initiated via remote momentary contact closure.

6D. Maintained 2 Position Test Switch

Provides a door-mounted 2position test switch marked "Auto" and "Test". Available with ATC-900 controller only.

6H. 4-Position Test Selector Switch (FPSS)

Provides a door-mounted 4position, maintained contact selector switch marked "Auto," "Test," "Engine Start," and "Off." The FPSS is fail-safe protected, except for the "Off Position."
Transfer switch operation is determined by the switch position. Transfer switch operations are as follows:
"Auto"—Automatic operation mode.
"Test"—A load test is performed until the switch is moved to another position.
"Engine Start"—A no-load test is performed until the switch is moved to another position.
"Off"-The automatic transfer controller and engine start contact are disabled. A white pilot light is provided to indicate that the FPSS is in the "Off" position.

7. Time Delay Emergency Fail (TDEF)

Provides a time delay that prevents a connected emergency source from being declared "unavailable" based on the customer's set points. This is to account for momentary generator fluctuations. If the Source 2 remains in a failed state, then 0.5 seconds after the TDEF timer expires the transfer switch will proceed with the programmed sequence for retransfer if Source 1 is available.
This time delay is only implemented when Source 2 is a generator.

Note: This feature is also enabled when large loads cause generator output to drop below customer set points.

8. Time Delay Bypass Pushbutton

Provides a momentary contact pushbutton to bypass the TDNE (Feature 1) and/or TDEN (Feature 3) time delays. The Time Delay Bypass Pushbutton contact, when closed, will reduce any or all of the programmed time delay to zero. Must be executed when TDNE or TDEN timer is displayed on the controller.

8C. Bypass Time Delay Emergency to Normal (TDEN)

8D. Bypass Time Delay Normal to Emergency (TDNE)

8E. Bypass TDNE/TDEN (INPUT)

Provides input to bypass the
TDNE (Feature 1) and/or
TDEN (Feature 2) time
delays. The Time Delay Bypass Pushbutton contact, when closed, will reduce any or all of the programmed time delay to zero. Must be executed when TDNE or TDEN timer is displayed on the controller. The bypass time delay feature is initiated via remote momentary contact closure.

8F. Bypass Timers-

 External Pushbutton InputProvides an input from a customer supplied external pushbutton to bypass or reduce the programmed time delays to zero for TDEN and TDNE.

9B. Maintenance Selector Switch (MSS)

Provides a 2-position, maintained contact selector switch marked "Operate" and "Disable." When the MSS is placed in the "Disable" position, the controller logic will be disconnected from the transfer motor circuit. The MSS is placed in the
"Operate" position for normal automatic operation.

9C. Monitor Mode Selector Switch

Provides a 2-position selector switch to enable/disable Monitor Mode on the controller. When enabled, the controller will monitor the availability, connected state and voltage conditions and will initiate a transfer.

10. Preferred Source Selector

Provides a means to designate either Source 1 or Source 2 as the "Preferred" source. The "Preferred" source is the source that the transfer switch will connect the load to if it is available.

Note: This is a programmable software feature not an actual switch.

10A. Preferred Source Selector (INPUT)

Provides a means to designate either Source 1 or Source 2 as the "Preferred" source using a remote contact or device panel mounted contact closure. The "Preferred" source is the source that the transfer switch will connect the load to if it is available.

10B. Preferred Source

 SelectorProvides a programmable source selector for use on systems comprised of dual utility or utility and engine/ generator power sources.

10C. Preferred Source Selector with Selector Switch

Provides a means to designate either Source 1 or Source 2 as the "Preferred" source via device panel mounted selector switch control. The "Preferred" source is the source that the transfer switch will connect the load to if it is available.

10D. Preferred Source Selector

Provides a programmable source selector for use on systems comprised of dual engine/generator power sources. (Dual engine starting circuits are provided.)

12C. Source 1-Load Connected

Provides a green indication that indicates the load is connected to Source 1 when lit.

12D. Source 2-Load
Connected Connected
Provides a red indication that indicates the load is connected to Source 2 when lit.

12G. Source 1-Present

Provides a white or amber indication "Depending on the Controller" that Source 1 has power; however, this does not indicate whether Source 1 is acceptable.

12H. Source 2-Present

Provides an amber indication that Source 2has power; however, this does not indicate whether Source 2 is acceptable.

Overcurrent Trip Indication

Available only with integral overcurrent protection (Feature 16) (shown on automatic transfer controller display).

12L. Source 1 Trip Indication

The automatic transfer controller display will read
"Lockout" if the Source 1 circuit breaker is in the "tripped" position.

12M. Source 2 Trip

 IndicationThe automatic transfer controller display will read "Lockout" if the Source 2 circuit breaker is in the "tripped" position.

14. Relay Auxiliary Contacts 14C. Source 1 Present
 Provides 4 Form C relay auxiliary contacts. The relay is energized when Source 1 is present.

14D. Source 2 Present

Provides 4 Form C relay auxiliary contacts. The relay is energized when Source 2 is present.

14E. Source 1 Available

Provides 1 Form C relay auxiliary contact. The relay is energized when Source 1 is available and within the controller's programmable set points.

14F. Source 2 Available

Provides 1 Form C relay auxiliary contact. The relay is energized when Source 2 is available and within the controller's programmable set points.

14G. Source 1 Present

Provides 2 Form C relay auxiliary contacts. The relay is energized when Source 1 is present.

14H. Source 2 Present

Provides 2 Form C relay auxiliary contacts. The relay is energized when Source 2 is present.

14J. Source 1 Present

Provides 4 Form C relay auxiliary contacts. The relay is energized when Source 1 is present.

14K. Source 2 Present

Provides 4 Form C relay auxiliary contacts. The relay is energized when Source 2 is present.

14L. Source 1 Present

Provides 2 Form C relay auxiliary contacts. The relay is energized when Source 1 is present.

14M. Source 2 Present

Provides 2 Form C relay auxiliary contacts. The relay is energized when Source 1 is present.

15. Switch Position Indication Contact

Provides a contact that indicates if the power switching device is in the "open" or "closed" position.

15E. Source 1 Position

 Indication ContactProvides 1 Form C contact that indicates the position of the Source 1 power switching device.

15F. Source 2 Position

 Indication ContactProvides 1 Form C contact that indicates the position of the Source 2 power switching device.

15G. Source 1 Position

 Indication ContactProvides 3 Form C contact that indicates the position of Source 1 power switching device.

15H. Source 2 Position

 Indication ContactProvides 3 Form C contact that indicates the position of Source 1 power switching device.

15K. Normal (S1) Breaker

 Position Indication 1 Form C (Output)Provides 1 Form C contact of the breaker indicating the breaker position.
15L. Normal (S1) Breaker Position Indication 2 Form C (Output)
Provides 2 Form C contact of the breaker indicating the breaker position.

15M. Source 2 Load Shed Contacts

Provides 4 Form C contacts to initiate a load circuit disconnect while on Source 2. This gives the user the capability of selectively choosing not to run certain loads while on Source 2.

15R. Normal (S1) Source Position 1 Form C (Relay

 OUTPUT)Provides 1 Form C relay contact that indicates the position of the Source 1 power switching device.
15S. Emergency (S2) Source Position 1 Form C (Relay OUTPUT)
Provides 1 Form C relay contact that indicates the position of the Source 2 power switching device.

16B. Integral Overcurrent

 Protection on Both Power Source Switching Devices Provides integral overcurrent protection on both Source 1 and Source 2 power switching devices.16E. Integral Overcurrent Protection on the Source 2 Power Switching Device Provides integral overcurrent protection on the Source 2 power switching device.

16N. Integral Overcurrent

 Protection on the Source 1 Power Switching DeviceProvides integral overcurrent protection on the Source 1 power switching device.

16S. External Overcurrent Protection on the Source 1 Power Switching Device

Provides overcurrent protection on the Source 1 power switching device.

17. Breaker with an Overcurrent Trip Unit

17H. Padlockable Handle

 Lock HaspProvides a means to padlock the breaker supplied only on a service entrance rated contactor based design. The padlock kit is provided as a ship loose item and able to be customer mounted as a mechanical means to lock out the breaker.

17N. Normal (S1) Breaker with Eaton 310+ Trip Unit
The UL 1008 integrated service entrance rated contactor design has a 100% load rating.

18. Metering

The ATS controller provides voltage and frequency readings. If additional metering functions are required, Eaton offers a series of digital meters that may be added to the ATS. The meter type can provide simple current and voltage readings or more capable meters providing Power, Demand and energy readings.
Available with an optional communications interface.

(See Feature 48-

Communications for available communication modules.)

Feature 18 metering options include all required external devices (CTs, etc.) for a fully functioning metering system.

18J. Integrated Metering (LOAD Side)

This metering option incorporates basic load metering into the ATC-900 using the add-on DCT module. In addition to the standard voltage and frequency metering, the DCT module adds current, real power, reactive power apparent power, and power factor. This option also enables the selective load shed feature (option 45L).

IO 130/140/150
(Option 18d)

O 130

This digital meter provides basic current and voltage per phase (L-L, L-N) and min./ max. readings (I, V). Optional communication RS-485, Modbus RTU.

IQ 140

In addition to basic current and voltage, will provide frequency, power measurements real, reactive and apparent power, total (W, VAR, VA). Optional communication RS-485, Modbus RTU.

IQ 150

In addition to basic current/ voltage/frequency and power readings, will provide Energy Real reactive and apparent (Wh, VAR, VAh). Optional communication RS-485, Modbus RTU.

IO 250/260 (Option 18a)
 IQ 250

This digital meter provides current per phase and current demand, voltage (L-L, L-N) and frequency. Power, energy and demand readings. Real, reactive and apparent power and energy, power factor. RS-485 communications, Modbus RTU or ASCII. Optional I/O slots available.

IQ 260

In addition to all of the features of the IQ 250, power quality analysis is available with THD voltage and current per phase.

Power Xpert 2000
 (Option 18e)

Provides either a Power Xpert PXM 2250, PXM 2260 or PXM 2270 meter.
Power Xpert 4000, 6000, 8000 (Option 18b)
Provides one of the Power Xpert Meters with or without graphic displays.

20A. Rear Bus Provisions

Provides Source 1, Source
2 and Load Circuit rear accessible bus stabs with provision for bus bar connection. Eaton transfer switches are provided with either front or rear
(dependent on switch type) connected solderless screwtype terminals for power cable connection as standard.

21A. Optional Power Cable Connection Terminals

Eaton transfer switches are provided as standard with
Source 1, Source 2 and load circuit solderless screw-type terminals for power cable connection. Alternate terminal wire sizes, and compression lug provisions may be available dependent on transfer switch type and ampere rating.

Plant Exerciser

23A. Plant Exerciser With Fail-Safe
Provides a means for automatic testing of the engine generator set or standby power system. All programmed time delays in the controller will be performed during plant exerciser operations.

Programmable set points for test intervals are start time, either disabled, daily, 7, 14 or 28 days.

15-minute fixed engine test time.

Test may be performed with or without load transfer. Test may be manually cancelled during the operation. This function is fail-safe protected.

23K. Plant Exerciser With

Fail-Safe

Provides a means for automatic testing of the engine generator set or standby power system. All programmed time delays in the controller will be performed during plant exerciser operations.

Programmable set points for test intervals are start time, either disabled, daily, 7, 14 or 28 days, engine test time.

Test may be performed with or without load transfer. Test may be manually cancelled during the operation. This function is fail-safe protected.

Standard and Optional Features

23M. Selectable-Disabled, 7, 14, 28 or Day Interval, or Calendar Date, 0-600 Minutes, Load/No Load, with Fail-safe
Provides a means for automatic testing of the engine generator set or standby power system. All programmed time delays in the controller will be performed during plant exerciser operations. Programmable set points for test intervals are start time, engine test time and either disabled, daily, 7, 14 or 28 days or up to 12 specific calendar dates. Test may be performed with or without load transfer. Test may be manually cancelled during the operation. This function is failsafe protected. This feature includes independent time delays for time delay normal to emergency, time delay emergency to normal and time delay for engine cooldown.

Source 1 Sensing

26. Source 1-Monitoring and Protection

Provides Source 1 monitoring and protection functions. If Source 1 fails, then the automatic transfer controller will begin the sequence of operations necessary to transfer the load to Source 2. All Feature $\mathbf{2 6}$ monitoring and protection functions are failsafe operations.

26D. Go to Emergency (Source 2)

Provides the capability for an external contact closure to initiate a transfer to the Source 2 power source. This includes starting the generator, performing the programmed time delays and the transfer operation. Retransfer will occur when the external contact is opened. This is a fail-safe function.

26E. Go to Emergency (S2) Input with Selector Switch
Provides a device panel mounted selector switch labeled, "Auto/Go to Source $2^{\prime \prime}$, to initiate a transfer to the Source 2 power source. This includes starting the generator, performing the programmed time delays and the transfer operation. Retransfer will occur when the external contact is opened. This is a fail-safe function.

26H. Three-Phase Rotation Protection

Provides three-phase reversal sensing in order to protect against transferring to an out-of-phase source. The controller will treat the opposite source as unavailable if the sources are out of phase, based on programmable set points in the controller.

26J. All-Phase
 Undervoltage/
 Underfrequency Protection

Provides all-phase
undervoltage/underfrequency monitoring and protection based on programmable set points in the controller.

26K. All-Phase Overvoltage/

 Overfrequency ProtectionProvides all-phase overvoltage/overfrequency monitoring and protection based on programmable set points in the controller.

26L. Three-Phase Voltage Unbalance/ Phase Loss

Provides phase loss detection from blown fuses on the Source 1.

26M. All-Phase Voltage Phase Loss

Provides phase loss detection on the Source 1 supply circuit.

26N. All-Phase Undervoltage Protection
Provides undervoltage protection for Source 1 (ATC-100 Controller only).

29. Transfer Operation Modes
 Provides standard or optional transfer modes, mode selection devices and operational methods for transfer switches.

29D. Dual ATS Bypass

Provides an active controller while the bypass isolation switch is in the bypass mode.

29G. Automatic/Manual Operation With Selector Switch

Provides 2-position selector switch (labeled Auto/manual) that permits selection of the automatic or manual transfer. When in the "Auto" position, the transfer switch operates with fully automatic transfer, retransfer and generator startup and shutdown operations. When in the "Manual" position, manual operation is required to initiate the generator startup or retransfer with generator shutdown operations.

Note: Transfer switches with Feature $\mathbf{2 9}$ must be labeled as non-automatic transfer switch equipment.

29J. Automatic Transfer or

 Automatic Transfer With Non-Automatic Retransfer OperationProvides a field-selectable programmable set point that permits the transfer switch to operate in one of the following two transfer modes (A or B):
A. Fully automatic operation.
B. Automatic engine/ generator startup and automatic transfer operation from Source 1 to Source 2. Manual pushbutton operation is required to initiate the retransfer operation and engine/generator shutdown. The pushbutton for manual retransfer operation is included. This is fail-safe protected.

29K. Manual Retransfer (INPUT)

Provides an input to remotely initiate a manual retransfer from Source 2 to Source 1.

29L. Manual Retransfer On/

 Off (INPUT)Provides an input to remotely enable or disable the manual retransfer feature.

29M. Manual Retransfer On/Off Input with Selector Switch

Provides a device panel mounted selector switch to enable or disable the manual retransfer feature. Selection of this option automatically adds option 29J.

32. Delayed Transition Transfer Modes for Open Transition Transfer

Switches

Provides delayed transition transfer modes for an open transition transfer switch. Often used in systems with inductive loads, a delayed transition transfer switch may prevent or reduce inrush currents due to out-of-phase switching of inductive loads.

32A. Time Delay Neutral

Provides a time delay in the neutral position during the transfer and retransfer operations during which both Source 1 and Source 2 are disconnected from the load circuit. This allows inductive loads time to reach a safe voltage and eliminate back EMF. The time delay is programmable and is the same for both transfer and retransfer operations. This is a passive feature that requires the consulting engineer/installer to determine the settings based on how the user will operate the facility. Adjustable 0-120 seconds.

Standard and Optional Features

32B. Load Voltage Decay

Provides load voltage measurement to sense back EMF that is generated when the transfer switch is the neutral position. It provides a delay in transfer in either direction if an unacceptable level is sensed as established by a programmed set point. This is an active feature that adapts to how the facility is operating in order to minimize neutral position wait time, but ensure safety. Adjustable $2-30 \%$ of nominal voltage.

32C. In-Phase Transition With Default to Load Voltage Decay
Provides in-phase transition, which is a feature that will permit a transfer or retransfer between two available sources that have a phase angle difference near zero.
The in-phase transition feature includes permissible frequency difference and synchronization time set points. In the event Source 1 and Source 2 fail to synchronize within the permitted frequency difference and time, then the controller defaults to the load voltage decay operation as described in Feature 32B
Adjustable frequency difference $0.0-3.0 \mathrm{~Hz}$. Adjustable synchronization time allowance 1-60 minutes.

32D. In-Phase Transition With Default to Time Delay Neutral

Provides in-phase transition, which is a feature that will permit a transfer or retransfer only between two available sources that have a phase angle difference near zero. The in-phase transition feature includes permissible frequency difference and synchronization time set points. In the event Source 1 and Source 2 fail to synchronize within the permitted frequency difference and time, then the controller defaults to the time delay neutral operation as described in Feature 32A. Adjustable frequency difference $0.0-3.0 \mathrm{~Hz}$. Adjustable synchronization time allowance 1-60 minutes.

32E. Delayed Transition

The transfer and retransfer operations during which both Source 1 and Source 2 are disconnected from the load circuit. The time delay is programmable and the same for both transfer and retransfer operation. Adjustable 3-60 seconds.

32F. In-Phase Transition

Provides in-phase transition, this feature will permit a transfer or retransfer between two available sources that have a phase angle difference of 8 degrees or less. The in-phase transition feature includes permissible frequency difference and synchronization time set points. In the event Source 1 and Source 2 fail to synchronize within the permitted frequency difference and time, the Alarm relay will energize and "Failed to Sync" will be displayed on Line 1 of the controller. After resetting the alarm, another in-phase transition may be attempted or a non-synchronized transfer may be initiated by failing the connected source. The adjustable frequency difference is 0.0 to 3.0 Hz .

If the synchronization does not occur within a specified amount of time, the Alarm relay will energize and the failure will be logged into the transfer history as either "Sync Fail - Freq" or "Sync Fail - Phase" depending on whether the frequency difference or the phase difference was excessive.

32G. Time Delay Neutral

This feature provides a time delay in the neutral position during the transfer and retransfer operations during which both the utility source and the generator source are disconnected from the load circuit. TDN cannot be implemented on a transfer switch using a 2-position contactor.

Jumper selectable at disable (0 seconds) or enable (2 seconds).

Logic Extender Cable

34A. 48 Inches (1219 mm)
Provides logic extension cable with connectors.

34C. 96 Inches ($\mathbf{2 4 3 8} \mathbf{~ m m}$)
Provides logic extension cable with connectors.

34E. 144 Inches ($\mathbf{3 6 5 8} \mathbf{~ m m}$) Provides logic extension cable with connectors.
34F. 100 Inches ($\mathbf{2 5 4 0} \mathbf{~ m m}$) Provides logic extension only for open Magnum ATS.

35A. Pre-Transfer Signal with 1 Form C Contact

Provides a signal prior to the transferring of the load. Will not transfer until the programmable delay set point in the controller is reached. The pre-transfer time delay option, if both sources are not available, will ignore the time delay set in the controller.

35C. Pre-/Post-Transfer Signal (OUTPUT)

Provides a Form C contact signal prior to and after a transfer from S1 to S2 or S2 back to S1. Will not transfer until the programmable delay set point in the controller is reached. If both sources are not available, this option will ignore the time delay set in the controller. The time delay is programmable for $0-120$ seconds pre transfer and 0120 seconds post transfer.

35D. Post-Transfer Signal with 1 Form C Contact

Provides a Form C output from the ATC-900 to signal that the switch did transfer. The time delay is programmable for 0-120 seconds but does not start to count down until connected to the new source.

36. Load Shed From Emergency

Provides the capability for an external NC contact to initiate a load circuit disconnection from the Source 2 power source. If the load circuit is connected to Source 2 and the contact is opened, then a retransfer to Source 1 is completed if Source 1 is available. If Source 1 is not available, then the transfer switch will transfer to neutral. If the load circuit is connected to Source 1 and the contact is open, then a transfer Source 2 is prohibited.
36A. Load Shed-S2 Inhibit with Keyed Switch (INPUT)
Provides a device panel mounted selector switch to initiate a load circuit disconnection from the Source 2 power source. If the load circuit is connected to Source 2 and the selector switch is switched to the "S2 Inhibit/Enabled" position, then a retransfer to Source 1 is completed if Source 1 is available. If Source 1 is not available, then the transfer switch will transfer to neutral. If the load circuit is connected to Source 1 and the switch is in the "S2 Inhibit" position, then a transfer Source 2 is prohibited.

Standard and Optional Features

37. Go to Neutral (not SE Rated) (INPUT)

Provides an input to transfer a three-position transfer switch from either of the connected sources to the off or neutral position. This features applies only to those transfer switches with three-position power device using a remote contact closure. When the signal is removed, the transfer switch will transfer back to the available, preferred source.

Service Equipment Rated Transfer Switch

Provides the label "suitable for use as service equipment" and the features necessary to meet the requirements for the label. Includes service disconnect with visible indication and neutral assembly with removable link. Feature 16B or 16N must be selected separately for a molded case or power case switch design and 17N for a service rated contactor design.

37A. Service Equipment
 Rated Transfer Switch Without Ground Fault Protection

Provides service equipment rating for an application that does not require ground fault protection.

37B. Service Equipment

Rated Transfer Switch With Ground Fault Protection
Provides service equipment rating for an application that requires ground fault protection.

38. Steel Cover

Provides protection for a device panel as option 38a and protection for the controller as option 38b.

39. Distribution Panel

The distribution panel feature uses a panelboard design with bolt-on circuit breakers type EHD. Bolt-on breakers are designed to hold up to the changes in temperature and humidity that an industrial application calls for. (240/ 120 Vac single-phase systems only.)

39A. 225 A With (2) 200 A Feeders
39B. 300 A With (3) 200 A Feeders
39C. 400 A With (4) 200 A Feeders
41. Space Heater With Thermostat
Provides a space heater and adjustable thermostat. External control power is not required. Availability is dependent on transfer switch type.
41A. Space Heater With Thermostat-100 Watt
Provides 100-watt space heater with an adjustable thermostat.

41E. Space Heater With Thermostat-375 Watt
Provides 375-watt space heater with an adjustable thermostat.

42. Seismic Qualification
 45. Load Sequencing Capability

Provides the capability for sequential closure of up to 10 addressable relays after a transfer. Each addressable relay provides (1) Form C contact. A single adjustable time delay between each of the relay closures is provided. Operates via a subnetwork. Adjustable 1-120 seconds.

45A-J. Load Sequencing

 Contacts (1-10) (OUTPUT)Provides the capability for sequential contact closure of up to 10 contacts after a transfer. A single adjustable time delay between each of the relay closures is provided. Operates using the configurable output contacts (Form C). Adjustable 0-120 seconds. Each individual configurable contact has its own adjustable time delay. When more than one contact is supplied, they start the timing sequence at the same time.

45L. Selective Load Shed

Provides an output contact that opens to shed a customer load if the measured kW value exceeds the load shed kW set point value. The load will be picked up if the load restore set point is attained.

47. Transfer Modes for Closed Transition Transfer Switches

Provides available transition transfer modes for a closed transition transfer switch. Closed transition is a "make before break" transfer and retransfer scheme that will parallel (a maximum of 100 ms) Source 1 and Source 2 providing a seamless transfer when both sources are available. The closed transition feature includes permissible voltage difference frequency difference and synchronization time allowance set points. The phase angle difference between the two sources must be near zero for a permitted transfer. These are all programmable set points in the controller.

47C. Closed Transition With Default to In-Phase Transition With Default to Load Voltage Decay
Provides a closed transition transfer as the primary transfer mode. In the event Source 1 and Source 2 fail to synchronize within the permitted voltage difference, frequency difference, phase angle difference and time, then the controller defaults to the in-phase transition with default to load voltage decay operations as described in
Feature 32C and 32B.
Adjustable frequency difference $0.0-0.3 \mathrm{~Hz}$. Adjustable voltage difference $1-5 \%$ volts. Adjustable synchronization time allowance 1-60 minutes.

47D. Closed Transition

Provides a closed transition
transfer as the primary transfer mode. Only under a fail-safe condition (i.e., loss of the connected source) will the controller transfer to the alternate source using the load voltage decay operation as described in Feature 32B. Adjustable frequency difference $0.0-0.3 \mathrm{~Hz}$. Adjustable voltage difference $1-5 \%$ V.

47E. Closed Transition With Default to In-Phase Transition With Default to Time Delay Neutral
Provides a closed transition transfer as the primary transfer mode. In the event Source 1 and Source 2 fail to synchronize within the permitted voltage difference, frequency difference, phase angle difference and time, then the controller defaults to the in-phase transition with default to time delay neutral operation as described in
Features 32D and 32A.
Adjustable frequency difference $0.0-0.3 \mathrm{~Hz}$. Adjustable voltage difference $1-5$ percent volts. Adjustable synchronization time allowance 1-60 minutes.

47F. Closed/Load Voltage
 Decay

Controllers equipped with Feature Set 47F will perform a closed transition when both sources are synchronized in frequency, phase and voltage. Failure to synchronize will result in an open transition Time Delay Load Voltage Decay transfer. Time Delay Load Voltage Decay uses the load voltage measurements to sense back EMF that is generated when the transfer switch is in the Neutral position.

It provides a delay in transfer in either direction if an unacceptable level is sensed as established by a customer programmed level. The transfer will not take place until the back EMF decays below the acceptable programmed level. This feature has a separate setting of enabling or disabling the operation. If disabled, the transfer switch will not delay in the Neutral position and will transfer between the sources as fast as possible. This feature is not available with the Time Delay Neutral Optional Feature 32A.

47G. Closed/Time Delay Neutral

Controllers equipped with Feature Set 47F will perform a closed transition transfer when both sources are synchronized in frequency, phase and voltage. Failure to synchronize will result in an open transition Time Delay Neutral transfer. Time Delay Neutral provides a time delay in the transfer switch neutral position when both sources are open. This delay takes place when the load is transferred in either direction to prevent excessive in-rush currents due to out-of-phase switching of large motor loads.

47H. Parallel Limit Timer

Provides an independent timing relay with NO contact (watchdog timer) activated only during a closed transition transfer. The timing is set to 100 ms per code requirements and will initiate a contact closure that can be used by the end user to annunciate an alarm or to trip an upstream breaker.

48. Communication Modules

Provides communications modules for the transfer switch controllers.

48D. Ethernet Communication (PXG900 Gateway)

Translates Modbus RTU, QCPort or INCOM to Modbus TCP. The PXG900 Gateway includes embedded Web server monitoring of up to 64 connected devices.

48F. Modbus

Communication (MPONI)

Provides Modbus RTU protocol via communications module.

48G. Modbus TCP/IP

Provides a third-party device for Modbus 485 to Modbus TCP/IP pass through.

48M1-48M4. I/O Module
Each I/O module provides four additional user configurable inputs and outputs. Up to four additional I/O modules can be added, either by the factory or in the field.

48MRAC. Multi-view Remote Annunciator with Control

Provides remote monitoring of source availability, source position and test status for up to eight transfer switches with the ATC-300+ or ATC900 controller. Operates using Modbus protocol.

48P. Remote Annunciator

 Power SupplyProvides a remote mounted power supply providing DC power to the remote annunciator.

48RAC. Remote

Annunciator with Control
Provides remote monitoring and control via a color touch screen display for the controllers. Operates using Modbus protocol (MPONI required for the ATC-600/ 800).

48U. USB Port for Memory Stick
Provides a device panel mounted USB port for uploading or downloading controller set points and for downloading event history.

49. Sensing Isolation Transformer

Provides a set of control power transformers that converts the delta system sensing to a wye sensing input to the controller. The sensing isolation transformer is recommended for high resistance grounded systems and for grounded delta systems.

49A. Sensing Isolation Transformer

Option 49A is available for Magnum ATSs.

49B. Sensing Isolation Transformer

Option 49B is available for MCCB and contactor transfer switches.

49C. Multi-Tap Control Power Transformer

The multi-tap control power transformer is used to stepdown voltage to 120 Vac for the transfer switch control circuit. Incoming voltage can be adjusted by moving the tap on the primary side from $208 \mathrm{~V}, 240 \mathrm{~V}$ or 480 V for 60 Hz applications or 220 V , $380 \mathrm{~V}, 415 \mathrm{~V}, 600 \mathrm{~V}$ for 50 Hz applications.

> Option 51. Surge Protection Device
> Two types of surge protection devices are used in Eaton automatic transfer switches. Both types meet the requirements for UL 1449 3rd Edition for surge suppression devices and are CE marked. The type CVX is used on Eaton wallmount ATS designs and the Eaton
> type SPD are used on floor-standing designs.

CVX

The CVX device features a Thermally Protected Metal Oxide Varistor technology and comes with high intensity LED phase status indicators.

SPD

The SPD features a Thermally Protected Metal Oxide Varistor technology. It comes with dual-colored protection status indicators for each phase and for neutral-ground protection mode. It comes with an audible alarm with silence button and a Form C contact.

An optional SPD with surge counter feature package is available. This provides sixdigit surge counter with reset button.

51S1B. 50 kA-SPD standard source 1

51S2B. 80 kA-SPD standard source 1

51S3B. 100 kA—SPD standard source 1

51S4B. 120 kA-SPD standard source 1

51S5B. 160 kA-SPD standard source 1

51S6B. 200 kA-SPD standard source 1

51S7B. 250 kA-SPD standard source 1

51S8B. 300 kA-SPD standard source 1

51S9B. 400 kA—SPD
standard source 1
51S1C. 50 kA-SPD standard with surge counter source 1

Standard and Optional Features

51S2C. 80 kA—SPD standard with surge counter source 1
51S3C. 100 kA-SPD standard with surge counter source 1

51S4C. 120 kA—SPD standard with surge counter source 1
51S5C. 160 kA-SPD
standard with surge counter source 1

51S6C. 200 kA—SPD standard with surge counter source 1

51S7C. 250 kA—SPD
standard with surge counter source 1
51S8C. 300 kA-SPD standard with surge counter source 1

51S9C. 400 kA—SPD
standard with surge counter source 1
51SC8. Remote display panel (8 feet standard)

51SC12. Remote display panel (12 feet)
51SC4. Remote display panel (4 feet)

54. Front Access

54A. Front access cabinet available for all Magnum products. This option will add an additional pull section mounted on the side of the switch.

54B. Upgrade to 316 Stainless Steel

Provides a stainless enclosure with 316 grade. Contact plant for availability.

55B. Source Swap (Normal Bottom/Emergency Top)
Provides ability to designate the Normal Source to be physically located at the bottom of the structure and the Emergency Source to be at the top of the structure.
Contact plant for availability.
59a. Silver-Plated Bus
Silver-plated bus is a standard feature for all Magnum-based designs.

59b. Tin-Plated Bus

Tin-plated bus is available as an option for Magnum-based designs.

60. Dedicated Voltage

 Control Power TransformerThe dedicated voltage control power transformer can be selected for 208/240 V systems where an added buffer is preferred between the incoming power and the micro-processor controller's control power input.

61A. UPS Device with Terminal Block Input

 Provides a factory mounted and wired UPS sized to provide power to the ATC controller and the bypass isolation logic controller. Inputs to the UPS are wired out to a terminal block.61B. UPS 120 Vac Ready, Terminal Block Input Provides a terminal block input only for customer supplied external mounted UPS that provides power to the logic controller supplied in bypass isolation switches.

61C. Power Loss Buffer for ELC

Provides ride-through power for the ELC contained in automatic transfer switches with bypass isolation. This feature does not provide continuous power for microprocessor controller.

61D. UPS 120 Vac Ready, Terminal Block Ready
Provides a terminal block input only for customer supplied external mounted UPS that provides power to the ATC controller.

61E. 24 Vdc Ready, Terminal Block Ready

Provides a terminal block input only for customer supplied external 24 Vdc power to the ATC900 controller (requires the DCT Module).

61F. Power Loss Buffer ATC Comm (Requires DCT Module)

Provides ride-through power for the ATC-900 controller to maintain communications during a power loss. The power loss buffer provides 24 Vdc to the controller (requires the DCT module).

81A. General Alarm Contact (OUTPUT)

Provides a remote indication that an alarm condition exists on the ATC-900. Remains on until all alarms are resolved and reset at the controller.

81B. ATS Not in Automatic (OUTPUT)

Provides remote indication that the ATS is not in automatic mode.

81C. ATS in Test (OUTPUT)

Provides remote indication that the ATS is currently running a test. The test could be initiated by the device panel engine test pushbutton or automatically using the programmed engine exerciser.

81D. Engine Test Aborted (OUTPUT)

Provides remote indication that an engine test has been aborted. The ATC-900 event log contains detailed event information that can help assess the reason the test was aborted.

81E. Cooldown in Process (OUTPUT)

Provides remote indication that an engine cooldown is in progress.

81F. Engine Start Contact

 Status (OUTPUT)Provides remote indication that the engine start contact is calling for the generator to start.

81G. LOAD SHED S2 Inhibit On (OUTPUT) Provides remote indication that the emergency inhibit is on.

81GL. LOAD SHED S2 Inhibit On with White Indicating Light
Provides a 30 mm pilot light on the transfer switch device panel to indicate that S2 Inhibit is on.
81H. ATS on Bypass (OUTPUT)
Provides remote indication that the bypass switch is carrying the load.

81J. Lockout

Provides an input to temporarily disable automatic control. This feature is used to indicate a tripped breaker in a breaker-based transfer switch. It is treated as an alarm and the alarm must be reset to continue automatic operation.

81K. Monitor Mode

Provides an input to disable automatic control in the ATC900 controller. This function is used for when manual operation is required. The controller continues to accurately monitor source status and set points can be changed; however, no action will be initiated by the controller.

81L. Remote Load Test

Provides an input to initiate a system test using a remote contact closure. The test will run based on the programmed engine test settings in the controller. The settings include with or without load, engine run time, and independent test time delays.

81M. Load Bank Control (OUTPUT)

Provides a remote output to disconnect a load bank if Source 1 fails while the load bank is running. The load bank control output is turned on when an unloaded engine test is in process and the load is connected to the source that is not under test. It is off at all other times. If, while an engine test is in process, the non-test source fails (i.e., Source 1), the test is aborted, which will cause load bank control relay to turn off in anticipation of transferring load to the generator.

81N. Health (OUTPUT)

Provides a remote indication that an alarm condition or loss of control power exists on the ATC-900. Remains on until an alarm condition occurs or control power is lost.

90A. Master Control (OUTPUT)

Provides the user with the ability to use two independent transfer switches in three source systems consisting of a utility and two generator sources. In a three-source system, the Master ATS controls the engine starting and stopping of the Slave ATS. The slave input receives the engine start signal from the Master controller.

90B. Slave Input (INPUT)

The ATC-900 Master/Slave controller functionality provides the user with the ability to use two independent transfer switches in three source systems consisting of a utility and two generator sources. In a three-source system, the Master ATS controls the engine starting and stopping of the Slave ATS. The slave input receives the engine start signal from the Master controller.

Glossary

With respect to their use in this document and as they relate to switch operation, the following terminology is defined:

Available-A source is defined as "available" when it is within its undervoltage/ overvoltage/underfrequency/ overfrequency (if applicable) set point ranges for the nominal voltage and frequency setting.
Fail-safe-A feature that prevents disconnection from the only available source and will also force a transfer or retransfer operation to the only available source.

Retransfer-Retransfer is defined as a change of the load connection from the secondary to primary source.

Source 1-is the primary source or normal source or normal power source or normal. (Except when Source 2 has been designated the "Preferred Source.")

Source 2-is the secondary source or emergency source or emergency power source or emergency or standby or backup source. (Except when Source 2 has been designated the "Preferred Source.")

Source 1—Failed or failsSource 1 is defined as "failed" when it is outside of its undervoltage or overvoltage or underfrequency or overfrequency (if applicable) set point ranges for the nominal voltage and frequency setting.
Source 2-Failed or failsSource 2 is defined as "failed" when it is outside of its undervoltage or overvoltage or underfrequency or overfrequency (if applicable) set point ranges for the nominal voltage and frequency setting for a time exceeding 0.5 seconds after the time delay emergency fail (TDEF) time delay expires.

Transfer-"Transfer" is defined as a change of the load connection from the primary to secondary source except when specifically used as "Transfer to Neutral."

Transfer to Neutral-

"Transfer to Neutral" is defined as when the load circuits are disconnected from both Source 1 and Source 2.

Transient Voltage Surge Suppression

Eaton's Clipper Power System -Visor ${ }^{\text {TM }}$ series transient voltage surge suppression (TVSS) components can be integrated into any closed transition soft load switch. Surge current ratings 100 kA , 160 kA and 200 kA per phase provide a range of costeffective facility-wide protection solutions. Status indication on each phase is standard with any TVSS option. Metering and communication capabilities are also available. See Appendix C for details.

Communications

Optional communication capability via Communication Gateway is available, allowing remote data access, control, programming, system interface and dispatch.

System Interface

A system control panel provides a user-friendly interface to the closed transition soft load controller, allowing operators to easily monitor the switching devices position and manually test the generator and the system operations.

Switching Devices
 Status Lights

- Source 1 open (green)
- Source 1 closed (red)
- Source 1 trip (amber)
- Source 2 open (green)
- Source 2 closed (red)
- Source 2 trip (amber)

Front Panel Control Switches and Lights

The combination of the following pilot devices can be implemented on the unit:

- AUTO/TEST switch
- SYSTEM TEST switch
- TEST MODE switch
- ALARM SILENCE switch
- READY FOR OPERATION lamp (white)-verifies the ATC-5000 status

Optional Intergral Overcurrent Protection Capability

For service entrance applications, Digitrip microprocessor-based trip units can be integrated into the power switching devices. This eliminates the need for the separate upstream protective device, saving installation cost and space. Available with various combinations of long, short, instantaneous and ground fault protection, Digitrips can communicate with Eaton's IMPACC and PowerNet Power Management Systems.

Optional On-Board 24 Vdc Power Supply

On-board 24 Vdc power supply circuit, consisting of two 12 Vdc gel-cell UPS type batteries and battery charger, is available on the unit to provide DC control power to soft load transfer switch components. Engine battery can be connected in the "best battery" circuit as well, further improving the system's reliability.

Optional Components
 Description

Service Entrance Rating	
16 N	Overcurrent protection—normal
16 E	Overcurrent protection-emergency
16 B	Overcurrent protection—both
37 A	Service entrance
37 B	Service entrance with ground fault
Metering	
180	IQ Analyzer—normal
18 P	IQ Analyzer—emergency
180	IQ Analyzer—N/E selectable
18 U	IO Analyzer—load

Plant Exerciser
$23 \mathrm{~J} \quad$ Automatic 24 hours/ 7 days selectable load/no load

| Expanded Controller I/O |
| :--- | :--- |
| $25 \mathrm{~A} \quad$ Additional discrete and analog $1 / 0$ for Genset control and monitoring |

Space Heater and Thermostat
41 C

Surge Protection	
51M4B	Engine control (24 Vdc) surge device
51NA1	100 kA surge device with AdVisor Source 1
51NS1	100 kA surge device with SuperVisor Source 1
51NN1	100 kA surge device with NetVisor Source 1
510A1	160 kA surge device with AdVisor Source 1
510S1	160 kA surge device with SuperVisor Source 1
510N1	160 kA surge device with NetVisor Source 1
51SA1	200 kA surge device with AdVisor Source 1
51SS1	200 kA surge device with SuperVisor Source 1
51SN1	200 kA surge device with NetVisor Source 1

On-Board 24 Vdc Power Supply
24C Battery charger and gel-cell batteries

Protective Devices

53A	Beckwith M-3410A
53B	Schweitzer SEL-547
53C	Basler BE1-951
53D	Beckwith M-3520
53E	Schweitzer SEL-351
53F	Basler BE1-IPS100

Communication

54 B	External Communication Gateway
54 C	Serial Modbus Over Ethernet
Field Startup	
56A	2-day startup (includes 1 day for travel)

Remote Annunciator Controller

Remote Annunciator Controller

Product Description

Eaton's HMi remote annunciator controller series provides users with the ability to remotely monitor and control multiple transfer switches from one intuitive, touchscreen user interface.

Remote Monitoring, Enhanced Safety

Tightening arc-flash regulations and requirements for personal protective equipment are driving more and more end users toward the use of remote monitoring and control devices. Eaton's HMi remote annunciator controller offers a simple and cost-effective means of providing transfer switch monitoring and control.

Designed to meet today's most common specifications, including the City of Chicago Electrical Code, the HM i remote annunciator controller connects to Eaton's ATC$300+$, 600 or 800 controller via Modbus ${ }^{\circledR} 485$ and serves as an extension of the transfer switch controller.

One Product Multiple Advantages
The HMi remote annunciator controller has a multi-view option that allows end users to monitor and control one to four transfer switches. Additional product advantages include the ability to:

- Initiate a transfer to the generator for peak shaving
- Perform a remote test based on programmed engine exerciser set points
- View and silence system alarms
- Perform basic troubleshooting using the source data and alarm history screens

Features

- Monitors and controls one to four transfer switches
- Mimics bus display for source availability, source position and preferred source monitoring
- Audible alarm with alarm silence option when on source 2
- Remote control features include transfer to source 2, engine test, time delay bypass and alarm silence
- Date- and time-stamped alarm history
- 6-inch color touch-screen display
- User-assignable transfer switch designations
- Compatible with Eaton's ATC-300+, ATC-600 and ATC-800 © microprocessor controllers
- Password protection for all control functions
- Modbus 485 communication
- Flush mounted

Design Highlights

- Uses Eaton's HMi (humanmachine interface) series
- Display type: 6-inch TFT, LED backlight
- NEMA® 4X / IP65
- 24 Vdc operating voltage (power supply optional)
- 85 dB multi-tone-frequency alarm buzzer
- Operating temperature 32° to $122^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$
- Storage temperature -4° to $140^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
- 3 V lithium battery backup (CR2032 x 1)

ATS Individual Unit Screen

- Monitors source availability, source position indication, alarm status, ATS in test, communication status and ATS in non-automatic mode for a single transfer switch
- Initiates peak shaving and engine tests, bypass time delays (1) and silence audible alarms

Note

(1) Requires MPONI communication module for use with the ATC-600 or ATC-800 controller

ATS Multi-Unit Screen (ATC-300+ Only)

- Monitors source availability, source position and alarm status for up to four transfer switches
- Password-protected setup screen for transfer switch designations
- Access to the ATS individual unit home screen

Source Data Screen

- Monitors values for source 1 and source 2 voltage and frequency

Alarm Screen

- Monitors all alarm messages with the touch of a button right from the HMi display. Alarm messages include:
- Source 2 closed (audible alarm)
- Overvoltage
- Undervoltage
- Overfrequency
- Plant exerciser
- Engine test
- Remote engine test
- Voltage unbalance ©
- Phase reversal (1)
- Go to emergency
- Lockout
- Failed to sync (phase angle)
- Failed to sync (frequency difference)
- Engine test or plant exerciser
- Source 1 error
- Source 2 error

Engine Test Screen

- Provides password protected control to start and abort an engine test. The engine test will run according to the controllerprogrammed set points for duration and with or without load
- Provides control to bypass the source 1 to source 2 and source 2 to source 1 time delays

Go To Emergency Screen (Peak Shaving)

- Provides password protected control to force transfer to source 2 regardless of the condition of source 1 . This feature is failsafe, meaning the ATS will automatically return to source 1 in the event of a source 2 failure
- Provides control to bypass the source 1 to source 2 and source 2 to source 1 time delays

Note

(1) ATC-300+ controller only.
5.7
Transfer Switches
Remote Annunciator Controller

Dimensions

Approximate Dimensions in Inches (mm)

| Catalog
 Number | Dimension A | Dimension B | Dimension C | Dimension D | Dimension E
 $\mathbf{+ 0 . 0 4 (1 . 0) - \mathbf { 0 }}$ | Dimension F
 $\mathbf{+ 0 . 0 4}(\mathbf{1 . 0})$
 $\mathbf{- 0}$ | Radius R | Panel
 Thickness T |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| HM106CU | $7.25(184.2)$ | $5.67(144.0)$ | $1.54(39.1)$ | $0.24(6.1)$ | $6.67(169.4)$ | $5.10(129.5)$ | $0.12(3.0)$ | $0.06-0.12(1.5-3.0)$ |

Wiring Diagram

kW Conversion Chart

kW to Ampere Conversion Chart

Three-Phase Ampere Table at Common Line-to-Line Voltage											
kW ${ }^{(1)}$	200 V	208 V	220 V	230 V	240 V	380 V	400 V	415 V	460 V	480 V	600 V
5.0	18	17	16	16	15	9	9	9	8	8	6
7.5	27	26	25	24	23	14	13	13	12	11	9
10.0	36	34	33	31	30	19	18	17	16	15	12
15.0	54	52	49	47	45	28	27	26	24	23	18
20.0	72	69	66	63	60	38	36	35	31	30	24
25.0	90	87	82	78	75	47	45	43	39	38	30
30.0	108	104	98	94	90	57	54	52	47	45	36
40.0	144	139	131	126	120	76	72	70	63	60	48
50.0	180	173	164	157	150	95	90	87	78	75	60
60.0	217	208	197	188	180	114	108	104	94	90	72
75.0	271	260	246	235	226	142	135	130	118	113	90
80.0	289	278	262	251	241	152	144	139	126	120	96
100.0	361	347	328	314	301	190	180	174	157	150	120
125.0	451	434	410	392	376	237	226	217	196	188	150
150.0	541	520	492	471	451	285	271	261	235	226	180
175.0	631	607	574	549	526	332	316	304	275	263	210
200.0	722	694	656	628	601	380	361	348	314	301	241
250.0	902	867	820	784	752	475	451	435	392	376	301
300.0	1083	1041	984	941	902	570	541	522	471	451	361
350.0	1263	1214	1148	1098	1052	665	631	609	549	526	421
400.0	1443	1388	1312	1255	1203	760	722	696	628	601	481
500.0	1804	1735	1640	1569	1504	950	902	870	784	752	601
600.0	2165	2082	1968	1883	1804	1140	1083	1043	941	902	722
700.0	2526	2429	2296	2197	2105	1329	1263	1217	1098	1052	842
800.0	2887	2776	2624	2510	2406	1519	1443	1391	1255	1203	962
900.0	3248	3123	2952	2824	2706	1709	1624	1565	1412	1353	1083
1000.0	3609	3470	3280	3138	3007	1899	1804	1739	1569	1503	1203

Note

(1) At 0.8 power factor.

Low Voltage Busway

6.1 Pow-R-Way IIIPow-R-Way III Busway
Product Description V2-T6-2
Features, Benefits and Functions V2-T6-12
Standards and Certifications. V2-T6-13
Product Support V2-T6-13
Catalog Number Selection V2-T6-14
Product Selection V2-T6-15
Technical Data and Specifications. V2-T6-19
Dimensions. V2-T6-23
6.2 Pow-R-Flex
Pow-R-Flex Busway
Product Description V2-T6-28
Features, Benefits and Functions V2-T6-32
Standards and Certifications. V2-T6-33
Technical Data and Specifications V2-T6-38
Dimensions V2-T6-41
6.3 100 A Busway
100 A Busway
Product Description V2-T6-46
Application Description V2-T6-46
Product Selection V2-T6-46
Options and Accessories V2-T6-47
Technical Data and Specifications. V2-T6-48

Pow-R-Way III Busway

Product Description

Superior Housing Design

 and a True Sandwich Design Maximize Busway PerformanceEaton's Pow-R-Way III ${ }^{\oplus}$ is constructed with a lightweight and durable, two-piece, aluminum-extruded housing. The non-ventilated housing design excludes potential points of penetration by moisture or dust. Busbars for plug-in applications have fullsized conductor tabs welded by a fully automated state-of-the-art welding process. This design extends the contact surfaces outside of the busway housing and into the plug-in outlet. The benefits of the true sandwich design for both plug-in and feeder busway include improved coordination and heat dissipation, better bracing and the elimination of the "chimney effect."

Epoxy Insulation Provides Exceptional Performance

The phase and neutral bars are insulated with Class B, $130^{\circ} \mathrm{C}$, epoxy insulation applied by an automated fluidized bed process. This application insulates the conductors in a precise and controlled manner to ensure smooth, continuous, high quality protection. Following the epoxy insulation process, all contact surfaces are silver-plated to provide an extremely durable connection. Tin-plating is also an option.

Pow-R-Way III Bridge Joint

 Reduces Installation Time and Provides Flexibility for Future ModificationsPow-R-Way III joint connections are made with the rugged Pow-R-Bridge joint package. A Pow-RBridge is installed on each section of busway prior to shipment. Job site connections are made quickly by releasing the bridge joint bolt, moving the next section into place, and retightening the bolt. Torque-indicating, double-headed bolts with fall-away instruction tags are provided to ensure that proper installation torque is achieved. The Pow-R-Bridge provides an adjustment in section length of up to ± 0.5-inch (12.7 mm) at each joint.

Bridge Joint Assembly

Pow-R-WayIII Offers Grounding and Neutral Options to Meet Every Customer Preference and Need
The aluminum housing is UL listed as a 50% integral ground path and is provided as a standard, economical ground system. A 50\% internal ground bar is also available. In certain industrial applications, a ground path greater than 50\% may be required. Pow-R-Way III can solve this problem in a costefficient manner through combining the 50\% integral housing ground with the 50% internal ground. To meet the growing demand for grounding isolation, Pow-R-Way III also offers a 50% isolated ground bar. When customers are concerned about harmonics and overheating generated by nonlinear loads, Pow-RWay III provides a solution through a fully rated 200\% capacity neutral bar.

Joint End

A Space-Saving InnovationThe Corner Joint Elbow

The Pow-R-Way III corner joint combines the features of the Pow-R-Bridge with reduced elbow leg lengths. Due to its compact design, the corner joint allows for layouts that provide optimum use of space and increases available plug-in openings.

Straight Lengths

A Complete Line of Fittings for Indoor and Outdoor Applications

Pow-R-Way III offers an extensive range of fittings to meet every application need. Flanges, elbows, end cable tap boxes and end closers are used in basic busway routing. For more complex layouts, combination elbows and offsets can be used along with transformer throats vault flanges, reducers and expansion joints

Dutdoor Joint Assembly

Plug-In Unit

Upward Elbow

Enhanced Bus Plug Design

 Facilitates Installation and Improves SafetyPow-R-Way III plug-in protective devices are available in circuit breaker and fusible switch designs. Standard features include: oversized enclosures, extended ground and neutral bars, line side barriers, bus plug alignment pin, busway interlock and improved clamp and guides.

Advanced bus plugs provide protection, communication and coordination capabilities using the Visor ${ }^{\text {TM }}$ Series (SPD), Energy Sentinel ${ }^{\text {TM }}$, Digitrip ${ }^{\text {TM }}$ IQ OPTIM ${ }^{\text {TM }}$, Advantage ${ }^{\text {TM }}$ motor control components and receptacle plugs.

Final Busway Assembly

Rearward Corner Joint Assembly

High 6-Cycle Short-Circuit Ratings Optimize Coordination Between Busway and Power Equipment and Meet High Quality Standards
All ratings of Pow-R-Way III have been tested to 6-cycle standards and have achieved a minimum rating of 85 kA and a maximum rating of 200 kA rms symmetrical

Typical Busway Installation (Torque Indicating Bolt)

Low Voltage Busway
Pow-R-Way III

General Information

- Determine the total footage, all fittings and accessories for entire busway run. Price the total footage by type and system requirements. Round footage up to the nearest foot. Add the fabrication charge for the fittings. Add any additional accessories required for the total price of the busway run
- See NEC 364.11 for Reducer Application
- Fusible reducers are 600 V maximum; fuses are not included

Transformer Connections

- Transformer tap bus extensions do not include drilling or lugs
- Transformer throats include flexible connectors

Commercial Metering
 Connections

- For use with 33 MM , 37MM and 37SS meter stack modules; order separately
- Main breaker units include circuit breaker and trip units
- 1200 A or greater main devices must be center fed when installing 800 A residential meter sockets and 1200 A commercial meter sockets
- Spacer kit 3MMBSK may be required when stacks are mounted on right-hand side in EUSERC areas
- Class T fuse clips only; fuses not included
- Compatible with indoor corner elbow accessory 3MMEB12 and 3MMEB16
- In-line metering PTO with no overcurrent protection should only be used with six meter sockets/tenant main circuit breakers or less, or applied per local code

Plug-In

- Straight sections of plug-in busway are available in $2 \mathrm{ft}(0.6 \mathrm{~m})$ increments from $2 \mathrm{ft}(0.6 \mathrm{~m})$ minimum to $10 \mathrm{ft}(3 \mathrm{~m})$ maximum. Pow-R-Bridge joint is included

Sprinkler-Proof Plug-In

- For sprinkler-proof plug-in, multiply the plug-in price by 1.15 and use outdoor pricing for the feeder busway

Feeder

- Straight sections of feeder busway are available in $1 / 8$-inch (3.2 mm) increments from 16 inches $(406 \mathrm{~mm})$ minimum to $10 \mathrm{ft}(3 \mathrm{~m})$ maximum. Pow-R-Bridge joint is included. Busway must carry at least a 50% load in all outdoor applications

Hangers/Pow-R-Bridge

- The busway price includes one horizontal hanger per $10 \mathrm{ft}(3 \mathrm{~m})$ of busway and one Pow-R-Bridge joint per connection. All vertical hangers and any additional horizontal hangers should be added to the total price

Ground

- A 50% integral housing ground is provided as standard. The housing ground can be used in combination with the internal ground or the isolated ground to achieve a 100% ground rating

Standard and Flush Flanges

Flanges provide a direct connection to low voltage switchgear, switchboards, motor control centers and other apparatus. Cutout dimensions and drilling plans are provided with the customer drawings, and it is the responsibility of the switchgear manufacturer to provide the opening, flange drillings, connecting hardware and bus risers in their equipment. For proper coordination between busway and other equipment, detailed drawings, including switchgear orientation, must accompany the order. A standard flange can be supplied to the left or right of a section, as required. A flush flange is used when the busway must lay close to the top of a switchboard. The edge of the busway is 1.25 of the switchboard.

Elbow Flanges

An elbow flange is a combination of a standard elbow and a standard flange fabricated into a single fitting. Elbow flanges are typically used when the minimum leg lengths for either the standard elbow or the standard flange cannot be maintained.

Traditional Indoor and Outdoor Elbows

Elbows are used to make 90° changes in the direction of busway runs. The four types that are available are forward, rearward, upward and downward.

Corner Joint Elbows

The Pow-R-Way III corner joint elbow can be installed in areas where a traditional 90° turn could never have been accomplished before.

Pow-R-Way III corner joint elbows can solve any serious pathway problem and contribute to successful layouts with minimal space requirements. The corner joint elbow is UL listed for indoor applications only and is also certified for seismic withstand capability to worst-case, Zone 4 levels.

For Indoor Use Only

Pow-R-Way III

Special Angle Elbows

Special angle elbows are traditional elbows that allow the direction of the busway runs to change at angles greater than 90°. They allow easy routing through nontraditional corridors. The four types offered are forward, rearward, upward and downward.

Tees

A tee is a busway fitting suitable for connection in three directions.

Low Voltage Busway

Pow-R-Way III

Crosses

A cross is a busway fitting suitable for connection in four directions. It is applied when a bus run must branch off in three directions, all in the same plane.

End Cable Tap Box

End cable tap boxes are used to feed a run of busway with cable and conduit or where loads served by busway are connected without the need for overcurrent protection.

Center Cable Tap Box

Center cable tap boxes are used to center feed a run of busway with cable and conduit or where loads served by the busway are connected without the need for overcurrent protection.

Weatherheads

Weatherheads are used for service entrance connections to busway.

Vault Flanges

Vault flanges are used to enter a utility vault for termination to the utility transformer. Each vault flange is custom designed to meet each specific utility specification. Vault flanges may look similar to those shown in figure below.

Expansion Joints

Expansion joints accommodate the expansion and contraction of busbars with respect to the enclosure. They compensate for the difference in the coefficient of expansion of the aluminum housing and the copper or aluminum busbars. Expansion joints must be used wherever a run of busway crosses an expansion joint of a building. They should also be installed in the center of extremely long straight runs of busway; one every $300 \mathrm{ft}(91 \mathrm{~m})$ for copper or one every $225 \mathrm{ft}(68 \mathrm{~m})$ for aluminum.

Phase Transpositions

Phase transposition fittings are used in applications where a phase rotation is needed due to a change in phasing from the source equipment to the load equipment. Both 90° and 180° rotations are possible. In each case, all conductors are rotated.

Non-Protected Reducers

Non-protected reducers are used to reduce the ampacity of the busway without overcurrent devices. Per NEC Section 364.11, for industrial applications, no overcurrent protection is required where the busway is reduced in size, provided the length of the smaller busway does not extend more than $50 \mathrm{ft}(15.2 \mathrm{~m})$ and has a current rating of at least one-third of the first upstream overcurrent device.

Protected Reducers

Protected reducers are used to reduce the ampacity of busway using either a circuit breaker or a fused, nonautomatic circuit breaker overprotection device. Both serve as a disconnecting means. The line side of the cubicle is connected to the higher rated busway and the load side is connected to the lower (reduced) rated busway.

Transformer Throat Connections

A transformer throat is used when making connections to a liquid-filled substation transformer. All transformer throat connections include flexible connectors between the transformer low voltage spades and Pow-R-Way III busbars. For transformers with drilled flanges, the busway will bolt to the transformer throat instead of using a sealing ring.

Transformer Flange Connections

Transformer flange
connections are used when making a connection to a dry-type substation transformer. Transformer flange connections include flexible connectors between the transformer low voltage spades and the Pow-R-Way III flange busbars.

Single-Phase Transformer Taps
Single-phase transformer taps arrangements are used for connections to three single-phase transformers. The bus extensions do not include drilling or lugs.

In-Line Power Takeoff

 Main Circuit Breaker PTOThe in-line main circuit breaker PTO shown in figure to the left is available with trip ratings from 300 A up to 1200 A ; using L-, M- and N -Frame circuit breakers. This device is indoor rated and may be sprinkler-proofed upon request.

Main Fusible Switch PTO
The in-line main fusible switch PTO shown in figure to the left is available with 400, 600 and 800 A switches; using Class "T" fuses. This device is indoor rated only. The switch handle is mounted in front, eliminating interference with the meter sockets and the need for spacers between the main device and the meter stack. It comes with a hinged door, giving easy access to the fuses mounted below the main switch.

Unprotected PTO

The in-line PTO with no main device shown in figure to the left comes with 1200 A horizontal cross bus as standard. This device is intended for use with six or fewer meter sockets, or as local code permits.

Offsets

An offset is used to avoid obstacles and to conform to the building's structure. It is two elbows fabricated into a single fitting for use where space restrictions prohibit the use of two standard 90° elbows.

Low Voltage Busway
Pow-R-Way III

Pow-R-Way III Adapters

A complete line of adapters are available to enable the user to add to existing old-line Westinghouse ${ }^{\circledR}$ or obsolete Cutler-Hammer ${ }^{\circledR}$ bus runs with the Pow-R-Way III design. The specific Westinghouse product lines are low impedance busway, current-limiting busway, Pow-R-Way and Pow-R-Way II. The obsolete Cutler-Hammer designs are CP2, CP3 and CP4 Safetybus.

The adapters allow the incorporation of presentday technologies, available in Pow-R-Way III plug-in units, into existing busway systems. State-of-the-art features such as energy monitoring, transient voltage surge suppression and coordination/communication capabilities can all be added to existing distribution systems without having to upgrade and replace entire runs of busway.
Special adapters to competitive busway products are also available. Please contact the Greenwood factory for information.

Power Where You Need it!

As a leader in providing quality, robust, cutting-edge electrical distribution equipment, Eaton understands the importance of providing usable power access in a variety of applications. Eaton's Pow-RWay III busway continues to offer electrical distribution solutions that are flexible and without limitations, and are energy efficient, saving time and money.

Pow-R-Way III Receptacle Plug-In Units

Eaton now offers a full line of receptacle plug-in units for use on Pow-R-Way III busway. Pow-R-Way III receptacle plug-in units come fully assembled and wired, reducing installation time. They are UL listed and offer a complementary line of accessories. Eaton's unique design makes them the most flexible receptacle units in the industry.

Data Centers-Data racks continue to process more information at higher speeds with constantly changing demands. Pow-R-Way III receptacle plugs offer the highest ampere ratings in the industry. Busway and receptacle plugs above the data racks provide faster installation, faster connectivity, easier rack changes and upgrades, and will run cooler than traditional cable methods.

Retail—As retail environments change meeting customer demands, Pow-R-Way III busway and receptacle plugs help make floor layout and display changes easier. Receptacle plugs allow for easy power access, eliminating costly conduit and cable work.

Schools and Laboratories-

 Pow-R-Way III receptacle plugs offer safe power access for instrumentation and other lab equipment at the point of use.
Machine Shops-

Pow-R-Way III busway and receptacle plugs offer quick power connection for shop equipment and make it easy to change shop layouts as demands change.
Light Industrial-Pow-R-Way III busway and receptacle plugs help make manufacturing and assembly lines more flexible. Receptacle plugs bring easy power access for tools and equipment being used on the lines.

For application and layout assistance, and for additional information, please contact your local Eaton sales office or Eaton authorized distributor.

Fused Duplex Receptacle Plug-In Unit

These units allow you to quickly add standard receptacle power and come with the following features:

- Two fix-mounted NEMA 5-20R or L5-20R duplex receptacles
- Fuse protection for each duplex receptacle
- 120 V maximum, single-phase

Fix-Mounted Duplex Receptacle

Single Receptacle Plug-In Unit

These units are configured to order based upon the type and size of receptacle ordered, and offer the following features:

- One single or duplex receptacle. Straight blade or twist lock, 5-30 A
- 240 V maximum, single-phase
- Type CH single-pole or two-pole circuit breaker protection
- Receptacles can be fixmounted or cord-mounted
- Cord lengths are 1-25 feet in 1 -foot increments

Fix-Mounted Single Receptacle

Cord-Mounted Single Receptacle

Not all SPD units on the market have filtering capabilities. The benefits of combining SPD and filtering are reduced MOV stress, resulting in a longer life cycle, lower let-through voltage, better noise attenuation levels and increased reliability.

Without protection devices, electronic-based loads and microprocessors are not provided with the noise- and disturbance-free power that they require. Because microprocessors are now common in those facilities, specifiers must ensure that the AC power supply is properly filtered. Significant performance advantages are achieved by integrating SPD filters into busway systems. Because the SPD unit is directly connected to the busway it is able to minimize let-through voltage and to isolate critical loads that are fed from a protected busway run. Due to the integrated design, the SPD bus plug saves the user-needed wall space and greatly reduces the installed project cost. The SPD bus plug is furnished with a breaker disconnect.

IO Energy Sentinel Bus Plugs

The IQ Energy Sentinel is a UL listed microprocessor-based metering module capable of communicating energy usage and demand values over Eaton's PowerNet ${ }^{\text {TM }}$ power monitoring network. These innovative submetering devices are designed to mount-directly to Series C® molded-case breakers through 400 A and are available for universal mounting through 2500 A .

It offers a centralized alternative to individually mounted wattmeters, watthour meters and watt-demand meters. Key advantages include unmatched savings in space, lower installation costs, and the capability to communicate data readings in a variety of ways. IQ Energy Sentinels with built-in CTs and communication capability have the added benefit of overall system accuracy. The Energy Sentinel mounts on the load side of Eaton F-, J- and K-Frame breakers within the bus plug enclosure. The Energy Sentinel is also available for fusible plug-in units, which use external CTs within the plug-in enclosure.

Submetering application examples for the Energy Sentinel include energy monitoring and demand management, energy cost analysis/allocation and tenant or interdepartmental billing.

To accomplish the communication system, the customer must provide a twisted pair communication cable in 1/2-inch (12.7 mm) conduit connecting the IO Energy Sentinel to an Eaton Central Energy Display (CED) or a customer PC to display and collect the information.

The IO Energy Sentinel offers the user full energy monitoring capability in a compact, cost-effective module ideally suited to busway application.

6.1
Low Voltage Busway
Pow-R-Way III

Ground Detector/Neutralizer Bus Plug

In rare cases, busbars in a busway system pick up static electricity. In order to discharge this potential, a neutralizer and a ground detector bus plug is available. The unit has three 18,000 ohm resistors connected between the busbars and the ground. Static electricity is discharged through these resistors.

A neon lamp is wired in series with the busbar and part of the resistor and burns continuously. If there is a ground anywhere on the system of a lower resistance than the path through the lamp, the lamp will go out, indicating that there is a short in the system.

Combination Starter Bus Plugs

Eaton's Freedom ${ }^{\text {TM }}$ and Advantage ${ }^{\text {TM }}$ motor starters are included in the Pow-RWay III bus plug product offering. Freedom motor starters offer state-of-the-art features that ensure greater value, flexibility and performance in the toughest commercial and industrial applications.

Advantage motor starters have features including a solid-state, heaterless overload relay with built-in ground fault protection. Advantage also features communication capabilities and an on-board micro-
processor that controls the contactor magnet to eliminate burnout in low voltage or varying control circuit conditions.

Plug-in combination starters or contactors are mounted in enclosures identical to the circuit breaker and fusible switch type bus plugs including the clamp and guides, safety interlocks and guide pin. They are available from size 0 through 5 with a circuit breaker, motor circuit protector or fusible disconnect. Contact Eaton for specific application and outline dimensions.

Pow-R-Way III Express Bus

Eaton continues to be a leader in providing service and product solutions to its customers. When you need a complete run of busway fast to get critical electrical loads running or meet time-
sensitive deadlines, Express Bus is the solution.

Product Offering

- Indoor plug-in busway:
- 800-2500 A copper and 800-2000 A aluminum
- Indoor feeder busway:
- 800-2500 A copper and 800-2000 A aluminum
- Corner joints:
- Forward (right)
- Rearward (left)
- Upward
- Downward
- Tap boxes:
- End tap box
- Plug-in tap box
- Bus plugs:
- Fusible
- Circuit breaker
- Accessories:
- End closer
- Wall/floor flange
- Hangers

Program Highlights

Eaton will ship 12 total pieces of busway in 5 working days or 24 total pieces in 10 working days after receipt of released order. Total pieces are inclusive of end tap boxes and corner joints.
For pricing, special requests or needs, please contact your local Eaton sale office.

Plug-in units and additional hangers are stocked and available in the warehouse.

How the Program Works

By using the form provided, it's quick and as easy as 1-2-3.

1. Write in the catalog numbers and quantities of the pieces needed.
2. Write in and extend the pricing. Obtain net multipliers from your local sales office.
3. Fax in the order sheet with a copy of your purchase order.
Once received, your order will be entered in the system and shipped within 5 to 10 working days based upon the number of pieces ordered.
Feeder and plug-in indoor busway with copper conductors are available in 10 -feet and 6 -feet lengths. They can be used interchangeably without the use of special adapters or special splice plates, provided they are the same current and system rating.
Pow-R-Way III is constructed with a lightweight and rugged, two-piece allaluminum extruded housing, which is rated as a 50% ground path.
Copper busbars for plug-in applications have full-sized conductor tabs welded to their side edges to form the plug-in contact surfaces. Tabs are the same exact thickness as the conductors and are fully rated up to 800 A .

Corner Joint Elbows

When it comes to bends and turns in a bus run, the Pow-R-Way III corner joint is the most compact elbow in the industry. Given the complexity of today's industrial and commercial distribution systems and the need to coordinate layouts with HVAC, plumbing and lighting requirements, space quickly becomes a critical factor.
The Pow-R-Way III corner joint elbow can be installed in areas where traditional 90 -degree elbows could never have been accomplished before.
Due to its compact design, the corner joint also allows for layouts that provide optimum utilization of space. Critical section length that would normally be required for a traditional elbow leg length can now be dedicated to maximizing usable plug-in section length.

The corner joint is as reliable as traditional elbows. It is seismic certified and exceeds the requirements of both the UBC and CBC (Zone 4). The corner joint is UL listed for indoor applications.

Corner Joint Elbows

Fittings and Accessories

End cable tap boxes are available for all ratings in the Express Bus program. One horizontal hanger will be included for every 10 feet of busway. Please specify
flatwise or edgewise.

Pow-R-Bridge Assembly

Plug-In and Feeder Busway

Features, Benefits and Functions

Pow-R-Way III Offers a Full Line of Low Voltage Busway to Meet the Needs of the Global Marketplace
Eaton has combined the requirements of NEMA, UL, CSA and IEC into one design to present a world-class product in Pow-R-Way III. With standard features that include a two-piece aluminum housing, finger-safe plug-in outlets, an integral ground path and high 6-cycle shortcircuit withstand ratings, Pow-R-Way III provides a busway system that can be used over a broad spectrum of industrial, commercial and institutional applications worldwide.

Product Offering

- Plug-In Busway 225-5000 A copper and 225-4000 A aluminum straight sections of plug-in busway are available in $2 \mathrm{ft}(0.6 \mathrm{~m})$ incremental lengths from a $2 \mathrm{ft}(0.6 \mathrm{~m})$ minimum to $10 \mathrm{ft}(3 \mathrm{~m})$ maximum. Plug-in busway is also available as sprinkler proof
- Feeder Busway 225-5000 A copper and 225-4000 A aluminum straight sections of indoor and outdoor feeder busway available in any length in $1 / 8$-inch (3.2 mm) increments from a 16 -inch $(406 \mathrm{~mm})$ minimum to a 10-foot (3 m) maximum. A wide range of fittings are available in indoor sprinkler-proof, or outdoor feeder busway
- Plug-In Units

A full family of busway plug-in units is available. Standard plug-in units include fusible or circuit breaker protection. Advanced plug-in units include Visor Series surge suppression, communicating IO Energy Sentinel and OPTIM circuit breakers, and Advantage combination contactors and starters. A full line of receptacle plug-in units are available

Product Features and Benefits

- The all-aluminum twopiece housing provides durability and product integrity
- The lightweight and compact design results in easy installation
- The housing combined with a true sandwich design in both plug-in and feeder busway contributes to improve coordination and high short-circuit ratings
- An epoxy insulation process ensures optimum conductor and system protection
- Silver-plated joint and contact surfaces provide high-quality connections
- Highly automated manufacturing processes result in a superior product
- The Pow-R-Bridge joint package and torque indicating bolt gives a rugged, yet flexible and easy-to-install connection
- Corner joint elbows contribute to successful layouts and minimize space limitations
- High 6-cycle shortcircuit ratings optimize coordination between busway and power equipment
- This world-class product design and manufacturing meets the requirements of NEMA, CSA, Seismic and ISO ${ }^{\circledR}$ and IEEE ${ }^{\circledR}$
- Plug-in busway design and an enhanced bus plug-in unit facilitates installation and improves safety
- Flexible ground and neutral options provide solutions for any application problem
- A full family of plug-in units is available for every power need
- Advanced bus plugs provide protection, communication and coordination capabilities

Busway Capabilities

- The busway manufacturing plant in Greenwood, SC, is able to meet your emergency or quick ship requirements with quick ship lead-times from 3 days to 2 weeks
- Customer approval drawings can be available in 2 weeks or less to meet your project requirements
- Eaton's final field fit program ensures accurate layout and allows for minor last-minute modifications during installation
- Advanced system tools including Bid Manager ${ }^{\text {TM }}$ programs provide quick and accurate product information

Standards and Certifications

- Pow-R-Way III meets the requirements of NEMA, UL 857, CSA C22.2 No. 2794, IEEE, ANSI, IEC 439-1 and 2 , IEC 529 and is manufactured in an ISO 9001 certified facility
- Pow-R-Way III meets the International Building Code standards and is certified in the Uniform Building Code ${ }^{\circledR}$ and the California Building Code to exceed Zone 4 requirements
- ANSI, NEMA, IEEE, CSA, UL 857
- 10 kAIC rms symmetrical
- Fused duplex-40 A maximum
- Single-70 A maximum
- Quad-125 A maximum

Product Support

Busway product and application support is available from a professional team of Eaton employees that includes field sales engineers, application engineers, engineering service systems and the greenwood busway product engineering services.

Additional Programs

Final Field Fit-This program was established to effectively manage the dimensional uncertainties that are often inherent in bus duct layouts. This program provides the assurance of an exact fit the first time. It allows for bus duct runs to be released for manufacture when certain dimensions are not yet determined. It also eliminates the costly delays that can occur when sections have to be remade in order to accommodate last-minute job site changes in routing. For program details, please see publication SA01702001E.

Field Measurements-
For larger and more complex projects, Eaton will provide factory assistance with taking busway layout measurements. We will take full accountability of all measurements and will ensure an exact fit. Contact your local Eaton sales office for pricing and availability.

Additional Information

- Product Brochure: BR01701001E
- Technical Data: TD01701003E
- Consulting Application Guide: CA08104001E
- Electrical Solutions Catalog: CA08105001E
- ABCs of Planning/ Installation: IM01701002E
- Services and Solutions: BR01701002E

Pow-R-Way III

- Technical Data: TD01701003E
- ABCs of Busway: IM01701002E
- Brochure: BR01701001E

Service and Solutions

- Installation and Maintenance: IB01701001E
- Selling Policy: 25-000
- Discount Symbol:

CE3-LV Busway CE4-LV Busway Devices

Bridge Joint Assembly

Catalog Number Selection

Breaker Unit

Fusible Unit

SPD Series Bus Plug

Product Selection

Circuit Breaker Plug-In Units

Circuit Breaker Plug-In Units

Breaker Frame	Ampere Rating	Plug-In Enclosure Catalog Number	100\% Neutral Stab Catalog Number	50\% Internal Ground Stab Catalog Number	50\% Isolated Ground Stab Catalog Number	200\% Neutral Stab Catalog Number
ED, EDH, EHD, EDC, FDB, FD, HFD, FDC	10-225	P3BFD	P3FDN100	P3FG100	P3FDI100	P3FD2N100
			P3FDN225	-	P3FDI225	P3FD2N225
JDB, JD, HJD, JDC	70-250	P3BJD	P3JDN150	-	P3JDI150	P3JD2N150
			P3JDN250	P3JDG250	P3JDI250	P3JD2N250
KDB, KD, DK, HKD, KDC	100-400	P3BKD	P3KDN400	P3KDG400	P3KD1400	P3KD2N400
LDB, LD, HLD, LDC	300-600	P3BLD	P3MDN800	P3MDG800	P3MD1800	-
MDL, HMDL	400-800	P3BMD	P3MDN800	P3MDG800	P3MDI800	-
ND, HND, NDC	400-800	P3BND	P3NDN800	P3NDG800	P3NDI800	-
FB TRI-PAC	15-100	P3BFBP	P3FBPN100	P3FBPG100	P3BFBPI100	-
LA TRI-PAC	75-400	P3BLAP	P3LAPN400	P3LAPG400	P3LAPI400	-
NB TRI-PAC	500-800	P3BNBP	P3NBPN800	P3NBPG800	P3BNBPI800	-

- Refer to Page V2-T6-22
for breaker data; for reference only

The enclosure, circuit breaker, neutral and ground are ordered and shipped assembled

Circuit Breaker Plug

Advanced Circuit Breaker Plug-Ins

Digitrip OPTIM	Ampere Rating	Plug-In Enclosure Catalog Number	$\mathbf{1 0 0 \% \text { Neutral }}$ Catalog Number	$\mathbf{5 0 \%}$ Internal Ground Catalog Number	50\% Isolated Ground Catalog Number
L-Frame	$70-600$	P3BORPL	P3BORPLN600	P3BORPLG600	P3B0RPLI600

- The P3BFD, P3BJD and P3BKD plug-in units can be modified to accept breaker mounted IO Energy Sentinels
- The IQ Energy Sentinel and the OPTIM breaker plug-in units permit multiple meters, remote monitoring, and interconnection with programmable logic controllers and buildingmanagement systems. Applications may range from revenue metering for tenant billing to a full-power management system. Consult with an Eaton application engineer or the busway product line for assistance

Notes
(1) Enclosure not sold separately. Refer to Page V2-T6-14 for assembled bus plug catalog number.

See Page V2-T6-14 for plug assembled style number configuration.

Fusible Plug-In Units

Pow-R-Way III Plug-In Opening	Fusible Plug-In Units						
	Ampere Rating	Three-Wire Plug 600 V Catalog Number	$\begin{aligned} & \text { Three-Wire Plug } \\ & 240 \text { V } \\ & \text { Catalog Number } \end{aligned}$	100\% Neutral Stab Catalog Number	50\% Internal Ground Stab Catalog Number	50\% Isolated Ground Stab Catalog Number	200\% Neutral Stab Catalog Number
	30 (Horizontal)	P3F361RGH	P3F321RGH	(2)	(2)	(2)	(2)
	30 (Vertical)	P3F361RGV	P3F321RGV	(2)	(2)	(2)	(2)
	60 (Horizontal)	P3F362RGH	P3F322RGH	(2)	(2)	(2)	(2)
	60 (Vertical)	P3F362RGV	P3F322RGV	(2)	(2)	(2)	(2)
	100 (Horizontal)	P3F363RGH	P3F323RGH	(2)	(2)	(2)	(2)
	100 (Vertical)	P3F363RGV	P3F323RGV	(2)	(2)	(2)	(2)
	200 (Horizontal)	P3F364RGH	P3F324RGH	(2)	(2)	(2)	(2)
	200 (Vertical)	P3F364RGV	P3F324RGV	(2)	(2)	(2)	(2)
	400	P3F365R	P3F325R	P3FN400	P3FG400	P3F1400	-
	600	P3F366R	P3F326R	P3FN600	P3FG800	P3F1800	-
	800	P3F367T	P3F327T	P3FN800	P3FG800	P3F1800	-
		- Fuses are - Mechanica provided. lugs are av fusible plu at 400 A and compressi required, th must be sp	included gs are pression ble for units rated above. If ugs are cable size fied	- Plug-in unit, ground are or shipped asse Note: See Page V plug assembled st configuration. - Housing grou supplied as st additional cha - R-Fuse clips a as standard	tral and red and bled T6-14 for number connection dard at no e supplied	- If J-Fuse clip replace " R number w (30-600 A - 800 A, 600 with L-Fus " T " in the with "L	s are required, in the catalog a "J" 00 V only) also available clips; replace talog number

Pow-R-Way III Plug (Rear View)	Special Industry Fusible Plug-In Units							
		Enclosure 600 V Catalog Number		50\% Internal Ground Stab Catalog Number	50\% Isolated Ground Stab Catalog Number	Terminal Kit Compression Lugs		
	Ampere Rating		100\% Neutral Stab Catalog Number			Number Per Phase	Wire Size	Catalog Number
	30	P3F361H	(3)	(3)	(3)	1	1-\#12 to \#10	CTK30SC
	60	P3F362H	(3)	(3)	(3)	1	1-\#8	CTK60SC
	100	P3F363H	(3)	(3)	(3)	1	1-\#4	CTK100SC
	200	P3F364H	(3)	(3)	(3)	1	1-2/0	CTK200BSC
	400	P3F365H	(3)	(3)	(3)	1	1-750 kcmil	CTK400SPW
	600	P3F366H	(3)	(3)	(3)	2	2-500 kcmil	CTK600DPM
		- Fuses are not included - Housing ground connection supplied as standard at no additional charge		- Grounding compression lug included on 200 A and above. Lugs are ordered and shipped separately; fuses are not included		- H-Fuse clips are supplied as standard - If J- or R-Fuse clips are required, order by description		

Notes

[^38]
Special Plug-In Units

Plug-In Cable Tap Box Units

Ampere	Plug-in Cable Tap Box 600 V Enclosure Catalog Number	100\% Neutral Stab Catalog Number	50\% Internal Ground Stab Catalog Number	50\% Isolated Ground Stab Catalog Number
200	P3PTB200	P3PTBN200	P3PTBG200	P3PTBI200
400	P3PTB400	P3PTBN400	P3PTBG400	P3PTBI400
600	P3PTB600	P3PTBN600	P3PTBG600	P3PTBI600
800	P3PTB800	P3PTBN800	P3PTBG800	P3PTBI800

- Mechanical lugs are provided. If compression lugs are required, the cable size must be specified

Plug-In Combination Starters and Contactors (Non-Reversing, Three-Pole)

NEMA Size	Freedom Starter Fusible	Circuit Breaker	Freedom Contact Fusible	Circuit Breaker	Advantage Starter Fusible	Circuit Breaker	Advantage Contact Fusible	Circuit Breaker
0	P3FSTROF	P3BSTROF	P3FCONOF	P3BCONOF	P3FSTROA	P3BSTROA	P3FCONOA	P3BCONOA
1	P3FSTR1F	P3BSTR1F	P3FCON1F	P3BCON1F	P3FSTR1A	P3BSTR1A	P3FCON1A	P3BCON1A
2	P3FSTR2F	P3BSTR2F	P3FCON2F	P3BCON2F	P3FSTR2A	P3BSTR2A	P3FCON2A	P3BCON2A
3	P3FSTR3F	P3BSTR3F	P3FCON3F	P3BCON3F	P3FSTR3A	P3BSTR3A	P3FCON3A	P3BCON3A
4	P3FSTR4F	P3BSTR4F	P3FCON4F	P3BCON4F	P3FSTR4A	P3BSTR4A	P3FCON4A	P3BCON4A

Bolt-On Units

Circuit Breaker Bolt-On Units

Breaker Frame	Ampere Rating	Bolt-On Enclosure Catalog Number	100\% Neutral Stab Catalog Number	50\% Internal Ground Stab Catalog Number	50\% Isolated Ground Stab Catalog Number
EHD, FDB, FD, HFD, FDC	15-225	P3BFDB0	P3FDNB0	P3FDGB0	P3FDIB0
JDB, JD, HJD, JDC	70-250	P3BJDB0	P3FJDNBO	P3JDGB0	P3JDIB0
KDB, KD, HKD, KDC	250-400	P3BKDB0	P3KDNBO	P3KDGB0	P3KDIB0
LDB, LD, HLD, LDC	300-600	P3BLDB0	P3LDNB0	P3LDGB0	P3LDIB0
MDL, HMDL	500-800	P3BMDBO	P3MDNB0	P3MDGB0	P3MDIB0
ND, HND	900-1200	P3BNDB0	P3NDNB0	P3NDGB0	P3NDIB0

- Factory assembled, refer to Eaton's busway for delivery
- Refer to Page V2-T6-22 for breaker data, for reference only
- Bolt-on units require a Power Take-off at the rating of the busway
- Housing ground connection supplied as standard

Fusible Bolt-On Units

Ampere Rating	Enclosure 600 V Catalog Number	100\% Neutral Stab Catalog Number	50\% Internal Ground Stab Catalog Number	50\% Isolated Ground Stab Catalog Number
30	P3F361B0	P3FN100B0	P3FG100B0	P3FI100B0
60	P3F362B0	P3FN100B0	P3FG100B0	P3FI100B0
100	P3F363B0	P3FN100B0	P3FG100B0	P3FI100BO
200	P3F364B0	P3FN250B0	P3FG250B0	P3FI250B0
400	P3F365B0	P3FN400B0	P3FG400B0	P3F1400B0
600	P3F366B0	P3FN600B0	P3FG600B0	P3FI600B0
800	P3F367B0	P3FN800B0	P3FG800B0	P3F1800BO
1200	P3F369B0	P3FN1200BO	P3FG1200B0	P3F11200B0

- Factory assembled; refer to Eaton's busway for delivery
- Bolt-on units require a power take-off at the rating of the busway
- If neutral and ground are required, order by description with bolt-on unit
- Housing ground connection supplied as standard

Ground Detector Neutralizer Plug (Three-Wire)

Maximum Voltage	Catalog Number
600	P3GND

Technical Data and Specifications

Ratings

A. The busway shall be Eaton's type Pow-R-Way III: [threephase, three-wire] [threephase, three-wire with 50\% housing ground and/or 50\% internal ground] [three-phase, three-wire with 50\% housing ground and/or 50\% isolated ground] three-phase, four-wire with 100\% neutral] [three-phase, four-wire with 100\% neutral, 50\% housing and/or 50\% internal ground] [threephase, four-wire with 100\% neutral, 50\% housing and/or 50\% isolated ground] [threephase, four-wire with 200\% neutral] [threephase, four-wire with 200\% neutral, 50\% housing ground, and/or 50\% internal ground] [three-phase, four-wire with 200% neutral, 50% housing ground, and/or 50% isolated ground] with voltage and current ratings as indicated on the contract drawings.
B. The busway shall have a minimum of 6-cycle short-circuit rating of 85 kA rms symmetrical for ratings through 800 A, 100 kA rms symmetrical for ratings through 1350 A, 125 kA rms symmetrical for ratings through 1600 A , 150 kA rms symmetrical for ratings through 2500 A, and 200 kA rms symmetrical for ratings through 5000 A.

Construction

A. The busway and associated fittings shall consist of [aluminum] [copper] conductors totally enclosed in a twopiece extruded aluminum housing. Outdoor feeder, indoor feeder and indoor plug-in busway shall be interchangeable at the same rating without the use of adapters or special splice plates. Fittings-such as elbows, tees, flanges, etc.-shall be identical for use with both the plug-in and feeder types of busway. The busway shall be capable of being mounted flatwise, edgewise or vertically without derating. The busway shall consist of standard $10 \mathrm{ft}(3 \mathrm{~m})$ sections with special sections and fittings provided to suit the installation. Horizontal runs shall be suitable for hanging on $10 \mathrm{ft}(3 \mathrm{~m})$ maximum centers. Vertical runs shall be suitable for mounting on $16 \mathrm{ft}(4 \mathrm{~m})$ maximum centers. Provide one hanger for every 10 ft (3 m) of horizontally mounted duct. On vertical runs, provide one adjustable hanger per floor.

Bus

A. Busbars shall be fabricated from high strength, [57\% conductivity aluminum] [99\% conductivity copper] and suitably plated at all electrical contact surfaces.
B. Busbars shall be insulated over their entire length, except at joints and contact surfaces, with a ULlisted insulating material consisting of epoxy applied by fluidized bed process. Tape or heatshrink sleeve insulation, or any other method of insulation that can allow air gaps or insulation breakdown, shall not be acceptable.
C. The busway shall be capable of carrying rated current continuously without exceeding a temperature rise of $55^{\circ} \mathrm{C}$ based on a $40^{\circ} \mathrm{C}$ ambient.

Bus Joints

A. Each busway section shall be furnished complete with joint hardware and covers. The busway joints shall be a single-bolt, nonrotating, removable bridge design. All bridge joints shall be furnished with torque-indicating double-head joint bolts and Belleville washers. The bridge joint shall utilize a captive nut retainer on the opposite side of the torque indicating bolt. The bridge joint design shall ensure proper installation without the use of a torque wrench, and provide visual indication that the joint is properly torqued. Each busway joint shall allow for a minimum length adjustment of ± 0.5 inches (12.7 mm). De-energization of busway shall not be required for safe testing of joint tightness.

Housing

A. The busway housing shall be a two-piece design fabricated from extruded aluminum. The two-piece housing shall be bolted together along the bottom flange. The busway enclosure finish shall be ANSI 61 gray baked epoxy powder paint applied by an electrostatic process.
B. Outdoor feeder busway housing shall be identical to indoor feeder busway housings, and shall be UL listed for outdoor use.

Plug-In Busway

A. Where required, busway shall be of the plug-in type. Plug-in busway shall be available in standard 2-, 4-, 6-, 8and 10-foot lengths, with plug-in openings provided on both sides of the busway sections on $2 \mathrm{ft}(0.6 \mathrm{~m})$ centers. Plug-in covers shall prevent dirt and debris from entering contact plug-in openings in the busway. The design shall allow for 10 hinged cover outlets per $10 \mathrm{ft}(3 \mathrm{~m})$ of plug-in length. Covers for plug-in openings shall have a positive screw close feature and provisions for the installation of power company seals. The contact surfaces for bus plug stabs shall be silver-plated of the same material, thickness and rating as the stab bars. The stabs shall be welded to the busbars. A standard housing ground connection shall be supplied in each plug-in opening. Positive mechanical guides for plug-in units shall be provided at each plug-in opening to facilitate unit alignment and prevent improper installation.
B. Where required, plug-in units of the types and ratings indicated on the plans and specifications shall be supplied. Plug-in units shall be mechanically interlocked with the busway housing to prevent their installation or removal when the switch is in the ON position. The enclosure of any plug-in unit shall make positive ground connection to the duct housing before the stabs make contact with the busbars. All plug-in units shall be equipped with a defeatable interlock to prevent the cover from being opened while the switch is in the ON position and prevent accidental closing of the switch while the cover is open. The plugs shall be provided with a means for padlocking the cover closed and padlocking the disconnect device in the OFF position. The operating handle and mechanism shall remain in control of the disconnect device at all times, permitting its easy operation from the floor by means of a hookstick or chain. For safety reasons, no projections shall extend into the busway housing other than the plug-in stabs. All plug-in units shall be interchangeable without alteration or moderation of plug-in duct.
C. Fusible-type plugs shall have a quick-make/quickbreak disconnect switch and positive pressure fuse clips.
-OR-
C. Circuit-breaker-type plugs shall have an interrupting rating of not less than symmetrical rms amperes or be series rated as otherwise shown in the contract document and shall meet all requirements of UL Standard 489. It shall be possible to increase the interrupting rating of a breaker plug-in device having ampere ratings through 400 A up to 100 kAIC at 480 Vac and 200 kAIC at 240 Vac by changing out the circuit breaker only and leaving the enclosure intact. All breaker plug-in devices shall be Eaton type Series C.

Surge Protective Device

A. Provide surge protective device as specified in Section 16671.

Pow-R-Way III Feeder Busway

- 225-5000 A copper
- 225-4000 A aluminum

Straight sections of feeder busway can be supplied in any length, at $1 / 8$-inch (3.2 mm) increments, from a 16 -inch (406.4 mm) minimum to a $10 \mathrm{ft}(3 \mathrm{~m}$) maximum.
Page V2-T6-25 illustrates the configuration of feeder busway and Pow-R-Bridge for the available ampere ratings. See table below for reference to the proper configuration.

Feeder Busway Configuration

Ampere Rating UL 857 Cu	AI	IEC 439 Cu	Configuration (see Page V2-T6-25)
225	225	225	A
400	400	400	A
600	600	630	A
800	800	1000	A
1000	1000	1200	A
1200	1200	1400	A
1350	1350	1550	A
1600	-	1800	A
2000	1600	2250	A
-	2000	-	B
2500	-	3000	B
3200	2500	3800	C
4000	3200	4500	C
-	4000	5800	D
5000		D	

Each section will include one factory-installed Pow-R-Bridge mounted to the left end of the busway (with the " T " to the top, when viewing the bus from the " F " side). Each Pow-R-Bridge will have a " T " label, which must always match the " T " orientation of the busway. Available in indoor, sprinkler-proof and outdoor ratings. See IEC 60529 IP Ratings table to the left for details.

IEC 60529 Degrees of Protection
IEC 529

IP Rating	Description
IP40	Protection against access to hazardous parts with a wire or solid foreign object 1 mm diameter. No protection against water.
IP55	Protection against access to hazardous parts with a wire and dust shall not penetrate in quantity to interfere with satisfactory operation or impair safety. Protects against water jets.
IP66	Protection against access to hazardous parts with a wire and dust shall not penetrate in quantity to interfere with satisfactory operation or impair safety. Protects against powerful water jets.

Ampere Rating UL 857 Cu AI IEC 439 Cu	Configuration (see Page V2-T6-25)		
225	225	225	A
400	400	400	A
600	630	630	A
800	800	1000	A
1000	1000	1200	A
1200	1200	1400	A
1350	1350	1550	A
1600	-	1800	A
2000	-	2250	A
-	1600	-	B
2500	2000	3000	B
3200	-	3800	C
4000	2500	4500	C
-	3200	-	D
5000	4000	5800	D

IEC 60529 IP Ratings
IEC 529
IP Rating Busway Type

IP2X	Pow-R-Way III plug-in busway; plug-in outlet protects against access to live parts
IP40	Pow-R-Way III indoor plug-in and feeder busway
IP55	Pow-R-Way III sprinkler-proof plug-in busway
PP66	Pow-R-Way III outdoor feeder busway

Circuit Breaker Plug-In Units

Circuit Breakers
100% rated breakers are not available for use in bus plugs. Contact product line for guidance.

Ampere Rating	Interrupting Rating (kA Symmetrical)			Breaker Type
	240 Vac	480 Vac	600 Vac	
15-60	18	14	-	EHD
70-100	18	14	-	EHD
15-60	18	14	14	FDB
70-100	18	14	14	FDB
110-150	18	14	14	FDB
15-60	65	35	18	FD
70-100	65	35	18	FD
110-150	65	35	18	FD
175-225	65	35	18	FD
15-60	100	65	25	HFD
70-100	100	65	25	HFD
110-150	100	65	25	HFD
175-225	100	65	25	HFD
15-60	200	100	35	FDC
70-100	200	100	35	FDC
110-225	200	100	35	FDC
15-100	200	150	-	FCL
100-225	65	-	-	ED
100-225	100	-	-	EDH
100-225	200	-	-	EDC
70-225	65	35	18	JD, JDB
250	65	35	18	JD, JDB
70-225	100	65	25	HJD
250	100	65	25	HJD
70-225	200	100	35	JDC
250	200	100	35	JDC
125-250	200	200	100	LCL
250-400	65	-	-	DK
100-400	65	35	25	KD, KDB
100-400	100	65	35	HKD
100-400	200	100	65	KDC
200-400	200	200	-	LCL
300-600	65	35	25	LD, LDB
300-600	100	65	35	HLD
300-600	200	100	50	LDC
400-800	65	50	25	MDL
400-800	100	65	35	HMDL
400-800	65	50	25	ND
400-800	100	65	35	HND
400-800	200	100	50	NDC
600-1200	65	50	25	ND
600-1200	100	65	35	HND
600-1200	200	100	50	NDC

Branch Devices Earth Leakage Ground Fault Circuit Breakers
(Adjustable pickup from 30 mA to 30 A)

Ampere Rating	kAIC (Symmetrical) $\mathbf{4 8 0}$ Vac	Breaker Type
$35-60$	25	ELFD
$70-100$	25	ELFD
$110-150$	25	ELFD
$35-60$	65	ELLFD
$70-100$	65	ELHFD
$110-150$	65	ELHFD
$35-60$	100	ELFDC
$70-100$	100	ELFDC
$110-150$	100	ELFDC
$100-250$	35	ELJD
$100-250$	65	ELHJD
$100-250$	100	ELJDC
$200-400$	35	ELKD
$200-400$	65	ELHKD
$200-400$	100	ELKDC

Integrally Fused, Current-Limiting Circuit Breaker

| Ampere | Interrupting Rating (kA Symmetrical)
 Rating | | $\mathbf{2 4 0}$ Vac | $\mathbf{4 8 0}$ Vac |
| :--- | :--- | :--- | :--- | :--- | $\mathbf{6 0 0}^{\text {Vac }}$| Breaker |
| :--- |
| Type |

Fusible Switch Horsepower Ratings

Ampere Rating	$\begin{aligned} & 240 \text { V } \\ & \text { NEC Std. } \end{aligned}$	Max.	480 V NEC Std.	Max.	600 V NEC Std.	Max.
30	3	7.5	5	15	7.5	20
60	7.5	15	15	30	15	50
100	15	30	25	60	30	75
200	25	60	50	125	60	150
400	50	125	100	250	125	350
600	75	200	150	400	200	500
800	100	250	200	500	250	500

Dimensions

Approximate Dimensions in Inches (mm)
Busbar and Housing
Three-Wire with No Neutral

Ampere Rating		Phase Bar Size		Bar Per Phase	Wire Designation and Housing Size 50\% Integral Housing Ground 3WH		50\% Internal Ground Bus 3WHG		50\% Internal Isolated Ground 3WI		
Cu	AI	Depth	Width		Width	Height	Width	Height	Width	Height	Figure ${ }^{(1)}$
225	225	0.25 (6.4)	1.62 (41.1)	1	4.75 (120.7)	4.38 (111.3)	4.75 (120.7)	4.50 (114.3)	4.75 (120.7)	4.55 (115.6)	A
400	400	0.25 (6.4)	1.62 (41.1)	1	4.75 (120.7)	4.38 (111.3)	4.75 (120.7)	4.50 (114.3)	4.75 (120.7)	4.55 (115.6)	A
600	-	0.25 (6.4)	1.62 (41.1)	1	4.75 (120.7)	4.38 (111.3)	4.75 (120.7)	4.50 (114.3)	4.75 (120.7)	4.55 (115.6)	A
800	600	0.25 (6.4)	1.62 (41.1)	1	4.75 (120.7)	4.38 (111.3)	4.75 (120.7)	4.50 (114.3)	4.75 (120.7)	4.55 (115.6)	A
1000	-	0.25 (6.4)	2.25 (57.2)	1	5.38 (136.7)	4.38 (111.3)	5.38 (136.7)	4.50 (114.3)	5.38 (136.7)	4.55 (115.6)	A
1200	800	0.25 (6.4)	2.75 (70.0)	1	5.88 (149.4)	4.38 (111.3)	5.88 (149.4)	4.50 (114.3)	5.88 (149.4)	4.55 (115.6)	A
1350	1000	0.25 (6.4)	3.25 (82.3)	1	6.38 (162.10)	4.38 (111.3)	6.38 (162.1)	4.50 (114.3)	6.38 (162.10)	4.55 (115.6)	A
1600	1200	0.25 (6.4)	4.25 (108.0)	1	7.38 (187.5)	4.38 (111.3)	7.38 (187.5)	4.50 (114.3)	7.38 (187.5)	4.55 (115.6)	A
2000	1350	0.25 (6.4)	5.50 (139.7)	1	8.64 (219.5)	4.38 (111.3)	8.64 (219.5)	4.50 (114.3)	8.64 (219.5)	4.55 (115.6)	A
-	1600	0.25 (6.4)	6.25 (158.8)	1	9.40 (238.8)	4.38 (111.3)	9.40 (238.8)	4.50 (114.3)	9.40 (238.8)	4.55 (115.6)	A
2500	2000	0.25 (6.4)	8.00 (203.2)	1	11.17 (283.7)	4.38 (111.3)	11.17 (283.7)	4.50 (114.3)	11.17 (283.7)	4.55 (115.6)	A
3200	-	0.25 (6.4)	4.25 (108.0)	2	16.14 (410.0)	4.38 (111.3)	16.14 (410.0)	4.50 (114.3)	16.14 (410.0)	4.55 (115.6)	B
4000	2500	0.25 (6.4)	5.50 (139.7)	2	18.64 (473.5)	4.38 (111.3)	18.64 (473.5)	4.50 (114.3)	18.64 (473.5)	4.55 (115.6)	B
-	3200	0.25 (6.4)	6.25 (158.8)	2	20.16 (512.0)	4.38 (111.3)	20.16 (512.0)	4.50 (114.3)	20.16 (512.0)	4.55 (115.6)	B
5000	4000	0.25 (6.4)	8.00 (203.2)	2	23.70 (602.0)	4.38 (111.3)	23.70 (602.0)	4.50 (114.3)	23.70 (602.0)	4.55 (115.6)	B

Four-Wire with 100\% Neutral

Ampere Rating		Phase and Neutral Bar Size		Bar Per Phase	Wire Designation and Housing Size 50\% Integral Housing Ground 4WH		50\% Internal Ground 4WHG		50\% Internal Isolated Ground 4WI		
Cu	AI	Depth	Width		Width	Height	Width	Height	Width	Height	Figure ${ }^{(1)}$
225	225	0.25 (6.4)	1.62 (41.1)	1	4.75 (120.7)	4.38 (111.3)	4.75 (120.7)	4.50 (114.3)	4.75 (120.7)	4.55 (115.6)	A
400	400	0.25 (6.4)	1.62 (41.1)	1	4.75 (120.7)	4.38 (111.3)	4.75 (120.7)	4.50 (114.3)	4.75 (120.7)	4.55 (115.6)	A
600	-	0.25 (6.4)	1.62 (41.1)	1	4.75 (120.7)	4.38 (111.3)	4.75 (120.7)	4.50 (114.3)	4.75 (120.7)	4.55 (115.6)	A
800	600	0.25 (6.4)	1.62 (41.1)	1	4.75 (120.7)	4.38 (111.3)	4.75 (120.7)	4.50 (114.3)	4.75 (120.7)	4.55 (115.6)	A
1000	-	0.25 (6.4)	2.25 (57.2)	1	5.38 (111.3)	4.38 (111.3)	5.38 (111.3)	4.50 (114.3)	5.38 (111.3)	4.55 (115.6)	A
1200	800	0.25 (6.4)	2.75 (70.0)	1	5.88 (149.4)	4.38 (111.3)	5.88 (149.4)	4.50 (114.3)	5.88 (149.4)	4.55 (115.6)	A
1350	1000	0.25 (6.4)	3.25 (82.3)	1	6.38 (162.1)	4.38 (111.3)	6.38 (162.1)	4.50 (114.3)	6.38 (162.1)	4.55 (115.6)	A
1600	1200	0.25 (6.4)	4.25 (108.0)	1	7.38 (187.5)	4.38 (111.3)	7.38 (187.5)	4.50 (114.3)	7.38 (187.5)	4.55 (115.6)	A
2000	1350	0.25 (6.4)	5.50 (139.7)	1	8.64 (219.5)	4.38 (111.3)	8.64 (219.5)	4.50 (114.3)	8.64 (219.5)	4.55 (115.6)	A
-	1600	0.25 (6.4)	6.25 (158.8)	1	9.40 (238.8)	4.38 (111.3)	9.40 (238.8)	4.50 (114.3)	9.40 (238.8)	4.55 (115.6)	A
2500	2000	0.25 (6.4)	8.00 (203.2)	1	11.17 (283.7)	4.38 (111.3)	11.17 (283.7)	4.50 (114.3)	11.17 (283.7)	4.55 (115.6)	A
3200	-	0.25 (6.4)	4.25 (108.0)	2	16.14 (410.0)	4.38 (111.3)	16.14 (410.0)	4.50 (114.3)	16.14 (410.0)	4.55 (115.6)	B
4000	2500	0.25 (6.4)	5.50 (139.7)	2	18.64 (473.5)	4.38 (111.3)	18.64 (473.5)	4.50 (114.3)	18.64 (473.5)	4.55 (115.6)	B
-	3200	0.25 (6.4)	6.25 (158.8)	2	20.16 (512.0)	4.38 (111.3)	20.16 (512.0)	4.50 (114.3)	20.16 (512.0)	4.55 (115.6)	B
5000	4000	0.25 (6.4)	8.00 (203.2)	2	23.70 (602.0)	4.38 (111.3)	23.70 (602.0)	4.50 (114.3)	23.70 (602.0)	4.55 (115.6)	B

Note

(1) Refer to drawing on Page V2-T6-24.

Pow-R-Way III

Approximate Dimensions in Inches (mm)

Four-Wire with 200\% Neutral

Ampe	ating	Phase Bar Size Neutral Bar is 0.5 (12.7) x Width Shown		Bar Per Phase	Wire Designation and Housing Size 50\% Integral Housing Ground 4WNH		50\% Internal Ground Bus 4WNG		50\% Internal Isolated Ground 4WNI		
Cu	AI	Depth	Width		Width	Height	Width	Height	Width	Height	Figure
225	225	0.25 (6.4)	1.62 (41.1)	1	4.75 (120.7)	4.92 (125.0)	4.75 (120.7)	5.05 (128.3)	4.75 (120.7)	5.10 (129.5)	A
400	400	0.25 (6.4)	1.62 (41.1)	1	4.75 (120.7)	4.92 (125.0)	4.75 (120.7)	5.05 (128.3)	4.75 (120.7)	5.10 (129.5)	A
600	-	0.25 (6.4)	1.62 (41.1)	1	4.75 (120.7)	4.92 (125.0)	4.75 (120.7)	5.05 (128.3)	4.75 (120.7)	5.10 (129.5)	A
800	600	0.25 (6.4)	1.62 (41.1)	1	4.75 (120.7)	4.92 (125.0)	4.75 (120.7)	5.05 (128.3)	4.75 (120.7)	5.10 (129.5)	A
1000	-	0.25 (6.4)	20.25 (57.2)	1	5.38 (136.7)	4.92 (125.0)	5.38 (136.7)	5.05 (128.3)	5.38 (136.7)	5.10 (129.5)	A
1200	800	0.25 (6.4)	2.75 (70.0)	1	5.88 (149.4)	4.92 (125.0)	5.88 (149.4)	5.05 (128.3)	5.88 (149.4)	5.10 (129.5)	A
1350	1000	0.25 (6.4)	30.25 (82.3)	1	6.38 (162.1)	4.92 (125.0)	6.38 (162.1)	5.05 (128.3)	6.38 (162.1)	5.10 (129.5)	A
1600	1200	0.25 (6.4)	40.25 (108.0)	1	7.38 (187.5)	4.92 (125.0)	7.38 (187.5)	5.05 (128.3)	7.38 (187.5)	5.10 (129.5)	A
2000	1350	0.25 (6.4)	5.50 (139.7)	1	8.64 (219.5)	4.92 (125.0)	8.64 (219.5)	5.05 (128.3)	8.64 (219.5)	5.10 (129.5)	A
-	1600	0.25 (6.4)	60.25 (158.8)	1	9.40 (238.8)	4.92 (125.0)	9.40 (238.8)	5.05 (128.3)	9.40 (238.8)	5.10 (129.5)	A
2500	2000	0.25 (6.4)	8.00 (203.2)	1	11.17 (283.7)	4.92 (125.0)	11.17 (283.7)	5.05 (128.3)	11.17 (283.7)	5.10 (129.5)	A
3200	-	0.25 (6.4)	40.25 (108.0)	2	16.14 (410.0)	4.92 (125.0)	16.14 (410.0)	5.05 (128.3)	16.14 (410.0)	5.10 (129.5)	B
4000	2500	0.25 (6.4)	5.50 (139.7)	2	18.64 (473.5)	4.92 (125.0)	18.64 (473.5)	5.05 (128.3)	18.64 (473.5)	5.10 (129.5)	B
-	3200	0.25 (6.4)	60.25 (158.8)	2	20.16 (512.0)	4.92 (125.0)	20.16 (512.0)	5.05 (128.3)	20.16 (512.0)	5.10 (129.5)	B
5000	4000	0.25 (6.4)	8.00 (203.2)	2	23.70 (602.0)	4.92 (125.0)	23.70 (602.0)	5.05 (128.3)	23.70 (602.0)	5.10 (129.5)	B

Single and Double Module Cross-Sections

Figure A

Figure B
2500-4000 A Aluminum
3200-5000 A Copper

Feeder Busway

Plug-In Busway

1 Bar Per Phase

Front View

The table below illustrates the quantity of plug-in openings per side that are available per standard section.

Number of Plug-In Openings

	Number of Plug-In Openings Duct Length	Front

6.1
 Low Voltage Busway

Pow-R-Way III

Approximate Dimensions in Inches (mm)

Quad Receptacle Unit

Single Receptacle Unit

Approximate Dimensions in Inches (mm)

Plug-In Units—Physical Data

Bus Plugs

Plug-In Units

Plug-In Unit	Max. Amperes	Max. Vac	Dimensions A	B	C	D	E	F	Mechanical Terminal Wire Range Per Phase (mm²)	Approx. Weights Lbs (kg)
Circuit Breaker Plug-In Units										
$\begin{aligned} & \text { P3BFD } \\ & \text { (E- \& F-Frame) } \end{aligned}$	225	600	21.20 (538.5)	12.36 (314.0)	5.43 (138.0)	4.00 (101.6)	6.25 (158.8)	6.06 (153.7)	$\begin{aligned} & \text { 100A-(1) \#14-1/0 (2.5-50) } \\ & 150 A-(1) \# 4-4 / 0(25-95) \end{aligned}$	25 (11.3)
$\begin{aligned} & \text { P3BJD } \\ & \text { (J-Frame) } \end{aligned}$	250	600	23.26 (590.8)	12.36 (314.0)	6.97 (177.0)	4.00 (101.6)	10.44 (265.2)	6.06 (153.7)	$\begin{aligned} & \text { 250A-(1) \#14-350 kcmil (25-185) } \\ & \text { 225A-(1) 3-350 kcmil (35-185) } \end{aligned}$	47 (21.3)
P3BKD (K-Frame)	400	600	34.41 (874.0)	13.29 (337.6)	7.79 (197.9)	4.00 (101.6)	12.56 (319.0)	6.64 (168.7)	$\begin{aligned} & \text { 350A-(1) 250-500 kcmil (120-240) } \\ & \text { 400A-(2) } 3 / 0-250 \mathrm{kcmil}(45-120) \end{aligned}$	53 (24.0)
P3BLD (L-Frame)	600	600	41.91 (1064.5)	19.65 (499.1)	10.15 (257.8)	4.00 (101.6)	17.38 (441.5)	9.83 (249.7)	$\begin{aligned} & \text { 400A-(1) 4/0-600 kcmil (120-300) } \\ & 600 \mathrm{~A}-(2) 400-500 \mathrm{kcmil}(185-240) \end{aligned}$	75 (34.0)
P3BMDL (MDL-Frame)	800	600	45.89 (1165.6)	19.65 (499.1)	10.15 (257.8)	4.00 (101.6)	17.38 (441.5)	9.83 (249.7)	$\begin{aligned} & \text { 600A-(2) \#1-500 kcmil (50-240) } \\ & 800 \mathrm{~A}-(2) 500-750 \mathrm{kcmil}(300-400) \end{aligned}$	136 (61.7)
P3BND (N-Fame)	800	600	45.98 (1167.9)	19.65 (499.1)	10.15 (257.8)	4.00 (101.6)	17.38 (441.5)	9.83 (249.7)	$\begin{aligned} & \text { 700A-(2) \# 1-500 kcmil (50-240) } \\ & \text { 800A-(3) 3/0-400 kcmil (95-185) } \end{aligned}$	138 (62.6)
$\begin{aligned} & \hline \text { P3BLAP } \\ & \text { (TRI-PAC) } \end{aligned}$	400	600	45.89 (1165.6)	19.65 (499.1)	10.15 (257.8)	4.00 (101.6)	13.80 (350.5)	9.83 (249.7)	225A-(1) \#6-350 kcmil (16-185) 400A-(1) \#4-250 kcmil and (1) $3 / 0-600 \mathrm{kcmil}$ (25-120 and 95-300)	96 (43.5)
P3BLCL	400	600	41.86 (1063.2)	19.65 (499.1)	10.15 (257.8)	4.00 (101.6)	13.80 (350.5)	9.83 (249.7)	(1) \#4-250 kcmil (25-120) and (1) $3 / 0-600 \mathrm{kcmil}(95-300)$	88 (39.9)

Fusible Plug-In Units

P3F321RGH	30	240	14.72 (373.9)	13.92 (353.7)	8.46 (214.8)	3.85 (97.7)	7.95 (202.0)	5.66 (143.7)	Cu (1) \#14-\#3 (2.5-35)	32 (14.5)
P3F321RGV	30	240	15.85 (402.5)	14.03 (356.3)	8.46 (214.8)	3.85 (97.7)	6.72 (170.6)	5.66 (143.7)	Al (1) \#12-\#2 (3.2-35)	32 (14.5)
P3F361RGH	30	600	14.72 (373.9)	13.92 (353.7)	8.46 (214.8)	3.85 (97.7)	7.95 (202.0)	5.66 (143.7)	Cu (1) \#14-\#3 (2.5-35)	32 (14.5)
P3F361RGV	30	600	15.85 (402.5)	14.03 (356.3)	8.46 (214.8)	3.85 (97.7)	6.72 (170.6)	5.66 (143.7)	Al (1) \#12-\#2 (3.2-35)	32 (14.5)
P3F322RGH	60	240	14.88 (377.9)	17.92 (455.3)	8.37 (212.5)	3.85 (97.7)	11.95 (303.6)	5.66 (143.7)	Cu (1) \#14-\#3 (2.5-35)	40 (18.1)
P3F322RGV	60	240	19.85 (504.1)	14.16 (359.6)	8.37 (212.5)	3.85 (97.7)	6.84 (173.8)	5.66 (143.7)	Al (1) \#12-\#2 (3.2-35)	40 (18.1)
P3F362RGH	60	600	14.88 (377.9)	17.92 (455.3)	8.37 (212.5)	3.85 (97.7)	11.95 (303.6)	5.66 (143.7)	$\mathrm{Cu}(1) \# 14-1 / 0$ (2.5-50)	40 (18.1)
P3F362RGV	60	600	19.85 (504.1)	14.16 (359.6)	8.37 (212.5)	3.85 (97.7)	6.84 (173.8)	5.66 (143.7)	Al (1) \#12-1/0 (3.2-50)	40 (18.1)
P3F323RGH	100	240	14.88 (377.9)	17.92 (455.3)	8.37 (212.5)	3.85 (97.7)	11.95 (303.6)	5.66 (143.7)	Cu (1) \#14-1/0 (2.5-50)	40 (18.1)
P3F323RGV	100	240	19.85 (504.1)	14.16 (359.6)	8.37 (212.5)	3.85 (97.7)	6.84 (173.8)	5.66 (143.7)	Al (1) \#12-1/0 (3.2-50)	40 (18.1)
P3F363RGH	100	600	14.88 (377.9)	17.92 (455.3)	8.37 (212.5)	3.85 (97.7)	11.95 (303.6)	5.66 (143.7)	$\mathrm{Cu}(1)$ \#4-250 kcmil (25-120)	40 (18.1)
P3F363RGV	100	600	19.85 (504.1)	14.16 (359.6)	8.37 (212.5)	3.85 (97.7)	6.84 (173.8)	5.66 (143.7)	Al (1) \#4-250 kcmil (25-120)	40 (18.1)
P3F324RGH	200	240	17.42 (442.5)	21.98 (558.3)	8.52 (216.3)	3.85 (97.7)	15.44 (392.1)	6.80 (172.8)	$\mathrm{Cu}(1)$ \#4-250 kcmil (25-120)	56 (25.4)
P3F324RGV	200	240	23.80 (604.5)	16.64 (422.8)	8.52 (216.3)	3.85 (97.7)	8.26 (209.8)	6.80 (172.8)	Al (1) \#4-250 kcmil (25-120)	56 (25.4)
P3F364RGH	200	600	17.42 (442.5)	21.98 (558.3)	8.52 (216.3)	3.85 (97.7)	15.44 (392.1)	6.80 (172.8)	$\mathrm{Cu}(1)$ \#4-600 kcmil (25-300)	56 (25.4)
P3F364RGV	200	600	23.80 (604.5)	16.64 (422.8)	8.52 (216.3)	3.85 (97.7)	8.26 (209.8)	6.80 (172.8)	Al (1) \#4-600 kcmil (25-300)	56 (25.4)
P3F325R	400	240	48.85 (1242.1)	21.22 (539.0)	10.07 (255.8)	4.00 (101.6)	10.69 (271.5)	10.69 (271.5)	Cu/Al (1) 250-750 kcmil (127-380)	77 (34.9)
P3F365R	400	600	48.85 (1242.1)	21.22 (539.0)	10.07 (255.8)	4.00 (101.6)	10.69 (271.5)	10.69 (271.5)	$\mathrm{Cu} / \mathrm{Al} \mathrm{(1)} \mathrm{250-750} \mathrm{kcmil} \mathrm{(127-380)}$	77 (34.9)
P3F365HR	400	600	23.59 (599.2)	21.22 (539.0)	21.00 (533.4)	4.00 (101.6)	10.69 (271.5)	10.69 (271.5)	$\mathrm{Cu} / \mathrm{Al} \mathrm{(2)} \mathrm{3/0-250} \mathrm{kcmil} \mathrm{(85-127)}$	81 (36.7)
P3F326R	600	240	48.90 (1242.1)	26.31 (668.3)	10.59 (270.0)	4.00 (101.6)	13.16 (334.3)	13.16 (334.3)	Cu/Al (2) \#2-600 kcmil (35-300)	82 (37.1)
P3F366R	600	600	48.90 (1242.1)	26.31 (668.3)	10.59 (270.0)	4.00 (101.6)	13.16 (334.3)	13.16 (334.3)	$\mathrm{Cu} / \mathrm{Al} \mathrm{(3)} \mathrm{\# 2-600} \mathrm{kcmil} \mathrm{(25-300)}$	82 (37.1)
P3F327R	800	240	48.90 (1242.1)	26.31 (668.3)	10.59 (270.0)	4.00 (101.6)	13.16 (334.3)	13.16 (334.3)	$\mathrm{Cu} / \mathrm{Al} \mathrm{(3)} \mathrm{\# 2-600} \mathrm{kcmil} \mathrm{(25-300)}$	108 (49.0)
P3F367R	800	600	48.90 (1242.1)	26.31 (668.3)	10.59 (270.0)	4.00 (101.6)	13.16 (334.3)	13.16 (334.3)	Cu/Al (3) \#2-600 kcmil (25-300)	108 (49.0)

Pow-R-Flex Busway

Contents

Description Page

Pow-R-Flex Busway	
Features, Benefits and Functions	V2-T6-32
Standards and Certifications	V2-T6-33
Product Support.	V2-T6-33
Catalog Number Selection.	V2-T6-36
Technical Data and Specifications	V2-T6-38
Dimensions	V2-T6-41

Pow-R-Flex Busway

Product Description

The Perfect Package for any Low Ampere Application

Eaton's Pow-R-Flex Busway is the perfect package for any low ampere application. From manufacturing facilities and machine shops, to schools or private laboratories, as well as warehouse facilities, and data centers, Pow-R-Flex is the practical solution for applications using 600 A or less. Pow-R-Flex Busway is a 600 V design that uses the latest in extrusion construction for its allaluminum housing. This busway product comes with either aluminum or copper conductors in feeder or plugin type busway. The plug-in openings are shuttered for the ultimate in safety and people protection. With a full line of plug-in units and accessories, Pow-R-Flex Busway will get the job done.

Assembled Plug-In Section

A Fully Enclosed Aluminum Housing Uses the Latest in Extrusion Construction

Eaton's Pow-R-Flex Busway is constructed with a heavyduty, yet lightweight, "U" shaped aluminum base housing as well as extruded aluminum front covers. Incorporated together, these pieces form a unique hinge design to lock in the front covers. This design allows for clean lines, superior short circuit strength, and an aesthetic look and feel. This all-aluminum package provides excellent heat dissipation and less magnetic flux leakage when compared to steel. This housing design ensures a safe and durable installation that can be protected by either an ANSI 61 or black finish.

Extruded Aluminum Housing

The Pow-R-Flex Busway Bridge Joint Allows for Flexibility and Easy Future Additions

Pow-R-Flex joint connections are made with the Pow-RBridge joint package, which is shipped installed on one end of each section of busway. A tension indicating SmartBolt ${ }^{\circledR}$ is supplied as standard for Pow-R-Flex Busway. These bolts provide for visual indication of a loose or tensioned state within the joint pack via the color changing window on the bolt heads. The Pow-R-Bridge joint allows for an adjustment of ± 0.50 inch. The nonrotating design allows for a stable, secure connection and easy reinstallation of a removed bridge joint.

Bridge Joint Assembly

Neutral and Grounding Options to Meet any Low Ampere
 Application

The aluminum housing of Pow-R-Flex has been designed, manufactured, and listed as a UL rated 50% integral ground/earth path. A 50\% UL listed internal ground/earth can also be chosen as an option utilizing a separate conductor within the busway assembly. There is also an option for an isolated ground that uses the 50\% internal ground bar and isolates it from the housing throughout the busway system and is UL listed as a 50% isolated ground path. For 4-wire systems, the neutral conductor is made from the same material as the phase conductors providing 100% to 200% neutral capacity on select current ratings.

Joint End

Bus Plugs for Any Application
Pow-R-Flex plug-in protective devices have been designed to meet any low ampere application. Standard circuit breaker plugs are available in a traditional cable out style. Additionally, customized receptacle plugs are available with receptacle or connector options to meet any requirement. These plugs come with one to four devices feeding separate receptacles in an enclosure. Pow-R-Flex plugs and connectors can be ordered in a variety of combinations, cord lengths, and short circuit ratings.

Short-Circuit Ratings -Three-Cycle rms Symmetrical

Ampere	Plug-In Short- Circuit Rating	Feeder Short- Circuit Rating
Aluminum		
150	22,000	22,000
225	35,000	35,000
300	35,000	35,000
400	42,000	42,000
Copper		
225	22,000	22,000
400	35,000	35,000
500	42,000	42,000
600	42,000	42,000

High 3-Cycle Short-Circuit Ratings Optimize Coordination Between Busway and Power Equipment and Meet High Quality Standards
All ratings of Pow-R-Flex have been tested to 3-cycle standards and have achieved a minimum rating of 22 kA and a maximum rating of 42 kA rms symmetrical.

Straight Lengths

A Full Line of Fittings to Meet

 Any Routing Requirement Pow-R-Flex Busway offers fittings to meet any need or application. End cable tap boxes, elbows, and end closers are all available for the most common runs. For more complex runs, equipment flanges, offsets, phase transpositions, and tees are available to accommodate any routing requirement.

End Cable Tap Box

Forward Offset

Standard Switchboard Flange

Joint Cover Assembly

Low Voltage Busway
Pow-R-Flex

General Information

Determine the total footage, all fittings, and accessories for the entire busway run. Price the total footage by type and system requirements. Round footage up to the nearest foot. Add the fabrication charge for the fittings. Add any additional accessories required for the total price of the busway run.

Plug-In

Straight sections of plug-in busway are available in $2 \mathrm{ft}(0.6 \mathrm{~m})$ increments from a $2 \mathrm{ft}(0.6 \mathrm{~m})$ minimum to a $10 \mathrm{ft}(3 \mathrm{~m})$ maximum.

Feeder

Straight sections of feeder busway are available in 1/2inch (12.8 mm) increments from 24-inch (609.6 mm) minimum to $10-\mathrm{ft}(3 \mathrm{~m})$ maximum. Pow-R-Bridge joint is included.

Ground

A 50\% integral housing ground is provided as standard. The housing ground can be used in combination with the internal ground or the isolated ground to achieve a 100% ground rating.

Traditional Indoor and

 Outdoor ElbowsElbows are used to make 90° changes in the direction of busway runs. The four types that are available are forward, rearward, upward and downward.

Tees

A tee is a busway fitting suitable for connection in three directions.

Wall Flanges

Wall flanges fit around the busway and are designed to close off the wall gap opening around the busway, made to allow the busway to pass through a wall Wall flanges are primarily for cosmetic purposes and do not provide any type of vapor or fire barrier.

Expansion Joints

Expansion joints
accommodate the expansion and contraction of busbars with respect to the enclosure. They compensate for the difference in the coefficient of expansion of the aluminum housing and the copper or aluminum busbars. Expansion joints must be used wherever a run of busway crosses an expansion joint of a building. They should also be installed in the center of extremely long straight runs of busway; one every $300 \mathrm{ft}(91 \mathrm{~m})$ for copper or one every 225 ft $(68 \mathrm{~m})$ for aluminum.

Phase Transpositions

Phase transposition fittings are used in applications where a phase rotation is needed due to a change in phasing from the source equipment to the load equipment. There are two types of phase transpositions: 90 degree and 180 degree in both types; all conductors are transposed.

Vapor-Fire Barriers

Vapor-fire barriers hold a two-hour fire rating and are used to seal the busway internally for penetrations through walls, floors, and other fire-rated penetrations, preventing the passage of flame, noxious gas, smoke, and moisture. The exact location of the wall is required to properly position the barrier within the busway run.

Features, Benefits and Functions

Pow-R-Flex Offers a Full Line of Low Voltage Busway to Meet all Customer Needs
Eaton has combined the requirements of NEMA, UL and CSA into one design to present a world-class product in Pow-R-Flex. With standard features that include an extruded aluminum housing, mechanical shutters over plug-in outlets, an integral ground path and industryleading 3 -cycle short-circuit withstand ratings, Pow-R-Flex provides a busway system that can be used over a broad spectrum of industrial, commercial and institutional applications worldwide.

Product Offering

- Plug-In Busway

225-600 A copper and 150-400 A aluminum straight sections of plug-in busway are available in $2 \mathrm{ft}(0.6 \mathrm{~m})$ incremental lengths from a $2 \mathrm{ft}(0.6 \mathrm{~m})$ minimum to $10 \mathrm{ft}(3 \mathrm{~m})$ maximum

- Feeder Busway

225-600 A copper and 150-400 A aluminum straight sections of indoor and outdoor feeder busway available in any length in 1/2-inch (12.8 mm) increments from a 24 -inch $(609.6 \mathrm{~mm}$) minimum to a 10-foot (3 m) maximum. Standard plug-in units and a full line of receptacle plug-in units are available with fusible or circuit breaker overcurrent protection. Surge Protection Devices (SPD) are also available

- Plug-In Units

A full family of busway plug-in units is available. Standard plug-in units include fusible or circuit breaker protection. Surge Protection Devices (SPD) and a full line of receptacle plug-in units are available

Product Features and Benefits

- The all-aluminum extruded housing provides durability and product integrity
- The lightweight and compact design results in easy installation
- Tin or silver-plated joint and contact surfaces provide high-quality connections
- Highly automated manufacturing processes result in a superior product
- The Pow-R-Bridge ${ }^{\text {TM }}$ joint package and torque indicating bolt gives a rugged, yet flexible and easy-to-install connection
- 3-cycle shortcircuit ratings optimize coordination between busway and power equipment
- This world-class product design and manufacturing meets the requirements of NEMA, CSA, Seismic and ISO ${ }^{\circledR}$ and IEEE ${ }^{\circledR}$
- Plug-in busway design and an enhanced bus plug-in unit facilitates installation and improves safety
- Flexible ground and neutral options provide solutions for any application problem
- A full family of plug-in units is available for every power need
- Advanced bus plugs provide protection, communication and coordination capabilities

Busway Capabilities

- The busway manufacturing plant in Greenwood, SC, is able to meet your emergency or quick ship requirements with quick ship lead-times from 3 to 4 weeks
- Customer approval drawings can be available in 2 weeks or less to meet your project requirements
- Eaton's final field fit program ensures accurate layout and allows for minor last-minute modifications during installation
- Advanced system tools including Bid ManagerTM programs provide quick and accurate product information

Additional Information

- Product Brochure: BR01701003E
- Technical Data: TD01701003E
- Consulting Application Guide: CA08104001E
- Electrical Solutions Catalog: CA08105001E
- ABCs of Planning/ Installation: IM01701002E
- Services and Solutions: BR01701002E

Pow-R-Flex

- Technical Data: TD01701003E
- ABCs of Busway: IM01701002E
- Brochure: BR01701001E

Service and Solutions

- Installation and Maintenance: IB01701001E
- Selling Policy: 25-000
- Discount Symbol:

CE3-LV Busway CE4-LV Busway Devices

Power Where You Need it!

As a leader in providing quality, robust, cutting-edge electrical distribution equipment, Eaton understands the importance of providing usable power access in a variety of applications. Eaton's Pow-RFlex busway continues to offer electrical distribution solutions that are flexible and without limitations, and are energy efficient, saving time and money.

Plug-In Unit Overcurrent Protective Devices General Information

A variety of plug-in units have been designed for the Pow-RFlex low-ampere busway to meet multiple applications and a variety of installation conditions. Plug-in unit devices provide easy and flexible access to a building's electrical power system, while providing safe overcurrent protection to equipment and wiring.
All Pow-R-Flex plug-in units are designed with the safety of the installer and user as the key criteria. The following safety features are standard for all fusible and moldedcase circuit breaker plug-in units:

- Each plug-in unit ground stab makes positive contact with the busway ground (integral or internal) before the phase or neutral stabs contact the busbars
- Plug-in unit molded guide tabs are provided in the stab support base. These ensure proper phase alignment and open the busway outlet shutter mechanism
- Line-side barriers are provided over the line-side terminal to help prevent accidental contact with line-side connections
- Each plug-in unit has mounting flanges, which help protect the stab-base assembly and have captive hardware that bolt the unit securely to the busway

Pow-R-Flex Receptacle

 Plug-In UnitsEaton now offers a full line of receptacle plug-in units for use on Pow-R-Flex busway. Pow-R-Flex receptacle plug-in units are non-serviceable plugs. This means they come fully assembled and wired, reducing installation time. They are UL listed and offer a complementary line of accessories. Eaton's unique design makes them the most flexible receptacle units in the industry.

Data Centers-Data racks continue to process more information at higher speeds with constantly changing demands. Pow-R-Flex receptacle plugs offer the highest short-circuit ratings in the industry. Busway and receptacle plugs above the data racks provide faster installation, faster connectivity, easier rack changes and upgrades, and will run cooler than traditional cable methods.

Retail—As retail environments change meeting customer demands, Pow-R-Flex busway and receptacle plugs help make floor layout and display changes easier. Receptacle plugs allow for easy power access, eliminating costly conduit and cable work.

Schools and Laboratories-

 Pow-R-Flex receptacle plugs offer safe power access for instrumentation and other lab equipment at the point of use.
Quad Receptacle Units (600 V Maximum)

The quad receptacle unit shown below is configured to order based upon the receptacle type and rating These units are three-phase and can service single- or three-phase loads up to 600 V maximum ($120 \mathrm{~V}, 240 \mathrm{~V}, 400 \mathrm{~V}$, $480 \mathrm{~V}, 600 \mathrm{~V}, 208 \mathrm{Y} / 120 \mathrm{~V}$, 400/230 V, 480/277 V, 600/ 347 V). Type F-Frame bolt-on molded-case circuit breakers are used in single-pole, twopole, or three-pole configurations. Each unit comes with up to four receptacles, with the breakers sized per the receptacle rating. Each receptacle can be fixed mounted to the front of the enclosure or cable-mounted to a cord drop coming out of the bottom of the enclosure. See below. Cord drop lengths may be $1-15 \mathrm{ft}$ in $1-\mathrm{ft}$ increments. Consult NEC Sections 368, 400 and 645 for cord drop applications.

Consult NEC Sections 368, 400 and 645 for cord drop applications.

Single Receptacle Unit (Enclosure Mounted)

Single Receptacle Unit (Cord Mounted)

Double Receptacle Unit (600 V Maximum)

The double receptacle unit shown below is configured to order based upon the receptacle type and rating. These units are three-phase and can service single- or three-phase loads up to 600 V maximum ($120 \mathrm{~V}, 240 \mathrm{~V}, 400 \mathrm{~V}$, $480 \mathrm{~V}, 600 \mathrm{~V}, 208 \mathrm{Y} / 120 \mathrm{~V}$, 400/230 V, 480/277 V, 600/ 347 V). Type F-Frame bolt-on molded-case circuit breakers are used in single-pole, twopole, or three-pole configurations. Single and double receptacle plugs are also available in our mini plug design, which utilizes either a GHC circuit breaker or a CCP fusible switch in a smaller enclosure. Each unit comes with two receptacles, with the breakers sized per the receptacle rating. Each receptacle is cable mounted to a cord drop coming out of the bottom of the enclosure. See below. Cord drop lengths may be $1-15 \mathrm{ft}$ in $1-\mathrm{ft}$ increments. Consult NEC Sections 368, 400 and 645 for cord drop applications.

Double Receptacle Unit (Enclosure Mounted)

Double Receptacle Unit (Cord Mounted)

Quad Receptacle Unit (Cord Mounted)

Catalog Number Selection

Breaker Unit

SPD Series Bus Plug

Plug-In Cable Outlet Details

Plug-in Cable Tap Boxes

Plug-in cable tap boxes are used to back feed power to a run-off busway, or where equipment served by the busway is connected without

Plug-In Cable Tap Box Details

Catalog Number	Ampere Rating	Mechanical Lugs (Metric)	Mechanical Lugs (Standard)
LAPTB100MG	100	$\# 6-3 / 0$	$4.11-10.40 \mathrm{~mm}$
LAPTB100MGN	100	$\# 6-3 / 0$	$4.11-10.40 \mathrm{~mm}$
LAPTB200MG	200	$\# 6-3 / 0$	$4.11-10.40 \mathrm{~mm}$
LAPTB200MGN	200	$\# 6-3 / 0$	$4.11-10.40 \mathrm{~mm}$

Special Plug-In Units

- Mechanical lugs are provided. If compression lugs are required, the cable size must be specified
overcurrent protection. Plugin cable tap boxes fit into any plug-in provision on a plug-in type busway. See below.

Plug-In Cable Tap Box

Plug-In Cable Tap Box Dimensions

Catalog Number	A	B	C
LAPTB100MG	$9.33(236.9)$	$18.21(462.5)$	$8.18(207.8)$
LAPTB100MGN	$9.33(236.9)$	$18.21(462.5)$	$8.18(207.8)$
LAPTB200MG	$9.33(236.9)$	$18.21(462.5)$	$8.18(207.8)$
LAPTB200MGN	$9.33(236.9)$	$18.21(462.5)$	$8.18(207.8)$

Plug-In Cable Tap Box Details

Technical Data and Specifications

Ratings

A. The busway shall be Eaton type Pow-R-Flex and shall be:

1. 1-phase, 3 -wire with 50% integral housing ground.
2. 1-phase, 3 -wire with 50% internal ground bar or 50% isolated internal ground bar.
3. 3 -phase, 3 -wire with 50% integral housing ground.
4. 3-phase, 3-wire with 50% internal ground bar or 50% isolated internal ground bar.
5. 3-phase, 3-wire with 100% ground.
6. 3 -phase, 4 -wire with 100% neutral and 50% integral housing ground.
7. 3-phase, 4-wire with 100% neutral and 50% internal ground bar or 50% isolated internal ground bar.
B. Copper busway shall have a minimum of 3cycle short-circuit rating of 22 kA rms symmetrical for 225 A ratings, 35 kA rms symmetrical for 400 A ratings, 42 kA rms symmetrical for 500 and 600 A ratings.
C. Aluminum busway shall have a minimum of 3cycle short-circuit rating of 22 kA rms symmetrical for 150 A ratings, 35 kA rms symmetrical for 225 A ratings, 42 kA rms symmetrical for 300 and 400 A ratings.

Construction

A. The busway and associated fittings shall consist of copper or aluminum conductors totally enclosed in a nonventilated 2-piece extruded aluminum housing. Indoor feeder and indoor plug-in busway shall be interchangeable at the same rating without the use of adapters or special splice plates. Fittings-(elbows, tees, flanges, etc.) shall be identical for use with both the plug-in and feeder types of busway. The busway shall be capable of being mounted flat-wise, edgewise or vertically without derating. The busway shall consist of standard 10 -foot sections with special sections and fittings provided to suit the installation. Horizontal runs shall be suitable for hanging on 10-foot maximum centers. Provide one (1) hanger for every ten (10) feet of horizontally mounted duct.

Bus

A. Busbars shall be fabricated from high strength, 55\% conductivity aluminum or 98\% conductivity copper and shall be silver-plated at all joint and contact surfaces.
B. The busway shall be capable of carrying rated current continuously without exceeding a temperature rise of $55^{\circ} \mathrm{C}$ based on a $40^{\circ} \mathrm{C}$ ambient.

Bus Joints

A. Each busway section shall be furnished complete with joint hardware and covers. The busway joints shall be a single-bolt, nonrotating, removable bridge design. All bridge joints shall be furnished with a tension-indicating SmartBolt ${ }^{\circledR}$ and Belleville washer. The bridge joint shall utilize a captive nut retainer on the opposite side of the torqueindicating bolt. The bridge joint design shall ensure proper installation without the use of a torque wrench, and provide visual indication that the joint has been tightened to the proper internal tension. Each busway joint shall allow for a minimum length adjustment of ± 0.5 inches. De-energization of busway shall not be required for safe testing of joint tightness.

Housing

A. The busway housing shall be a two-piece design fabricated from extruded aluminum. The two-piece housing shall consist of a base channel and interlocking front cover bolted together, along the bottom flange. The busway enclosure finish shall be ANSI 61 gray or black and shall conform to UL requirements.
B. The busway conductors shall be totally enclosed within the housing and shall not require any optional covers to prohibit access to the conductors.

Plug-In Busway

A. Where required, busway shall be of the plug-in type. Plug-in busway shall be available in standard 2-, 4-, 6-, 8- and 10-foot lengths, with plug-in openings provided on one side of the busway sections on 12-inch centers. The plug-in openings shall not have hinged or removable covers and shall have an integral shutter that slides open when a plug-in unit is being inserted. The integral shutter mechanism shall prohibit dirt and debris from entering contact plug-in openings in the busway. The design shall allow for nine (9) plug-in opening outlets per ten (10) feet of plug-in length. The integral shutter mechanism for plug-in openings shall have a positive screw close feature that prevents the shutter from being opened when the plug-in opening is not being utilized by a plug-in unit. A standard housing ground connection shall be supplied in each plugin opening. Positive mechanical guides for plug-in units shall be provided at each plug-in opening to facilitate unit alignment, engage shutter mechanism and prevent improper installation.
C. Receptacle type plugs shall have fused or circuit breaker over-current protection. Circuit breakers shall be plug-on or bolt-on type with an interrupting rating of 10 kA or 22 kA threephase at $240 \mathrm{~V}, 25 \mathrm{kA}$ single-phase at 240 V , 10 kA at 400 V and 480 V and 10 kA at 600 V . Fused switches will have an interrupting rating that matches that of the busway it is attached to, and shall limit the letthrough current from the plug through the receptacle to less than 10 kA IR. All fault current ratings shall be symmetrical rms amperes. Circuit breakers and fusible switches shall be from the same manufacturer as the busway.
Receptacles shall be UL listed, any standard NEMA configuration and either bolted to the enclosure or affixed to an electrical cord dropped down from the enclosure. Cord drops shall use UL listed strain relief devices. Receptacle type plugs shall come fully assembled and wired from the manufacturer. Field kits for drop cords and receptacles shall not be acceptable. For fault current ratings above 22 kA at 240 V or 10 kA at 400 V and/or 480 V , the connector/receptacle and breaker combination must be tested to UL 231 and UL approved.

Surge Protective Devices

A. Provide surge protective devices as specified in Section 16671A.

End Cap Tap Boxes

A. End cable tap boxes shall be configured to accept up to (2) 350 kcmil cables per phase and shall conform to UL 857 and NEC standards for wire bend space. Left and right side removable covers shall be provided for easy cable access. Lug access covers shall be provided for easy access to cable termination lugs. Cable tab boxes shall be mountable against a wall without causing the busway to be offset from the wall.
B. End cable tap boxes shall allow for CTs to be mounted within the tap box for metering.

Busway Whole Run Metering

A. An electronic power meter equivalent to an Eaton IO250/260 electronic power meter shall be use to monitor power utilization for each busway run and shall be mounted in a separate enclosure bolted to each end cable tap box
B. The electron power meter shall have a digital display showing real-time information about critical power parameters for each phase. Each phase shall be visible on the display simultaneously.
C. The electronic power meter shall comply with ANSI C12.20 for power utilization and quality with an accuracy of 0.2 percent.
D. The electronic power meter shall be capable of monitoring the following parameters for each phase: current, current demand, neutral current, voltage, frequency; real, reactive and apparent power, total and per ohase: power factor, total and per phase; and minimum and maximum readings for each parameter.
E. The electronic power meter shall communicate in RS-485 or Modbus RTU or Modbus ASCII or DNP 3.0 and KYZ output. Shall also be capable of optional I/O.

Approximate Dimensions in Inches (mm)

Dimensions

Busbar and Housing

Physical Dimensions-Width x Height

Ampere Rating	Phase Conductor	Ground Conductor	Housing Enclosure
Aluminum			
150	$0.28 \times 0.50(7.1 \times 12.7)$	$0.20 \times 1.75(5.1 \times 44.5)$	$3.60 \times 8.30(91.4 \times 210.6)$
225	$0.28 \times 1.25(7.1 \times 31.8)$	$0.20 \times 1.75(5.1 \times 44.5)$	$3.60 \times 8.30(91.4 \times 210.6)$
300	$0.28 \times 1.25(7.1 \times 31.8)$	$0.20 \times 1.75(5.1 \times 44.5)$	$3.60 \times 8.30(91.4 \times 210.6)$
400	$0.28 \times 1.75(7.1 \times 44.5)$	$0.20 \times 1.75(5.1 \times 44.5)$	$3.60 \times 8.30(91.4 \times 210.6)$
Copper			$3.60 \times 8.30(91.4 \times 210.6)$
225	$0.28 \times 0.50(7.1 \times 12.7)$	$0.20 \times 1.75(5.1 \times 44.5)$	$3.60 \times 8.30(91.4 \times 210.6)$
400	$0.28 \times 1.25(7.1 \times 31.8)$	$0.20 \times 1.75(5.1 \times 44.5)$	$3.60 \times 8.30(91.4 \times 210.6)$
500	$0.28 \times 1.75(7.1 \times 44.5)$	$0.20 \times 1.75(5.1 \times 44.5)$	$3.60 \times 8.30(91.4 \times 210.6)$
600	$0.28 \times 1.75(7.1 \times 44.5)$	$0.20 \times 1.75(5.1 \times 44.5)$	

Oversized Neutral Ratings

Ampere Rating	Neutral Size D x W	Neutral Rating
Aluminum		
150	$0.28 \times 1.75(7.1 \times 44.5)$	250%
225	$0.28 \times 1.75(7.1 \times 44.5)$	150%
300	$0.28 \times 1.75(7.1 \times 44.5)$	150%
400	$0.28 \times 1.75(7.1 \times 44.5)$	100%
Copper		
225	$0.28 \times 1.75(7.1 \times 44.5)$	250%
400	$0.28 \times 1.75(7.1 \times 44.5)$	150%
500	$0.28 \times 1.75(7.1 \times 44.5)$	100%
600	$0.28 \times 1.75(7.1 \times 44.5)$	100%

Conductor Dimensions

6.2
 Low Voltage Busway
 Pow-R-Flex

Approximate Dimensions in Inches (mm)

Plug-In Busway
Feeder Busway

Single Receptacle Mini Plug Unit

Approximate Dimensions in Inches (mm)

Double Receptacle Mini Plug Unit

Approximate Dimensions in Inches (mm)

Plug-In Unit Devices

Receptacle Unit Physical Dimensions

Plug-In Unit Type	Protective Device	Voltage	Width	Height	Depth
Single	GHC	480	$7.50(190.5)$	$8.60(218.4)$	$4.00(101.6)$
	FD	400	$8.50(215.9)$	$11.50(292.1)$	$6.50(165.1)$
	FD	480	$8.50(215.9)$	$11.50(292.1)$	$6.50(165.1)$
	CCP switch	400	$7.50(190.5)$	$8.60(218.4)$	$4.00(101.6)$
	CCP switch	480	$7.50(190.5)$	$8.60(218.4)$	$4.00(101.6)$
Double	GHC	480	$11.80(299.7)$	$8.75(222.3)$	$4.00(101.6)$
	FD	400	$11.00(279.4)$	$12.00(304.8)$	$6.40(162.6)$
	FD	480	$11.00(279.4)$	$12.00(304.8)$	$6.40(162.6)$
	CCP switch	400	$11.80(299.7)$	$8.75(222.3)$	$4.00(101.6)$
Quad	FCP switch	480	$11.80(299.7)$	$8.75(222.3)$	$4.00(101.6)$
	FD	240	$20.50(520.7)$	$11.30(287.0)$	$7.10(180.3)$

Receptacle Unit Short-Circuit Withstand Rating (rms Symmetrical)

Plug-In Unit Type	Breaker Type	240 V	400 V	480 V
Single	GHC	10,000 A	10,000 A	10,000 A
	FD (1)	22,000 A	10,000 A	10,000 A
	CCP switch ${ }^{(2)}$	42,000 A	42,000 A	42,000 A
Double	GHC	10,000 A	10,000 A	10,000 A
	FD (1)	22,000 A	10,000 A	10,000 A
	CCP switch ${ }^{(2)}$	42,000 A	42,000 A	42,000 A
Quad	FD (1)	22,000 A	10,000 A	10,000 A

NEMA Receptacle Configurations

Straight-Blade Receptacles

Phase	Voltage	Configuration	15 A	20 A	30 A	50 A	60 A
Single	125 V	Two-pole, three-wire, grounded	5-15R (3)	5-20R (3)	5-30R	-	-
	250 V	Two-pole, three-wire, grounded	6-15R (3)	6-20R (3)	6-30R	-	-
	277 V	Two-pole, three-wire, grounded	7-15R	7-20R	-	-	-
Three	250 V	Three-pole, four-wire, grounded	15-15R	15-20R	15-30R	-	-

Twist-Lock Receptacles

Phase	Voltage	Configuration	15 A	20 A	30 A	50 A	60 A
Single	125 V	Two-pole, three-wire, grounded	L5-15R ${ }^{(3)}$	L5-20R	L5-30R	CS6360 (4)	-
	250 V	Two-pole, three-wire, grounded	L6-15R ${ }^{3}$	L6-20R	L6-30R	CS8264 (4)	-
	277 V	Two-pole, three-wire, grounded	L7-15R	L7-20R	L7-30R	-	-
	480 V	Two-pole, three-wire, grounded	-	L8-20R	L8-30R	-	-
Three	250 V	Three-pole, four-wire, grounded	-	L15-20R	L15-30R	CS8364 (4)	-
	208/120 V	Three-pole, five-wire, grounded	-	L21-20R	L21-30R	-	-
	480/277 V	Three-pole, five-wire, grounded	-	L22-20R	L22-30R	-	-

Pin and Sleeve Connectors (UL and IEC 309)

Phase	Voltage	Configuration	15 A	20 A	30 A	50 A	60 A
Single	125 V	Two-pole, three-wire, grounded	-	P5-20C	P5-30C	-	P5-60C
	250 V	Two-pole, three-wire, grounded	-	P6-20C	P6-30C	-	P6-60C
	277 V	Two-pole, three-wire, grounded	-	P7-20C	P7-30C	-	P7-60C
Three-	250 V	Three-pole, four-wire, grounded	-	P15-20C	P15-30C	-	P15-60C
	208/120 V	Three-pole, five-wire, grounded	-	P21-20C	P21-30C	-	P21-60C
	480/277 V	Three-pole, five-wire, grounded	-	P22-20C	P22-30C	-	P22-60C

Notes

(1) 25 kAIC is available for single-phase connectors at 240 V .
(2) The short-circuit rating of the plug-in unit will match that of the busway that it is installed.
(3) Available in a duplex configuration.
(4) California standard receptacles.

For other receptacle options, contact the factory.
$480 / 277 \mathrm{~V}$ receptacles may be applied at $400 / 230 \mathrm{~V}$.

Breaker Plug-In Unit Dimensions

Plug-In Unit	Maximum Amperes	Maximum Voltage	A	B	C	D	E
LABFD	225	600	18.00	10.80	8.17	5.97	4.80
(F-Frame)			(457.2)	(274.3)	(207.5)	(151.6)	(121.9)
LABJD	250	600	18.56	10.80	9.08	5.97	4.61
(J-Frame)			(471.4)	(274.3)	(230.6)	(151.6)	(117.1)

Breaker Plug-In Unit Physical Data

Plug-In Unit	Mechanical Terminals	Approximate Weight Lb
LABFD (F-Frame)	Cu/Al-(1)\#4-4/0	25
LABJD (J-Frame)	Cu/Al-(1)\#14-350 kcmil	40

6.3
 Low Voltage Busway

100A Busway

Contents

100 A Busway
Options and Accessories V2-T6-47
Technical Data and Specifications V2-T6-48

100 A Busway

Product Description

Product Selection

Plug-In Busway

- 100 A copper
- Straight sections of plug-in busway
- Three-phase, three-wire; three-phase, four-wire; and single-phase, three-wire applications

Application Description

Eaton 100 A busway is an alternative to cable in supplying small blocks of power for the normal commercial and industrial power systems. 100 A busway is practical for small shops, laboratories, classrooms and light manufacturing.

Busway

Description	Three-Phase, Three-Wire 600 V Maximum Catalog Number	Three-Phase, Four-Wire FN 277/480 V Catalog Number	Single-Phase, Three-Wire 120/240 V Catalog Number
Copper (Includes 50\% Internal Ground Bar)			
$10 \mathrm{ft}(3 \mathrm{~m})$	CST13G	CST14G	CST13NG
$5 \mathrm{ft}(1.5 \mathrm{~m})$	CST135G	CST145G	CST13N5G
$3 \mathrm{ft}(0.9 \mathrm{~m})$	CST133G	CST143G	CST13N3G
$2 \mathrm{ft}(0.6 \mathrm{~m})$	CST132G	CST142G	CST13N2G
$1 \mathrm{ft}(0.3 \mathrm{~m})$	CST131G	CST141G	CST13N1G
Elbows 10×10 in ($254.0 \times 254.0 \mathrm{~mm}$)			
Forward	CFE13G	CFE14G	CFE13NG
Rearward	CRE13G	CRE14G	CRE13NG
Upward	CUE13G	CUE14G	CUE13NG
Downward	CDE13G	CDE14G	CDE13NG

Cable Tap Boxes

Type	Three- or Four-Wire Catalog Number	Ground (If Required) Catalog Number
Plug-in	PIB14	PIGS100
End (R or L)	EB14	GL100
Center	CBIB14G	Included

Fusible Plug-In Units

Voltage Rating	Ampere Rating	Fusible Enclosure Catalog Number	Ground (If Required) Catalog Number
240	30	FAN321	PIGS100
240	60	FAN322	PIGS100
240	100	FAN323	PIGS100
600	30	FAN361	PIGS100
600	60	FAN362	PIGS100
600	100	FAN363	PIGS100

Circuit Breakers for Plug-In Units

Breaker Frame	Ampere Rating	Circuit Breaker Enclosure Catalog Number	Receptacle Enclosure Catalog Number	Ground (If Required) Catalog Number	External Handle (Required for Hook-Stick Operation) Catalog Number
QUICKLAG, HQP	15-50	PINQP	LCNOP	PIGS100	HMOP
FD, EHD, FDB	15-100	PINFD	LCNFD	PIGS100	HMFD

Options and Accessories

100A Busway Plug-In Units

Plug-in units for 100 A busway are available with or without overcurrent protection. All plugin units include a neutral stab and are suitable for threephase, three-wire, and threephase, four-wire applications.

The PINQP circuit breaker enclosures and the LCNQP and LCNFD receptacle enclosures are all suitable for single-phase, three-wire applications. Ground stabs are available for field installation.

Fusible Units

Fusible units are available for 30, 60 and 100 A service for 240 or 600 V .

Circuit Breaker Units

If you are using circuit breaker units, the load must be distributed evenly among A, B and C phases. To accomplish this, distribute the load evenly among single-, two- and three-pole breakers. Available are QUICKLAG ${ }^{\circledR}$ "HQP" circuit breaker units for 50A-240V maximum service, "EHD, FDB and FD" circuit breakers for 100 A to 600 V maximum service.

External Handle

 Operating MechanismAn external operating mechanism is attached on top of the breaker switch for hookstick or chain operation. This is available for all circuit breakers.

Receptacle Enclosures

The receptacle enclosures (loadcenters) include space for three breaker poles and provisions for one, two or three conventional, singlegang outlets, and blank covers to fill unused spaces. Include neutral stab. Do not include breakers, outlets or wiring.

The enclosure, circuit breaker (if required) and ground are ordered separately and shipped unassembled. If the unit is to be factory assembled, please indicate on the order, add 15\% to the total price, and allow additional time for shipment. For circuit breaker selection, see Page V2-T6-22.

Accessories	Catalog Number
Item	EC1
End closer	OC1
Outlet cover	EH1
Edgewise hanger	FH1
"C" clamp hanger	WF1
Slip-on wall flange	

Note

The above items can be used with or without ground, three-wire or four-wire.

Accessories

End Closers-EC1

Replacement Outlet Cover-OC1

Hangers

Wall Mounted

Edgewise-EH1

Edge Mounted

Technical Data and Specifications

Electrical conductors are silver-plated round copper rods. A 50\% internal ground bar is supplied as standard. Busway with ground will match existing busway without ground. The housing is formed from two channels of 20 -gauge steel riveted together in a solid assembly and painted ANSI 6.1.

Conductor joints are made by means of boltless pressure clips that require no assembly or adjustment by the installer. The busbars are firmly supported by molded insulators on the alternate side of the busway.

100 A Busway and Fittings

Contents
Description Page
Terms and Conditions of Sale. V2-A1-1
Terms of Payment V2-A1-2
Freight V2-A1-3
Warranty V2-A1-3

Selling Policy (Supersedes Selling Policy 25-000, dated February 20, 2006)

Terms and Conditions of Sale

The Terms and Conditions of Sale set forth herein, and any supplements which may be attached hereto, constitute the full and final expression of the contract for the sale of products or services (hereinafter referred to as Product(s) or Services by Eaton Corporation (hereinafter referred to as Seller) to the Buyer, and supersedes all prior quotations, purchase orders, correspondence or communications whether written or oral between the Seller and the Buyer. Notwithstanding any contrary language in the Buyer's purchase order, correspondence or other form of acknowledgment, Buyer shall be bound by these Terms and Conditions of Sale when it sends a purchase order or otherwise indicates acceptance of this contract, or when it accepts delivery from Seller of the Products or Services.

THE CONTRACT FOR SALE OF THE PRODUCTS OR SERVICES IS EXPRESSLY LIMITED TO THE TERMS AND CONDITIONS OF SALE STATED HEREIN. ANY ADDITIONAL OR DIFFERENT TERMS PROPOSED BY BUYER ARE REJECTED UNLESS EXPRESSLY AGREED TO IN WRITING BY SELLER. No contract shall exist except as herein provided.

Complete Agreement

No amendment or modification hereto nor any statement, representation or warranty not contained herein shall be binding on the Seller unless made in writing by an authorized representative of the Seller. Prior dealings, usage of the trade or a course of performance shall not be relevant to determine the meaning of this contract even though the accepting or acquiescing party had knowledge of the nature of the performance and opportunity for objection.

Quotations

Written quotations are valid for 30 days from its date unless otherwise stated in the quotation or terminated sooner by notice.

Verbal quotations, unless accepted, expire the same day they are made.
A complete signed order must be received by Seller within 20 calendar days of notification of award, otherwise the price and shipment will be subject to re-negotiation.

Termination and Cancellation

Any order may be terminated by the Buyer only by written notice and upon payment of reasonable termination charges, including all costs plus profit.
Seller shall have the right to cancel any order at any time by written notice if Buyer breaches any of the terms hereof, becomes the subject of any proceeding under state or federal law for the relief of debtors, or otherwise becomes insolvent or bankrupt, generally does not pay its debts as they become due or makes an assignment for the benefit of creditors.

Prices

All prices are subject to change without notice. In the event of a price change, the effective date of the change will be the date of the new price or discount sheet, letter or telegram. All quotations made or orders accepted after the effective date will be on the new basis. For existing orders, the price of the unshipped portion of an order will be the price in effect at time of shipment.

Price Policy-Products and Services

When prices are quoted as firm for quoted shipment, they are firm provided the following conditions are met:

1. The order is released with complete engineering details.
2. Shipment of Products are made, and Services purchased are provided within the quoted lead time.
3. When drawings for approval are required for any Products, the drawings applicable to those Products must be returned within 30* calendar days from the date of the original mailing of the drawings by Seller. The return drawings must be released for manufacture and shipment and must be marked "APPROVED" or "APPROVED AS NOTED." Drawing re-submittals which are required for any other reason than to correct Seller errors will not extend the 30-day period.

* 60 days for orders through contractors to allow time for their review and approval before and after transmitting them to their customers.

If the Buyer initiates or in any way causes delays in shipment, provision of Services or return of approval drawings beyond the periods stated above, the price of the Products or Services will be increased 1% per month or fraction thereof up to a maximum of 18 months from the date of the Buyer's order. For delays resulting in shipment or provision of Services beyond 18 months from the date of the Buyer's order, the price must be renegotiated.

Price Policy-BLS

Refer to Price Policy 25-050.

Minimum Billing

Orders less than \$1,000 will be assessed a shipping and handling charge of 5% of the price of the order, with a minimum charge of $\$ 25.00$ unless noted differently on Product discount sheets.

Taxes

The price does not include any taxes. Buyer shall be responsible for the payment of all taxes applicable to, or arising from the transaction, the Products, its sale, value, or use, or any Services performed in connection therewith regardless of the person or entity actually taxed.

Terms of Payment

Products

Acceptance of all orders is subject to the Buyer meeting Seller's credit requirements. Terms of payment are subject to change for failure to meet such requirements. Seller reserves the right at any time to demand full or partial payment before proceeding with a contract of sale as a result of changes in the financial condition of the Buyer. Terms of Payment are either Net 30 days from the date of invoice of each shipment or carry a cash discount based on Product type. Specific payment terms for Products are outlined in the applicable Product discount schedules.

Services

Terms of payment are net within 30 days from date of invoice for orders amounting to less than $\$ 50,000.00$.

Terms of payment for orders exceeding $\$ 50,000.00$ shall be made according to the following:

1. Twenty percent (20%) of order value with the purchase order payable 30 days from date of invoice.
2. Eighty percent (80%) of order value in equal monthly payments over the performance period payable 30 days from date of invoice.

Except for work performed (i) under a firm fixed price basis or (ii) pursuant to terms of a previously priced existing contract between Seller and Buyer, invoices for work performed by Seller shall have added and noted on each invoice a charge of 3\% (over and above the price of the work) which is related to Seller compliance with present and proposed environmental, health, and safety regulations associated with prescribed requirements covering hazardous materials management and employee training, communications, personal protective equipment, documentation and record keeping associated therewith.

Adequate Assurances

If, in the judgment of Seller, the financial condition of the Buyer, at any time during the period of the contract, does not justify the terms of payment specified, Seller may require full or partial payment in advance.

Delayed Payment

If payments are not made in accordance with these terms, a service charge will, without prejudice to the right of Seller to immediate payment, be added in an amount equal to the lower of 1.5% per month or fraction thereof or the highest legal rate on the unpaid balance.

Freight

Freight policy will be listed on the Product discount sheets, or at option of Seller one of the following freight terms will be quoted.

F.O.B.-P/S—Frt./Ppd. and Invoiced

Products are sold F.O.B. point of shipment freight prepaid and invoiced to the Buyer.

F.O.B.-P/S—Frt./Ppd. and Allowed

Products sold are delivered F.O.B. point of shipment, freight prepaid and included in the price.

F.O.B. Destination-Frt./Ppd. and Allowed

At Buyer's option, Seller will deliver the Products F.O.B. destination freight prepaid and 2% will be added to the net price.
The term "freight prepaid" means that freight charges will be prepaid to the accessible common carrier delivery point nearest the destination for shipments within the United States and Puerto Rico unless noted differently on the Product discount sheets. For any other destination contact Seller's representative.

Shipment and Routing

Seller shall select the point of origin of shipment, the method of transportation, the type of carrier equipment and the routing of the shipment.
If the Buyer specifies a special method of transportation, type of carrier equipment, routing, or delivery requirement, Buyer shall pay all special freight and handling charges.

When freight is included in the price, no allowance will be made in lieu of transportation if the Buyer accepts shipment at factory, warehouse, or freight station or otherwise supplies its own transportation.

Risk of Loss

Risk of loss or damage to the Products shall pass to Buyer at the F.O.B. point.

Concealed Damage

Except in the event of F.O.B destination shipments, Seller will not participate in any settlement of claims for concealed damage.

When shipment has been made on an F.O.B. destination basis, the Buyer must unpack immediately and, if damage is discovered must:

1. Not move the Products from the point of examination.
2. Retain shipping container and packing material.
3. Notify the carrier in writing of any apparent damage.
4. Notify Seller representative within 72 hours of delivery.
5. Send Seller a copy of the carrier's inspection report.

Witness Tests/Customer Inspection

Standard factory tests may be witnessed by the Buyer at Seller's factory for an additional charge calculated at the rate of $\$ 2,500$ per day (not to exceed eight (8) hours) per Product type. Buyer may final inspect Products at the Seller's factory for $\$ 500$ per day per Product type.
Witness tests will add one (1) week to the scheduled shipping date. Seller will notify Buyer fourteen (14) calendar days prior to scheduled witness testing or inspection. In the event Buyer is unable to attend, the Parties shall mutually agree on a rescheduled date. However, Seller reserves the right to deem the witness tests waived with the right to ship and invoice Products.

Held Orders

For any order held, delayed or rescheduled at the request of the Buyer, Seller may, at its sole option (1) require payment to be based on any reasonable basis, including but not limited to the contract price, and any additional expenses, or cost resulting from such a delay; (2) store Products at the sole cost and risk of loss of the Buyer; and/ or (3) charge to the Buyer those prices under the applicable price policy. Payment for such price, expenses and costs, in any such event, shall be due by Buyer within thirty (30) days from date of Seller's invoice. Any order so held delayed or rescheduled beyond six (6) months will be treated as a Buyer termination.

Drawing Approval

Seller will design the Products in line with, in Seller's judgment, good commercial practice. If at drawing approval Buyer makes changes outside of the design as covered in their specifications, Seller will then be paid reasonable charges and allowed a commensurate delay in shipping date based on the changes made.

Drawing Re-Submittal

When Seller agrees to do so in its quotation, Seller shall provide Buyer with the first set of factory customer approval drawing(s) at Seller's expense. The customer approval drawing(s) will be delivered at the quoted delivery date. If Buyer requests drawing changes or additions after the initial factory customer approval drawing(s) have been submitted by Seller, the Seller, at its option, may assess Buyer drawing charges. Factory customer approval drawing changes required due to misinterpretation by Seller will be at Seller's expense. Approval drawings generated by Bid Manager are excluded from this provision.

Warranty

 Warranty for ProductsSeller warrants that the Products manufactured by it will conform to Seller's applicable specifications and be free from failure due to defects in workmanship and material for one (1) year from the date of installation of the Product or eighteen (18) months from the date of shipment of the Product, whichever occurs first.

In the event any Product fails to comply with the foregoing warranty Seller will, at its option, either (a) repair or replace the defective Product, or defective part or component thereof, F.O.B. Seller's facility freight prepaid, or (b) credit Buyer for the purchase price of the Product. All warranty claims shall be made in writing.

Seller requires all nonconforming Products be returned at Seller's expense for evaluation unless specifically stated otherwise in writing by Seller.

This warranty does not cover failure or damage due to storage, installation, operation or maintenance not in conformance with Seller's recommendations and industry standard practice or due to accident, misuse, abuse or negligence. This warranty does not cover reimbursement for labor, gaining access, removal, installation, temporary power or any other expenses, which may be incurred in connection with repair or replacement.
This warranty does not apply to equipment not manufactured by Seller. Seller limits itself to extending the same warranty it receives from the supplier.

Effective Date: November l, 2008

Extended Warranty for Products
If requested by the Buyer and specifically accepted in writing by Seller, the foregoing standard warranty for Products will be extended from the date of shipment for the period and price indicated below:

- 24 months- 2% of Contract Price
- 30 months- 3% of Contract Price
- 36 months- 4% of Contract Price

Special Warranty (In and Out) for Products

If requested by the Buyer and specifically accepted in writing by Seller, Seller will, during the warranty period for Products, at an additional cost of 2% of the contract price, be responsible for the direct cost of:

1. Removing the Product from the installed location.
2. Transportation to the repair facility and return to the site.
3. Reinstallation on site.

The total liability of Seller for this Special Warranty for Products is limited to 50\% of the contract price of the particular Product being repaired and excludes expenses for removing adjacent apparatus, walls, piping, structures, temporary service, etc.

Warranty for Services
Seller warrants that the Services performed by it hereunder will be performed in accordance with generally accepted professional standards.

The Services, which do not so conform, shall be corrected by Seller upon notification in writing by the Buyer within one (1) year after completion of the Services.

Unless otherwise agreed to in writing by Seller, Seller assumes no responsibility with respect to the suitability of the Buyer's, or its customer's, equipment or with respect to any latent defects in equipment not supplied by Seller. This warranty does not cover damage to Buyer's, or its customer's, equipment, components or parts resulting in whole or in part from improper maintenance or operation or from their deteriorated condition. Buyer will, at its cost, provide Seller with unobstructed access to the defective Services, as well as adequate free working space in the immediate vicinity of the defective Services and such facilities and systems, including, without limitation, docks, cranes and utility disconnects and connects, as may be necessary in order that Seller may perform its warranty obligations. The conducting of any tests shall be mutually agreed upon and Seller shall be notified of, and may be present at, all tests that may be made.

Warranty for Power Systems Studies

Seller warrants that any power systems studies performed by it will conform to generally accepted professional standards. Any portion of the study, which does not so conform, shall be corrected by Seller upon notification in writing by the Buyer within six (6) months after completion of the study. All warranty work shall be performed in a single shift straight time basis Monday through Friday. In the event that the study requires correction of warranty items on an overtime schedule,
the premium portion of such overtime shall be for the Buyer's account.

Limitation on Warranties for Products, Services and Power Systems Studies
THE FOREGOING WARRANTIES ARE EXCLUSIVE EXCEPT FOR WARRANTY OF TITLE. SELLER DISCLAIMS ALL OTHER WARRANTIES INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
CORRECTION OF NONCONFORMITIES IN THE MANNER AND FOR THE PERIOD OF TIME PROVIDED ABOVE SHALL CONSTITUTE SELLER'S SOLE LIABILITY AND BUYER'S EXCLUSIVE REMEDY FOR FAILURE OF SELLER TO MEET ITS WARRANTY OBLIGATIONS, WHETHER CLAIMS OF THE BUYER ARE BASED IN CONTRACT, IN TORT (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE.

Asbestos

Federal Law requires that building or facility owners identify the presence, location and quantity of asbestos containing material (hereinafter "ACM") at work sites. Seller is not licensed to abate ACM. Accordingly, for any contract which includes the provision of Services, prior to (i) commencement of work at any site under a specific Purchase Order, (ii) a change in the work scope of any Purchase Order, the Buyer will certify that the work area associated with the Seller's scope of work includes the handling of Class II ACM, including but not limited to generator wedges and high temperature gaskets which include asbestos materials. The Buyer shall, at its expense, conduct abatement should the removal, handling, modification or reinstallation, or some or all of them, of said Class II ACM be likely to generate airborne asbestos fibers; and should such abatement affect the cost of or time of performance of the work then Seller shall be entitled to an equitable adjustment in the schedule, price and other pertinent affected provisions of the contract.

Compliance with Nuclear Regulation

Seller's Products are sold as commercial grade Products not intended for application in facilities or activities licensed by the United States Nuclear Regulatory Commission for atomic purposes. Further certification will be required for use of the Products in any safety-related application in any nuclear facility licensed by the U.S. Nuclear
Regulatory Commission.

Returning Products

Authorization and shipping instructions for the return of any Products must be obtained from Seller before returning the Products.

When return is occasioned due to Seller error, full credit including all transportation charges will be allowed.

Product Notices

Buyer shall provide the user (including its employees) of the Products with all Seller supplied Product notices, warnings, instructions, recommendations, and similar materials.

Force Majeure

Seller shall not be liable for failure to perform or delay in performance due to fire, flood, strike or other labor difficulty, act of God, act of any governmental authority or of the Buyer, riot, embargo, fuel or energy shortage, car shortage, wrecks or delays in transportation, or due to any other cause beyond Seller's reasonable control. In the event of delay in performance due to any such cause, the date of delivery or time for completion will be extended by a period of time reasonably necessary to overcome the effect of such delay.

Liquidated Damages

Contracts which include liquidated damage clauses for failure to meet shipping or job completion promises are not acceptable or binding on Seller, unless such clauses are specifically accepted in writing by an authorized representative of the Seller at its headquarters office.

Patent Infringement

Seller will defend or, at its option, settle any suit or proceeding brought against Buyer, or Buyer's customers, to the extent it is based upon a claim that any Product or part thereof, manufactured by Seller or its subsidiaries and furnished hereunder, infringes any United States patent, other than a claim of infringement based upon use of a Product or part thereof in a process, provided Seller is notified in reasonable time and given authority, information and assistance (at Seller's expense) for the defense of same. Seller shall pay all legal and court costs and expenses and courtassessed damages awarded therein against Buyer resulting from or incident to such suit or proceeding. In addition to the foregoing, if at any time Seller determines there is a substantial question of infringement of any United States patent, and the use of such Product is or may be enjoined, Seller may, at its option and expense: either (a) procure for Buyer the right to continue using and selling the Product; (b) replace the Product with non-infringing apparatus; (c) modify the Product so it becomes noninfringing; or (d) as a last resort, remove the Product and refund the purchase price, equitably adjusted for use and obsolescence. In no case does Seller agree to pay any recovery based upon its Buyer's savings or profit through use of Seller's Products whether the use be special or ordinary. The foregoing states the entire liability of Seller for patent infringement.

The preceding paragraph does not apply to any claim of infringement based upon: (a) any modification made to a Product other than by Seller; (b) any design and/or specifications of Buyer to which a Product was manufactured; or (c) the use or combination of Product with other products where the Product does not itself infringe. As to the aboveidentified claim situations where the preceding paragraph does not apply, Buyer shall defend and hold Seller harmless in the same manner and to the extent as Seller's obligations described in the preceding paragraph. Buyer shall be responsible for obtaining (at Buyer's expense) all license rights required for Seller to be able to use software products in the possession of Buyer where such use is required in order to perform any Service for Buyer.

With respect to a Product or part thereof not manufactured by Seller or its subsidiaries, Seller will attempt to obtain for Buyer, from the supplier(s), the patent indemnification protection normally provided by the supplier(s) to customers.

Limitation of Liability

THE REMEDIES OF THE BUYER SET FORTH IN THIS CONTRACT ARE EXCLUSIVE AND ARE ITS SOLE
REMEDIES FOR ANY
FAILURE OF SELLER
TO COMPLY WITH ITS OBLIGATIONS HEREUNDER.
NOTWITHSTANDING ANY PROVISION IN THIS CONTRACT TO THE CONTRARY, IN NO EVENT SHALL SELLER BE LIABLE IN CONTRACT, IN TORT (INCLUDING NEGLIGENCE OR STRICT LIABILITY) OR OTHERWISE FOR DAMAGE TO PROPERTY OR EQUIPMENT OTHER THAN PRODUCTS SOLD HEREUNDER, LOSS OF PROFITS OR REVENUE, LOSS OF USE OF PRODUCTS, COST OF CAPITAL, CLAIMS OF CUSTOMERS OF THE BUYER OR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES WHATSOEVER, REGARDLESS OF WHETHER SUCH POTENTIAL DAMAGES ARE FORESEEABLE OR IF SELLER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
the total cumulative LIABILITY OF SELLER ARISING FROM OR RELATED TO THIS CONTRACT WHETHER THE CLAIMS ARE BASED IN CONTRACT, IN TORT (INCLUDING NEGLIGENCE OR STRICT LIABILITY) OR OTHERWISE, SHALL NOT EXCEED THE PRICE OF THE PRODUCT OR SERVICES ON WHICH SUCH LIABILITY IS BASED.

A		DS1	V2-T1-14, V2-T1-15, V2-T1-60, V2-T1-111
ACP	V2-T1-60	DS2	V2-T1-14, V2-T1-15, V2-T1-111
AC1	V2-T1-123	DS3	V2-T1-14, V2-T1-15, V2-T1-60, V2-T1-67,
AC2	V2-T1-123		V2-T1-111
APJ	V2-T1-60	DS36	V2-T1-67
		DS4	V2-T1-14, V2-T1-15
B		DS5	V2-T1-14, V2-T1-15
BAB	V2-T4-19	DS6	V2-T1-14, V2-T1-60
BABR.	V2-T3-115, V2-T3-116	DS7	V2-T1-14
BX	V2-T3-71, V2-T3-74, V2-T3-81, V2-T3-129	DS8	V2-T1-14, V2-T1-111
B48M	V2-T2-64, V2-T2-69	DS9	V2-T1-15, V2-T1-111
		DT	V2-T1-11-V2-T1-12
C		DT1	V2-T1-14
CBI	V2-T6-46	DT2	V2-T1-11, V2-T1-12, V2-T1-14, V2-T1-49
CDE	V2-T6-46	DT22	V2-T1-47, V2-T1-48
CFE	V2-T6-46	DT26.	V2-T1-49
CRE	V2-T6-46	DT3	V2-T1-11-V2-T1-12, V2-T1-49
CST	V2-T6-46	DT32.	V2-T1-48
CTK	V2-T6-16	DT36.	V2-T1-49
СTXB.	V2-T3-35, V2-T3-47	DT4	V2-T1-11, V2-T1-12, V2-T1-14
CUE	V2-T6-46	DT46	V2-T1-50
CUK	V2-T4-19	DT6	V2-T1-12, V2-T1-14
C361	V2-T1-99, V2-T1-100, V2-T1-102	DT66	V2-T1-50
C371	V2-T1-100	DT8	V2-T1-14
D		E	
DBK.	V2-T4-19	EB	V2-T6-46
DG	V2-T1-5	EC	V2-T6-47
DGO	V2-T1-14	ED	V2-T4-19
DG1.	V2-T1-14	EH	V2-T6-47
DG2	V2-T1-5, V2-T1-14, V2-T1-28, V2-T1-29	EHD3	V2-T1-106
DG3.	V2-T1-5, V2-T1-29	ER	V2-T1-123
DH.	V2-T1-6-V2-T1-10, V2-T1-33-V2-T1-41	EXT	V2-T2-191
DH03.	V2-T1-14	EZB2	V2-T3-6, V2-T3-29, V2-T3-33, V2-T3-41,
DH1	V2-T1-14, V2-T1-111		V2-T3-45, V2-T3-61, V2-T3-65
DH16.	V2-T1-71	EZTV	V2-T3-6
DH2	V2-T1-14, V2-T1-35	EZT2.	V2-T3-6, V2-T3-29, V2-T3-33, V2-T3-41,
DH22.	```V2-T1-6, V2-T1-7, V2-T1-33-V2-T1-35, V2-T1-54, V2-T1-73```		
DH26.	V2-T1-8-V2-T1-10, V2-T1-36-V2-T1-40,	F	
	V2-T1-55, V2-T1-74, V2-T1-77	FAN	V2-T6-47
DH3	V2-T1-7, V2-T1-35	FD	V2-T1-106, V2-T4-19
DH32.	V2-T1-6, V2-T1-7, V2-T1-18, V2-T1-33-V2-T1-35,	FFD	V2-T1-106, V2-T1-108, V2-T1-109
	V2-T1-54, V2-T1-57, V2-T1-58, V2-T1-62,	FH	V2-T6-47
	V2-T1-73, V2-T1-77, V2-T1-84, V2-T1-85	FJD	V2-T1-106, V2-T1-108
DH36.	V2-T1-6-V2-T1-8, V2-T1-9, V2-T1-10, V2-T1-18, V2-T1-36-V2-T1-40, V2-T1-55, V2-T1-57, V2-T158, V2-T1-60, V2-T1-62, V2-T1-74, V2-T1-75, V2-T1-77, V2-T1-79, V2-T1-80, V2-T1-84, V2-T1-85	FKD G	V2-T1-107, V2-T1-108, V2-T1-109
DH42.	V2-T1-6, V2-T1-7, V2-T1-33, V2-T1-34	GHB	V2-T4-19
DH46.	V2-T1-8, V2-T1-9, V2-T1-10, V2-T1-36-V2-T1-40,	GHC	V2-T1-106
	V2-T1-75, V2-T1-79	GHQR	V2-T3-114, V2-T3-115, V2-T3-116
DH66.	V2-T1-10, V2-T1-44	GL	V2-T6-46
DH8.	V2-T1-14	GTB	V2-T4-22-V2-T4-34
DKD.	V2-T1-109	G48M	V2-T2-55, V2-T2-59
DP	V2-T1-5, V2-T1-28		
DS	V2-T1-14, V2-T1-92, V2-T1-100, V2-T1-103		
DSO	V2-T1-15, V2-T1-111		

H		0	
HKD	V2-T4-19	OC	V2-T6-47
HM	V2-T6-47		
HT20P	V2-T2-52, V2-T2-56	P	
H48M	V2-T2-53, V2-T2-57	PIB	V2-T6-46
		PIGS.	V2-T6-46, V2-T6-47
I		PIN.	V2-T6-47
INK	V2-T1-111	PRCB	V2-T3-122, V2-T3-125
IST	V2-T4-19	PRCD	V2-T3-117, V2-T3-118, V2-T3-126
		PRCE	V2-T3-121
J		PRCL	V2-T3-119, V2-T3-125, V2-T3-126
JDB	V2-T1-106	PRCPS	V2-T3-114
JFD	V2-T1-106, V2-T1-108, V2-T1-109	PRCS	V2-T3-119, V2-T3-122, V2-T3-126
JGD	V2-T1-106, V2-T1-108	PRCU	V2-T3-123, V2-T3-125
JJD	V2-T1-106, V2-T1-108	PRC10	V2-T3-113
JKD	V2-T1-107, V2-T1-108, V2-T1-109	PRC75	V2-T3-112
JLD	V2-T1-107, V2-T1-108	P1RB	V2-T3-52, V2-T3-57
JLG	V2-T1-109	P1RD	V2-T3-57
JND	V2-T1-107, V2-T1-108, V2-T1-109	P1RG	V2-T3-57
		P1RL	V2-T3-52
K		P1RN	V2-T3-57
KD	V2-T4-19	P2RB	V2-T3-53
KDB	V2-T1-107	P2RL	V2-T3-53
		P3.	V2-T6-15-V2-T6-18
L		P3B	V2-T6-15, V2-T6-17, V2-T6-18
LCN	V2-T6-47	P3F.	V2-T6-15-V2-T6-18
LDB	V2-T1-107	P3G	V2-T6-18
LKS	V2-T2-192	P3J.	V2-T6-15, V2-T6-18
LL4	V2-T4-18	P3K	V2-T6-15, V2-T6-18
LL8	V2-T4-18	P3L.	V2-T6-15, V2-T6-18
LSS	V2-T4-18	P3M	V2-T6-15, V2-T6-18
LTC9	V2-T3-37, V2-T3-49	P3N	V2-T6-15, V2-T6-18
LTV2	V2-T3-6, V2-T3-61	P3P	V2-T6-17
LT20	V2-T3-6, V2-T3-29, V2-T3-33, V2-T3-41,	P48G	V2-T2-121, V2-T2-122
	V2-T3-45, V2-T3-61, V2-T3-65	P60G	V2-T2-121, V2-T2-122
LY48D	V2-T2-137		
LY48G	V2-T2-137	0	
LY48M.	V2-T2-137	OS20L	V2-T2-134
		QS20N	V2-T2-134
M			
M.	V2-T4-19	R	
MBB	V2-T4-17, V2-T4-18	RCN	V2-T1-109
MD	V2-T2-112-V2-T2-117, V2-T4-19	RFD	V2-T1-106, V2-T1-108, V2-T1-109
MDL	V2-T1-107	RFK	V2-T1-92
MSB	V2-T4-17	RGD	V2-T1-106, V2-T1-108
MV24M	V2-T2-139	RJD	V2-T1-106, V2-T1-108
MV24R	V2-T2-139	RKD	V2-T1-107, V2-T1-108, V2-T1-109
MV29M	V2-T2-138, V2-T2-139	RL	V2-T4-18
MV29R	V2-T2-139	RLD	V2-T1-107, V2-T1-108
MV44M	V2-T2-140	RLG	V2-T1-109
MV48D	V2-T2-138	RMB.	V2-T4-17, V2-T4-18
MV48M	V2-T2-137, V2-T2-138, V2-T2-140, V2-T2-141	RMS.	V2-T4-17
MV60M	V2-T2-141, V2-T2-142	RND	V2-T1-107, V2-T1-108, V2-T1-109
		RSO	V2-T2-192
N		RS1	V2-T2-192
ND3	V2-T1-107	RTA	V2-T3-54
NT20P	V2-T2-52, V2-T2-56	RTB	V2-T3-54
N48M	V2-T2-54, V2-T2-58, V2-T2-65, V2-T2-70	RTC	V2-T3-54

RTD.	V2-T3-54	UN .	V2-T1-123
RTE	V2-T3-54		
RT12M	V2-T2-135	V	
RT18P	V2-T2-136	V24M	V2-T2-14, V2-T2-15, V2-T2-25, V2-T2-26,
RT20P	V2-T2-135		V2-T2-36, V2-T2-37, V2-T2-44, V2-T2-45
RT27M	V2-T2-135	V24R	V2-T2-14, V2-T2-15, V2-T2-25, V2-T2-26,
RT29M	V2-T2-135		V2-T2-36, V2-T2-37, V2-T2-44, V2-T2-45
RT60M	V2-T2-136	V29M	V2-T2-12, V2-T2-13, V2-T2-23, V2-T2-24,
RUG. .	V2-T4-18		V2-T2-34, V2-T2-35, V2-T2-42, V2-T2-43
		V29R	V2-T2-12, V2-T2-13, V2-T2-23, V2-T2-24, V2-T2-34, V2-T2-35, V2-T2-42, V2-T2-43
S		V42D	V2-T2-177, V2-T2-179, V2-T2-181, V2-T2-183
SCN.	V2-T1-109	V44M	V2-T2-16, V2-T2-27, V2-T2-38, V2-T2-46
SFD.	V2-T1-106, V2-T1-108, V2-T1-109	V46D	V2-T2-178, V2-T2-180, V2-T2-182, V2-T2-184
SGD.	V2-T1-106, V2-T1-108	V48M	V2-T2-17-V2-T2-19, V2-T2-28-V2-T2-30, V2-T2-
SJD	V2-T1-106, V2-T1-108		39-V2-T2-41, V2-T2-47-V2-T2-49, V2-T2-63,
SKD.	V2-T1-107, V2-T1-108, V2-T1-109		V2-T2-68, V2-T2-125, V2-T2-131
SLD.	V2-T1-107, V2-T1-108	V60M	V2-T2-20-V2-T2-22, V2-T2-31-V2-T2-33
SLG	V2-T1-109		
SND.	V2-T1-107, V2-T1-108, V2-T1-109	W	
S10N	V2-T2-94, V2-T2-98, V2-T2-145-V2-T2-165	WBM	V2-T3-128
S12N	V2-T2-98	WF	V2-T6-47
S20K	V2-T2-95, V2-T2-106	WFD.	V2-T1-106, V2-T1-108, V2-T1-109
S20L	V2-T2-95, V2-T2-99, V2-T2-106	WGD	V2-T1-106, V2-T1-108
S20N	V2-T2-95, V2-T2-96, V2-T2-99, V2-T2-106,	WJD.	V2-T1-106, V2-T1-108
	V2-T2-145, V2-T2-166-V2-T2-170	WKD	V2-T1-107, V2-T1-108, V2-T1-109
S24N	V2-T2-99	WLD.	V2-T1-107, V2-T1-108
S27N	V2-T2-95, V2-T2-99	WLG.	V2-T1-109
S29N.	V2-T2-94, V2-T2-98	WMB	V2-T2-191
S4P	V2-T1-123	WND	V2-T1-107, V2-T1-108, V2-T1-109
S40N	V2-T2-96	WS	V2-T2-191
S48D	V2-T2-97	WSM	V2-T3-129
S48G	V2-T2-97		
S48M.	V2-T2-97	\mathbf{X}	
S54N	V2-T2-96	XCTX	V2-T3-35, V2-T3-47
S60G	V2-T2-97, V2-T2-169, V2-T2-170	XFD	V2-T1-106, V2-T1-108
S60J	V2-T2-97, V2-T2-169, V2-T2-170	XJD	V2-T1-106, V2-T1-108
S60M.	V2-T2-97	XKD	V2-T1-107, V2-T1-108, V2-T1-109
S60N.	V2-T2-169, V2-T2-170	XLD	V2-T1-108
		XMC.	V2-T1-107, V2-T1-108
T		XND	V2-T1-107, V2-T1-108
	V2-T1-123	XP	V2-T1-111
TS3	V2-T1-123	X48M	V2-T2-73-V2-T2-88
T18P	V2-T2-5, V2-T2-7		
T20P	V2-T2-4, V2-T2-6, V2-T2-8, V2-T2-10, V2-T2-125, V2-T2-131, V2-T2-169, V2-T2-170		
T27M.	V2-T2-5, V2-T2-6, V2-T2-8, V2-T2-10	YSC9	V2-T3-37, V2-T3-49
T27R	V2-T2-5, V2-T2-6, V2-T2-8, V2-T2-10	Y2	V2-T3-45, V2-T3-61, V2-T3-65
T29M.	V2-T2-4, V2-T2-6, V2-T2-8, V2-T2-10	Y24G	V2-T2-100
T29R	V2-T2-4, V2-T2-6, V2-T2-8, V2-T2-10	Y24M	V2-T2-100
T42D	V2-T2-175, V2-T2-176	Y38G	V2-T2-100, V2-T2-101
T43P	V2-T2-9, V2-T2-11	Y38M	V2-T2-100, V2-T2-101
T46D	V2-T2-175, V2-T2-176	Y43G	V2-T2-102
T48M.	V2-T2-4, V2-T2-6, V2-T2-8	Y43M	V2-T2-102
T60M.	V2-T2-5, V2-T2-7, V2-T2-9, V2-T2-11	Y44G	V2-T2-102
T60R	V2-T2-9, V2-T2-11	Y44M	V2-T2-102
		Y48D	V2-T2-102-V2-T2-105
U		Y48G	V2-T2-102-V2-T2-104, V2-T2-105
UG....	V2-T4-18	Y48J.	V2-T2-102, V2-T2-103, V2-T2-105

Y48M	V2-T2-102-V2-T2-105
Y60G	V2-T2-105
Y60M	V2-T2-105
Z	
Z48G	V2-T2-128
Z48N	V2-T2-128

Numerics	
1226.	V2-T1-95
177C	V2-T1-95
178C	V2-T1-14, V2-T1-92
2607.	V2-T1-95, V2-T1-96
313 C	V2-T1-95, V2-T1-96
315C	V2-T1-96
371D	V2-T1-95, V2-T1-96
503C	V2-T1-96
504C	V2-T1-96
624B	V2-T1-92
657D	V2-T1-95, V2-T1-96
673B	V2-T1-92

Appendix 3-Alphabetical Product Index

A
Accessories

Meter Compartment Doors V2-T4-19
Meter Sockets . V2-T4-19
Special Options . V2-T4-19
Pow-R-Line C Panelboards . V2-T3-57
Branch Circuit Breakers—P1R V2-T3-57
Copper Terminal Ground Bar V2-T3-57
Insulated/lsolated Ground Bus V2-T3-57
Auxiliary Switch . V2-T1-110
Electronic Trip Options . V2-T1-110
Nameplates . V2-T1-110
Neutral Assemblies Installed V2-T1-110
Pilot Light On NEMA 1 Enclosure V2-T1-110
Separate Ground Lug Installed V2-T1-110
Special Paint Finish. V2-T1-110
Special RD Modifications and Accessories V2-T1-111
Undervoltage Release Mechanism V2-T1-110
Control Pole Kit. V2-T1-14
Crimp Lug Pad Kit. V2-T1-14
Fuse Puller Kits. V2-T1-14
Ground Lug Kits . V2-T1-14
Myers Type Hubs . V2-T1-15
Switching Neutral Bonding Kits V2-T1-14
Switching Devices, Safety Switches, Flange
Mounted-Fixed Depth
Electrical Interlocks . V2-T1-103
100A Busway V2-T6-47ClawV2-T6-47
End Closer 2-T6-47
Outlet CoverV2-T6-47

 Instant Service Switchboards

 Circuit Breakers . V2-T4-19
 Instant Service Switchboards
Circuit BreakersV2-T4-19
Sperial OpionV2-T3-57

 Box Collar Kits . V2-T3-57
 Box Collar Kits 2-T3-57

 Branch Breakers—P2R. V2-T3-57Branch Circuit Breakers-P1RV2-T3-57

 Copper Main Bus Adder. V2-T3-57
 Coper Main Bus Adder.V2-T3-57

 Depth Adder Kits . V2-T3-57
 Depth Adder KitsV2-T3-57

 Neutral Kit. V2-T3-57
 Neutral Kit V2-T3-57

 Switching Devices, Enclosed Circuit Breakers

 Alarm Switch . V2-T1-110
 Switm SwichV2-T1-110

 Breather and Drain, Hazardous Enclosures V2-T1-111
 Breather and Drain, Hazardous EnclosuresV2-T1-110

 Key Interlock Systems . V2-T1-110
 Key Interlock Systems V2-T1-110Neutral Assemblies InstalledV2-T1-110

 Neutral Kits, Insulated and Groundable V2-T1-111
 Noutral Insula 1 EndV2-T1-110

 Raintight Hubs . V2-T1-111
 Raintight Hubs2-T1-110

 Shunt Trip . V2-T1-110
 Shunt Trip V2-T1-110
Special RD ModicatioV2-T1-111

 Stainless Steel Flush Covers V2-T1-110
 Stainless Steel Flush CoversV2-T1-110

 Switching Devices, Safety Switches

 Auxiliary Contact Kits . V2-T1-14
 Switching Devices, Safety Switches
Control Pole Kit. V2-T1-14

 Copper Lug Kits . V2-T1-14
 oper Lug KitsV2-T1-14

 Flex Center Modifications . V2-T1-16
 Flex Center Modifications V2-T1-16
Fround Lug KitsV2-T1-14

 J Fuse Adapter Kits . V2-T1-14
 J Fuse Adapter KitsV2-T1-15

 Neutral Kits/Ground Kits . V2-T1-14
 Neutral Kits/Ground Kits V2-T1-14

 R Fuse Adapter Kits . V2-T1-14
 R Fuse Adapter Kits/2-T1-14

 T Fuse Adapter Kits . V2-T1-14
 T Fuse Adapter Kits V2-T1-14Switching Devices, Safety Switches, FlangeMounted-Fixed DepthElectrical InterlocksV2-T1-103

 Switching Devices, Safety Switches, Flange

 Mounted-Variable Depth

 Interlocks and Connecting Rod V2-T1-100

 Safety Door Hardware . V2-T1-100
 Mounted-Variable Depth
Safety Door Hardware V2-T1-100
Transformers . V2-T2-191-V2-T2-193Case Parts for Ventilated Units V2-T2-193
Replacement Parts for Mini-Power Centers V2-T2-192
Rodent Screens V2-T2-192
Terminal Extension Kit V2-T2-191
Terminal Lug Kits V2-T2-192
Wall-Mounting Bracket V2-T2-191
Weathershield Kit V2-T2-191
Accessories and Modifications
PRL4D V2-T3-83
Alarm Switch
Switching Devices, Enclosed Circuit Breakers Accessories. V2-T1-110
Ambient Compensating Breakers
Pow-R-Line Drawout Molded Case Circuit Breaker Switchboards V2-T4-12
ATC Controllers, Transfer Switches
ATC-100 Controller V2-T5-70
ATC-300+ Controller V2-T5-72
ATC-900 Controller V2-T5-76
ATC-100 Controller
Transfer Switches V2-T5-70
ATC-300+ Controller
Transfer Switches V2-T5-72
ATC-900 Controller V2-T5-76
Transfer Switches V2-T5-76
Automatic Closed TransitionContactor-Based DesignsTransfer Switches .V2-T5-13
Automatic Open Transition
Contactor-Based Designs
Transfer Switches V2-T5-8
Service Entrance Rated Contactor
Transfer Switches V2-T5-27
Automatic Transfer Controllers
Transfer Switches V2-T5-66-V2-T5-91
Auxiliary Contact Kits
Switching Devices, Safety Switches Accessories. V2-T1-14
Auxiliary Power Heavy-Duty Safety Switch
Safety Switches
Switching Devices V2-T1-83
Auxiliary Switch
Switching Devices, Enclosed Circuit BreakersAccessories.V2-T1-110
BBox Collar Kits
Pow-R-Line C Panelboards V2-T3-57
Branch Breakers-P2R
Pow-R-Line C Panelboards V2-T3-57
Branch Circuit Breakers-P1RPow-R-Line C PanelboardsV2-T3-57
Breaker-Based Designs
Transfer Switches
Maintenance Bypass Switches V2-T5-48

Appendix 3—Alphabetical Product Index

Crimp Lug Pad KitSwitching Devices, Safety SwitchesAccessories.V2-T1-14
D
Density Rated Bus
Pow-R-Line Drawout Molded Case CircuitBreaker Switchboards.V2-T4-12
Depth Adder Kits
Pow-R-Line C Panelboards V2-T3-57
Distribution Transformers V2-T2-110-V2-T2-184
Buck-Boost and Low Voltage Lighting Transformers V2-T2-144
Class I, Division 2, Groups C and D Transformers . . V2-T2-127
Marine Duty Transformers V2-T2-133
Medium Voltage V2-T2-173
Mini-Power Centers V2-T2-119
Motor Drive Isolation Transformers V2-T2-111
Open-Type Core and Coil Assembly Transformers V2-T2-130
Totally Enclosed Non-Ventilated Transformers V2-T2-124
Double-Throw Switches
Safety SwitchesSwitching DevicesV2-T1-45
Drawout NX Internal
Pow-R-Line Drawout Molded Case CircuitBreaker SwitchboardsV2-T4-12
E
E3 Super Efficient Transformers V2-T2-66
Eaton Terms \& Conditions V2-T1-1
Freight V2-T1-3
Limitation of Liability V2-T1-5
Terms and Conditions of Sale V2-T1-1
Terms of Payment V2-T1-2
Warranty V2-T1-3
Edgewise Hanger100A Busway
Accessories V2-T6-47
Electrical Interlocks
Switching Devices, Safety Switches
Accessories. V2-T1-103
Electronic Trip Options
Switching Devices, Enclosed Circuit Breakers
Accessories. V2-T1-110
Electronic Trip Units
Pow-R-Line Drawout Molded Case Circuit Breaker Switchboards V2-T4-12
Elevator Control Panelboard
Panelboards V2-T3-96, V2-T3-97
Elevator Control SwitchSafety SwitchesSwitching DevicesV2-T1-81
Enclosed Circuit Breakers
Switching Devices V2-T1-104
Enclosed Rotary DisconnectsSwitching DevicesV2-T1-122

Appendix 3-Alphabetical Product Index

End Closer	
100A Busway	
Accessories	V2-T6-47
Energy-Efficient Harmonic Mitigating	
EnviroLine-Non-Metallic KRYDON Switch	
Safety Switches	
Switching Devices	. . V2-T1-61
EnviroLine-Receptacle Switches	
Safety Switches	
Switching Devices	. V2-T1-59
EnviroLine-Stainless Steel Switch	
Safety Switches	
Switching Devices . V2-T1-53	
EnviroLine-Upper and Lower Window Switches	
Safety Switches	
Switching Devices . V2-T1-56	
EZ Box and EZ Trim	
Panelboards . V2-T3-4-V2-T3-6	
F	
Flange Mounted-Fixed Depth	
Safety Switches	
Switching Devices . V2-T1-102	
Flange Mounted-Variable Depth	
Safety Switches	
Switching Devices . V2-T1-98	
Flex Center Modifications	
Switching Devices, Safety Switches	
Accessories	. . V2-T1-16
Fuse Puller Kits	
Switching Devices, Safety Switches	
Accessories . V2-T1-14	
G	
General Duty	
Safety Switches	
Switching Devices . V2-T1-26	
General-Purpose Encapsulated Transformers. . V2-T2-93-V2-T2-109	
Ground Bus	
Pow-R-Line Drawout Molded Case Circuit Breaker Switchboards V2-T4-13	
Ground Fault Protection	
Pow-R-Line Drawout Molded Case Circuit Breaker Switchboards	
Ground Lug Kits	
Switching Devices, Safety Switches	
Accessories . V2-T1-14	
Group-Mounted Switchboards V2-T4-2-V2-T4-5	
Commercial Metering Switchboards V2-T4-3	
Pow-R-Line Distribution Switchboards V2-T4-2	
H	
Heavy-Duty	
Safety Switches	

Switching Devices V2-T1-31
Heavy-Duty Fusible Safety Switches Accepting Cube FusesSafety SwitchesSwitching DevicesV2-T1-78

I

Infrared (IR) Viewing WindowsPow-R-Line Drawout Molded Case Circuit BreakerSwitchboardsV2-T4-13
Instant Service Switchboards V2-T4-16-V2-T4-20
Insulated/Isolated Ground BusPow-R-Line C PanelboardsV2-T3-57
Integrated Facility Switchboards V2-T4-6-V2-T4-7
Interlocks and Connecting Rod
Switching Devices, Safety SwitchesAccessories.V2-T1-100
JJ Fuse Adapter KitsSwitching Devices, Safety SwitchesAccessories.V2-T1-14
JG and LG Breaker Accessories
Pow-R-Line Drawout Molded Case Circuit Breaker Switchboards V2-T4-12

K

Key Interlock Systems
Switching Devices, Enclosed Circuit Breakers Accessories.
V2-T1-110

K-Factor

NEMA TP-1 Energy-Efficient Transformers V2-T2-51

L

Left-Handed Safety Switch
Safety Switches Switching Devices . V2-T1-86
Low Voltage Busway
100A Busway . V2-T6-46-V2-T6-48
Busway Products. V2-T6-1-V2-T6-48
Pow-R-Flex . V2-T6-28-V2-T6-45
Pow-R-Way III . V2-T6-2-V2-T6-27

M

Magnum-Based Designs
Bypass Isolation Transfer Switches. V2-T5-60
Power Case Switch—Floor Standing 200-5000 A . . . V2-T5-51
Transfer Switches . V2-T5-51-V2-T5-65
Maintenance Bypass Switches
Transfer Switches Breaker-Based Designs. V2-T5-48
Marine Duty Transformer
Distribution Transformers
V2-T2-133
Medium Voltage Distribution Transformers. V2-T2-173
Meter Compartment Doors
Instant Service Switchboards
V2-T4-19

Neutral Kits/Ground Kits
Switching Devices, Safety Switches Accessories.

V2-T1-14

0

Open-Type Core and Coil Assembly Transformers Distribution Transformers V2-T2-130

Options, Accessories and Modifications
Pow-R-Line Drawout Molded Case Circuit Breaker Switchboards
Ambient Compensating Breakers V2-T4-12
Compression Main Lugs . V2-T4-12
Copper Lugs/Terminals . V2-T4-12
Copper Main Busbars . V2-T4-12
Density Rated Bus . V2-T4-12
Drawout NX Internal . V2-T4-12
Electronic Trip Units . V2-T4-12
Ground Bus . V2-T4-13
Ground Fault Protection . V2-T4-13
Infrared (IR) Viewing Windows V2-T4-13
JG and LG Breaker Accessories V2-T4-12
Nameplates, Engraved . V2-T4-13
Seismically Qualified . V2-T4-13
Service Entrance Equipment. V2-T4-13
Surge Protective Devices (SPD) V2-T4-13
Touchup Paint . V2-T4-13
Outlet Cover
100A Busway
Accessories. V2-T6-47

P

Panelboards . V2-T3-1-V2-T3-132
Customer Manufacturing Solution Centers V2-T3-131
Elevator Control Panelboard V2-T3-96, V2-T3-97
EZ Box and EZ Trim . V2-T3-4-V2-T3-6
Metering Service Sections. V2-T3-127-V2-T3-129
Modifications . V2-T3-98
Pow-R-Command. V2-T3-107-V2-T3-126
Pow-R-Line C Panelboards V2-T3-7-V2-T3-95
Pow-R-Stock Plus Program . V2-T3-130
Pilot Light On NEMA 1 Enclosure Switching Devices, Enclosed Circuit Breakers Accessories. V2-T1-110

Power Case Switch_Floor Standing 200-5000 A. V2-T5-51
Pow-R-Command
Panelboards . V2-T3-107-V2-T3-126
Pow-R-Flex
Low Voltage Busway V2-T6-28-V2-T6-45
Pow-R-Line C Panelboards V2-T3-7-V2-T3-95
Accessories . V2-T3-57
Retrofit Panelboard . V2-T3-50
Type PRL1a . V2-T3-26
Type PRL1aF . V2-T3-30
Type PRL1a-LX . V2-T3-34
Type PRL2a . V2-T3-38
Type PRL2aF . V2-T3-42
Type PRL2a-LX . V2-T3-46
Type PRL3a . V2-T3-58

Type PRL4. V2-T3-66
Type PRL4D . V2-T3-76 Type PRL5P . V2-T3-88
Pow-R-Line Distribution Switchboards
\quad Group-Mounted Switchboards V2-T4-2
Pow-R-Line Drawout Molded Case Circuit Breaker
Switchboards . V2-T4-8-V2-T4-13
Pow-R-Line Multipoint Meter
Multipoint Meter (MPM)
Switchboards . V2-T4-37
Pow-R-Stock Plus Program
Panelboards . V2-T3-130
Pow-R-Way III
Low Voltage Busway V2-T6-2-V2-T6-27
PRC7500-Tenant Metering
Multipoint Submetering
SwitchboardsT4-38
Pringle Bolted Pressure Switch
Safety Switches
Switching Devices V2-T1-88
PRL4D
Accessories and Modifications....... V2-T3-83
LS

0

Safety Switches
Switching Devices . V2-T1-68

R
R Fuse Adapter Kits
Switching Devices, Safety Switches
Accessories V2-T1-14
Raintight Hubs
Switching Devices, Enclosed Circuit Breakers

Annunciator Controller
Transfer Switches

V2-T2-192
Retrofit Panelboard
\quad Pow-R-Line C Panelboards . V2-T3-50
Rodent Screens
Transformers. V2-T2-192
Roll-Up Generator Termination Box
Switchboards . V2-T4-21-V2-T4-35

Safety Door Hardware
Switching Devices, Safety Switches
Accessories

V2-T1-87

Auxiliary Power Heavy-Duty Safety Switch V2-T1-83
V2-T1-45
解

EnviroLine—Receptacle Switches. V2-T1-59
EnviroLine—Stainless Steel Switch. V2-T1-53
EnviroLine-Upper and Lower Window Switches . . . V2-T1-56

Flange Mounted—Variable Depth V2-T1-98
General Duty . V2-T1-26
Heavy Duty . V2-T1-31
Heavy-Duty Fusible Safety Switches Accepting

Left-Handed Safety Switch . V2-T1-86
Mill-Duty Rated, Heavy-Duty, Fusible, Non-Fusible,
Single-Throw. .
V2-T1-66
Pringle Bolted Pressure Switch V2-T1-88
Quick Connect Switches . V2-T1-68
Shunt Trip Safety Switch . 1 -63

Solar Disconnect Switch . V2-T1-70
Type DS, Fusible and Non-Fusible V2-T1-91
Type Visi-Flex DE-ION . V2-T1-94
Seismically Qualified
Pow-R-Line Drawout Molded Case Circuit Breaker
Switchboards . V2-T4-13
Separate Ground Lug Installed Switching Devices, Enclosed Circuit Breakers
Accessories.
V2-T1-110
Service Entrance Equipment
Pow-R-Line Drawout Molded Case Circuit Breaker Switchboards

V2-T4-13
Service Entrance Rated Contactor
Transfer Switches
Automatic Open Transition . V2-T5-27
Shunt Trip
Switching Devices, Enclosed Circuit Breakers
Accessories. V2-T1-110
Shunt Trip Safety Switch
Safety Switches
Switching Devices . V2-T1-63
Six-Pole Switches
Safety Switches
Switching Devices . V2-T1-43
Slip-On Wall Flange
100A Busway

Disconnect Switch
Safety Switches
Switching Devices

V2-T1-110

Special RD Modifications and Accessories Switching Devices, Enclosed Circuit Breakers Accessories	
Stainless Steel Flush Covers	
Switching Devices, Enclosed Circuit Breakers	
Standard and Optional Features	
Transfer Switches V2-T5-92-V2-T5-117	
Surge Protective Devices (SPD)	
Pow-R-Line Drawout Molded Case Circuit Breaker	
Switchboards . V2-T4-1-V2-T4-39	
Compartmentalized Switchboards V2-T4-14-V2-T4-15	
Group-Mounted Switchboards V2-T4-2-V2-T4-5	
Instant Service Switchboards V2-T4-16-V2-T4-20	
Integrated Facility Switchboards V2-T4-6-V2-T4-7	
Multipoint Meter (MPM) V2-T4-36-V2-T4-39	
Pow-R-Line Drawout Molded Case Circuit Breaker Switchboards V2-T4-8-V2-T4-13	
Roll-Up Generator Termination Box V2-T4-21-V2-T4-35	
Switching Devices. V2-T1-1-V2-T1-128	
Enclosed Circuit Breakers V2-T1-104-V2-T1-121	
Enclosed Rotary Disconnects V2-12-T1-2-V2-T1-128	
Switching Neutral Bonding Kits	
Switching Devices, Safety Switches	
Accessories . V2-T1-14	
T Fuse Adapter Kits	
Switching Devices, Safety Switches	
Accessories . V2-T1-14	
Terminal Extension Kit	
Transformers. V2-T2-191	
Terminal Lug Kits for Type DT-3	
Transformers. V2-T2-192	
Totally Enclosed Non-Ventilated Transformers	
Distribution Transformers V2-T2-124	
Touchup Paint	
Pow-R-Line Drawout Molded Case Circuit Breaker	
Transfer Switch Equipment. V2-T5-2-V2-T5-7	
Transfer Switches . V2-T5-1-V2-T5-121	
Automatic Transfer Controllers V2-T5-66-V2-T5-91	
Breaker-Based Designs. V2-T5-48	
Contactor-Based Designs V2-T5-8-V2-T5-34	
Magnum-Based Designs V2-T5-51-V2-T5-65	
Remote Annunciator Controller. V2-T5-118-V2-T5-120	
Standard and Optional Features V2-T5-92-V2-T5-117	
Transformers. V2-T2-1-V2-T2-222	
Accessories. V2-T2-191-V2-T2-193	
Distribution Transformers V2-T2-110-V2-T2-184	
E3 Super Efficient Transformers V2-T2-66	
Energy-Efficient Harmonic Mitigating	
	V2-T2-71-V2-T2-92
General-Purpose Encapsulated	
Transformers	V2-T2-93-V2-T2-109

NEMA Premium Efficient Transformers V2-T2-61
K-Factor. V2-T2-51Type DS, Fusible and Non-FusibleSafety SwitchesType PRL1aType PRL1aFType PRL1a-LXType PRL2aype PRL2aF
Pow-R-Line C Panelboards -42
Pow-R-Line C Panelboards 3-46
Pow-R-Line C Panelboards 3-58
Pow-R-Line C PanelboardsV2-T3-66
Pow-R-Line C PanelboardsV2-T3-86, V2-T3-88Safety Switches

U

Accessories.V2-T1-110Wall-Mounting Bracket2-T2-191TransformersV2-T2-191NumericsAccessoriesV2-T6-46-V2-T6-48
200\% Neutral Safety Switches
Safety Switches
Grade Stainless Steel Safety Switches Switching Devices V2-T1-72

[^0]: These catalog pages do not purport to cover all details or variations in equipment, nor to provide for every possible contingency to be met in connection with installation, operation or maintenance. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purposes, the matter should be referred to the local Eaton Products Distributor or Sales Office. The contents of this catalog shall not become part of or modify any prior or existing agreement, commitment or relationship. The sales contract contains the entire obligation of Eaton's Electrical Sector. The warranty contained in the contract between the parties is the sole warranty of Eaton. Any statements contained herein do not create new warranties or modify the existing warranty.

[^1]: (1) Separate neutral kit required.
 (2) 600 V switch.

 Always verify the number of poles and wires required since catalog numbers may appear in multiple tables.

[^2]: Notes
 (1) Accessories and modifications shown on Pages V2-T1-16 through V2-T1-19 are NOT applicable to NEMA 7/9 disconnect switches.
 ${ }^{(2)}$ Dual three- and four-point mounting available as standard on enclosures 1 and 2.

[^3]: Notes
 (1) NEMA 12 enclosures (30-100A) can be field modified to meet NEMA 3R rainproof requirements when a factory provided drain hole is opened.
 (2) Contact the Safety Switch Flex Center (1-888-329-9272 or FlexSwitches@eaton.com) for availability of this product.

[^4]: (1) Maximum wire size 500 kcmil .
 (2) Through-feed only.

[^5]: Notes
 (1) For CSA listed switches, add prefix letter " C " to the front of the catalog number.
 ${ }^{2}$ (3) NEMA Type 12 enclosures (16-80A) can be field modified to meet NEMA Type $3 R$ rainproof requirements when a factory-provided drain hole is opened.

 (4) cULus only.
 (5) Ordered and shipped as separate components-not integral to enclosed device.
 (6) Enclosed disconnects can accept one power pole, neutral or up to two auxiliary contacts (one mounted on either side of switch).

 Contact the Safety Switch Flex Center (1-888-329-9272 or FlexSwitches@eaton.com) for factory-installed accessories or other special modifications.

[^6]: (1) Weights subject to change.

 For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

[^7]: (1) Weights subject to change.

 For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

[^8]: (1) Weights subject to change.

 For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

[^9]: (1) Weights subject to change.

 For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

[^10]: (1) Weights subject to change.

 For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

[^11]: (1) Weights subject to change.

 For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

[^12]: (1) Contact Eaton.

 For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

[^13]: For other ratings or catalog numbers not shown, or for special enclosure types (including stainless steel), refer to Eaton. Frame drawings/dimensions information begins on Page V2-T2-216.

[^14]: (1) Suitable for installation in onshore, onboard or offshore applications.
 (2) 1 at $+5 \%, 2$ at -5% at 240 volts primary; 2 at $+2.5 \%, 4$ at -2.5% at 480 volts primary.

 Frame drawings/dimensions information begins on Page V2-T2-216.

[^15]: Notes
 (1) Suitable for installation in onshore, onboard or offshore applications.
 (2) Lighting tap limited to 5% of nameplate full load capacity.

 Frame drawings/dimensions information begins on Page V2-T2-216.

[^16]: Frame drawings/dimensions information begins on Page V2-T2-216.

[^17]: Frame drawings/dimensions information begins on Page V2-T2-216.

[^18]: Frame drawings/dimensions information begins on Page V2-T2-216.

[^19]: Frame drawings/dimensions information begins on Page V2-T2-216.

[^20]: Frame drawings/dimensions information begins on Page V2-T2-216.

[^21]: Frame drawings/dimensions information begins on Page V2-T2-216.

[^22]: Frame drawings/dimensions information begins on Page V2-T2-216.

[^23]: Frame drawings/dimensions information begins on Page V2-T2-216.

[^24]: Frame drawings/dimensions information begins on Page V2-T2-216.

[^25]: (1) Effective June 1, 2001, frame numbers will have a prefix of FR, e.g., FR819. Dimensions, accessories and so on are still applicable as if the FR did not exist.

 Parts listed are for standard catalog listed transformers. Units with modifications may require different parts. (Frame number from transformer nameplate required.) Transformer nameplate and UL label are not field replaceable.

[^26]: Notes
 (1) Not valid with FDE.
 (2) Not valid with HFDE.

[^27]: Notes
 (1) Not compatible with PRC750(E) controllers. Recommended for PRC1000(E), PRC1500(E) and PRC2000(E) controllers.
 (2) Contact factory for custom labeling.

[^28]: Notes
 (1) 1600 A is dual drawout only and up to 480 V .
 (2) 0.025 seconds up through 200 A .

[^29]: S = Standard, $0=$ Optional, $\mathrm{C}=$ Configurable

[^30]: S = Standard, $0=$ Optional, $\mathrm{C}=$ Configurable

[^31]: S = Standard, $0=$ Optional, $\mathrm{C}=$ Configurable

[^32]: S = Standard, $0=$ Optional, C = Configurable

[^33]: S = Standard, $0=$ Optional, C = Configurable

[^34]: S = Standard, $0=$ Optional, C = Configurable

[^35]: S = Standard, 0 = Optional, C = Configurable

[^36]: S = Standard, $0=$ Optional, $\mathrm{C}=$ Configurable

[^37]: S = Standard, $0=$ Optional, C = Configurable

[^38]: (1) " $\mathrm{H}^{\prime \prime}$ and " V " do not denote mounting orientation of the bus plug. Horizontal (H) and Vertical (V) refer to the orientation of the bus system that the plug will be installed on.
 (2) Neutral and ground kits are not capable of being field installed in these units. Order bus plugs with fully assembled part numbers. See Catalog Number Selection on Page V2-T6-14 for details.
 ${ }^{(3)}$ Grounds and neutrals must be factory assembled. Order by description. See Page V2-T6-22.

