Shunt trip safety switch

Overview

This product family is the first safety switch line in the industry to integrate shunt trip technology, enhancing safety by providing a means to remotely open a safety switch electrically. The product's visible means of disconnect-providing the ability to verify blade disengagement from the stationary contact when the switch is in the OFF positionfurther enhances safety. When incorporating an emergency stop, safety interlock with other equipment, or similar means, the remote operation capability of the new shunt trip switch no longer requires personnel to manually open the switch with the handle. These new products can be configured to meet additional needs of safety applications in industrial and commercial environments-they can be signaled to electrically operate the trip mechanism and interrupt the flow of power when a defined electrical condition is detected via protection relay (for example, ground fault, undervoltage, blown fuse shutdown, and so on).

E.T•N

Powering Business Worldwide

Product description

Eaton's exclusive line of shunt trip safety switches incorporates the tried-and-true heavy-duty safety switch with an integrated shunt trip module, providing capabilities and applications not previously possible with a standard safety switch.

- E-stop
- Safety interlocking
- Machinery OEM interlocking
- Remote opening (distant from switch)
- Cost-effective high-interrupt applications
- Ground fault (1)
- Phase reversal / phase loss (1)
- Blown fuse shutdown (1)
- Undervoltage release (1)
- DC—solar (ground fault © , AFCI © , fireman's switch (1)(2)
(1) Switch provides solenoid interface to accept wiring from Relay/CPT supplied by others.
(2) For specific DC disconnect information for PV applications, see product brochure BR00802002E, or contact the factory.

Standard features

- Heavy-duty safety switch design with integrated shunt trip module
- Visible means of disconnect-visible blade
- 30-800 A (240-600 Vac)
- 30-400 A (600-1000 Vdc)
- NEMA ${ }^{\oplus}$ Type $12 / 3$ R, 4 (painted steel) and 4X (stainless steel) enclosures
- Horsepower ratings same as standard safety switches
- Passes Class 1 ground fault testing (1200\% opening)
- Maximum response time of 50 ms
- Switch arcing time less than 10 ms (AC)
- Class H fuse clips supplied as standard on fusible devices 30-600 A, Class L for 800 A; Class R, J, T fuse clips available

Optional features

Modifications available, such as viewing windows, pilot lights, and more. Call the Flex Center at 888-329-9272 for more information.

Standards compliance

- UL® 98 file number E5239 (600 Vac maximum)
- CSA ${ }^{\oplus}$ C22.2 No. 4 file number LL69743 (600 Vac maximum)
- UL 98B—contact factory for specific file information (1000 Vdc maximum)
- UL 50
- NEMA KS-1

Table 1. Shunt Trip Coil Data

	Application Ratings		Electrical Operating Ratings (Nominal Values)				Replacement Coil Catalog Number
$\stackrel{\mathrm{ST}}{\mathrm{I}}$	Coil Voltage	$\begin{aligned} & \text { Frequency } \\ & (\mathrm{Hz}) \end{aligned}$	Minimum Operating Voltage (60 Hz)	Response Time (Sec)	Inrush VA rms at Minimum Operating Voltage (60 Hz) ${ }^{2}$	Inrush VA rms at Nominal Operating Voltage (60 Hz)	
	24	50/60	13.2	0.05	130	550	STCRK24VAC
	48	50/60	26.4	0.05	170	750	STCRK48VAC
	120	50/60	66	0.05	260	1450	STCRK120AC
	240	50/60	132	0.05	170	770	STCRK240VAC
	480	50/60	264	0.05	160	820	STCRK480VAC
	24	DC	18	0.05	$15.3 \pm 5 \%$ (3)	N/A	STCRK24VDC
	48	DC	36.2	0.05	$61.2 \pm 5 \%$ (3)	N/A	STCRK48VDC
	125	DC	82.5	0.05	$309 \pm 5 \%$ (3)	N/A	STCRK125VDC

(1) Time frame from the sending of the signal until the switch fully opens the circuit.
(2) Important: If there is an inadequate supply of current to trip switch, coil may burn up.
(3) Ohms DC coil resistance.

Table 2. Endurance Testing

Endurance Test Cycles				
	Number of Cycles of Operation		Shunt Trip Endurance	
Switch Ampacity	With Current	Without Current	Total	With Current
30	6000	4000	10,000	1500
60	6000	4000	10,000	1500
100	6000	4000	10,000	1500
200	6000	2000	8000	1500
400	1000	5000	6000	1000
600	1000	4000	5000	1000
800	500	3000	3500	1000

(1) Exceeds UL 98 requirements for shunt trip endurance, which specifies 10% of the number of cycles of operation with current.

Table 3. Contact Positions

		Handle Position		
Contact	Type	Tripped	Off/Reset	
		Contact Position		
Auxiliary contact (1)	SPDT (1NO/1NC)	NC closed	NC open	NC open
Auxiliary contact (1)	DPDT (2NO/2NC)	NC closed	NC open	NC open
Alarm contact (2)	SPDT (1NO/1NC)	NO open	NO closed	NO open

[^0]Table 4. Terminal/Lug Wire Ranges

Ampere Rating	Minimum/Maximum	Wire Type
30	$\# 14-\# 2$	$\mathrm{Cu} / \mathrm{Al}$
60	$\# 14-\# 2$	$\mathrm{Cu} / \mathrm{Al}$
100	$\# 14-1 / 0$	$\mathrm{Cu} / \mathrm{Al}$
200	$\# 6-300 \mathrm{kcmil}$	$\mathrm{Cu} / \mathrm{Al}$
400	(2) $1 / 0-300 \mathrm{kcmil}$ or (1) $1 / 0-750 \mathrm{kcmil}$	$\mathrm{Cu} / \mathrm{Al}$
600	(1) $\# 2-600 \mathrm{kcmil}$ and (1) $1 / 0-750 \mathrm{kcmil}$	$\mathrm{Cu} / \mathrm{Al}$
800	(4) $1 / 0-750 \mathrm{kcmil}$	$\mathrm{Cu} / \mathrm{Al}$

Table 5. Short-Circuit Ratings (1)

Ampere Rating	$\mathbf{4 8 0 v}$	$\mathbf{6 0 0 v}$
30	200 kAIC	200 kAIC
60	200 kAIC	200 kAIC
100	200 kAIC	200 kAIC
200	200 kAIC	100 kAIC
400	200 kAIC	100 kAIC
600	200 kAIC	100 kAIC
800	200 kAIC	200 kAIC

(1) SCCRs shown are for fusible devices (using Class R, J/L, or T fusing). Non-fusible values are based on combination rating with upstream device (see TD00801005E).

Table 6. Shunt Trip Safety Switch-240 Vac and $\mathbf{6 0 0}$ Vac-Dimensions and Ratings

Ampere Rating	Fuse Class \qquad	Number of Poles	Enclosure Dimensions ${ }^{1}$, Exterior in Inches (mm)			
			Height (H)	Width (W)	Depth (D1)	Depth (D2)
Fusible						
30	H	2, 3, or 4 (3)	21.58 (584.1)	11.58 (294.1)	11.43 (290.3)	5.58 (141.7)
60	H	2,3 or 4 (3)	21.58 (584.1)	11.58 (294.1)	11.43 (290.3)	5.58 (141.7)
100	H	2,3 or 4 (3)	24.95 (633.7)	14.89 (378.2)	11.51 (282.4)	5.58 (141.7)
200	H	2,3 or 4	35.38 (898.7)	20.11 (510.8)	11.61 (294.9)	6.45 (163.8)
400	H	2,3 or 4	57.47 (1459.7)	27.29 (693.2)	12.43 (315.7)	7.42 (188.5)
600	H	2,3	62.97 (1599.4)	28.29 (718.6)	12.43 (315.7)	7.42 (188.5)
800	L	2,3	71.72 (1821.7)	29.54 (750.3)	12.43 (315.7)	7.42 (188.5)
Non-Fusible						
30	-	2,3 or 4 (3)	21.58 (584.1)	11.58 (294.1)	11.43 (290.3)	5.58 (141.7)
60	-	2,3 or 4 (3)	21.58 (584.1)	11.58 (294.1)	11.43 (290.3)	5.58 (141.7)
100	-	2,3 or 4 (3)	24.95 (633.7)	14.89 (378.2)	11.51 (282.4)	5.58 (141.7)
200	-	2,3 or 4	35.38 (898.7)	20.11 (510.8)	11.61 (294.9)	6.45 (163.8)
400	-	2,3 or 4	57.47 (1459.7)	27.29 (693.2)	12.43 (315.7)	7.42 (188.5)
600	-	2,3	62.97 (1599.4)	28.29 (718.6)	12.43 (315.7)	7.42 (188.5)
800	-	2,3	71.72 (1821.7)	29.54 (750.3)	12.43 (315.7)	7.42 (188.5)

(1) Accurate for all enclosure NEMA type ratings-12/3R, 4, 4X stainless steel.
(2) Class H fuse clips supplied as standard on fusible devices $30-600 \mathrm{~A}$, Class L for 800 A ; Class R, J, T fuse clips available.
(3) Four-pole devices are wider than dimension for 30,60 , and 100 A devices. Consult factory for details.

Table 7. Catalog Numbering System (1)

(1) For specific DC disconnect information for PV applications, contact the factory.

[^0]: (1) Handle position contact.

