Apphaelical Index tor Yes	Page	on
DISTRIBUTION SYSTEM	2	
MOLDED CASE CIRCUIT BREAKERS	4	A
PANELBOARDS	96	B
LOADCENTERS	110	C
METER CENTERS	112	D
SAFETY SWITCHES	113	E
DRY TYPE DISTRIBUTION TRANSFORMERS	114	F
BUSWAY (LOW VOLTAGE)	116	G
IO PRODUCTS (METERING AND MOTOR PROTECTION)	131	H
COMMUNICATIONS SYSTEMS	138	I
PROGRAMMABLE LOGIC CONTROLLERS (PLCs)	146	J
MOTOR CONTROL		
- CONTACTORS AND STARTERS	149	K
(LOW VOLTAGE, ELECTROMECHANICAL)		
- SOLID-STATE LOW VOLTAGE	176	L
REDUCED VOLTAGE MOTOR STARTERS		
ADJUSTABLE FREQUENCY AC DRIVES		
- SYNCHRONOUS	181	M
- STARTERS (MEDIUM VOLTAGE)	195	N
MOTOR CONTROL CENTERS	208	0
DISTRIBUTION SWITCHBOARDS (LOW VOLTAGE)	223	P
HIGH RESISTANCE PULSING GROUND SYSTEM	231	0
SWITCHGEAR		
- LOW VOLTAGE	234	R
- TRIP UNIT RETROFIT KITS	246	S
- MEDIUM VOLTAGE	275	T
- MEDIUM VOLTAGE LOAD INTERRUPTER	282	U
FUSES (MEDIUM VOLTAGE)	287	V
EXCITATION CONTROL EQUIPMENT	291	W
Alphabetical Index for YES March 2001	E $5 \mathbf{T} \cdot \mathrm{~N}$	

A Commitment to the Installed Base

Our employees are committed to supporting all Cutler-Hammer and Westinghouse equipment, no matter when it was manufactured or how long it has been in service. Our dedicated AftermarketOrganization provides products, services and expertise through a focused management team, sales engineers and technicians that work to keep customers' equipment operating.

Replacement Components and Renewal Parts

A full line of replacement components and renewal parts is available for the existing installed base of Cutler-Hammer and Westinghouse equipment. These replacement components and renewal parts are new, not used or surplus material. The use of original production tooling, assembly fixtures, and original specifications and drawings guarantees compatibility with existing equipment.

Standardize and Expand Circuit Protection Digitrip RMS Trip Unit Retrofit Kits are available for Cutler-Hammer, Westinghouse, and other manufacturers of low voltage power breakers. These retrofits will expand circuit retrofits will expand circuprotection while increas-
ing breaker and electrical system reliability.

Motor Control Center Bucket Retrofits
Freedom 2100 and ADVANTAGE replacement starter units can be used to increase the capacity of a motor control center without investing in a completely new assembly. Competitive retrofits are also available for other manufacable for other manufacADVANTAGE MCC Bucket Retrofits.

Replacement

Vacuum Breakers DHP-VR vacuum replacement breakers provide a means to cost effectively modernize existing air magnetic medium voltage switchgear while further increasing its effective life.

Switchgear Fluidized

 Epoxy BusExisting switchgear bus can be replaced or returned to our factory, regardless of the original manufacturer for reinsulation, using the custom fluidized epoxy bed process. It is available from 600 volts to 15 kV for switchgear, bus runs, and other equipment.

Equipment Modernization and Upgrades

Cutler-Hammer can extend the life of your existing equipment through modernization that can economically upgrade CutlerHammer and Westinghouse products, as well as those of other manufacturers. These state-of-the-art upgrades are engineered to provide:

- Solutions for obsolete electrical equipment;
- New technology for aging equipment;
- Retrofit, repair and remanufacturing processes;
- Monitoring, protection and control capabilities to your system;
- Genuine new replacement components and renewal parts.

Medium Voltage Starter Upgrading Vacuum contactors can be retrofitted or retrofilled into existing medium voltage air magnetic starters, achieving the benefits of vacuum technology without the expense of a completely new assembly.

Power Breaker

Replacement
New DS or SPB power breakers are available for replacement, to fill existing cells, or in a cell retrofit package for upgrading existing older low voltage switchgear. These breakers are electrically and ers are electrically and
mechanically identical to mechanically identical to
the original vintages of DS and SPB breakers.

Low Voltage High

 Resistance Pulsing Ground SystemsType C-HRG provides service continuity by providing a ground path for ground current via resistance that limits current magnitude and includes a means to trace the fault source.

Submetering

Retrofitting
The IQ Energy Sentinel submetering device can be easily retrofitted on Series C Breakers, or those of other manufacturers, in existing equipment. When combined with the When combined with the
PowerNet System, the IQ Powervet System, the IQ
Energy Sentinel can now provide submetering at numerous levels of monitoring and energy management.

Retrofit TVSS System

Protect solid state devices from the damaging effects of transient overvoltages. Retrofit TVSS systems can be installed in low voltage distribution gear or retrofitted into existing switchboards, panelboards, and motor control center units to eliminate the transient surge before it can reach sensitive equipment.

Replacement Molded Case Breakers and Parts
Panelboard and motor control center replacement breakers and parts are physically interchangeable with out-of-production breakers for existing Cutler-Hammer and Westinghouse products.

Excitation Control
Cutler-Hammer offers a complete family of static exciters designed for application on medium to large electric utility and industrial generators and motors.

Installation and

 Start-Up Services Installation and start-up services can be provided for Cutler-Hammer equipment, as well as equipment manufactured by other organizations.

TABLE OF CONTENTS

Pages

Product Description, History, Major Product Introduction. 5
General Information

- Nameplate Data
- Identifying Factory Original Circuit Breakers
- Replacement and Upgrade Options

Digitrip OPTIM System
9-12
Miniature Circuit Breakers. .
Molded Case Circuit Breaker Replacement Guide . 16-21

Replacement Motor Circuit Protectors. 56
Molded Case Circuit Breaker Accessories .

Panelboard Replacement Breaker Guide . 70 . 71
Motor Control Center Replacement Breakers . $76-81$
Molded Case Circuit Breaker Handle Mechanisms .82-94
Further Information . 95
Pricing Information . 95

PRODUCT DESCRIPTION

Molded case circuit breakers are designed to provide circuit protection for low-voltage distribution systems. They are described by NEMA as,". . . a device for closing and interrupting a circuit between separable contacts under both normal and abnormal conditions," and furthermore as,". . . a breaker assembled as an integral unit in supporting an
enclosed housing of insulating material." The NEC describes them as, ". . . a device designed to open and close a circuit by non-automatic means, and to open the circuit automatically on a predetermined overload of current, without injury to itself when properly applied within its rating."
Circuit breakers protect against overloads in conductors and protects against short
circuits in connected apparatus, such as motors and motor starters.
Circuit breakers are designed for use in panelboards, switchboards, motor control centers, control panels, combination starters, individual enclosures, and bus duct plug-in units.

PRODUCT HISTORY

Originally a Westinghouse Product

The need for molded case circuit breakers came about in 1918 when numerous applications for electrical motors resulted in a demand for a device that would ensure safe operation and, at the same time, protect electrical circuits.
During this period, individual motors were used for the first time in industrial plants to operate machine tools and in private homes to operate appliances. Plant electricians were constantly changing fuses blown during motor start-ups because of the lack of properly designed fuses for motor circuit protection. Homes experienced similar problems when electrical circuits were overloaded. Inspectors were concerned about fire hazards because of plug fuses being bridged with pennies and the installation of fuses with too high of an ampere rating.
Inspection authorities became involved and attempted to find a solution to the problem. Meetings with switch manufacturers were initiated in an effort to find a
solution. Switch manufacturers were asked to develop a switching device that would interrupt a circuit under prolonged overload conditions. The device would have to be safe, reliable and tamperproof. It should also be resettable so as to be reusable after an interruption without replacing any parts. This search for better circuit protection resulted in many different but unacceptable approaches to the problem. These early meetings and subsequent efforts prepared the groundwork for the eventual development of the molded case circuit breaker.
After intensive research and development, Westinghouse produced the DE-ION arc extinguisher for use in large oil circuit breakers. Although too large in its initial form to be practical for small circuit breakers, the arc extinguisher was eventually modified into a usable size. The first compact, workable circuit
breaker was developed in 1923 when the
modified arc extinguisher was coupled with a thermal tripping mechanism. It was not until four years later, however, that Westinghouse research engineers found the ideal combination of materials and design that permitted circuit breakers to interrupt fault currents of 5000 amperes at 120 volts AC or DC. One year later, Westinghouse placed the first circuit breaker on the market. Its acceptance was instantaneous.

Since that initial introduction in 1927, Westinghouse continued to be at the forefront of circuit breaker technology with an unprecedented series of circuit protective enhancements and introductions as chronicled below. In 1994 the Eaton Corporation, another World Class technology leader, acquired the Westinghouse Distribution and Control Business Unit and integrated it with Cutler-Hammer forming a powerful, new combination, poised to meet the challenges of the next 100 years.

MAJOR PRODUCT INTRODUCTION

1920	1930	1940	1950	1960	1970	1980	1990	Present

1923 First compact, workable circuit breaker developed by Westinghouse
1927 Westinghouse introduced the first complete circuit breaker line, rated 10-600 amps, 600 volts

1939 Along with ordering information and style numbers, the various maximum current ratings came to be known by frame designations:

50 Ampere E Frame
100 Ampere \quad F Frame (Non-interchangeable Trip)
100 Ampere G Frame
225 Ampere K Frame
600 Ampere L Frame
1970 Motor Circuit Protector ("MCP") introduced - First sensitive, low level protection designed specifically for motor circuits

1973 "SELTRONIC" introduced - First molded case circuit breaker with an electronic trip unit
1979 "Current Limit-R Circuit Breaker" introduced - First true current limiting circuit breaker
1982 "Series C" Family introduced - New World Class standard meeting increasing interrupting requirements without sacrificing compact size

1994 Westinghouse Distribution and Control Business Unit (DCBU) acquired by Eaton, integrated with Cutler-Hammer (The Cutler-Hammer line of molded case circuit breakers was sold when merged with Westinghouse)

1995 "OPTIM" Family introduced - First truly programmable molded case circuit breaker

BREAKER IDENTIFICATION

Nameplate Data

A circuit breaker is identified by data found on the nameplate.
This includes:
Catalog Number
Shop Order Number
Style Number
Amperage
Number of Poles
Voltage Class
Temperature Rating
In most instances, the Catalog Number, Style Number, or Shop Order Number will supply enough information to identify the circuit breaker. However, it is always advisable to obtain all data from the nameplate to facilitate identification.
A Catalog Number begins with a series of letters followed by numbers that identify:

Circuit Breaker Type
Number of Poles
Maximum Amperage
Example: Catalog Number F3020 indicates a Type F Circuit Breaker, 3 Poles, 20 Amperes
A Shop Order Number begins with one or two numbers followed by a single letter and four additional numbers.
A Shop Order Number is listed in place of a Catalog Number and indicates the circuit breaker was modified at the factory, i.e., addition of a shunt trip, special calibration, etc. Every Shop Order Number must be researched with the factory to properly identify modifications. Call your Cutler-Hammer Field Sales Office for this information.

> Example: 70E2121

NOTE: Cutler-Hammer does not recommend replacing a circuit breaker identified by a Shop Order Number with a standard "off-the-shelf" circuit breaker without first identifying the modifications. They may be critical to safe and reliable operation.

Series C Breaker with Original Label©

New Label for Typical SELTRONIC MCCB

Accessories

Most circuit breaker accessories are mounted internally and are not visible with a quick inspection. However, since many accessories rely on or supply an external signal, there may be electrical leads exiting the circuit breaker case. Inspect for these leads when obtaining full descriptive information for circuit breaker replacement. Examples of common accessories:

Shunt Trip

Used to remotely trip the circuit breaker using an electrical signal. Typically two wires extend through the case.

Undervoltage Release (UVR)

Trips the circuit breaker when voltage drops below a specified percentage of coil voltage (typically 70\%). Typically two wires extend through the case.

Auxiliary Switch

Provides remote indication of the circuit breaker status (open/closed). Typically three wires extend through case in a 1-pole 1A/1B application.

Alarm Lockout Switch

For remote indication of an automatic trip operation. Typically two or three wires extend through the case.

FACTORY ORIGINAL CIRCUIT BREAKERS

Why Insist on Only Genuine, New MCCBs Purchased Through Authorized Distributors?

Cutler-Hammer defines "New" product as that which has not yet been installed in an electrical circuit, purchased through authorized channels in factory original condition and packaged in unopened Cutler-Hammer cartons.

- The only way to ensure safe and reliable operation of your system is to use genuine, new, Cutler-Hammer products exclusively. Since Cutler-Hammer does not resell the component parts for mold-
ed case circuit breakers, the only way for third party breaker refurbishers to get parts for the breakers that they are rebuilding is to cannibalize other used breakers or to use counterfeit components. Neither is a very good option for the end user.
- In some cases, unauthorized resellers of molded case circuit breakers have been found to misrepresent used, rebuilt, or surplus products. Only
products purchased as "new" through authorized channels are covered under the Cutler-Hammer warranty policy.
- There have been instances where third party refurbishers have rebuilt breakers using the wrong parts, with parts missing or the factory lubrication removed in the cleaning process - any of which may result in devices that may not be depended upon to function properly to protect equipment and personnel.

Identifying Genuine, Factory Original Westinghouse Circuit Breakers Manufactured by Cutler-Hammer

The features on a molded case circuit breaker that identify it as genuine or counterfeit may or may not be readily apparent. In fact, there may be differences not detectable by an external investigation.
(1) A genuine Westinghouse brand molded case circuit breaker manufactured by Cutler-Hammer will have an unbroken seal where the case comes together. This seal was placed at the factory and assures the internal integrity of the breaker. If, for any reason this seal is broken, do not accept the breaker. (Seal does not appear on interchangeable trip breakers.)
(2) There is a manufacturing date code on the back of genuine molded case circuit breakers stamped in silver and white. If this coding is missing, it may mean the breaker has been subjected to tampering. Frequently, this date code is wiped off in an attempt to represent the breaker as new.
(3) Another way to tell if a breaker has been tampered with is to examine the sealant used to cover the screws on the top rear of the breaker. If the sealant appears sloppy or is missing, it indicates that the unit may have been subjected to tampering.
(4) A UL label on a genuine Westinghouse breaker is either exactly as shown in the photo or is stamped in white ink onto the frame in older pre-Series C breakers. Anything other than this may indicate fraud.
(5) If front cover screw shows marks from use, someone has attempted to open the breaker. The front covers are either black or gray on genuine Westinghouse molded case circuit breakers.
(6) Westinghouse molded case circuit breakers manufactured by CutlerHammer are packed individually and shipped in Cutler-Hammer labeled cartons. Anything other than this is not to be considered new and should be suspect.

REPLACEMENT CAPABILITIES

Series C Molded Case Circuit Breakers

When and Where to Use:

- Generally a first choice wherever physically and electrically practical
- Where communications, energy and power quality monitoring are desired
- As a direct replacement or add-on to already installed Series C product
- Where ampere rating flexibility is desired. (Interchangeable trip units are available.)

Advantages:

- Most current molded case circuit breaker technology
- Higher interrupting capacities in each frame size
- Smaller and lighter for a given frame size than other options
- Generally less expensive than other replacement breaker options
- Readily available throughout range / High levels of stock
- Available from stock
- One year warranty

Current Production Replacement Circuit Breakers

When and Where to Use:

- As a direct, one-for-one replacement of current production pre-Series C product
- Where you know the catalog/style number but not the physical or electrical specifics about the application

Advantages:

- Ease of selection and certainty of replacement
- Guaranteed to be both a physical and electrical duplicate of original
- Still in production
- Newly manufactured
- UL listed
- Available from stock
- One year warranty

Replacement of Out-of-Production Panelboard or Motor Control Center Molded Case Circuit Breakers

When and Where to Use:

- When replacing out-of-production circuit breakers in an existing Panelboard or MCC

Factory Reconditioned Molded Case Circuit Breakers

When and Where to Use:

- Where Series C and other replacement breaker options are either not available or not workable
- Where it is not feasible to modify or upgrade gear but there is a need to replace or add a circuit breaker

Advantages:

- Newly manufactured and tested to the latest applicable standards
- Both physically and electrically interchangeable with the circuit breakers that they are designed to replace
- UL listed
- Available from stock in most frame sizes
- One year warranty

Service for Molded Case Circuit Breakers

When and Where to Use:

- Where circuit breaker has sustained minor physical damage to a handle, lug, etc., that otherwise would be fully functional
- Large frame circuit breaker (600A and above) that has experienced some normal wear, but is in generally good condition, as an economically driven alternative to new

Advantages:

- Prevents loss of circuit breakers due to minor damage
- Reduces overall breaker costs
- Prevents use of potentially unreliable third party refurbishers
- Includes full one year Cutler-Hammer Warranty
- Ensures reliability through dealing with the original manufacturer with a long and well-recognized tradition of product safety, integrity and quality
- Provides a simple and convenient solution

NEW TECHNOLOGY

Digitrip OPTIM is a new programmable communicating microprocessor-based low-voltage electronic trip unit system for Westinghouse Series C Molded Case Circuit Breakers and low-voltage power breakers. Digitrip OPTIM trip units are available in two styles, Digitrip OPTIM 750 and Digitrip OPTIM 1050, in Series C frames L-, N-, and R-70 through 2500 amperes.
Digitrip OPTIM trip units are fully programmable and can be applied as a stand-alone breaker with a hand-held Digitrip OPTIMizer programmer for configuring the trip unit, displaying information and testing. In addition, OPTIM can be applied as a low-voltage assembly with a panel mounted Breaker Interface Module (BIM) to configure, display and test. Alternatively, OPTIM can be applied as part of a fully integrated IMPACC system.

Typical OPTIM Applications
When more information is required to better manage your production process.
In a critical process such as a batch reactor used in the food, chemical, pharmaceutical, and petroleum industries.
Material in the process vessel can be worth more than the equipment required to produce it. This application requires close coordination with the overall electrical distribution system, possible isolation from the main switchboard, higher levels of overload and fault protection, remote breaker status indications, controlled shutdown sequence, monitoring, and data collection.

When early warning information that

 reduces downtime is required. On a critical production line such as an automatic feeder supplying subassemblies for a finished product used in the automotive industry, or by OEMs and electric product manufacturers. Automated welding and paint lines, for example, require higher levels of overload and fault protection, advanced warning of an impending trip condition, and system diagnostics which reduce the time necessary to get back on line.When there is a concern with system obsolescence. When upgrading your facility's electrical distribution system, there could be a requirement to replace obsolete main or branch protection devices where space is limited. Feeders for laboratories and computer rooms could require better coordination and protection, while specialized equipment such as engine generators and variable frequency drives could also require upgraded protection.

OPTIM meets these requirements eco-

 nomically because they provide high reliability and increased performance in a compact, dustproof unit that is wall mountable. Rewiring costs are minimized. A Digitrip OPTIM Enclosed Circuit Breaker can be locked in the off position to comply with OSHA lockout/tagout regulations, and meet the NEC 430 requirements for a separate disconnect within sight of motor loads.
Stand Alone

The hand-held Digitrip OPTIMizer is used to program individual OPTIM Trip Units.

Sub-Network

The Breaker Interface Module, mounted on the assembly or at a remote location, is used to access, configure, and display information from Digitrip OPTIM Trip Units. Any combination of OPTIM Trip Units and/or Digitrip RMS 810/910 Trip Units and/or IQ Energy Sentinels ${ }^{\text {Tm }}$ (up to 50 devices) can communicate with the Breaker Interface Module.

Field Bus

With Integrated Monitoring, Protection and Control Communications (IMPACC), the plant operator, facilities engineer, and/ or maintenance engineer can monitor and control the entire power distribution system from a central PC.

NEW TECHNOLOGY, Continued

Programmability Increases Protection

 and Coordination CapabilitiesSeveral unique protection and coordination features can be electronically programmed to provide:

- Time-current settings with more increments that permit the user to optimize system protection and coordination.
- Improved accuracy giving more selectivity and closer sensitivity in providing coordination.
- Improved reliability provided by displaying time-current setpoints in actual amperes.
- Programmable short delay and/or instantaneous curve tripping options.
- Selectable powered and unpowered thermal memory as well as selectable sure start discriminator protection features.
- Increased system security provided by the addition of programmable password protection.
For improved system coordination, we have added:
- ${ }^{4}$ t long delay time slope to the traditional nine Long Time, Short Time, Instantaneous, and Ground Fault (LSIG) curve shaping options.
- Short delay and ground delay zone selective interlocking down to a 70 ampere molded case circuit breaker.

Digitrip OPTIM Trip Units can be programmed with hand-held OPTIMizer (above) that plugs into the front of the trip unit; or with the Breaker Interface Module mounted directly on the enclosure door.

Advance Warning Alerts to Potential Problems

This feature helps keep your system operating and more productive with:

- Programmable high load phase and neutral alarm, adjustable between 50% and 100% of I_{r} Long Delay Pick Up (LDPU) setting, that will signal an impending trip condition.
- Adjustable ground fault alarm that will alert the user of a ground fault condition without tripping the breaker.
- Energy alarming (such as peak demand exceeded) to reduce energy costs with OPTIM 1050 via IMPACC.
- Total Harmonic Distortion (THD) alarming detects changes in power quality with OPTIM 1050 via IMPACC.

Current in Multiples \longrightarrow

System Diagnostics Provide Reduced Downtime

Digitrip OPTIM provides a complete selection of system diagnostic capabilities such as:

- Four cause-of-trip Light Emitting Diodes (LEDs) mounted on the front of the trip unit to improve troubleshooting capabilities along with trip event information that is stored in memory after a trip condition.
- Remote breaker status indicator provided by auxiliary and alarm switches.
- The Breaker Interface Module (BIM) provides trip indication information on the front of the unit itself or via relay contacts to a remote location.

System Monitoring - "If You Can't Measure It, You Can't Manage It"

- Digitrip OPTIM has an extensive menu of system monitoring capabilities:
- Load monitoring (ABCNG).
- Power factor (OPTIM 1050).
- Power and energy (OPTIM 1050).
- Power quality - current harmonics (OPTIM 1050) with accuracy based on full scale sensor rating:
$\cdot \pm 2 \%$ Current.
$\cdot \pm 4 \%$ Power.
$\cdot \pm 5$ Energy.
- OPTIM trip units are IMPACC compatible and can be included in the unique Cutler-Hammer IMPACC communications system, specially designed for electrical distribution applications.
- All OPTIM programming, configuration, advanced warning, diagnostics, monitoring, and control capabilities can be accessed from a central PC using IMPACC software. Additional software packages can provide energy management as well as waveform capture.

Field Testing to Verify Performance

Trip or no trip testing can be performed on OPTIM Trip Units to verify operation. Testing can be completed by using a Digitrip OPTIMizer, the Breaker Interface Module or IMPACC software. An auxiliary power module can be provided for bench testing.

NEW TECHNOLOGY, Continued

Digitrip OPTIMizer

Hand-Held Programmer

The OPTIMizer plugs into the front of the trip unit and is powered by a nine-volt battery. The Digitrip OPTIMizer hand-held programmer accesses, displays and configures information from OPTIM Trip Units.
An operator can use the OPTIMizer to:

- Complete Initial System Setup
- Select breaker addresses
- Select system frequency ($50 / 60 \mathrm{~Hz}$)
- Set system baud rate
- Set system password
- Configure the System
- Change time-current setpoints
- Select protection options
- Select alarm levels
- Display Information
- Breaker information
- Time-current setpoints
- Metered values
- Trip event information
- Test Trip Unit Performance
- Phase and ground
- Trip/no trip

Breaker Interface Module

Panel Mounted User Interface

The Breaker Interface Module can be mounted directly on the assembly or at a remote location and can be used to access, configure and display information from OPTIM Trip Units.
An operator can use the Breaker Interface Module to:

- Setup Initial System
- Select system frequency ($50 / 60 \mathrm{~Hz}$)
- Set system password
- Configure the System
- Change time-current setpoints
- Select protection options
- Select alarm levels
- Display Information
- Breaker information
- Time-current setpoints
- Metered values
- Trip event information
- Test Trip Unit Performance
- Phase and ground
- Trip/no trip

All Features of the OPTIMizer PLUS...

- Expanded Energy Monitoring
- Set addresses for group energy monitoring
- Group energy readings
- Local and Remote Indication
- Remote indication/alarming
- Breaker status LED indication
- Expanded Communications
- Communicates with:
- OPTIM Trip Units
- Digitrip RMS 810 and 910 Trip Units
- IQ Energy Sentinels and Universal

IO Energy Sentinels

- Up to 50 devices

IMPACC Communications

Programming and Other Capabilities from a Personal Computer
All OPTIM programming, configuration, advance warning, diagnostic, monitoring and control capabilities can be accessed from a central personal computer using IMPACC Series III software. Application software packages are available to configure and download setpoints to provide faster, more efficient system management. These include:

- Coordination software to display, configure and coordinate time-current protection curves for OPTIM Trip Units and other devices that can be included on an IMPACC System
- Custom billing software, a stand-alone application-specific software package, that provides the capability to determine energy usage data by individual departments or tenants in a facility and

THIS PAGE INTENTIONALLY LEFT BLANK

MINIATURE CIRCUIT BREAKER REPLACEMENT GUIDE

14 MOLDED CASE CIRCUIT BREAKERS
 Miniature Circuit Breakers

QUICKLAG MINIATURE CIRCUIT BREAKERS

QUICKLAG is the largest and most complete family of industrial thermal magnetic miniature circuit breakers. They provide the exclusive features of steel frame calibration and arc chutes in every pole.
QUICKLAG circuit breakers are provided in ranges from 5 to 125 amperes continuous
in one-, two-, and three-pole configurations with interrupting capacities from 10,000 AIC to 65,000 AIC. QUICKLAG circuit breakers have been series rated up to 200,000 AIC in conjunction with larger Westinghouse current limiting circuit breakers.

Each QUICKLAG rating is available for plug-in (Type P), bolt-on (Type B), and cable to cable connections (Type C) for line/load feed applications. They are also available with one of the industry's widest selection of accessories, including shunt trip, and can be custom modified to meet special application requirements.

Circuit Breaker Selection Guide

Circuit Breaker Type	Circuit Breaker Type Code	Cont. Ampere Rating At $40^{\circ} \mathrm{C}$	No. Poles	Volts		Federal Spec. W-C-375b	UL Listed Interrupting Ratings RMS Symmetrical Amperes					
				AC	DC		AC Ratings Volts			DC(1)		
							120	120/240	240	24	48	80
$\begin{aligned} & \text { HQP } \\ & \text { HQP } \\ & \text { HOP } \end{aligned}$	P	$\begin{aligned} & 5-70 \\ & 10-125 \\ & 10-100 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 2 \\ & 2,3 \end{aligned}$	$\begin{aligned} & 120 / 240 \\ & 120 / 240 \\ & 240 \end{aligned}$	$\begin{aligned} & 24,48,80 \\ & 24,48,80 \end{aligned}$	$\begin{aligned} & 10 \mathrm{a}, 11 \mathrm{a}, 12 \mathrm{a} \\ & 10 \mathrm{a}, 12 \mathrm{a} \\ & 10 \mathrm{~b}, 11 \mathrm{~b}, 12 \mathrm{~b} \end{aligned}$		$\begin{aligned} & \text { 10,000 } \\ & 10,000 \end{aligned}$	$10,000$	$\begin{aligned} & 5,000 \\ & 5,000 \end{aligned}$	$\begin{aligned} & 5,000 \\ & 5,000 \end{aligned}$	$\begin{aligned} & \hline \text { 2,000 } \\ & 5,000 \end{aligned}$
QPHW QPHW QPHW	P	$\begin{aligned} & 15-70 \\ & 15-125 \\ & 15-100 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 2 \\ & 2,3 \end{aligned}$	$\begin{aligned} & 120 / 240 \\ & 120 / 240 \\ & 240 \end{aligned}$	$\begin{aligned} & 24,48,80 \\ & 24,48,80 \\ & \ldots \ldots \end{aligned}$	$\begin{aligned} & 14 a \\ & 14 a \\ & 14 \mathrm{~b} \end{aligned}$		$\begin{aligned} & \hline 22,000 \\ & 22,000 \\ & \ldots \ldots . \end{aligned}$	$22,000$	$\begin{aligned} & 5,000 \\ & 5,000 \\ & \ldots \ldots . \end{aligned}$	$\begin{aligned} & \hline 5,000 \\ & 5,000 \end{aligned}$	$\begin{aligned} & 2,000 \\ & 5,000 \\ & \ldots \ldots \end{aligned}$
$\begin{aligned} & \text { QHPX } \\ & \text { QHPX } \\ & \text { QHPX } \end{aligned}$	P	$\begin{aligned} & 15-70 \\ & 15-100 \\ & 15-100 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 120 / 240 \\ & 120 / 240 \\ & 240 \\ & \hline \end{aligned}$	$\begin{aligned} & 24,48,80 \\ & 24,48,80 \end{aligned}$			$\begin{aligned} & 42,000 \\ & 42,000 \end{aligned}$	$42,000$	$\begin{aligned} & 5,000 \\ & 5,000 \\ & \ldots \ldots . \end{aligned}$	$\begin{aligned} & \hline 5,000 \\ & 5,000 \end{aligned}$	$\begin{aligned} & 2,000 \\ & 5,000 \\ & \ldots \ldots . \end{aligned}$
$\begin{aligned} & \text { OHPW } \\ & \text { OHPW } \\ & \text { OHPW } \end{aligned}$	P	$\begin{aligned} & 15-30 \\ & 15-30 \\ & 15-30 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 120 / 240 \\ & 120 / 240 \\ & 240 \end{aligned}$	$\begin{aligned} & 24,48,80 \\ & 24,48,80 \end{aligned}$	$\begin{aligned} & 15 a \\ & 15 a \\ & 15 b \end{aligned}$		$\begin{aligned} & 65,000 \\ & 65,000 \\ & . \ldots . . \end{aligned}$	65,000	$\begin{aligned} & 5,000 \\ & 5,000 \\ & \ldots \ldots . \end{aligned}$	$\begin{aligned} & 5,000 \\ & 5,000 \\ & \ldots \ldots . \end{aligned}$	$\begin{aligned} & 2,000 \\ & 5,000 \\ & \ldots \ldots . \end{aligned}$
QPGF QPGF	P, GF	$\begin{aligned} & \hline 15-30 \\ & 15-50 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 / 240 \end{aligned}$		$\begin{aligned} & \text { 10a, 11a, 12a } \\ & \text { 10a, 11a, 12a } \end{aligned}$	10,000	10,000			. \ldots	. \ldots.....
$\begin{aligned} & \text { QPHGF } \\ & \text { QPHGF } \end{aligned}$	P, GF	$\begin{aligned} & 15-30 \\ & 15-50 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 / 240 \end{aligned}$		$\begin{aligned} & \text { 10a, 11a, 12a } \\ & \text { 10a, 11a, 12a } \end{aligned}$	22,000	22,000	\ldots	\ldots	\ldots	\ldots
QPGFEP QPGFEP	P, GFEP	$\begin{aligned} & 15-30 \\ & 15-50 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 / 240 \end{aligned}$			10,000	10,000	. \ldots....	\ldots	\ldots	\ldots
QPHGFEP QPHGFEP	P, GFEP	$\begin{aligned} & \hline 15-30 \\ & 15-30 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 / 240 \end{aligned}$.	\cdots	$\begin{aligned} & 22,000 \\ & 22,000 \\ & \hline \end{aligned}$	\ldots	\ldots	\ldots	.
$\begin{aligned} & \text { BAB } \\ & \text { BAB } \\ & \text { BAB } \end{aligned}$	B	$\begin{array}{\|l\|} \hline 5-70 \\ 10-125 \\ 10-100 \\ \hline \end{array}$	$\begin{aligned} & \hline 1 \\ & 2 \\ & 2,3 \end{aligned}$	$\begin{aligned} & 120 / 240 \\ & 120 / 240 \\ & 240 \end{aligned}$	$\begin{aligned} & 24,48,80 \\ & 24,48,80 \\ & \ldots \ldots . \end{aligned}$	$\begin{aligned} & \text { 10a, 11a, 12a } \\ & \text { 10a, 12a } \\ & \text { 10b, 11b, 12b } \\ & \hline \end{aligned}$		$\begin{aligned} & 10,000 \\ & 10,000 \end{aligned}$	$10,000$	$\begin{aligned} & \hline 5,000 \\ & 5,000 \end{aligned}$	$\begin{aligned} & 5,000 \\ & 5,000 \end{aligned}$	$\begin{aligned} & 2,000 \\ & 5,000 \\ & \ldots \ldots . \end{aligned}$
QBHW QBHW QBHW	B	$\begin{aligned} & 15-70 \\ & 15-125 \\ & 15-100 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 2 \\ & 2,3 \end{aligned}$	$\begin{aligned} & 120 / 240 \\ & 120 / 240 \\ & 240 \end{aligned}$	$\begin{aligned} & 24,48,80 \\ & 24,48,80 \\ & \ldots \ldots . \end{aligned}$	$\begin{aligned} & 14 a \\ & 14 a \\ & 14 \mathrm{~b} \end{aligned}$		$\begin{aligned} & \hline 22,000 \\ & 2,000 \\ & \ldots \ldots . \end{aligned}$	$22,000$	$\begin{aligned} & 5,000 \\ & 5,000 \end{aligned}$	$\begin{aligned} & 5,000 \\ & 5,000 \end{aligned}$	$\begin{aligned} & 2,000 \\ & 5,000 \\ & \ldots \ldots \ldots \end{aligned}$
HBAX HBAX HBAX	B	$\begin{aligned} & 15-70 \\ & 15-100 \\ & 15-100 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 120 / 240 \\ & 120 / 240 \\ & 240 \end{aligned}$	$\begin{aligned} & 24,48,80 \\ & 24,48,80 \\ & \ldots \ldots . \end{aligned}$		$\cdots \cdots$ $\cdots \cdots$ \cdots	$\begin{aligned} & 42,000 \\ & 42,000 \end{aligned}$	$42,000$	$\begin{aligned} & 5,000 \\ & 5,000 \\ & \ldots \ldots . \end{aligned}$	$\begin{aligned} & 5,000 \\ & 5,000 \\ & \ldots \ldots \end{aligned}$	$\begin{aligned} & 2,000 \\ & 5,000 \\ & \ldots \ldots \end{aligned}$
HBAW HBAW HBAW	B	$\begin{aligned} & 15-30 \\ & 15-30 \\ & 15-30 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 120 / 240 \\ & 120 / 240 \\ & 240 \end{aligned}$	$\begin{aligned} & 24,48,80 \\ & 24,48,80 \end{aligned}$	$\begin{aligned} & 15 a \\ & 15 a \\ & 15 \mathrm{~b} \end{aligned}$		$\begin{aligned} & 65,000 \\ & 65,000 \\ & . \ldots . . \end{aligned}$	$65,000$	$\begin{aligned} & \hline 5,000 \\ & 5,000 \end{aligned}$	$\begin{aligned} & \hline 5,000 \\ & 5,000 \end{aligned}$	$\begin{aligned} & \hline \text { 2,000 } \\ & 5,000 \end{aligned}$
$\begin{aligned} & \text { QBGF } \\ & \text { QBGF } \end{aligned}$	B, GF	$\begin{aligned} & 15-30 \\ & 15-50 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 / 240 \end{aligned}$		$\begin{aligned} & \text { 10a, 11a, 12a } \\ & 10 \mathrm{a}, 11 \mathrm{a}, 12 \mathrm{a} \end{aligned}$	10,000	10,000			\ldots	\ldots
$\begin{aligned} & \text { QBHGF } \\ & \text { QBHGF } \end{aligned}$	B, GF	$\begin{aligned} & 15-30 \\ & 15-30 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 / 240 \end{aligned}$	$\begin{aligned} & \text { 10a, 11a, 12a } \\ & 10 \mathrm{a}, 11 \mathrm{a}, 12 \mathrm{a} \end{aligned}$	22,000	22,000	\ldots	\ldots	\ldots	\ldots
$\begin{aligned} & \text { QBGFEP } \\ & \text { QBGFEP } \end{aligned}$	B, GFEP	$\begin{aligned} & 15-30 \\ & 15-50 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 / 240 \end{aligned}$. \ldots.....	\ldots	$\begin{aligned} & \hline 10,000 \\ & \ldots \ldots \\ & \hline \end{aligned}$	10,000	l...
QBHGFEP QBHGFEP	B, GFEP	$\begin{aligned} & 15-30 \\ & 15-30 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 / 240 \end{aligned}$	\ldots	. \cdot......	$\begin{aligned} & 22,000 \\ & 22,000 \end{aligned}$		\ldots		. \ldots.....	. \ldots.....
$\begin{aligned} & \mathrm{QC} \\ & \mathrm{QC} \\ & \mathrm{QC} \\ & \mathrm{QC} \\ & \hline \end{aligned}$	C	$\begin{array}{r} 5-70 \\ 10-100 \\ 10-100 \\ 15-100 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 2,3 \\ & 4 \end{aligned}$	$\begin{aligned} & 120 / 240 \\ & 120 / 240 \\ & 240 \\ & 240 \end{aligned}$	$\begin{aligned} & 24,48,80 \\ & 24,48,80 \\ & \ldots \ldots . \end{aligned}$	$\begin{aligned} & \text { 10a, 11a, 12a } \\ & \text { 10a, 12a } \\ & \text { 10b, 11b, 12b } \\ & 10 \mathrm{~b}, 11 \mathrm{~b}, 12 \mathrm{~b} \end{aligned}$		$\begin{aligned} & 10,000 \\ & 10,000 \end{aligned}$	$\begin{aligned} & 10,000 \\ & 10,000 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5,000 \\ & 5,000 \\ & \ldots \ldots . \\ & \ldots \ldots \\ & \hline \end{aligned}$	$\begin{aligned} & 5,000 \\ & 5,000 \end{aligned}$	$\begin{aligned} & 2,000 \\ & 5,000 \\ & \ldots \ldots . \end{aligned}$
$\begin{aligned} & \text { QCF } \\ & \text { QCR } \end{aligned}$	C	$\begin{array}{\|l\|} \hline 10-60 \\ 10-60 \\ \hline \end{array}$	$\begin{aligned} & 1,2 \\ & 1,2 \end{aligned}$	$\begin{aligned} & \hline 120 / 240 \\ & 120 / 240 \end{aligned}$	\ldots		$\begin{aligned} & 10,000 \\ & 10,000 \end{aligned}$	$\begin{aligned} & 10,000 \\ & 10,000 \end{aligned}$	\ldots	\ldots	\ldots	\ldots
$\begin{aligned} & \text { QCHW } \\ & \text { QCHW } \\ & \text { OCHW } \end{aligned}$	C	$\begin{aligned} & 15-70 \\ & 15-100 \\ & 15-100 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2,3 \end{aligned}$	$\begin{aligned} & 120 / 240 \\ & 120 / 240 \\ & 240 \\ & \hline \end{aligned}$	$\begin{aligned} & 24,48,80 \\ & 24,48,80 \end{aligned}$	$\begin{aligned} & 14 a \\ & 14 a \\ & 14 \mathrm{~b} \end{aligned}$		$\begin{aligned} & 22,000 \\ & 22,000 \end{aligned}$	$22,000$	$\begin{aligned} & \hline 5,000 \\ & 5,000 \\ & \ldots \ldots . \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5,000 \\ & 5,000 \end{aligned}$	$\begin{aligned} & 2,000 \\ & 5,000 \end{aligned}$
$\begin{aligned} & \text { OHCX } \\ & \text { OHCX } \\ & \text { OHCX } \end{aligned}$	C	$\begin{aligned} & 15-70 \\ & 15-100 \\ & 15-100 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 120 / 240 \\ & 120 / 240 \\ & 240 \end{aligned}$	$\begin{aligned} & 24,48,80 \\ & 24,48,80 \end{aligned}$		$\cdots \cdots$ $\cdots \cdots$ $\cdots \cdots$	$\begin{aligned} & 42,000 \\ & 42,000 \end{aligned}$	$\ldots \ldots$. $\ldots 2,000$	$\begin{aligned} & \text { 5,000 } \\ & 5,000 \end{aligned}$	$\begin{aligned} & \text { 5,000 } \\ & 5,000 \end{aligned}$	$\begin{aligned} & \hline 2,000 \\ & 5,000 \end{aligned}$
$\begin{aligned} & \text { QHCW } \\ & \text { QHCW } \\ & \text { QHCW } \end{aligned}$	C	$\begin{array}{\|l\|} \hline 15-30 \\ 15-30 \\ 15-30 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 120 / 240 \\ & 120 / 240 \\ & 240 \\ & \hline \end{aligned}$	$\begin{aligned} & 24,48,80 \\ & 24,48,80 \end{aligned}$	$\begin{aligned} & 15 a \\ & 15 a \\ & 15 \mathrm{~b} \end{aligned}$		$\begin{aligned} & 65,000 \\ & 65,000 \\ & \ldots \ldots . \end{aligned}$	$65,000$	$\begin{aligned} & \hline 5,000 \\ & 5,000 \\ & \ldots \ldots . \\ & \hline \end{aligned}$	$\begin{aligned} & 5,000 \\ & 5,000 \\ & \ldots \ldots \end{aligned}$	$\begin{aligned} & 2,000 \\ & 5,000 \\ & \ldots \ldots \\ & \hline \end{aligned}$
$\begin{aligned} & \text { QCGF } \\ & \text { QCGF } \end{aligned}$	C. GF	$\begin{array}{ll} 15-30 \\ 15-50 \end{array}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 / 240 \end{aligned}$	\ldots	\ldots	$\begin{aligned} & 10,000 \\ & 10,000 \end{aligned}$	10,000		. \ldots.....	\ldots	\ldots
$\begin{aligned} & \text { QCHGF } \\ & \text { QCHGF } \end{aligned}$	C. GF	$\begin{aligned} & 15-30 \\ & 15-30 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 / 240 \end{aligned}$			$\begin{aligned} & 22,000 \\ & 22,000 \end{aligned}$	22,000				\ldots
$\begin{aligned} & \text { QCGFEP } \\ & \text { QCGFEP } \end{aligned}$	C, GFEP	$\begin{aligned} & 15-30 \\ & 15-30 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 / 240 \end{aligned}$			$\begin{aligned} & 10,000 \\ & 10,000 \end{aligned}$	10,000			. \ldots.....	. \ldots.....
QCHGFEP QCHGFEP	C, GFEP	$\begin{aligned} & 15-30 \\ & 15-30 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 / 240 \end{aligned}$	\ldots	\ldots	$\begin{aligned} & 22,000 \\ & \text { 22,000 } \end{aligned}$	22,000	\ldots	\ldots	\ldots	\ldots

Circuit Breaker Type Codes: P Plug-in; B Bolt-on; C Cable-in/Cable-out; GF Ground Fault, 5 ma ; GFEP Ground Fault, 30 ma.
(1) 2-pole DC interrupting rating based on 2 poles connected in series.

CHB CIRCUIT BREAKER

Originally a Cutler-Hammer Product

The CHB breaker continues to be available as a replacement breaker for use in CutlerHammer Type PB Panelboards.
When combined with the mounting base,
CHB breakers were also used for surface and DIN rail mount cable-in/cable-out applications. (See photo.)
For "new" cable-in/cable-out applications, Cutler-Hammer recommends the use of our most current product offering:

- QUICKLAG Type OC Breakers (1 inch per pole)
- QCR Breakers - Rear Mount ($1 / 2$ inch per pole)
- QCF Breakers - Front Mount ($1 / 2$ inch per pole)
QCR and QCF Breakers provide a 50\% space savings over 1 inch per pole designs of the same rating.

CHB Mounting Bases

Description	Catalog Number
Low Amp. 15-50A 1-pole	CHB9L1
2-pole	CHB9L250
3 -pole	CHB9L350
High Amp. 25-50A 1-pole. . . .	CHB9H1
25-125A 2-pole....	CHB9H2125
25-100A 3-pole....	CHB9H3100

CHB CIRCUIT BREAKER - CATALOG NUMBERING

1-Pole
QUICKLAG Type OC
Cable-in/Cable-out Breaker 1 inch Per Pole

Type OCR
Cable-in/Cable-out Breaker
1/2 inch Per Pole
(Rear-Connected)

1-Pole

Type QCF
Cable-in/Cable-out Breaker
1/2 inch Per Pole
(Front-Connected)

MOLDED CASE CIRCUIT BREAKER REPLACEMENT GUIDE

MOLDED CASE CIRCUIT BREAKER REPLACEMENT GUIDE

18 MOLDED CASE CIRCUIT BREAKERS

MOLDED CASE CIRCUIT BREAKER REPLACEMENT GUIDE

Out-of-Production Cutler-Hammer Circuit Breakers Last Manufactured by Cutler-Hammer in 1994

(1) RD Breaker replaces PC, PCC and PB Breakers for 2000A and 2500A only.

Protection to a Higher Power

For today's sophisticated electrical systems, total protection means much more than just meeting your minimum standards.

Cutler-Hammer has engineered an impressive new generation of Westinghouse circuit breakers, with a range of intelligent features designed to achieve levels of performance beyond conventional protective devices.
Dedicated and general purpose applications range from QUICKLAG miniature circuit breakers to Series C high interrupting capacity molded case circuit breakers, and from thermal magnetic breakers to the latest microprocessor-based Digitrip units featuring true RMS sensing, energy and status monitoring.
Additionally, Cutler-Hammer breakers communicate with the IMPACC monitoring and control system. This family of circuit breakers works overtime to help anticipate, detect and pre-empt electrical problems before they occur. So the next trip may not be necessary.
That is protection to the higher power - from the new Cutler-Hammer.

20 MOLDED CASE CIRCUIT BREAKERS

MOLDED CASE CIRCUIT BREAKER REPLACEMENT GUIDE

Replacement Circuit Breakers

These new, UL
labeled circuit break-
ers continue to be
manufactured and are
primarily applied to
achieve exact physi-
cal and electrical
replacement of
previously installed
Cutler-Hammer/
Westinghouse circuit
breakers of the same
style number and
rating.

Out-of-Production Westinghouse Circuit Breakers

MOLDED CASE CIRCUIT BREAKER REPLACEMENT GUIDE

Current Limiting Circuit Breaker								
Maximum Amperes		400A		800A			1600A	
$\begin{aligned} & \mathrm{C} \\ & \mathrm{U} \\ & \mathrm{R} \\ & \mathrm{R} \\ & \mathrm{E} \\ & \mathrm{~N} \\ & \mathrm{~T} \\ & \mathrm{D} \\ & \mathrm{E} \\ & \mathrm{~S} \\ & \mathrm{I} \\ & \mathrm{G} \end{aligned}$	All circuit breakers listed in a column are ELECTRICALLY INTERCHANGEABLE.		LA Tri-Pac (Fused)					PB Tri-Pac (Fused)
	Dimensions - Inches Per 3-pole Breaker							
		$\begin{gathered} \hline W \\ 81 / 4 \end{gathered}$	H D 16 $43 / 4$	$\begin{gathered} W \\ { }_{81 / 4} \end{gathered}$	$\begin{aligned} & \mathrm{H} \\ & 22 \end{aligned}$	$\begin{gathered} \mathrm{D} \\ 5^{1 / 2} \end{gathered}$	$\begin{gathered} \mathrm{W} \\ 121 / 16 \end{gathered}$	H D $221 / 8$ $91 / 16$

Out-of-Production Westinghouse Circuit Breakers

Out-of-Production Cutler-Hammer Circuit Breakers

REPLACEMENT CAPABILITIES

Type EB 1-, 2-, 3-Poles; 240 Volts AC Max.; Thermal Magnetic and Saf-T-Vue
(Includes Load Terminals Only)

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	1-Pole, 120 Volts AC, 125 Volts DC(2-Pole, 240 Volts AC, $125 / 250$ Volts DC©	3-Pole, 240 Volts AC, 125/250 Volts DC(
	Standard	Standard	Standard	Saf-T-Vue ${ }^{\text {® }}$ (2
	Catalog Numbers			
15	EB1015 ${ }^{\text {a }}$	EB2015	EB3015	EB3015S
20	EB10203	EB2020	EB3020	EB3020S
25	EB1025	EB2025	EB3025	EB3025S
30	EB1030	EB2030	EB3030	EB3030S
35	EB1035	EB2035	EB3035	EB3035S
40	EB1040	EB2040	EB3040	EB3040S
45	EB1045	EB2045	EB3045	EB3045S
50	EB1050	EB2050	EB3050	EB3050S
60	EB1060	EB2060	EB3060	EB3060S
70	EB1070	EB2070	EB3070	EB3070S
80	EB1080	EB2080	EB3080	EB3080S
90	EB1090	EB2090	EB3090	EB3090S
100	EB1100	EB2100	EB3100	EB3100S
	Approx. ship. wt. 2 lbs.	Approx. ship. wt. 3 lbs.	Approx. ship. wt. $41 / 2 \mathrm{lbs}$.	

EB: 120, 240 Volts AC; 125/250 Volts DC

Type EHB 1-, 2-, 3-Poles; 480 Volts AC Max.; Thermal Magnetic and Saf-T-Vue ${ }^{\circledR}$
(Includes Load Terminals Only)

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	1-Pole, 277 Volts AC, 125 Volts DC(2-Pole, 480 Volts AC, 250 Volts DC(3-Pole 480 Volts AC	
	Standard	Standard	Standard	Saf-T-Vue ${ }^{\text {® }}$ (2
	Catalog Numbers			
15	EHB10154	EHB2015	EHB3015	EHB3015S
20	EHB10204	EHB2020	EHB3020	EHB3020S
25	EHB1025	EHB2025	EHB3025	EHB3025S
30	EHB1030	EHB2030	EH33030	EHB3030S
35	EHB1035	EHB2035	EHB3035	EHB3035S
40	EHB1040	EHB2040	EHB3040	EHB3040S
45	EHB1045	EHB2045	EHB3045	EHB3045S
50	EHB1050	EHB2050	EHB3050	EHB3050S
60	EHB1060	EHB2060	EHB3060	EHB3060S
70	EHB1070	EHB2070	EHB3070	EHB3070S
80	EHB1080	EHB2080	EHB3080	EHB3080S
90	EHB1090	EHB2090	EHB3090	EHB3090S
100	EHB1100	EHB2100	EHB3100	EHB3100S
	Approx. ship wt. 2 lbs .	Approx. ship wt. 3 lbs .	Approx. ship. wt. $41 / 2 \mathrm{l}$ lbs.	

EHB: 277, 480 Volts AC; 250 Volts DC

Type FB, HFB 1-, 2-, 3-, 4-Poles; 600 Volts AC Max.; Thermal Magnetic MARK $75{ }^{\circledR}$ Saf-T-Vue ${ }^{\circledR}$
(Includes Load Terminals Only)

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	1-Pole 277 Volts AC 125 Volts DC(2-Pole 600 Volts AC 250 Volts DC($\begin{aligned} & \text { 3-Pole } \\ & 600 \text { Volts AC } \end{aligned}$			4-Pole(25 600 Volts AC
	MARK 75 ${ }^{\text {® }}$	Standard	MARK 75®7	Standard	Saf-T-Vue ${ }^{\text {® }}$ (2	MARK 75 ${ }^{\text {® }}$	Standard
	Catalog Numbers						
15	HFB10154	FB2015	HFB2015	FB3015	FB3015S	HFB3015	FB4015
20	HFB10204	FB2020	HFB2020	FB3020	FB3020S	HFB3020	FB4020
25	HFB1025	FB2025	HFB2025	FB3025	FB3025S	HFB3025	FB4025
30	HFB1030	FB2030	HFB2030	FB3030	FB3030S	HFB3030	FB4030
35	HFB1035	FB2035	HFB2035	FB3035	FB3035S	HFB3035	FB4035
40	HFB1040	FB2040	HFB2040	FB3040	FB3040S	HFB3040	FB4040
45	HFB1045	FB2045	HFB2045	FB3045	FB3045S	HFB3045	FB4045
50	HFB1050	FB2050	HFB2050	FB3050	FB3050S	HFB3050	FB4050
60	HFB1060	FB2060	HFB2060	FB3060	FB3060S	HFB3060	FB4060
70	HFB1070	FB2070	HFB2070	FB3070	FB3070S	HFB3070	FB4070
80	HFB1080	FB2080	HFB2080	FB3080	FB3080S	HFB3080	FB4080
90	HFB1090	FB2090	HFB2090	FB3090	FB3090S	HFB3090	FB4090
100	HFB1100	FB2100	HFB2100	FB3100	FB3100S	HFB3100	FB4100
110				FB3110	FB3110S	HFB3110	
125				FB3125	FB3125S	HFB3125	
150				FB3150	FB3150S	HFB3150	

FB, HFB: 600 Volts AC; 250 Volts DC

Accessories and Modifications
Underwriters' Laboratories, Inc. Listed Interrupting Ratings8

Max. Volts	Amperes
EB Breakers	
$\begin{aligned} & 120 \text { and } 240 \mathrm{AC} \\ & 125 / 250 \mathrm{DC} \end{aligned}$	$\begin{aligned} & \text { 10,000 Asym., Sym. } \\ & 5,000 \text {. } \end{aligned}$
EHB, FB Breakers	
$\begin{aligned} & 240 \mathrm{AC} \\ & 277 \mathrm{AC} \text { (EHB) } \\ & 480 \mathrm{AC} \\ & 600 \mathrm{AC} \text { (FB) } \\ & 250 \mathrm{DC} \end{aligned}$	20,000 Asym., 18,000 Sym. 15,000 Asym., 14,000 Sym. 15,000 Asym., 14,000 Sym. 15,000 Asym., 14,000 Sym. 10,000
MARK 75 ${ }^{\text {® }}$ Type HFB	
$\begin{aligned} & 240 \mathrm{AC} \\ & 277 \mathrm{AC} \text { AC } \\ & 480 \mathrm{AC} \\ & 600 \mathrm{AC} \\ & 250 \mathrm{DC} \text { (2-Pole) } \end{aligned}$	75,000 Asym., 65,000 Sym. 75,000 Asym., 65,000 Sym. 30,000 Asym., 25,000 Sym. 20,000 Asym., 18,000 Sym. 20,000円9

For CSA, see page 41.
(1) DC ratings apply to substantially non-inductive circuits.
(2) Not listed with Underwriters' Laboratories, Inc.
(3) Switching duty rated for 120 VAC fluorescent light applications only.
(4) Switching duty rated for 277 VAC fluorescent light applications only.
© All four poles have thermal magnetic trip elements. Can be supplied with three protected poles and one unprotected, non-automatic pole if required. Order by description with no price or dimensional differences.

REPLACEMENT CAPABILITIES, Continued

Special Breakers(Type FB, Magnetic Only, Front Adjustable

(Includes Line and Load Terminals)

Style 624B100G02
Insert collar enclosing conductor as shown. Locate nut on top of conductor and tighten securely with screw and washer. Caution: Collar must surround conductor

Style 624B100G10
Assemble collar on top of conductor as shown. Tighten securely with screw and washer.

LFB Current Limiter Attachment©

The LFB Current Limiter is an attachment that bolts to the load end of a standard FB thermal magnetic or magnetic only breaker, providing 200,000 Amperes Interrupting Capacity (AIC) at up to 600 volts AC. Limiters for thermal magnetic breakers are listed with Underwriters' Laboratories, Inc. Current limiters must be applied as indicated in the table.
Standard LFB terminals are suitable for $\mathrm{Cu} / \mathrm{Al}$ cable. Ratings thru 70 amperes accept (1) \#14-\#2, and 100 and 150 amperes accept (1) \#1-4/0.8

Style 624B100G17
Insert collar enclosing conductor and center on extrusion on collar. Install clip with legs on top of conductor and snap end around bottom of collar.

Special Calibrations©

Special calibration price additions apply to ampere ratings not listed as standard or for ambients other than $40^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}$. For frequencies other than $0-60 \mathrm{~Hz} \mathrm{AC}$, refer to Cutler-Hammer. See Application Data 29160 for information regarding special conditions. Maximum calibration for 400 Hz is 135 amperes.

$50^{\circ} \mathrm{C}$ Calibration 6

Add suffix " V " to catalog number for complete breaker, listed above, when ordering breakers to be used in $50^{\circ} \mathrm{C}$ ambients.

Ambient Compensating Breakers(

To order, add suffix letter " A " to standard thermal magnetic breaker catalog number. Available in all standard ratings of EB, EHB, FB and HFB breakers up to ratings of 100 amperes. Factory adder 20\%.

Federal Specification Classifications

 EB, EHB, FB and HFB breakers meet requirements of Federal Specification W-C-375b as follows:EB: 1-pole, Class 11a; 2-, 3-poles, Classes 10b, 11b, 12b

Breaker Rating, Amperes	Limiter
	Catalog Number
For Thermal Magnetic Breakers8	
$15-70$	LFB3070R
$80-150$	LFB3150R
For Magnetic Only Breakers 8	
3	LFB3003MR
5	LFB3005MR
10	LFB3010MR
25	LFB3025MR
30	LFB3030MR
50	LFB3050MR
70	LFB3070MR
100	LFB3100MR
150	LFB3150MR

EHB: 1-pole, Class 13a; 2-, 3-poles, Class 13b;
FB: 2-, 3-poles, Class 18a;
HFB: 1-pole, Class 13a; 2-, 3-poles, Class 22a
For all 3-phase Delta, grounded B phase applications, contact your local CutlerHammer Field Sales Office.

[^0]REPLACEMENT CAPABILITIES, Continued
Type JB 90-250 Amperes, 600 Volts AC, 250 Volts DC, 2- and 3 -Poles, Fixed Trip, Thermal Magnetic, Saf-T-Vue

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Magnetic Trip Setting, Amperes (Set on High Side, Adjustable to Lower Limits)		Complete Breaker Includes Pressure Type Aluminum Terminals(Breaker Without Terminals	
			Standard	Saf-T-Vue ${ }^{\text {® }}$ (Standard	Saf-T-Vue ${ }^{\circledR}$ (2
	Low	High	Catalog Numbers			
2-Poles, 600 Volts AC, 250 Volts DC3						
70	350	700	JB2070	JB2070S	JB2070W	JB2070SW
90	450	900	JB2090	JB2090S	JB2090W	JB2090SW
100	500	1000	JB2100	JB2100S	JB2100W	JB2100SW
125	625	1250	JB2125	JB2125S	JB2125W	JB2125SW
150	750	1500	JB2150	JB2150S	JB2150W	JB2150SW
175	875	1750	JB2175	JB2175S	JB2175W	JB2175SW
200	1000	2000	JB2200	JB2200S	JB2200W	JB2200SW
225	1125	2250	JB2225	JB2225S	JB2225W	JB2225SW
250	1250	2500	JB2250	JB2250S	JB2250W	JB2250SW
			Approx. ship. wt. 12 lbs .		Approx. ship. wt. 12 lbs .	
3-Poles, 600 Volts AC Only						
70	350	700	JB3070	JB3070S	JB3070W	JB3070SW
90	450	900	JB3090	JB3090S	JB3090W	JB3090SW
100	500	1000	JB3100	JB3100S	JB3100W	JB3100SW
125	625	1250	JB3125	JB3125S	JB3125W	JB3125SW
150	750	1500	JB3150	JB3150S	JB3150W	JB3150SW
175	875	1750	JB3175	JB3175S	JB3175W	JB3175SW
200	1000	2000	JB3200	JB3200S	JB3200W	JB3200SW
225	1125	2250	JB3225	JB3225S	JB3225W	JB3225SW
250	1250	2500	JB3250	JB3250S	JB3250W	JB3250SW
			Approx. ship. wt. 14 lbs.		Approx. ship. wt. 12 lbs .	

JB: 600 Volts AC; 250 Volts DC

Magnetic Only Breakers, Front Adjustable (2)

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Magnetic Trip Setting, Amperes (Set on High Side, Adjustable to Lower Limits)		Breaker Only, No Terminals4			
			2-Poles3		3-Poles	
			Standard	Saf-T-Vue ${ }^{\text {® }}$	Standard	Saf-T-Vue ${ }^{\text {® }}$
	Low	High	Catalog Numbers			
250	350	700	JB2700MW	JB2700SMW	JB3700MW	JB3700SMW
250	625	1250	JB21250MW	JB21250SMW	JB31250MW	JB31250SMW
250	750	1500	JB21500MW	JB21500SMW	JB31500MW	JB31500SMW
250	875	1750	JB21750MW	JB21750SMW	JB31750MW	JB31750SMW
250	1125	2250	JB22250MW	JB22250SMW	JB32250MW	JB32250SMW
250	1250	2500	JB22500MW	JB22500SMW	JB32500MW	JB32500SMW

Accessories and Modifications

Special Calibrations(2)

Special calibration price additions apply to ampere ratings not listed as standard or for ambients other than $40^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}$. For frequencies other than $0-60 \mathrm{~Hz} \mathrm{AC}$, refer to Cutler-Hammer.

$50^{\circ} \mathrm{C}$ Calibration(2

Add suffix "V" to catalog number for complete breaker when ordering breakers to be used in $50^{\circ} \mathrm{C}$ ambients. Same price as standard $40^{\circ} \mathrm{C}$ breakers.

For CSA, see page 41.

Type JB breakers meet requirements of Class 19a circuit breakers as defined by Federal Specification W-C-375b.

Underwriters' Laboratories, Inc. Listed Interrupting Ratings©

Max. Volts	Amperes
240 AC	30,000 Asym., 25,000 Sym.
480 AC	25,000 Asym., 22,000 Sym.
600 AC	15,000 Asym., 14,000 Sym.
250 DC	10,000

For all 3-phase Delta, grounded B phase applications, contact your local CutlerHammer Field Sales Office.

Terminals©

Two terminals are required per pole.
Terminals are Underwriters' Laboratories, Inc. listed for wire type and range listed right. When used with aluminum conduc-
tors, use joint compound. To order optional copper only terminals, add suffix " C " to complete breaker catalog number.

Max. Amps	Catalog Number	No. of Cables, Wire Range, Type
Standard AI/Cu Pressure Terminals		
250	TA250KB	(1) \#4-350 MCM AI/Cu
Optional Pressure Terminals		
250	T250KB	(1) \#4-350 MCM Cu

Magnetic Only Breakers

For description, refer to Application Data 29-160.

Additional Accessories and Modifications Refer to pages 58-68.

REPLACEMENT CAPABILITIES, Continued

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Magnetic Trip Setting Amperes(2)		Complete Breaker Includes Pressure Type Aluminum Terminals(2			Shipped as Frame, Trip Unit and Terminals(
			Frame Only	Trip Unit Only								
			Standard	$\text { Saf-T-Vue }{ }^{\circledR}$	MARK 75 ${ }^{\text {® }}$	Standard	$\begin{aligned} & \text { Saf-T-Vue }{ }^{\circledR} \\ & \text { © } \end{aligned}$	MARK 75 ${ }^{\text {® }}$	Standard Saf-T-Vue ${ }^{\text {® }}$, MARK 75^{\circledR}			
	Low	High				Catalog Numbers						
2-Poles, 600 Volts AC, 250 Volts DC3											, $, 0,0$.	
70	350	700	KB2070	KB2070S	HKB2070	KB2250F	KB2250FS	HKB2250F	HKB2070T			
90	450	900	KB2090	KB2090S	HKB2090	KB2250F	KB2250FS	HKB2250F	HKB2090T			
100	500	1000	KB2100	KB2100S	HKB2100	KB2250F	KB2250FS	HKB2250F	HKB2100T			
125	625	1250	KB2125	KB2125S	HKB2125	KB2250F	KB2250FS	HKB2250F	HKB2125T	\cdots		
150	750	1500	KB2150	KB2150S	HKB2150	KB2250F	KB2250FS	HKB2250F	HKB2150T			
175	875	1750	KB2175	KB2175S	HKB2175	KB2250F	KB2250FS	HKB2250F	HKB2175T			
200	1000 1125	2000	$\begin{aligned} & \text { KB2225 } \\ & \text { KB2250 } \end{aligned}$	$\begin{aligned} & \text { KB2225S } \\ & \text { KB2250S } \end{aligned}$	HKB2225 HKB2250	$\begin{aligned} & \text { KB2250F } \\ & \text { KB2250F } \end{aligned}$	KB2250FS KB2250FS	HKB2250F HKB2250F	HKB2225T			
250	1250	2500							HKB2250T			
			Approx. ship. wt. 12 lbs.			Approx. ship. wt. 9 lbs.			Approx. ship. wt. 2 lbs.			
3-Poles, 600 Volts AC Only												
70	350	700	KB3070	KB3070S	HKB3070	KB3250F	KB3250FS	HKB3250F	HKB3070T			
90	450	900	$\begin{aligned} & \text { KB3090 } \\ & \text { KB3100 } \end{aligned}$	KB3090S	HKB3090	KB3250F	KB3250FS	HKB3250F	HKB3090 T			
100	500	1000		KB3100S	HKB3100	KB3250F	KB3250FS	HKB3250F	HKB3100T	KB/Mark 75/HKB: 600 Volts AC		
125	625	1250	KB3125	KB3125S	HKB3125	KB3250F	KB3250FS	HKB3250F	HKB3125T			
150	750	1500		KB3150S	HKB3150	KB3250F	KB3250FS	HKB3250F	HKB3150T	KB/Mark 75/HKB: 600 Volts AC; 250 Volts DC		
175	875	1750	KB3175	KB3175S	HKB3175	KB3250F	KB3250FS	HKB3250F	HKB3175T			
200	1000	2000	KB3200	KB3200S	HKB3200	KB3250F	KB3250FS	HKB3250F	HKB3200T			
225	1125	2250	KB3225	KB3225S	HKB3225	KB3250F	KB3250FS	HKB3250F	HKB3225T			
250	1250	2500	KB3250	KB3250S	HKB3250	KB3250F	KB3250FS	HKB3250F	HKB3250T			
			Approx. ship. wt. 14 lbs.			Approx. ship. wt. 11 lbs .			Approx. ship. wt. 2 lbs.			

Accessories and Modifications

Magnetic Only, Front Adjustable Breakers(3)

Continuous Ampere Rating	Magnetic Trip Setting Amperes ${ }^{4}$		Trip Units Only	
			2-Poles(3)	3-Poles
	Low	High	Catalog Numbers	
250	350	700	HKB2700TM	HKв3700тM
250	500	1000	HKB21000TM	HKB31000TM
250	625	1250	HKB21250TM	НКВ31250тM
250	750	1500	HKB21500TM	HKB31500TM
250	875	1750	HKB21750TM	HKB31750TM
250	1125	2250	HKB22250TM	НКВ32250тM
250	1250	2500	HKB22500TM	НКВ32500тМ

Special Calibrations(3

Special calibration price additions apply to ampere ratings not listed as standard or for ambients other than $40^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}$. For frequencies other than $0-60 \mathrm{~Hz} \mathrm{AC}$, refer to Cutler-Hammer.

$50^{\circ} \mathrm{C}$ Calibration 8

Add suffix " V " to catalog number for complete breaker, listed above, when ordering breakers to be used in $50^{\circ} \mathrm{C}$ ambients.

For CSA, see page 41.

Type KB breakers meet requirements for Class 19a, as defined by Federal Specification W-C-375b. Type HKB breakers not defined in W-C-375b.

Underwriters' Laboratories, Inc. Listed Interrupting Ratings

Max. Volts	Amperes
Standard Breakers	
240 AC	30,000 Asym., 25,000 Sym.
480 AC	25,000 Asym., 22,000 Sym.
600 AC	15,000 Asym., 14,000 Sym.
250 DC	10,000
MARK 75 ${ }^{\circledR}$ Breakers	
240 AC	75,000 Asym., 65,000 Sym.
480 AC	30,000 Asym., 25,000 Sym.
600 AC	20,000 Asym., 18,000 Sym.
250 DC	20,0006

Link to Selection Data 29-121
Click here to view page 8.1 of Selection Data 29-121.

For all 3-phase Delta, grounded B phase applications, contact your local CutlerHammer Field Sales Office.

Terminals©

Two terminals are required per pole.
Terminals are Underwriters' Laboratories, Inc. listed for wire type and range listed below. When used with aluminum conductors, use joint compound. To order optional copper only terminals, add suffix " C " to complete breaker catalog number.

Max. Amps	Catalog Number	No. of Cables, Wire Range, Type
Standard AI/Cu Pressure Terminals		
250	TA250KB	(1) \#4-350 MCM AI/Cu
Optional Pressure Terminals		
250	T250KB	(1) \#4-350 MCM Cu

Magnetic Only Breakers

For description, refer to Application Data 29-160. To order these breakers, select frame, trip unit and terminals.

Additional Accessories and Modifications Refer to pages 58-68.

REPLACEMENT CAPABILITIES, Continued

Type JA 70-225 Amperes, 600 Volts AC, 250 Volts DC, 2- and 3-Poles, Fixed Trip, Thermal Magnetic, Saf-T-Vue ${ }^{\circledR}$

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Magnetic Trip Setting, Amperes (Set on High Side, Adjustable to Lower Limits)		Complete Breaker Includes Pressure Type Aluminum Terminals(1		Breaker Without Terminals	
			Standard	Saf-T-Vue ${ }^{\text {® }}$	Standard	Saf-T-Vue ${ }^{\text {® }}$
	Low	High	Catalog Numbers			
2-Poles, 600 Volts AC, 250 Volts DC2						
70	350	700	JA2070	JA2070S	JA2070W	JA2070SW
90	450	900	JA2090	JA2090S	JA2090W	JA2090SW
100	500	1000	JA2100	JA2100S	JA2100W	JA2100SW
125	625	1250	JA2125	JA2125S	JA2125W	JA2125SW
150	750	1500	JA2150	JA2150S	JA2150W	JA2150SW
175	875	1750	JA2175	JA2175S	JA2175W	JA2175SW
200	1000	2000	JA2200	JA2200S	JA2200W	JA2200SW
225	1125	2250	JA2225	JA2225S	JA2225W	JA2225SW
			Approx. ship. wt. 12 lbs .		Approx. ship. wt. 12 lbs.	
3-Poles, 600 Volts AC Only						
70	350	700	JA3070	JA3070S	JA3070W	JA3070SW
90	450	900	JA3090	JA3090S	JA3090W	JA3090SW
100	500	1000	JA3100	JA3100S	JA3100W	JA3100SW
125	625	1250	JA3125	JA3125S	JA3125W	JA3125SW
150	750	1500	JA3150	JA3150S	JA3150W	JA3150SW
175	875	1750	JA3175	JA3175S	JA3175W	JA3175SW
200	1000	2000	JA3200	JA3200S	JA3200W	JA3200SW
225	1125	2250			JA3225W	JA3225SW
			Approx. ship. wt. 14 lbs.		Approx. ship. wt. 12 lbs .	

JA; 600 Volts AC; 250 Volts DC

Special Breakers ${ }^{3}$

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Magnetic Trip Setting, Amperes (Set on High Side, Adjustable to Lower Limits)		2-Poles 3		3-Poles	
			Standard	Saf-T-Vue ${ }^{\text {® }}$	Standard	Saf-T-Vue ${ }^{\text {® }}$
	Low	High	Catalog Numbers			
Magnetic Only Breakers, Front Adjustable - Without Terminals4						
225	350	700	JA2700MW	JA2700SMW	JA3700MW	JA3700SMW
225	625	1250	JA21250MW	JA21250SMW	JA31250MW	JA31250SMW
225	750	1500	JA21500MW	JA21500SMW	JA31500MW	JA31500SMW
225	875	1750	JA21750MW	JA21750SMW	JA31750MW	JA31750SMW
225	1125	2250	JA22250MW	JA22250SMW	JA32250MW	JA32250SMW
Ambient Compensating Breakers						
70	350	700	JA2070A		JA3070A
100	500	1000	JA2100A		JA3100A
125	625	1250	JA2125A		JA3125A	
150	750	1500	JA2150A		JA3150A	
175	875	1750	JA2175A		JA3175A	
200	1000	2000	JA2200A		JA3200A	
225	1125	2250	JA2225A		JA3225A	

Accessories and Modifications

Special Calibrations(2

Special calibration price additions apply to ampere ratings not listed as standard or for ambients other than $40^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}$. For frequencies other than $0-60 \mathrm{~Hz} \mathrm{AC}$, refer to Cutler-Hammer.
See Application Data 29-160 for information regarding special conditions.

$50^{\circ} \mathrm{C}$ Calibration(

Add suffix " V " to catalog number for complete breaker when ordering breakers to be used in $50^{\circ} \mathrm{C}$ ambients.

For CSA, see page 41.
Type JA breakers meet requirements of Class 19a and 20a circuit breakers as defined by Federal Specification W-C-375b.

Underwriters' Laboratories, Inc. Listed Interrupting Ratings

Max. Volts	Amperes
240 AC	30,000 Asym., 25,000 Sym.
480 AC	25,000 Asym., 22,000 Sym.
600 AC	25,000 Asym., 22,000 Sym.
250 DC	10,000

For all 3-phase Delta, grounded B phase applications, contact your local CutlerHammer Field Sales Office.

Terminals©®

Two terminals are required per pole.
Terminals are Underwriters' Laboratories, Inc. listed for wire type and range listed right. When used with aluminum conductors, use joint compound. To order
optional copper only terminals, add suffix " C " to complete breaker catalog number.

Max. Amps	Catalog Number	No. of Cables, Wire Range, Type
Standard AI/Cu Pressure Terminals		
$70-225$	TA225LA1	(1) \#6-350 MCM Cu, or (1) \#4-350 MCM AI
Optional Copper Pressure Terminals $70-225$ T225LA $70-225 ؟$ (1) \#6-350 MCM Cu T225LBF (1) \#6-250 MCM Cu		

Magnetic Only and Ambient Compensating

 BreakersFor description, refer to Application Data 29-160. To order, select catalog number from table above.
(1) Terminals are shipped separately from breaker frame.
(2) Not listed with Underwriters' Laboratories, Inc.
(3) 2-pole breakers are supplied in 3-pole frames with current carrying parts omitted from center pole.
(4) Select desired terminal from table and order as separate item.
© Optional terminal.
© If upgrading a JA breaker to a Series C K frame in a panelboard application, order TAD3 spacer kit.

REPLACEMENT CAPABILITIES, Continued

Accessories and Modifications

Trip Units Only For Magnetic Only and Ambient Compensating Breakers $($

Continuous Ampere Rating	Magnetic Trip Setting, Amperes 1		2-Poles ${ }^{\text {3 }}$	3-Poles
	Low	High	Catalog Numbers	
Magnetic Only, Front Adjustable Breakers				
225	350	700	HKA2700TM	HKA3700TM
225	625	1250	HKA21250TM	HKA31250TM
225	750	1500	HKA21500TM	HKA31500TM
225	875	1750	HKA21750TM	HKA31750TM
225	1125	2250	HKA22250TM	HKA32250TM
Ambient Compensating Breakers				
70	350	700	HKA2070TA	HKA3070TA
100	500	1000	HKA2100TA	HKA3100TA
125	625	1250	HKA2125TA	HKA3125TA
150	750	1500	HKA2150TA	HKA3150TA
175	875	1750	HKA2175TA	HKA3175TA
200	1000	2000	HKA2200TA	HKA3200TA
225	1125	2250	HKA2225TA	HKA3225TA

Special Calibration4

Special calibration price additions apply to ampere ratings not listed as standard or for ambients other than $40^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}$. For frequencies other than $0-60 \mathrm{~Hz} \mathrm{AC}$, refer to Cutler-Hammer. See Application Data 29-160 for information regarding special conditions.

$50^{\circ} \mathrm{C}$ Calibration ${ }^{(4)}$

Add suffix " V " to catalog number for complete breaker when ordering breakers to be used in $50^{\circ} \mathrm{C}$ ambients.

Terminals(28

Two terminals are required per pole.
Terminals are Underwriters' Laboratories, Inc. listed for wire type and range listed below. When used with aluminum conductors, use joint compound. To order optional copper only terminals, add suffix " C " to complete breaker catalog number.

Max. Amps	Catalog Numbers	No. of Cables, Wire Range, Type
Standard AI/Cu Pressure Terminals		
225	TA225LA1	(1) \#6-350 MCM Cu, or (1) \#4-350 MCM AI
Optional Copper Presse Terminals		
225 T225LA (1) \#6-350 MCM Cu (1) \#6-250 MCM Cu		

Type KA breakers meet requirements for Class 19a and 20a circuit breakers, and Type HKA meet requirements for Class 23a as defined by Federal Specification W-C-375b.

Underwriters' Laboratories, Inc. Listed Interrupting Ratings

Max. Volts	Amperes

Standard Breakers

240 VAC	30,000 Asym., 25,000 Sym.
480 VAC	25,000 Asym., 22,000 Sym.
600 VAC	25,000 Asym., 22,000 Sym.
250 VDC	10,000

MARK 75 ${ }^{\circledR}$ Breakers

240 VAC \quad 75,000 Asym., 65,000 Sym. 480 VAC \quad 40,000 Asym., 35,000 Sym. 600 VAC \quad 30,000 Asym., 25,000 Sym. 250 VDC 20,0006

For all 3-phase Delta, grounded B phase applications, contact your local CutlerHammer Field Sales Office.

Magnetic Only and Ambient Compensating

 BreakersFor description, refer to Application Data 29-160. To order these breakers, select frame, trip unit and terminals.

[^1]REPLACEMENT CAPABILITIES, Continued
Type LBB 125-400 Amperes, 600 Volts AC, 250 Volts DC, 2- and 3-Poles, Fixed Trip, Thermal Magnetic, Saf-T-Vue ${ }^{(8)}$

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Magnetic Trip Setting, Amperes $\mathbf{1}$		Complete Breaker Includes Pressure Type Aluminum Terminals(2)		Breaker Without Terminals	
			Standard	Saf-T-Vue ${ }^{\text {® }}$	Standard	Saf-T-Vue ${ }^{\text {® }}$
	Low	High	Catalog Numbers			
2-Poles, 600 Volts AC, 250 Volts DC(3						
125	625	1250	LBB2125	LBB2125S	LBB2125W	LBB2125SW
150	750	1500	LBB2150	LBB2150S	LBB2150W	LBB2150SW
175	875	1750	LBB2175	LBB2175S	LBB2175W	LBB2175SW
200	1000	2000	LBB2200	LBB2200S	LBB2200W	LBB2200SW
225	1125	2250	LBB2225	LBB2225S	LBB2225W	LBB2225SW
250	1250	2500	LBB2250	LBB2250S	LBB2250W	LBB2250SW
300	1500	3000	LBB2300	LBB2300S	LBB2300W	LBB2300SW
350	1750	3500	LBB2350	LBB2350S	LBB2350W	LBB2350SW
400	2000	4000	LBB2400	LBB2400S	LBB2400W	LBB2400SW
			Approx. ship. wt. 13 lbs.		Approx. ship. wt. 13 lbs.	
3-Poles, 600 Volts AC Only						
125	625	1250	LBB3125	LBB3125S	LBB3125W	LBB3125SW
150	750	1500	LBB3150	LBB3150S	LBB3150W	LBB3150SW
175	875	1750	LBB3175	LBB3175S	LBB3175W	LBB3175SW
200	1000	2000	LBB3200	LBB3200S	LBB3200W	LBB3200SW
225	1125	2250	LBB3225	LBB3225S	LBB3225W	LBB3225SW
250	1250	2500	LBB3250	LBB3250S	LBB3250W	LBB3250SW
300	1500	3000	LBB3300	LBB3300S	LBB3300W	LBB3300SW
350	1750	3500	LBB3350	LBB3350S	LBB3350W	LBB3350SW
400	2000	4000	LBB3400	LBB3400S	LBB3400W	LBB3400SW
			Approx. ship. wt. 15 lbs .		Approx. ship. wt. 15 lbs .	

LBB, $\mathbf{6 0 0}$ Volts AC; 250 Volts DC

Magnetic Only, Ambient Compensating Breakers ${ }^{4}$

Continuous Ampere Rating	Magnetic Trip Setting, Amperes 1		2-Pole Breakers(3)		3-Pole Breakers	
			Standard	Saf-T-Vue ${ }^{\text {® }}$	Standard	Saf-T-Vue ${ }^{\text {® }}$
	Low	High	Catalog Numbers			
Magnetic Only Breakers, Front Adjustable - Without Terminals5						
400	350	700	LBB2700MW	LBB2700SMW	LBB3700MW	LBB3700SMW
400	625	1250	LBB21250MW	LBB21250SMW	LBB31250MW	LBB31250SMW
400	750	1500	LBB21500MW	LBB21500SMW	LBB31500MW	LBB31500SMW
400	875	1750	LBB21750MW	LBB21750SMW	LBB31750MW	LBB31750SMW
400	1125	2250	LBB22250MW	LBB22250SMW	LBB32250MW	LBB32250SMW
400	1500	3000	LBB23000MW	LBB23000SMW	LBB33000MW	LBB33000SMW
400	2000	4000	LBB24000MW	LBB24000SMW	LBB34000MW	LBB34000SMW
Ambient Compensating Breakers - Includes Terminals						
125	625	1250	LBB2125A	LBB2125SA	LBB3125A	LBB3125SA
150	750	1500	LBB2150A	LBB2150SA	LBB3150A	LBB3150SA
175	875	1750	LBB2175A	LBB2175SA	LBB3175A	LBB3175SA
200	1000	2000	LBB2200A	LBB2200SA	LBB3200A	LBB3200SA
225	1125	2250	LBB2225A	LBB2225SA	LBB3225A	LBB3225SA
250	1250	2500	LBB2250A	LBB2250SA	LBB3250A	LBB3250SA
300	1500	3000	LBB2300A	LBB2300SA	LBB3300A	LBB3300SA
350	1750	3500	LBB2350A	LBB2350SA	LBB3350A	LBB3350SA
400	2000	4000	LBB2400A	LBB2400SA	LBB3400A	LBB3400SA

Accessories and Modifications

Terminalsed

Two terminals required per pole.
Select from page 30.
Magnetic Only and Ambient Compensating Breakers
For description, refer to Application Data 29-160. To order, select catalog number from table above.
For CSA, see page 41.
Type LBB breakers meet requirements for Class 21a circuit breakers, as defined by
Federal Specification W-C-375b.

Underwriters' Laboratories, Inc. Listed

 Interrupting Ratings| Max. Volts | Amperes |
| :--- | :--- |
| 240 VAC | 50,000 Asym., 42,000 Sym. |
| 480 VAC | 35,000 Asym., 30,000 Sym. |
| 600 VAC | 25,000 Asym., 22,000 Sym. |
| 250 VDC | 20,0006 |

On all 3-phase Delta, grounded B phase applications, contact your local CutlerHammer Field Sales Office.

Special Calibrations 4

Special calibration price additions apply to ampere ratings not listed as standard or for ambients other than $40^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}$. For frequencies other than $0-60 \mathrm{~Hz} \mathrm{AC}$, refer to Cutler-Hammer. See Application Data 29160 for information regarding special conditions. Maximum calibration for 400 Hz is 300 amperes.

$50^{\circ} \mathrm{C}$ Calibration ${ }^{(4}$

Add suffix " V " to catalog number for complete breaker when ordering breakers to be used in $50^{\circ} \mathrm{C}$ ambients.
(1) Set on high side, adjustable to lower limits.
(2) Terminals are shipped separately from breaker.
© 2-pole breakers or trips are supplied in 3-pole frames with current carrying parts omitted from center pole.
4 Not listed with Underwriters' Laboratories, Inc.
© Select desired terminals from page 30, and order as separate item.
© Ratings above 10,000 amperes not UL listed.
$\boldsymbol{\sigma}$ If upgrading an LBB breaker to a Series C K frame in a panelboard application, also order TAD3 spacer kit.

REPLACEMENT CAPABILITIES, Continued

Type LB and MARK 75^{\circledR} Type HLB 70-400 Amperes, 600 Volts AC, 250 Volts DC, 2- and 3-Poles, Interchangeable Trip Thermal Magnetic, Saf-T-Vue ${ }^{\circledR}$ and MARK 75^{\circledR}

Continuous Ampere	Magnetic Trip Setting Amperes 1		Complete Breaker Includes Pressure Type Aluminum Terminals(2)			Shipped as Frame, Trip Unit and Terminals(2 Frame Only			Trip Unit Only
Rating at $40^{\circ} \mathrm{C}$	Low	High	Standard	Saf-T-Vue ${ }^{\text {® }}$	MARK $75{ }^{\text {® }}$	Standard	Saf-T-Vue ${ }^{\text {® }}$	MARK $75{ }^{\text {® }}$	Standard Saf-T-Vue ${ }^{\text {® }}$ MARK 75 ${ }^{\text {® }}$
			Catalog Numbers						
2-Poles, $\mathbf{6 0 0}$ Volts AC, 250 Volts DC(3)									
70	350	700	LB2070	LB2070S		LB2400F	LB2400FS		HLB2070T
90	450	900	LB2090	LB2090S		LB2400F	LB2400FS		HLB2090T
100	500	1000	LB2100	LB2100S		LB2400F	LB2400FS		HLB2100T
125	625	1250	LB2125	LB2125S	HLB2125	LB2400F	LB2400FS	HLB2400F	HLB2125T
150	750	1500	LB2150	LB2150S	HLB2150	LB2400F	LB2400FS	HLB2400F	HLB2150T
175	875	1750	LB2175	LB2175S	HLB2175	LB2400F	LB2400FS	HLB2400F	HLB2175T
200	1000	2000	LB2200	LB2200S	HLB2200	LB2400F	LB2400FS	HLB2400F	HLB2200T
225	1125	2250	LB2225	LB2225S	HLB2225	LB2400F	LB2400FS	HLB2400F	HLB2225T
250	1250	2500	LB2250	LB2250S	HLB2250	LB2400F	LB2400FS	HLB2400F	HLB2250T
300	1500	3000	LB2300	LB2300S	HLB2300	LB2400F	LB2400FS	HLB2400F	HLB2300T
350	1750	3500	$\begin{aligned} & \text { LB2350 } \\ & \text { LB2400 } \end{aligned}$	$\begin{aligned} & \text { LB2350S } \\ & \text { LB2400S } \end{aligned}$	$\begin{aligned} & \text { HLB2350 } \\ & \text { HLB2400 } \end{aligned}$	$\begin{aligned} & \text { LB2400F } \\ & \text { LB2400F } \end{aligned}$	LB2400FSLB2400FS	HLB2400F	HLB2350T
400	2000	4000						HLB2400F	HLB2400T
			Approx. ship. wt. 13 lbs.			Approx. ship. wt. 10 lbs .			Approx. ship. wt. 2 lbs.
3-Poles, 600 Volts AC Only									
70	350	700	LB3070	LB3070S		LB3400F	LB3400FS		HLB3070T
90	450	900	LB3090	LB3090S		LB3400F	LB3400FS		HLB3090T
100	500	1000	LB3100	LB3100S		LB3400F	LB3400FS		HLB3100T
125	625	1250	LB3125	LB3125S	HLB3125	LB3400F	LB3400FS	HLB3400F	HLB3125T
150	750	1500	LB3150	LB3150S	HLB3150	LB3400F	LB3400FS	HLB3400F	HLB3150T
175	875	1750	LB3175	LB3175S	HLB3175	LB3400F	LB3400FS	HLB3400F	HLB3175T
200	1000	2000	LB3200	LB3200S	HLB3200	LB3400F	LB3400FS	HLB3400F	HLB3200T
225	1125	2250	LB3225	LB3225S	HLB3225	LB3400F	LB3400FS	HLB3400F	HLB3225T
250	1250	2500	LB3250	LB3250S	HLB3250	LB3400F	LB3400FS	HLB3400F	HLB3250T
300	1500	3000	LB3300	LB3300S	HLB3300	LB3400F	LB3400FS	HLB3400F	HLB3300T
350	1750	3500	LB3350	LB3350S	HLB3350	LB3400F	LB3400FS	HLB3400F	HLB3350T
400	2000	4000	LB3400	LB3400S	HLB3400	LB3400F	LB3400FS	HLB3400F	HLB3400T
			Approx. sh	p. wt. 15 lbs .		Approx. sh	b. wt. 12 lbs .		Approx. ship wt. $2-1 / 2 \mathrm{lbs}$.

Special Breakers Trip Units Only

Continuous Ampere Rating	Magnetic Trip Setting, Amperes(1)		Trip Unit Only		Terminals© Two terminals required per pole. Select from chart on page 30.
			2-Poles(3	3-Poles	
	Low	High	Catalog Numbers		
Magnetic Only Breakers, Front Adjustable					
400	350	700	HLB2700TM	HLB3700TM	
400	625	1250	HLB21250TM	HLB31250TM	
400	750	1500	HLB21500TM	HLB31500TM	
400	875	1750	HLB21750TM	HLB31750TM	
400	1125	2250	HLB22250TM	HLB32250TM	
400	1500	3000	HLB23000TM	HLB33000TM	
400	2000	4000	HLB24000TM	HLB34000TM	
Ambient Compensating Breakers					
70	350	700	HLB2070TA	HLB3070TA	
90	450	900	HLB2090TA	HLB3090TA	
100	500	1000	HLB2100TA	HLB3100TA	
125	625	1250	HLB2125TA	HLB3125TA	
150	750	1500	HLB2150TA	HLB3150TA	
175	875	1750	HLB2175TA	HLB3175TA	
200	1000	2000	HLB2200TA	HLB3200TA	
225	1125	2250	HLB2225TA	HLB3225TA	
250	1250	2500	HLB2250TA	HLB3250TA	
300	1500	3000	HLB2300TA	HLB3300TA	
350	1750	3500	HLB2350TA	HLB3350TA	
400	2000	4000	HLB2400TA	HLB3400TA	

[^2](2) Terminals are shipped separately from breaker.
(3 2-pole breakers or trips are supplied in 3-pole frames with current carrying parts omitted from center pole.
(4) Not listed with Underwriters' Laboratories, Inc.
© If upgrading an LB, HLB breaker to a Series C K frame in a panelboard application, also order TAD3 spacer kit.

MOLDED CASE CIRCUIT BREAKERS
 Replacement Circuit Breakers

REPLACEMENT CAPABILITIES, Continued

Type LB and MARK 75^{\circledR} Type HLB Accessories and Modifications

Terminals(15
Two terminals are required per pole.
Terminals are Underwriters' Laboratories, Inc. listed for wire type and range listed below. When used with aluminum cable, use joint compound. To order optional copper only terminals, add suffix " C " to complete breaker catalog number

Max. Amps	Catalog Number	No. of Cables, Wire Range, Type
Standard Pressure Terminals		
225	TA225LA1	(1) \#6-350 MCM Cu, or (1) \#4-350 MCM AI
350	TA350DA	(1) $250-500 \mathrm{MCM} \mathrm{Al} / \mathrm{Cu}$
400	T400DA2	(2) 3/0-250 MCM Cu only
Optional Copper Pressure Terminals		
225	T225LA	(1) \#6-350 MCM Cu
2250	T225LBF	(1) \#6-250 MCM Cu
350	T350DA	(1) $250-500 \mathrm{MCM} \mathrm{Cu}$

For CSA, see page 41.
Type LB breakers meet requirements for Class 21a circuit breakers, and Type HLB meet requirements for Class 23a, as defined by Federal Specification W-C-375b.

Underwriters' Laboratories, Inc. Listed Interrupting Ratings

Volt Max.	Amperes
Standard Breakers	
240 AC	50,000 Asym., 42,000 Sym.
480 AC	35,000 Asym., 30,000 Sym.
600 AC	25,000 Asym., 22,000 Sym.
250 DC	20,000 ©
MARK 75 ${ }^{\circledR}$ Breakers	
240 AC	75,000 Asym., 65,000 Sym.
480 AC	40,000 Asym., 35,000 Sym.
600 AC	30,000 Asym., 25,000 Sym.
250 DC	20,0003

For all 3-phase Delta, grounded B phase applications, contact your local CutlerHammer Field Sales Office.
(1) Terminals are shipped separately from breaker.
(2) Optional terminal.
(3) Ratings above 10,000 amperes not UL listed.

4 Not listed with Underwriters' Laboratories, Inc.
© If upgrading an LB, HLB breaker to a Series C K frame in a panelboard application, also order TAD3 spacer kit.

REPLACEMENT CAPABILITIES, Continued

Type DA Breakers 250-400 Amperes, 240 Volts AC, 250 Volts DC, 2- and 3-Poles, Fixed Trip, Thermal Magnetic

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Breakers With Line Terminals Only		Breakers With Line and Load Terminals	
	Catalog Numbers		Catalog Numbers	
	2-Pole ${ }^{\text {c }}$	3-Pole	2-Pole 1	3-Pole
250	DA2250Y	DA3250Y	DA2250	DA3250
300	DA2300Y	DA3300Y	DA2300	DA3300
350	DA2350Y	DA3350Y	DA2350	DA3350
400	DA2400Y	DA3400Y	DA2400	DA3400
	Approx. ship. wt. 13 lbs.	Approx. ship. wt. 15 lbs.	Approx. ship. wt. 13 lbs.	Approx. ship. wt. 13 lbs.

DA, 240 Volts AC; 250 Volts DC

Accessories and Modifications

Type DA breakers meet requirements of Federal Specification W-C-375b., Class 14b.

Underwriters' Laboratories, Inc. Listed Interrupting Ratings

Max. Volts	Amperes
240 VAC	25,000 Asym., 22,000 Sym.
250 VDC	10,000

On all 3-phase Delta, grounded B phase applications, refer to Cutler-Hammer.

Terminals8

Terminals are Underwriters' Laboratories, Inc. listed for the wire type and size listed below. When used with aluminum conductors, use joint compound.

Max. Amps	Catalog Number	No. of Cables, Wire Range, Type
Standard Pressure Terminals		
350	TA350DA	(1) 250-500 MCM Al/Cu
400	T400DA2	(2) 3/0-250 MCM Cu only
Optional Terminals (for Copper cable)		
350	T350DA	(1) 250-500 MCM Cu

For CSA, see page 41.

Special Calibrations(2

Special calibration price additions apply to ampere ratings not listed as standard or for ambients other than $40^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}$. For frequencies other than $0-60 \mathrm{~Hz} \mathrm{AC}$ circuits, refer to Cutler-Hammer. See Application Data 29-160 for information regarding special conditions. Maximum 400 Hz calibrations: Type DA, 300 amperes.

$50^{\circ} \mathrm{C}$ Calibration(2

Add suffix " V " to catalog number for complete breaker when ordering breakers to be used in $50^{\circ} \mathrm{C}$ ambients. Same price as standard $40^{\circ} \mathrm{C}$ breakers.

[^3]REPLACEMENT CAPABILITIES, Continued
Type LAB 125-400 Amperes, 600 Volts AC, 250 Volts DC, 2- and 3-Poles, Fixed Trip, Thermal Magnetic, Saf-T-Vue ${ }^{\circledR}$

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Magnetic Trip Setting, Amperes(1)		Complete Breaker Includes Pressure Type Aluminum Terminals(2		Breaker Without Terminals	
			Standard	Saf-T-Vue ${ }^{\circledR}$	Standard	Saf-T-Vue ${ }^{\text {® }}$
	Low	High	Catalog Numbers			
2-Poles, 600 Volts AC, 250 Volts DC3						
125	625	1250	LAB2125	LAB2125S	LAB2125W	LAB2125SW
150	750	1500	LAB2150	LAB2150S	LAB2150W	LAB2150SW
175	875	1750	LAB2175	LAB2175S	LAB2175W	LAB2175SW
200	1000	2000	LAB2200	LAB2200S	LAB2200W	LAB2200SW
225	1125	2250	LAB2225	LAB2225S	LAB2225W	LAB2225SW
250	1250	2500	LAB2250	LAB2250S	LAB2250W	LAB2250SW
300	1500	3000	LAB2300	LAB2300S	LAB2300W	LAB2300SW
350	1750	3500	LAB2350	LAB2350S	LAB2350W	LAB2350SW
400	2000	4000	LAB2400	LAB2400S	LAB2400W	LAB2400SW
			Approx. ship. wt. 22 lbs.		Approx. ship. wt. 22 lbs.	
3-Poles, 600 Volts AC Only						
125	625	1250	LAB3125	LAB3125S	LAB3125W	LAB3125SW
150	750	1500	LAB3150	LAB3150S	LAB3150W	LAB3150SW
175	875	1750	LAB3175	LAB3175S	LAB3175W	LAB3175SW
200	1000	2000	LAB3200	LAB3200S	LAB3200W	LAB3200SW
225	1125	2250	LAB3225	LAB3225S	LAB3225W	LAB3225SW
250	1250	2500	LAB3250	LAB3250S	LAB3250W	LAB3250SW
300	1500	3000	LAB3300	LAB3300S	LAB3300W	LAB3300SW
350	1750	3500	LAB3350	LAB3350S	LAB3350W	LAB3350SW
400	2000	4000	LAB3400	LAB3400S	LAB3400W	LAB3400SW
			Approx. ship. wt. $24-1 / 2 \mathrm{lbs}$.		Approx. ship. wt. $24-1 / 2 \mathrm{lbs}$.	

LAB, 600 Volts AC; 250 Volts DC

Special Breakers ${ }^{4}$

Continuous Ampere Rating	Magnetic Trip Setting, Amperes ${ }^{1}$		Breaker Catalog Number			
			2-Poles 3		3-Poles	
			Standard	Saf-T-Vue ${ }^{\text {® }}$	Standard	Saf-T-Vue ${ }^{\text {® }}$
	Low	High	Catalog Numbers			
Magnetic Only Breakers, Front Adjustable - Without Terminals5						
400	350	700	LAB2700MW	LAB2700SMW	LAB3700MW	LAB3700SMW
400	625	1250	LAB21250MW	LAB21250SMW	LAB31250MW	LAB31250SMW
400	750	1500	LAB21500MW	LAB21500SMW	LAB31500MW	LAB31500SMW
400	875	1750	LAB21750MW	LAB21750SMW	LAB31750MW	LAB31750SMW
400	1125	2250	LAB22250MW	LAB22250SMW	LAB32250MW	LAB32250SMW
400	1500	3000	LAB23000MW	LAB23000SMW	LAB33000MW	LAB33000SMW
400	2000	4000	LAB24000MW	LAB24000SMW	LAB34000MW	LAB34000SMW
Ambient Compensating Breakers - Includes Terminals						
125	625	1250	LAB2125A		LAB3125A	
150	750	1500	LAB2150A	LAB3150A	. \cdot. \cdot. \cdot.......
175	875	1750	LAB2175A		LAB3175A	
200	1000	2000	LAB2200A	LAB3200A	
225	1125	2250	LAB2225A		LAB3225A
250	1250	2500	LAB2250A		LAB3250A	
300	1500	3000	LAB2300A		LAB3300A	
350	1750	3500	LAB2350A		LAB3350A	
400	2000	4000	LAB2400A		LAB3400A	

Accessories and Modifications

Special Calibrations(
Special calibration price additions apply to ampere ratings not listed as standard or for ambients other than $40^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}$. For frequencies other than $0-60 \mathrm{~Hz} \mathrm{AC}$ circuits, refer to Cutler-Hammer. See Application Data 29-160 for information regarding special conditions. Maximum calibration for 400 Hz is 300 amperes.

$50^{\circ} \mathrm{C}$ Calibration ${ }^{(4)}$

Add suffix " V " to catalog number for complete breaker when ordering breakers to be used in $50^{\circ} \mathrm{C}$ ambients.
For CSA, see page 41.

Type LAB breakers meet requirements for Class 21a circuit breakers, as defined by Federal Specification W-C-375b.
Underwriters' Laboratories, Inc. Listed Interrupting Ratings©

Max. Volts	Amperes
240 VAC	50,000 Asym., 42,000 Sym.
480 VAC	35,000 Asym., 30,000 Sym.
600 VAC	25,000 Asym., 22,000 Sym.
250 VDC	$20,000 \boldsymbol{}$

For all 3-phase Delta, grounded B phase applications, contact your local CutlerHammer Sales Office.
© Set on high side, adjustable to lower limits.
(2) Terminals shipped separately from breaker.
© 2-pole breakers or trips are supplied in 3-pole frames with current carrying parts omitted from center pole.
(4) Not listed with Underwriters' Laboratories, Inc.
(6) Select desired terminals from page 42 and order as separate item.
© Interrupting capacities shown do not apply to molded case switches.
(c) Ratings above 10,000 amperes not UL listed.

Terminals(2

Two terminals required per pole.
Select from table on page 35.

Magnetic Only and Ambient Compensat-

 ing BreakersFor description, refer to Application Data 29-160. To order, select catalog number from "Special Breakers" table above.

Additional Accessories and Modifications Refer to pages 58-68.

REPLACEMENT CAPABILITIES, Continued

Type LA and MARK $75{ }^{\circledR}$ Type HLA 70-400 Amperes, 600 Volts AC, 250 Volts DC, 2- and 3-Poles, Interchangeable Trip

Special Breakers© Trip Units Only

Continuous Ampere Rating	Magn Ampe	etting,	2-Poles(3-Poles	Terminals Two terminals required per pole. Select from chart on page 35.
	Low	High	Catalog Numb		
Magnetic Only Breakers, Front Adjustable 400-Ampere Frame Breakers(3					
400	350	700	HLA2700TM	HLA3700TM	
400	625	1250	HLA21250TM	HLA31250TM	
400	750	1500	HLA21500TM	HLA31500TM	
400	875	1750	HLA21750TM	HLA31750TM	
400	1125	2250	HLA22250TM	HLA32250TM	
400	1500	3000	HLA23000TM	HLA33000TM	
400	2000	4000	HLA24000TM	HLA34000TM	
Ambient Compensating Breakers 400-Ampere Frame Breakers Only(3					
$70 \times$	350	700	HLA2070TA	HLA3070TA	
909	450	900	HLA2090TA	HLA3090TA	
1006	500	1000	HLA2100TA	HLA3100TA	
125	625	1250	HLA2125TA	HLA3125TA	
150	750	1500	HLA2150TA	HLA3150TA	
175	875	1750	HLA2175TA	HLA3175TA	
200	1000	2000	HLA2200TA	HLA3200TA	
225	1125	2250	HLA2225TA	HLA3225TA	
250	1250	2500	HLA2250TA	HLA3250TA	
300	1500	3000	HLA2300TA	HLA3300TA	
350	1750	3500	HLA2350TA	HLA3350TA	
400	2000	4000	HLA2400TA	HLA3400TA	

[^4]
REPLACEMENT AB DE-ION ${ }^{\oplus}$ CIRCUIT BREAKERS

Type LA and MARK 75^{\circledR} Type HLA 600 Ampere Breakers

250-600 Amperes, 600 Volts AC, 250 Volts DC, 2-, 3-Poles, Interchangeable Trip Thermal Magnetic, Saf-T-Vue ${ }^{\circledR}$ and MARK 75 ${ }^{\circledR}$ Breakers

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Magnetic Trip Setting, Amperes(1)		Complete Breaker Includes Pressure Type Aluminum Terminals(2			Shipped as Frame, Trip Unit and Terminals(2) Frame Only			Trip Unit Only
			Standard	Saf-T-Vue ${ }^{\text {® }}$	MARK 75 ${ }^{\text {® }}$	Standard	Saf-T-Vue ${ }^{\text {® }}$	MARK 75 ${ }^{\text {® }}$	Standard Saf-T-Vue ${ }^{\text {® }}$ MARK 75 ${ }^{\circledR}$
	Low	High	Catalog Numbers						
600 Ampere Frame Breakers3									
2-Poles, 600 Volts AC, 250 Volts DC4									
250	1250	2500	2603D50G01	2603D50G13	1256C10G02	LA2600F	LA2600FS	HLA2600F	2603D46G07
300	1500	3000	2603D50G02	2603D50G14	1256C10G03	LA2600F	LA2600FS	HLA2600F	2603D46G08
350	1750	3500	2603D50G03	2603D50G15	1256C10G04	LA2600F	LA2600FS	HLA2600F	2603D46G09
400	2000	4000	2603D50G04	2603D50G16	1256C10G05	LA2600F	LA2600FS	HLA2600F	2603D46G10
500	2500	5000	LA2500	LA2500S	HLA2500	LA2600F	LA2600FS	HLA2600F	HLA2500T
600	3000	6000	LA2600	LA2600S	HLA2600	LA2600F	LA2600FS	HLA2600F	HLA2600T
3-Poles, 600 Volts AC Only									
250	1250	2500	2603D50G07	2603D50G019	1256C10G12	LA3600F	LA3600FS	HLA3600F	2603D46G26
300	1500	3000	2603D50G08	2603D50G020	1256C10G13	LA3600F	LA3600FS	HLA3600F	2603D46G27
350	1750	3500	2603D50G09	2603D50G021	1256C10G14	LA3600F	LA3600FS	HLA3600F	2603D46G28
400	2000	4000	2603D50G10	2603D50G022	1256C10G15	LA3600F	LA3600FS	HLA3600F	2603D46G29
500	2500	5000	LA3500	LA3500S	HLA3500	LA3600F	LA3600FS	HLA3600F	HLA3500T
600	3000	6000	LA3600	LA3600S	HLA3600	LA3600F	LA3600FS	HLA3600F	HLA3600T

Special Breakers(Trip Units Only				
Continuous Ampere Rating	Magnetic Trip Setting, Amperes(1)		Catalog/Style Number	
	Low	High	2-Poles(3-Poles
600 Ampere Frame Breakers(3				
Magnetic Only Breakers, Front Adjustable				
600	1125	2250	2603D47G07	2603D47G26
600	1500	3000	2603D47G08	2603D47G27
600	2000	4000	2603D47G10	2603D47G29
600	2500	5000	HLA25000TM	HLA35000TM
600	3000	6000	HLA26000TM	HLA36000TM
Ambient Compensating Breakers				
250	1250	2500	5683D88G07	5683D88G26
300	1500	3000	5683D88G08	5683D88G27
350	1750	3500	5683D88G09	5683D88G28
400	2000	4000	5683D88G 10	5683D88G29
500	2500	5000	HLA2500TA	HLA3500TA
600	3000	6000	HLA2600TA	HLA3600TA

Special Calibratione

Special calibration price additions apply to ampere ratings not listed as standard or for ambients other than $40^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}$. For frequencies other than $0-60 \mathrm{~Hz} \mathrm{AC}$, refer to Cutler-Hammer. See Application Data 29160 for information regarding special conditions. Maximum 400 Hz calibration: 600 ampere frame, 450 amperes.

$50^{\circ} \mathrm{C}$ Calibration6

Add suffix " V " to catalog number for complete breaker or trip unit only, when ordering breakers to be used in $50^{\circ} \mathrm{C}$ ambients. Same price as standard $40^{\circ} \mathrm{C}$ breakers.

For CSA, see page 41.

Type LA breakers meet requirements for Class 21a circuit breakers, and type HLA meet requirements for Class 23a as defined by Federal Specification W-C-375b.

LA, 600 Volts AC; 250 Volts DC
Underwriters' Laboratories, Inc. Listed Interrupting Ratings6

Volts Max. Amperes	
Standard Breakers	
240 VAC	50,000 Asym., 42,000 Sym.
480 VAC	35,000 Asym., 30,000 Sym.
600 VAC	25,000 Asym., 22,000 Sym.
250 VDC	20,0000
MARK 75 ${ }^{\circledR}$ Breakers	
240 VAC	75,000 Asym., 65,000 Sym.
480 VAC	40,000 Asym., 35,000 Sym.
600 VAC	30,000 Asym., 25,000 Sym.
250 VDC	$20,000 \boldsymbol{0}$

On all 3-phase Delta, grounded B phase applications, contact your local CutlerHammer Field Sales Office.

Terminals(28

Two terminals are required per pole. Terminals are Underwriters' Laboratories, Inc. listed for wire type and range listed below. When used with aluminum cable, use joint compound. To order optional copper only terminals, add suffix " C " to complete breaker catalog number.

Max. Amps	Catalog Number	No. of Cables, Wire Range, Type
Standard AI/Cu Pressure Terminals		
6008	TA600LA	(2) $250-500 \mathrm{MCM} \mathrm{AI/Cu}$
Optional Copper Pressure Terminals		
6008	T600LA	(2) $250-500 \mathrm{MCM} \mathrm{Cu}$

Magnetic Only and Ambient

 Compensating BreakersFor description, refer to Application Data 29-160. To order, select frame, trip unit and terminals from tables on this page.

Accessories and Modifications

Refer to pages 58-68.
© Set on high side, adjustable to lower limits.
(2) Terminals shipped separately from breakers.
(3 Terminals, trip units and accessories are not interchangeable between 400 and 600 ampere frames.
(4) 2-pole breakers or trips are supplied in 3-pole frames with current carrying parts omitted from center pole.
© Not listed with Underwriters' Laboratories, Inc.
© Interrupting capacities shown do not apply to molded case switches.
(T) Ratings above 10,000 amperes not UL listed.
(8) For 600 ampere frame breakers only.

REPLACEMENT CAPABILITIES, Continued

Type LA and MARK $75{ }^{\circledR}$ Type HLA Accessories and Modifications

Terminals(0)

Two terminals are required per pole.
Terminals are Underwriters' Laboratories, Inc. listed for wire type and range listed below. When used with aluminum cable, use joint compound. To order optional copper only terminals, add suffix " C " to complete breaker catalog number.

Max. Amperes Catalog Number No. of Cables, Wire Range, Type, Standard AI/Cu Pressure Terminals 2253 TA225LA1 (1) \#6-350 MCM Cu, or (1) \#4-350 MCM AI (1) \#4-250 MCM AI/Cu, plus (1) 3/0-600 MCM AI/Cu Optional Copper Pressure Terminals $\mathbf{2 2 5 8}$ T225LA (1) \#6-350 MCM Cu 22534 4003 T225LBF (1) \#6-250 MCM Cu T401LA (1) \#4-250 MCM Cu, plus

Listed with Underwriters' Laboratories, Inc. except as noted.

Type LA breakers meet requirements for Class 21a circuit breakers, and Type HLA meet requirements for Class 23a as defined by Federal Specification W-C-375b.

Underwriters' Laboratories, Inc. Listed Interrupting Ratings©

Volts Max.	Amperes
Standard Breakers	
240 VAC	50,000 Asym., 42,000 Sym.
480 VAC	35,000 Asym., 30,000 Sym.
600 VAC	25,000 Asym., 22,000 Sym.
250 VDC	20,000®
MARK 75 ${ }^{\text {® }}$ Breakers	
240 VAC	75,000 Asym., 65,000 Sym.
480 VAC	40,000 Asym., 35,000 Sym.
600 VAC	30,000 Asym., 25,000 Sym.
250 VDC	20,000®

Magnetic Only and Ambient Compensating

 BreakersOFor description, refer to Application Data 29-160. To order, select trip unit from table on page 34, frame and terminals from table at left.

Special Calibrations(

Special calibration price additions apply to ampere ratings not listed as standard or for ambients other than $40^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}$. For frequencies other than $0-60 \mathrm{~Hz} A C$ refer to Cutler-Hammer. See Application Data 29-160 for information regarding special conditions. Maximum 400 Hz calibration: 400 ampere frame, 300 amperes.

$50^{\circ} \mathrm{C}$ Calibration(

Add suffix " V " to catalog number for complete breaker or trip unit only, when ordering breakers to be used in $50^{\circ} \mathrm{C}$ ambients.

For all 3-phase Delta, grounded B phase applications, contact your local CutlerHammer Field Sales Office.

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Magnetic Trip Setting Amperes 8		Complete Breaker	Shipped as F	Unit and Terminals 9
			Includes Pressure Type Aluminum Terminals©	Frame Only	Trip Unit Only
	Low	High	Catalog Numbers		
600 Ampere Frame Breakers4 3-Poles, 240 Volts AC Only					
250	1250	2500	LAY3250	LAY3600F	2603D46G26
300	1500	3000	LAY3300	LAY3600F	2603D46G27
350	1750	3500	LAY3350	LAY3600F	2603D46G28
400	2000	4000	LAY3400	LAY3600F	2603D46G29
500	2500	5000	LAY3500	LAY3600F	HLA3500T
600	3000	6000	LAY3600	LAY3600F	HLA3600T

Accessories and Modifications

Special Calibrations©

Special calibration price additions apply to ampere ratings not listed as standard or for ambients other than $40^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}$. For frequencies other than $0-60 \mathrm{~Hz} \mathrm{AC}$, refer to Cutler-Hammer. See Application Data 29-160 for information regarding special conditions. Maximum 400 Hz calibration: 600 ampere frame, 450 amperes.

$50^{\circ} \mathrm{C}$ Calibration 0

Add suffix "V" to catalog number for complete breaker or trip unit only, when ordering breakers to be used in $50^{\circ} \mathrm{C}$ ambients. Same price as standard $40^{\circ} \mathrm{C}$ breakers.

For CSA, see page 41.

Type LAY breakers are not defined by Federal Specification W-C-375b.

Underwriters' Laboratories, Inc. Listed Interrupting Ratings

Volts Max.	Amperes
240 VAC	115,000 Asym., 100,000 Sym.

For all 3-phase Delta, grounded B phase applications, contact your local CutlerHammer Field Sales Office.

Terminals©

Two terminals are required per pole.
Terminals are Underwriters' Laboratories, Inc. listed for wire type and range listed
below. When used with aluminum cable, use joint compound.

Max. Amps	Catalog Number	No. of Cables, Wire Range, Type
Standard AI/Cu Pressure Terminals		
500Θ	TA602LD	(2) $250-350 \mathrm{MCM} \mathrm{AI} / \mathrm{Cu}$
600Θ	TA603LA	(2) $400-500 \mathrm{MCM} \mathrm{Al/Cu}$
600Θ	TA600LA	(2) $250-500 \mathrm{MCM} \mathrm{Al} / \mathrm{Cu}$

Optional Copper Pressure Terminals

$600 \boldsymbol{0}$	T600LA	(2) 250-500 MCM Cu

Additional Accessories and Modifications Refer to pages 58-68.

[^5]REPLACEMENT CAPABILITIES, Continued
Type MA 125-800 Amperes, 600 Volts AC, 250 Volts DC0, 2- and 3-Poles, Interchangeable Trip

Continuous Ampere Rating	Magnetic Trip Range ${ }^{2}$		Trip Unit Only	
			2-Poles4	3-Poles
	Low	High	Catalog Numb	
800	625	1250	HMA21250TM	HMA31250TM
800	1000	2000	HMA22000TM	HMA32000TM
800	1500	3000	HMA23000TM	HMA33000TM
800	2000	4000	HMA24000TM	HMA34000TM
800	3000	6000	HMA26000TM	HMA36000TM
800	4000	8000	HMA28000TM	HMA38000TM

Ambient Compensating Breakers©

Contin- uous Ampere Rating	Magnetic Trip Range 2		Trip Unit Only		
	Low		High	Catalog Number	
	625	1250	HMA2125TA	HMA3125TA	
150	750	1500	HMA2150TA	HMA3150TA	
175	875	1750	HMA2175TA	HMA3175TA	
200	1000	2000	HMA2200TA	HMA3200TA	
225	1125	2250	HMA2225TA	HMA3225TA	
250	1250	2500	HMA2250TA	HMA3250TA	
300	1500	3000	HMA2300TA	HMA3300TA	
350	1750	3500	HMA2350TA	HMA3350TA	
400	2000	4000	HMA2400TA	HMA3400TA	
500	2500	5000	HMA2500TA	HMA3500TA	
600	3000	6000	HMA2600TA	HMA3600TA	
700	3000	6000	HMA2700TA	HMA3700TA	
800	3000	6000	HMA2800TA	HMA3800TA	

(1) Above 600 amperes, DC rating applies to magnetic only breakers.
(2) Set on high side, adjustable to lower limits.
(3) Terminals are shipped separately from breaker.
(4) 2-pole breakers are supplied in 3-pole frames with current carrying parts omitted from center pole.

660 Hz AC only.
© Interrupting capacities shown do not apply to high magnetic molded case switches.
(7) Not listed with Underwriters' Laboratories, Inc.

REPLACEMENT CAPABILITIES, Continued

Type MA Accessories and Modifications

For CSA, see page 41.

Special Calibrations(

Special calibration price additions apply to ampere ratings not listed as standard or for ambients other than $40^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}$. For frequencies other than $0-60 \mathrm{~Hz} \mathrm{AC}(50 \mathrm{~Hz}$ AC minimum -60 Hz AC maximum) refer to Cutler-Hammer. See Application Data 29-160 for additional information regarding special conditions.

$50^{\circ} \mathrm{C}$ Calibrationo

Add suffix " V " to catalog number for complete breaker or trip unit only, when ordering breakers to be used in $50^{\circ} \mathrm{C}$ ambients.

Type MA breakers meet requirements for Class 21a circuit breakers, and Type HMA meet requirements for Class 23a, as defined by Federal Specification W-C-375b.

Underwriters' Laboratories, Inc. Listed Interrupting Ratings(2

Max. Volts	Amperes
Standard Breakers	
240 VAC	50,000 Asym., 42,000 Sym.
480 VAC	35,000 Asym., 30,000 Sym.
600 VAC	25,000 Asym., 22,000 Sym.
250 VDC®	20,0004
MARK 75 ${ }^{\circledR}$ Breakers	
240 VAC	75,000 Asym., 65,000 Sym.
480 VAC	40,000 Asym., 35,000 Sym.
600 VAC	30,000 Asym., 25,000 Sym.
250 VDC®	20,0004

For all 3-phase Delta, grounded B phase applications, contact your local CutlerHammer Field Sales Office.

Terminals®

Two terminals are required per pole.
Terminals are Underwriters' Laboratories, Inc. listed for wire type and range listed below. When used with aluminum conductors, use joint compound.

Max. Amps	Catalog Number	No. of Cables, Wire Range, Type
Standard AI/Cu Pressure Terminals		
600	TA700MA1	(2) \#1-500 MCM AI/Cu
800 (Std.)	TA800MA2	(3) $30-400 \mathrm{MCM} \mathrm{Al/Cu}$
8000	TA801MA	(2) $500-750 \mathrm{MCM} \mathrm{Al/Cu}$

Optional Copper Pressure Terminals		
350	T350MA	(1) \#1-600 MCM Cu
600	T600MA1	(2) 20-500 MCM Cu
800	T800MA1	(3) $30-300 \mathrm{MCM} \mathrm{Cu}$

Magnetic Only and Ambient Compensating Breakers
For description, refer to Application Data 29-160. To order a complete breaker, select trip unit plus frame and terminals.

Type MAY 600-800 Amperes, 240 Volts AC, 3-Poles, Interchangeable Trip

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Magnetic Trip Setting, Amperes©		Complete Breaker	Shipped as Frame, Trip Unit and Terminals©	
			Includes Pressure Type Aluminum Terminals©	Frame Only	Trip Unit Only
	Low	High	Catalog Numbers		
3-Poles, 240 Volts AC Only					
600	3000	6000	MAY3600	MAY3800F	HMA3600T
7000	3000	6000	MAY3700	MAY3800F	HMA3700T
8000	3000	6000	MAY3800	MAY3800F	HMA3800T

Accessories and Modifications

Special Calibrations©

Special calibration price additions apply to ampere ratings not listed as standard or for ambients other than $40^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}$. For frequencies other than $0-60 \mathrm{~Hz} \mathrm{AC}(50 \mathrm{~Hz}$ AC minimum -60 Hz AC maximum), refer to Cutler-Hammer. See Application Data 29-160 for additional information regarding special conditions.

$50^{\circ} \mathrm{C}$ Calibration(

Add suffix " V " to catalog number for complete breaker or trip unit only, when ordering breakers to be used in $50^{\circ} \mathrm{C}$ ambients.

For CSA, see page 41.

Type MAY breakers are not defined by Federal Specification W-C-375b.

Underwriters' Laboratories, Inc. listed Interrupting Ratings

Volts Max.	Amperes
240 VAC	115,000 Asym., 100,000 Sym.

For all 3-phase Delta, grounded B phase applications, contact your local CutlerHammer Field Sales Office.

Terminals©

Two terminals are required per pole.
Terminals are Underwriters' Laboratories, Inc. listed for wire type and range listed right. When used with aluminum cable, use joint compound.

Max. Amps	Catalog Number	No. of Cables, Wire Range, Type
Standard AI/Cu Pressure Terminals		
600	TA700MA1	(2) \#1-500 MCM Al/Cu
800 (Std.)	TA800MA2	(3) $3 / 0-400 \mathrm{MCM} \mathrm{Al} / \mathrm{Cu}$
800	TA801MA	(2) 500-750 MCM Al/Cu
Optional Copper Pressure Terminals		
350	T350MA	(1) \#1-600 MCM Cu
600	T600MA1	(2) $2 / 0-500 \mathrm{MCM} \mathrm{Cu}$
800	T800MA1	(3) $3 / 0-300 \mathrm{MCM} \mathrm{Cu}$

Additional Accessories and Modifications Refer to pages 58-68.

[^6]REPLACEMENT CAPABILITIES, Continued
Type NB 700-1200 Amperes, 600 Volts, 60 Hz AC0, 250 Volts DCO, 2- and 3-Poles, Interchangeable Trip

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Magnetic Trip Setting, Amperes 3			Complete Breaker		
				Includes Pressure Type Copper Terminals4		
	Low	High		Standard	Saf-T-Vue ${ }^{\text {® }}$	MARK
			Catalog Numbers			
2-Poles, $\mathbf{6 0 0}$ Volts AC, 250 Volts DCO6						
700	3000	- 6000		NB2700	NB2700S	HNB27
800	3000	-6000		NB2800	NB2800S	HNB28
900	4000	8000		NB2900	NB2900S	HNB29
1000	4000	8000		NB21000	NB21000S	HNB21
1200	4000	8000		NB21200	NB21200S	HNB21
				Approx. ship. wt. 43 lbs .		
3-Poles, 600 Volts AC Only						
700	$\begin{aligned} & 3000 \\ & 3000 \\ & 4000 \\ & 4000 \\ & 4000 \end{aligned}$	$\begin{aligned} & \hline 6000 \\ & 6000 \\ & 8000 \\ & 8000 \\ & 8000 \end{aligned}$		NB3700	NB3700S NB3800S NB3900S NB31000S NB31200S	HNB37
800				NB3800		HNB38
900				NB3900		HNB39
1000				NB31000		HNB31
1200				NB31200		HNB31
				Approx. ship. wt. 51 lbs.		
Accessories and Modifications						
Magnetic Only Breakers, Front Adjustable0t						
Continuous Ampere Rating	Magnetic Trip Range 3		Trip Unit Only			
			2-Poles(${ }^{\text {a }}$		3-Poles	
	Low	High	Catalog Numbers			
1200	3000	6000	HNB26000TM		HNB36000TM	
1200	4000	8000	HNB28000TMHNB210000TM		HNB38000TMHNB310000TM	
1200	5000	10000				
1200	6000	12000	HNB212000TM		HNB312000TM	

Magnetic Only Breakers(

For description, refer to Application Data 29-160. To order a complete breaker, select trip unit, plus frame and terminals.

Special Calibrations(8

Special calibration price additions apply to ampere ratings not listed as standard or for ambients other than $40^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}$. For frequencies other than $0-60 \mathrm{~Hz} \mathrm{AC}(50 \mathrm{~Hz}$ AC minimum -60 Hz AC maximum for ratings of 700 amperes and above), refer to Cutler-Hammer. See Application Data 29160 for additional information regarding special conditions. Maximum 400 Hz calibration for type MA is 475 amperes.

$50^{\circ} \mathrm{C}$ Calibration 8

Add suffix " V " to catalog number for complete breaker or trip unit only, when ordering breakers to be used in $50^{\circ} \mathrm{C}$ ambients.

For CSA, see page 41.

Type NB breakers meet requirements for Class 21a circuit breakers, and Type HNB meet requirements for class 23a, as defined by Federal Specification W-C-375b.

Underwriters' Laboratories, Inc. listed Interrupting Ratings:

Max. Volts	Amperes
Standard Breakers	
240 VAC	50,000 Asym., 42,000 Sym.
480 VAC	35,000 Asym., 30,000 Sym.
600 VAC	25,000 Asym., 22,000 Sym.
250 VDC4	20,0008
MARK 75 ${ }^{\circledR}$ Breakers	
240 VAC	75,000 Asym., 65,000 Sym.
480 VAC	40,000 Asym., 35,000 Sym.
600 VAC	30,000 Asym., 25,000 Sym.
250 VDC4	20,0008

For all 3-phase Delta, grounded B phase applications, contact your local CutlerHammer Field Sales Office.

Terminals©

Two terminals are required per pole.
Terminals are Underwriters' Laboratories, Inc. listed for wire type and range listed below. When used with aluminum conductors, use joint compound. To order optional copper terminals, add suffix "C" to complete breaker catalog number.

Max. Amps	Catalog Number	No. of Cables, Wire Range, Type,
Standard AI/Cu Pressure Terminals		
1000	TA1000NB1	(3) $3 / 0-400 \mathrm{MCM} \mathrm{Al/Cu}$ 1200
TA1200NB1	(4) 4/0-500 MCM AI/Cu	

Additional Accessories and Modifications Refer to pages 58-68.

REPLACEMENT CAPABILITIES, Continued

Type NBY 700-1200 Amperes, 240 Volts, 60 Hz ACO, 3-Poles, Interchangeable Trip

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Magnetic Trip Setting Amperes(2		Complete Breaker	Shipped as Frame, Trip Unit and Terminals 3	
			Includes Pressure Type Aluminum Terminals 3	Frame Only	Trip Unit Only
	Low	High	Catalog Numbers		
3-Poles, 600 Volts AC Only					
700	3000	6000	NBY3700	NBY31200F	HNB3700T
800	3000	6000	NBY3800	NBY31200F	HNB3800T
900	4000	8000	NBY3900	NBY31200F	HNB3900T
1000	4000	8000	NBY31000	NBY31200F	HNB31000T
1200	4000	8000	NBY31200	NBY31200F	HNB31200T

NBY, 240 Volts AC

Accessories and Modifications

Special Calibrations4

Special calibration price additions apply to ampere ratings not listed as standard or for ambients other than $40^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}$. For frequencies other than $0-60 \mathrm{~Hz} \mathrm{AC}(50 \mathrm{~Hz}$ AC minimum -60 Hz AC maximum), refer to Cutler-Hammer. See Application Data 29-160 for additional information regarding special conditions.

$50^{\circ} \mathrm{C}$ Calibration ${ }^{\circ}$

Add suffix "V" to catalog number for complete breaker or trip unit only, when ordering for breakers to be used in $50^{\circ} \mathrm{C}$ ambients.

For CSA see page 41.

Type NBY breakers are not defined by Federal Specification W-C-375b.

Underwriters' Laboratories, Inc. listed Interrupting Ratings

Volts Max.	Amperes
240 VAC	115,000 Asym., 100,000 Sym.

For all 3-phase Delta, grounded B phase applications, contact your local CutlerHammer Field Sales Office.

Terminals(
Two terminals are required per pole.
Terminals are Underwriters' Laboratories, Inc. listed for wire type and range listed below. When used with aluminum conductors, use joint compound.

$\begin{array}{l}\text { Max. } \\ \text { Amps }\end{array}$	$\begin{array}{l}\text { Catalog } \\ \text { Number }\end{array}$	$\begin{array}{l}\text { No. of Cables, } \\ \text { Wire Range, Type, }\end{array}$
Standard AI/Cu Pressure Terminals		
1000	TA1000NB1	$\begin{array}{l}\text { (3) } 3 / 0-400 \mathrm{MCM} \mathrm{AI/Cu} \\ 1200\end{array}$
TA1200NB1	(4) $4 / 0-500 \mathrm{MCM} \mathrm{AI/Cu}$	
1200	TA1201NB1	(3) $500-750 \mathrm{MCM} \mathrm{AI} / \mathrm{Cu}$

Additional Accessories and Modifications Refer to pages 58-68.

[^7]
REPLACEMENT CAPABILITIES, Continued

Type PB 600-2500 Amperes, 600 Volts, 60 Cycle AC©, 250 Volts DC®, 2- and 3-Poles, Interchangeable Trip

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Magnetic Trip Setting, Amperes 34		Complete Breaker	Shipped as Frame, Trip Unit and Terminals	
			Includes Bus Bar Connectors ${ }^{5}$	Frame Only	Trip Unit Only
	Low	High	Catalog Numbers		
2-Poles, 600 Volts AC Only 6					
600	1500	5000	PB2600	PB22500F	PB2600T
700	1500	5000	PB2700	PB22500F	PB2700T
800	1500	5000	PB2800	PB22500F	PB2800T
900	1500	5000	PB2900	PB22500F	PB2900T
1000	1500	5000	PB21000	PB22500F	PB21000T
1200	2000	6000	PB21200	PB22500F	PB21200T
1400	2500	7000	PB21400	PB22500F	PB21400T
1600	3000	8000	PB21600	PB22500F	PB21600T
1800	3000	8000	PB21800	PB22500F	PB21800T
2000	3000 8000 Approx. ship. wt.		PB22000	PB22500F	PB22000T
	Approx. ship. wt. 132 lbs.			98 lbs . 18 lbs.	
2500	3000	8000	PB22500	PB22500F	PB22500T
	Approx. ship. wt.		144 lbs .	98 lbs .	18 lbs .
3-Poles, 600 Volts AC Only					
600	1500	5000	PB3600	PB32500F	PB3600T
700	1500	5000	PB3700	PB32500F	PB3700T
800	1500	5000	PB3800	PB32500F	PB3800T
900	1500	5000	PB3900	PB32500F	PB3900T
1000	1500	5000	PB31000	PB32500F	PB31000T
1200	2000	6000	PB31200	PB32500F	PB31200T
1400	2500	7000	PB31400	PB32500F	PB31400T
1600	3000	8000	PB31600	PB32500F	PB31600T
1800	3000	8000	PB31800	PB32500F	PB31800T
2000	3000	8000	PB32000	PB32500F	PB32000T
	Approx	wt.	155 lbs.	108 lbs .	23 lbs .
2500	3000	8000	PB32500	PB32500F	PB32500T
	Approx	wt.	173 lbs.	108 lbs.	23 lbs.

Rear Connected PB Breaker; 600 Volts AC, 250 Volts DC

Type PBF Front Connected 600-2000 Amperes, 600 Volts, 60 Cycle ACo, 250 Volts DC®, 2- and 3-Poles, Interchangeable Trip

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Magnetic Trip Setting, Amperes (Set on High Side, Adjustable to Lower Limits)		Complete Breaker	Shipped As:		
			Includes Bus Bar Connectors(8	Frame Only Includes Bus Bar Connectors $\boldsymbol{0}$	Trip Unit Only	
	Low	High	Catalog Numbers			
2-Pole, 600 Volts AC6						
600	1500	5000	PBF2600	PBF22000F	PBF2600T	
700	1500	5000	PBF2700	PBF22000F	PBF2700T	
800	1500	5000	PBF2800	PBF22000F	PBF2800T	
900	1500	5000	PBF2900	PBF22000F	PBF2900T	
1000	1500	5000	PBF21000	PBF22000F	PBF21000T	
1200	2000	6000	PBF21200	PBF22000F	PBF21200T	
1400	2500	7000	PBF21400	PBF22000F	PBF21400T	
1600	3000	8000	PBF21600	PBF22000F	PBF21600T	
1800	3000	8000	PBF21800	PBF22000F	PBF21800T	
2000	3000	8000	PBF22000	PBF22000F	PBF22000T	
3-Pole, 600 V	AC					
600	1500	5000	PBF3600	PBF32000F	PBF3600T	
700	1500	5000	PBF3700	PBF32000F	PBF3700T	
800	1500	5000	PBF3800	PBF32000F	PBF3800T	
900	1500	5000	PBF3900	PBF32000F	PBF3900T	
1000	1500	5000	PBF31000	PBF32000F	PBF31000T	
1200	2000	6000	PBF31200	PBF32000F	PBF31200T	PBF Front Connected;
1400	2500	7000	PBF31400	PBF32000F	PBF31400T	600 Volts AC
1600	3000	8000	PBF31600	PBF32000F	PBF31600T	
1800	3000	8000	PBF31800	PBF32000F	PBF31800T	
2000	3000	8000	PBF32000	PBF32000F	PBF32000T	

(1) Higher frequency calibration not available. Minimum of 50 Hz calibration available on special order.
(2) Available only on magnetic only breakers.

3 Higher magnetic trip settings are available as special calibration. Refer to magnetic only breakers for specific trip ranges.
(4) Set on high side, adjustable to lower limits.
© Shipped separately from breaker.
© 2-pole breakers are supplied in 3-pole frames with current carrying parts omitted from center pole.
θ Included with frame.

REPLACEMENT CAPABILITIES, Continued

Type PB and PBF Accessories and Modifications

Special Breakers© Magnetic Only, Front Adjustable(2 Trip Unit Only				
Continuous Ampere Rating	Magnetic Trip Range, Amperes ${ }^{3}$		2-Poles ${ }^{\text {¢ }}$	3-Poles
	Low	High	Catalog Number	
For Rear Connected Type PB Breakers				
2000	1500	5000	PB25000TM	PB35000TM
2000	2000	6000	PB26000TM	PB36000TM
2000	2500	7000	PB27000TM	PB37000TM
2000	3000	8000	PB28000TM	PB38000 TM
2000	3500	10000	PB210000TM	PB310000TM
2000	4000	12000	PB212000TM	PB312000TM
2500	4000	12000	373D488G08	373D488G09
For Front Connected Type PBF Breakers				
2000	1500	5000	PBF25000TM	PBF35000TM
2000	2000	6000	PBF26000TM	PBF36000TM
2000	2500	7000	PBF27000TM	PBF37000TM
2000	3000	8000	PBF28000TM	PBF38000TM
2000	3500	10000	PBF210000TM	PBF310000TM
2000	4000	12000	PBF212000TM	PBF312000TM

Magnetic Only Breakers©

For description, refer to Application Data 29-160. To order a complete breaker, select trip unit, plus frame and connectors.

Type PB breakers meet the requirements for Class 25a circuit breakers as defined by Federal Specification W-C-375b.

Underwriters' Laboratories, Inc. Listed Interrupting Ratings

Max. Volts	Amperes
240 AC	150,000 Asym., 125,000 Sym.
480 AC	115,000 Asym., 100,000 Sym.
600 AC	115,000 Asym., 100,000 Sym.
250 DC©	75,000 Amperes $\mathbf{6}$

For all 3-phase Delta, grounded B phase applications, contact your local CutlerHammer Field Sales Office.

Special Calibrations(

Special calibration price additions apply to ampere ratings not listed as standard, or for ambients other than $40^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}$. For frequencies other than $0-60 \mathrm{~Hz} \mathrm{AC}$, refer to Cutler-Hammer. See Application Data 29-160 for information regarding special conditions.

$50^{\circ} \mathrm{C}$ Calibration(06

Add suffix " V " to catalog number for complete breaker or trip unit only, when ordering breakers to be used in $50^{\circ} \mathrm{C}$ ambients.

For CSA, see information below.
Canadian Standards Association (CSA) Listing
Most standard thermal magnetic molded case circuit breakers listed with Underwriters' Laboratories, Inc., and having a UL label are also listed with CSA and may be marked with the CSA monogram.

Bus Bar Connections(

Bus Bar Connections $\boldsymbol{7}^{\text {"T" Connector }}$ (For Cu/AI Bus)
Two required per pole. For rear bus connection of breakers thru 2000 amperes. Accepts up to four bus bolts. May be rotated 90°.

Catalog Number

BA2000PB

"C" Connector (For Cu/AI Bus)
Two required per pole. For rear bus connection of 2500 ampere breakers.

Breaker Amperes	Catalog Number
2500	BA2500PB

Cable Connector

Fits "T" Connector and 2000 ampere front connected breakers. Accepts four 400-600 MCM copper cables.

Catalog Number

505C706G04

MOLDED CASE CIRCUIT BREAKERS
 Replacement Circuit Breakers

REPLACEMENT CAPABILITIES, Continued
Types LC, LCC, LCA, LCCA, MARK 75^{\circledR} Types HLC, HLCC, HLCA, HLCCA SELTRONIC ${ }^{\text {TM }}$ with Solid-state Trip Units 600 Volts AC, $50 / 60 \mathrm{~Hz}$
Complete Breaker Requires Frame, Rating Plug and Terminals

(1) 2-pole breakers are supplied in 3-pole frames with current carrying parts omitted from center pole.
(2) UL Inc. recognized component.

REPLACEMENT CAPABILITIES, Continued

Types LCG, LCCG, LCGA, LCCGA, MARK 75^{\circledR} HLCG, HLCCG, HLCGA, HLCCGA SELTRONIC ${ }^{\text {TM }}$ with Built-in Ground Fault Protection
Complete Breaker Requires Frame, Rating Plug, and Terminals. Extra Current Transformer Included for Neutral. $\mathbf{0}$ (2 See Accessories, page 58 for Remote Ground Fault Trip Indicator.

Frame Only			Ground Fault Characteristics	
Poles(3	Standard (Long Delay, Short Time) and Ground Fault Trip	Long Delay, Short Time, Adjustable Short Delay Time and Ground Fault Trip	Pick-up Setting Amperes	Time Setting
	Catalog Number			
Breakers for Standard Application				
Types LCG 150 and LCGA 150 (75-150 Amperes)4				
3	LCG3150F	LCGA3150F	50-150	3.5-30 Cy
MARK 75 ${ }^{\text {® }}$ Types HLCG 150 and HLCGA 150 (75-150 Amperes)¢				
3	HLCG3150F	HLCGA3150F	50-150	3.5-30 Cy
Types LCG 300 and LCGA 300 (150-300 Amperes)4				
3	LCG3300F	LCGA3300F	60-300	3.5-30 Cy
MARK 75 ${ }^{\text {® }}$ Types HLCG 300 and HLCGA 300 (150-300 Amperes)9				
3	HLCG3300F	HLCGA3300F	60-300	3.5-30 Cy
Types LCG 400 and LCGA 400 (200-400 Amperes)4				
3	LCG3400F	LCGA3400F	80-400	3.5-30 Cy
MARK 75 ${ }^{\text {® }}$ Types HLCG 400 and HLCGA 400 (200-400 Amperes)9				
3	HLCG3400F	HLCGA3400F	80-400	3.5-30 Cy
Types LCG 600 and LCGA 600 (300-600 Amperes)4				
3	LCG3600F	LCGA3600F	120-600	3.5-30 Cy
MARK 75 ${ }^{\circledR}$ Types HLCG 600 and HLCGA 600 (300-600 Amperes)¢				
3	HLCG3600F	HLCGA3600F	120-600	3.5-30 Cy
Breakers for Application at 100\% Rating				
Types LCCG 600 and LCCGA 600 (300-600 Amperes)4				
3	LCCG3600F	LCCGA3600F	120-600	3.5-30 Cy
MARK 75 ${ }^{\text {® }}$ Types HLCCG 600 and HLCCGA 600 (300-600 Amperes)4				
3	HLCCG3600F	HLCCGA3600F	120-600	3.5-30 Cy

Type LC Accessories and Modifications

Field Mountable Attachments0034

Description	Style Number
Provision to trip flux tranfer shunt trip from external source:	
32 to 120 Volts DC to 60 Hz (5)	1371D11G22
240 to 600 Volts AC, 50/60 Hz6	1371D11G32
Provision to trip flux transfer shunt trip from external source, plus a 1A-1B auxiliary switch:	
32 to 120 Volts DC to 60 Hz 5	1371D11G15
240 to 600 Volts AC, $50 / 60 \mathrm{~Hz} 6$	1371D11G25
Provision to trip flux tranfer shunt trip from 24 Volts DC source	1371D93G01
1A-1B Auxiliary Switch	1371D11G03

For CSA, see page 41.

Type LC breakers meet requirements for Class 21a circuit breakers, and Type HLC meet requirements for Class 23a as defined by Federal Specification W-C-375b.
(1) Only one attachment may be mounted per breaker.
(2) Refer to Cutler-Hammer for other combinations
(3) Molded case switches do not use standard SELTRONIC ${ }^{\text {TM }}$ attachments, and should be ordered by description for factory mounting.
4 Does not void listing of UL listed breakers.
© Rated 48 volts minimum for ground fault applications requiring tripping at 55% of voltage. © Not for use on ground fault applications. (T) Interrupting capacities shown do not apply to molded case switches.

Underwriters' Laboratories, Inc. Listed Interrupting Ratings?

Volts Max.	Amperes
Standard Breakers	
240 VAC	50,000 Asym., 42,000 Sym.
480 VAC	35,000 Asym., 30,000 Sym.
600 VAC	25,000 Asym., 22,000 Sym.
MARK 75 ${ }^{\circledR}$ Breakers	
240 VAC	75,000 Asym., 65,000 Sym.
480 VAC	40,000 Asym., 35,000 Sym.
600 VAC	30,000 Asym., 25,000 Sym.

For all 3-phase Delta, grounded B phase applications, contact your local CutlerHammer Sales Office.

Additional Accessories and Modifications Refer to pages 58-68.
(1) Available without extra CT for neutral. Order by description as similar to above except without neutral CT or external CT terminal connections at same price. Note the standard ground fault unit can also be used without the neutral CT.
(2) These breakers use LC terminals. The fourth CT uses MC breaker terminals, page 46.
(8 2-pole breakers supplied in 3-pole frames with current carrying parts omitted from center pole.
4 For applications other than standard residual scheme, see Application Data 29-160.

Terminals (Order Separately) Two terminals are required per pole.
Terminals are UL listed for wire type and range listed below. When used with aluminum cable, use joint compound.

Max. Amps	Catalog Number	No. of Cables, Wire Range, Type

150-, 300-, and 400-Ampere Frames Only
AI/Cu Pressure Terminals

225	TA225LA1	(1) $\# 6-350 \mathrm{MCM} \mathrm{Cu}$, or (1) $\# 4-350 \mathrm{MCM} \mathrm{AI}$ (1) $\# 4-250 \mathrm{MCM} \mathrm{Al} / \mathrm{Cu}$, plus (1) $3 / 0-600 \mathrm{MCM} \mathrm{AI} / \mathrm{Cu}$
400	TA400LA	

Optional Copper Pressure Terminals		
225	T225LA	(1) \#6-350 MCM Cu
225	T225LBF	(1) \#6-250 MCM Cu
400	T401LA	(1) \#4-250 MCM Cu, plus
		(1) 3/0-600 MCM Cu

600 Ampere Frame Only
AI/Cu Pressure Terminals

500 TA602LD (2) 250-350 MCM AI/Cu 600 TA603LA (2) 400-500 MCM AI/Cu 600 (Std.) TA600LA (2) 250-500 MCM AI/CuOptional Copper Pressure Terminals 600\quad T600LA

44

REPLACEMENT CAPABILITIES, Continued

Types MC, MCC, MCA, MCCA, MARK $75{ }^{\circledR}$ Types HMC, HMCC, HMCA, HMCCA SELTRONIC ${ }^{\text {TM }}$ with Solid State Trip Units, 600 Volts AC, $50 / 60 \mathrm{~Hz}$

Complete Breaker Requires Frame, Rating Plug, and Terminals

[^8](2) UL Inc. recognized component.
(3 Available without extra CT for neutral. Order by description as similar to above except without neutral CT or external CT Terminal connections same price.
Note the standard ground fault unit above can also be used without the neutral CT.
4 Order two of the desired terminals for each pole of the breaker and two for the neutral CT.
© For applications other than standard residual scheme, see Application Data 29-160.

REPLACEMENT CAPABILITIES, Continued

Type MC Accessories and Modifications

For CSA, see page 41.
Type MC SELTRONIC ${ }^{\text {TM }}$ breakers meet requirements for Class 21a, and MARK 75 ${ }^{\circledR}$. Type HMC meet Class 23a as defined by Federal Spec. W-C-375b.

UL Listed Interrupting Capacity, RMS Symmetrical Amperes(

Breaker	AC Volts		
	240	480	600
MC, MCG	42000	30000	22000
HMC, HMCG	65000	50000	25000

Field Mountable Attachments(2346

Description	Style Number
Provision to trip flux tranfer shunt trip from external source:	
32 to 120 Volts DC to $60 \mathrm{Hz*}$	1371D72G22
240 to 600 Volts AC, $50 / 60 \mathrm{~Hz}$	1371D72G32
Provision to trip flux transfer shunt trip from external source, plus 1A-1B Auxiliary Switch:	
32 to 120 Volts DC to 60 Hz (1371D72G15
240 to 600 Volts AC, $50 / 60 \mathrm{~Hz}$ (1371D72G25
Provision to trip flux tranfer shunt trip from external 24-Volt DC source	1370D85G01
1A-1B Auxiliary Switch	1371D72G03

Terminals

Two Terminals Required per Pole8

Max. Amps	Catalog Number	No. of Cables, Wire Range, Type					
Al/Cu Pressure Terminals							
600	TA700MA19	(2) \#1-500 MCM 800 (Std.) 800					
TA800MA29	(3) $3 / 0-400$ MCM TA801MA9	(2) $500-750$ MCM	$	$	Optional Copper Pressure Terminals		
:---	:---	:---:					
600	T600MA1						
800	T800MA1			(2) $2 / 0-500$ MCM			
:---							
(3) $3 / 0-300$ MCM	\quad						

Rating Plugs

Select from page 53.
Additional Accessories and Modifications Refer to pages 58-68.

[^9]C-

REPLACEMENT CAPABILITIES, Continued
Type NC, NCA, MARK 75^{\circledR} Type HNC, HNCA SELTRONIC ${ }^{\text {TM }}$ with Solid State Trip Units, 600 Volts AC
$50 / 60 \mathrm{~Hz}$ Complete Breaker Requires Frame, Rating Plug, and Terminals

Frame Only			
Poles 0	Standard (Long Delay and Short Time)	Short Time Only 3	Long Delay, Short Time and Adjustable Short Delay Time (.08-. 28 Seconds)
	Catalog Numbers		
Types NC and NCA (800 to $\mathbf{1 2 0 0}$ Amperes)			
$\begin{aligned} & 2 \\ & \hline 3 \end{aligned}$	$\begin{aligned} & \text { NC21200F } \\ & \text { NC31200F } \end{aligned}$	NC21200FM NC31200FM	NCA21200F NCA31200F
Mark 75 Types HNC and HNCA (800 to 1200 Amperes)			
$\begin{aligned} & \hline 2 \\ & 3 \end{aligned}$	HNC21200F HNC31200F	HNC21200FM HNC31200FM	HNCA21200F HNCA31200F

NC, $\mathbf{6 0 0}$ Volts AC

Type NC 1200 Molded Case Switch: Refer to Page 55
Type NCG, NCGA, and MARK $75{ }^{\circledR}$ Type HNCG, HNCGA SELTRONIC ${ }^{\text {™ }}$ with Built-in Ground Fault Protection
Complete Breaker Requires Frame, Rating Plug and Terminals - Extra Current Transformer Included for Neutral(34 See page 58 for Optional Remote Ground Fault Trip Indicator

Frame Only			Ground Fault Characteristics	
Poles	Standard (Long Delay, Short Time and Ground Fault Trip)	Long Delay, Short Time, Adjustable Short Delay Time, and Ground Fault Trip	Pick-up Setting Amps	Time Setting
	Catalog Numbers			
Types NCG and NCGA (800 to 1200 Amperes)(5				
3	NCG31200F	NCGA31200F	120-1200	3.5-30 Cy
Mark 75 Types HNCG and HNCGA (800 to 1200 Amperes)(5				
3	HNCG31200F	HNCGA31200F	120-1200	3.5-30 Cy
Accessories and Modifications				

Field Mountable Attachments©089

Description	Style Number
Provision to trip flux transfer shunt trip from external source:	
32 to 120 Volts DC to 60 Hz (10	1372D39G13
240 to 600 Volts AC, $50 / 60 \mathrm{~Hz}$ (1)	1372D39G23
Provision to trip flux transfer shunt trip from external source, plus a 1A-1B Auxiliary Switch:	
32 to 120 Volts DC to 60 Hz (10.	1372D39G16
240 to 600 Volts AC, $50 / 60 \mathrm{~Hz}$ (1)	1372D39G26
Provision to trip flux transfer shunt trip from external 24-volt DC source	1371D94G05
1A-1B Auxiliary Switch. . . .	1371D39G03

Additional Accessories and Modifications

 Refer to pages 58-68.
Rating Plugs

Select from page 53.

For CSA, see page 41.
Type NC SELTRONIC ${ }^{\text {rw }}$ breakers meet requirements for Class 21a, and MARK $75{ }^{\circledR}$. Type HNC meet Class 23a as defined by Federal Spec. W-C-375b.

Terminals (2)

Two Terminals Required per Pole

Max. Amps	Catalog Number	No. of Cables, Wire Range, Type
Al/Cu Pressure Terminals		
1000	TA1000NB1®	(3) $3 / 0-400 \mathrm{MCM}$
1200 (Std.)	TA1200NB1®	(4) $4 / 0-500 \mathrm{MCM}$
1200	TA1201NB1®	(3) $500-750 \mathrm{MCM}$

Optional Copper Pressure Terminals			
1000	T1000NB1	(3) $3 / 0-500 \mathrm{MCM}$ 1200	
T1200NB1	(4) $3 / 0-400 \mathrm{MCM}$		

UL Listed Interrupting Capacity, RMS

 Symmetrical Amperes©| Breaker | AC Volts | | |
| :--- | :--- | :--- | :--- |
| | 240 | 480 | 600 |
| NC, NCG | 42000 | 30000 | 22000 |
| HNC, HNCG | 65000 | 50000 | 25000 |

(1) 2-pole breakers are supplied in 3-pole frames with current-carrying parts omitted from center pole.
(2) UL Inc. recognized component.
(3) Available without extra CT for neutral. Order by description as similar to above except without neutral CT or external CT Terminal connections at same price. Note the standard ground fault unit above can also be used without the neutral CT.
(4) Order two of the desired terminals for each pole of the breaker and two for the neutral CT.
© For applications other than standard residual scheme, see Application Data 29-160.
© For other possible combinations, refer to factory.
© Molded case switches do not use standard SELTRONIC ${ }^{\text {TM }}$ attachments and should be ordered by description.
(8 Does not void listing of UL listed breakers.
© Only one of the attachments may be mounted per breaker.
(1) Rated 48 volts minimum for ground fault applications requiring tripping at 55% of voltage.
(1) Not for ground fault applications.
(2) Also used on breakers with ground fault and on separately mounted neutral current transformers.
(3) Type AI/Cu pressure terminal.
(4) Interrupting capacities shown do not apply to molded case switches.

C-

REPLACEMENT CAPABILITIES, Continued

Types PC, PCA, PCC, PCCA 2000, 2500 and 3000 Ampere SELTRONIC ${ }^{\text {Tm }}$ with Solid State Trip Units, 600 Volts AC, $50 / 60 \mathrm{~Hz}$
Complete Breaker Requires Frame, Rating Plug and Rear Connectors (connectors are included in 3000 Ampere and all front connected frames.) Suitable for reverse feed applications.

Breakers for Standard Applications				Breakers for Standard Applicationa at 100\% Rating			
Frame Only				Frame Only			
Poles(1)	Standard (Long Delay and Short Time)	Short Time Only ${ }^{2}$	Long Delay, Short Time Trip, and Adjustable Short Delay Time (.08-. 28 seconds)	Poles(1)	Standard (Long Delay and Short Time Trip)	Magnetic Only(2	Long Delay, Short Time Trip, and Adjustable Short Delay Time (.08-. 28 seconds)
	Catalog Numbers				Catalog Numbers		
Type PC 2000, 1000 to 2000 Amperes 3			Type PCA 20003	Type PCC 2000, 1000 to 2000 Amperes4			
Rear Connected Breakers			Rear Connected Breakers	Rear Connected Breakers			Rear Connected Breakers
2 3	$\begin{aligned} & \text { PC22000F } \\ & \text { PC32000F } \end{aligned}$	$\begin{aligned} & \text { PC22000FM } \\ & \text { PC32000FM } \end{aligned}$	$\begin{aligned} & \text { PCA22000F } \\ & \text { PCA32000F } \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { PCC22000F } \\ & \text { PCC32000F } \end{aligned}$	$\begin{aligned} & \text { PCC22000FM } \\ & \text { PCC32000FM } \end{aligned}$	PCCA22000F PCCA32000F
Front Connected Breakers			Front Connected Breakers	Front Connected Breakers			Front Connected Breakers
2	$\begin{aligned} & \text { PCF22000F } \\ & \text { PCF32000F } \end{aligned}$	$\begin{aligned} & \text { PCF22000FM } \\ & \text { PCF32000FM } \end{aligned}$	$\begin{aligned} & \text { PCFA22000F } \\ & \text { PCFA32000F } \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	PCCF22000F PCCF32000F	$\begin{aligned} & \text { PCCF22000FM } \\ & \text { PCCF32000FM } \end{aligned}$	$\begin{aligned} & \text { PCCFA22000F } \\ & \text { PCCFA32000F } \end{aligned}$
Type PC 2500, 1400 to 2500 Amperes(3			Type PCA 25003	Type PCC 2500, 1400 to 2500 Amperes ${ }^{\text {4 }}$			
Rear Connected Breakers			Rear Connected Breakers	Rear Connected Breakers			Rear Connected Breakers
2	$\begin{aligned} & \mathrm{PC} 22500 \mathrm{~F} \\ & \mathrm{PC} 32500 \mathrm{~F} \end{aligned}$	$\begin{aligned} & \hline \text { PC22500FM } \\ & \text { PC32500FM } \end{aligned}$	PCA22500F PCA32500F	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { PCC22500F } \\ & \text { PCC32500F } \end{aligned}$	PCC22500FM PCC32500FM	PCCA22500F PCCA32500F
Front Connected Breakers			Front Connected Breakers	Front Connected Breakers			Front Connected Breakers
2	PCF22500F PCF32500F	$\begin{aligned} & \text { PCF22500FM } \\ & \text { PCF32500FM } \end{aligned}$	PCFA22500F PCFA32500F	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	PCCF22500F PCCF32500F	$\begin{aligned} & \text { PCCF22500FM } \\ & \text { PCCF32500FM } \end{aligned}$	PCCFA22500F PCCFA32500F
Type PC 3000, 1600 to 3000 Amperes(3			Type PCA 30003	Type PC 3000, 1600 to $\mathbf{3 0 0 0}$ Amperes ${ }^{4}$			
2	$\begin{aligned} & \text { PC23000F } \\ & \text { PC33000F } \end{aligned}$	$\begin{aligned} & \text { PC23000FM } \\ & \text { PC33000FM } \end{aligned}$	PCA23000F PCA33000F	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { PCC23000F } \\ & \text { PCC33000F } \end{aligned}$	$\begin{aligned} & \text { PCC23000FM } \\ & \text { PCC33000FM } \end{aligned}$	PCCA23000F PCCA33000F

PC, 600 Volts AC

Type PC, PCC Molded Case Switches: Refer to Page 55

Accessories and Modifications

Drawout Mounting Breakers, 3-Pole Only Breaker frame and complete drawout frame with safety tripping interlock.
Order by description. Secondary contacts supplied as required at no extra charge. Order required rating plug separately. 6 Refer to page 68.

Rating Plugs
Select from page 53.

Stationary Portion of Drawout Frame

 Only for Future Breaker Installations, 3-Pole Only. Refer to page 68.Special Type PCC Breakers for SCR Power Supplies
These drawout mounting breakers are designed with a 2 to 4 times magnetic trip adjustment and special time delay trip characteristics to provide maximum protection and coordination with SCR power supplies on offshore drilling rigs. Suitable for application at 100% of rating.
Order by description. Secondary contacts supplied as required. Order standard rating plugs separately.
Availability: PCC2000, PCC2500 Drawout Mounting breakers
Type PC and PCC meet requirements of Class 25a as defined in Federal Spec. W-C-375b.

For CSA, see page 41.

UL listed Interrupting Capacity RMS
Symmetrical Amperes (Std. and Grd. Flt. Breakers)(8

Breaker	AC Volts		
	240	480	600
PC, PCC	125,000	100,000	100,000

Additional Accessories and Modifications Refer to pages 58-68.
(1) 2-pole breakers are supplied in 3-pole frames with current carrying parts omitted from center pole.
(2) UL Inc. recognized component.
(3) UL listed for standard applications.

4 These breakers are UL listed for application at 100% of rating per NEC exceptions when used in a properly ventilated and listed enclosure.
(5) Includes breakers without adjustable short delay time.

6 Secondary contacts, when required for motor operator or other attachment must be specified and factory mounted on stationary frame when it is ordered separately.
(7) When ordering breaker with movable portion only for use with previously installed stationary portion, deduct the list price of stationary portion from list price of complete breaker with drawout frame.
8 Interrupting capacities shown do not apply to molded case switches.

MOLDED CASE CIRCUIT BREAKERS
 Replacement Circuit Breakers

REPLACEMENT CAPABILITIES, Continued

Type PCG, PCGA, PCCG, PCCGA SELTRONIC ${ }^{\text {TM }}$ with Built-in Ground Fault Protection
Includes Extra Current Transformer for Neutral0 (Optional Remote Ground Fault Trip Indicator Kit, page 58)

Breakers for Standard Application

Complete Breaker Requires Frame, Rating Plug and Rear Connectors (except Front Connected Frames and 3000 Ampere Frames Include Connectors)

Frames Only			Ground Fault Characteristics	
Poles	Standard (Long Delay, Short Time and Ground Fault Trip)	Long Delay, Short Time, Ground Fault Trip, and Adjustable Short Delay Time (.08-. 28 Seconds)	Pick-up Setting	Time Setting
	Catalog Numbers			
Type PCG 200008		Type PCGA 2000081000 to 2000 Amperes 3		
Rear Connected Breakers				
3	PCG32000F	PCGA32000F	200-1200	3.5-30 Cycles
Front Connected Breakers				
3	PCFG32000F	PCFGA32000F	200-1200	3.5-30 Cycles
Type PCG 250008		Type PCGA 2500031400 to 2500 Amperes 3		
Rear Connected Breakers				
3	PCG32500F	PCGA32500F	240-1200	3.5-30 Cycles
Front Connected Breakers				
3	PCFG32500F	PCFGA32500F	240-1200	3.5-30 Cycles
Type PCG 300008		Type PCGA 3000081600 to 3000 Amperes 3		
3	PCG33000F	PCGA33000F	300-1200	3.5-30 Cycles

Breakers for Application at 100\% Rating

Frames Only			Ground Fault Characteristics	
Poles	Standard (Long Delay, Short Time and Ground Fault Trip)	Long Delay, Short Time, Ground Fault Trip, and Adjustable Short Delay Time (.08-. 28 Seconds)	Pick-up Setting	Time Setting
	Catalog Numbers			
Type PCCG 20004		Type PCCGA 200041000 to 2000 Amperes 3		
Rear Connected Breakers				
3	PCCG32000F	PCCGA32000F	200-1200	3.5-30 Cycles
Front Connected Breakers				
3	PCCFG32000F	PCCFGA32000F	200-1200	3.5-30 Cycles
Type PCCG 25004		Type PCCGA 250041400 to 2500 Amperes(
Rear Connected Breakers				
3	PCCG32500F	PCCGA32500F	240-1200	3.5-30 Cycles
Front Connected Breakers				
3	PCCFG32500F	PCCFGA32500F	240-1200	3.5-30 Cycles
Type PCCG 30004		Type PCCGA 300041600 to 3000 Amperes 3		
3	PCCG33000F	PCCGA33000F	300-1200	3.5-30 Cycles

[^10]
MOLDED CASE CIRCUIT BREAKERS
 Replacement Circuit Breakers

REPLACEMENT CAPABILITIES，Continued
Type PC Accessories and Modifications
Field Mountable Attachments008

Description	Style Number
Provision to trip flux transfer shunt trip from external source：	
32 to 120 Volts DC to $60 \mathrm{Hz4}$	1372D35G22
240 to 600 Volts AC， $50 / 60 \mathrm{~Hz}$ ©	1372D35G32
Provision to trip flux transfer shunt trip from external source plus 1A－1B Auxiliary Switch：	
32 to 120 Volts DC to $60 \mathrm{Hz4}$	1372D35G15
240 to 600 Volts AC， $50 / 60 \mathrm{~Hz}$（	1372D35G25
Provision to trip flux transfer shunt trip from external 24－volt DC source	1371D95G01
1A－1B Auxiliary Switch ．．．．．．	1372D35G03

Rear Bus Connectors

Two required per pole．Fixed mounting breakers．

Breaker Frame『	Connector Style／Cat．No．
PC2000才，PCC2000	BA2000PB
PC2500才，PCC2500	BA2500PB
PC3000，PCC3000	Included in Frame

Racking Crank for Drawout Frames
To engage or withdraw the moving por－ tion of the drawout．A standard $1 / 2$ inch hex socket with extension can be used for this purpose．

Style Number
765A767G01

Cell Switches Mounted on Drawout

Frames，All Ratings

A maximum of four switches can be pro－ vided．Order by description．Each switch provides a NO and NC contact that trans－ fers before reaching the test position when being withdrawn，and after the test position when being racked in．

Approximate Shipping Wts．，PC and PCC Breakers（3－Poles）

Rating	Breaker			
	PC，	PCF，	PCG，	PCFG，
	PCC	PCCF	PCCG	PCCFG
2000	136 Ibs．	163 Ibs．	160 Ibs．	185 Ibs．
2500	145 Ibs．	175 Ibs．	170 Ibs．	200 Ibs．
3000	220 Ibs．	$\ldots \ldots .$.	245 Ibs．	$\ldots \ldots .$.

Bus Bar Connections8

Bus Bar Connections 8 ＂T＂Connector （For $\mathrm{Cu} / \mathrm{Al}$ Bus）
Two required per pole．For rear bus connection of breakers thru 2000 amperes accepts up to four bus bolts．May be rotated 90° ．

＂C＂Connector（For Cu／AI Bus）
Two required per pole．For rear bus con－ nection of 2500 ampere breakers．

Breaker Amperes	Catalog Number
2500	BA2500PB

Cable Connector

Fits＂T＂Connector and 2000 ampere front connected breakers．Accepts four 400－600 MCM copper cables．

Catalog Number

505C706G04

REPLACEMENT CAPABILITIES, Continued

Rating Plug Selection Data

Rating Plugs Listed Below Are For Both Standard Breakers and Breakers with Built-in Ground Fault Protection

Rating Plugs Only (For 2- or 3-Pole Frames)

Continuous Ampere Rating $\mathbf{0}$	Magnetic Trip Setting, Amperes		Fixed Rating Plugs	Adjustable Rating Plugs(23
	Low	High	Catalog Number	
For 150 Ampere Frames: LC, LCA, LCG, LCGA, HLC, HLCA, HLCG, HLCGA				
75	225	750	1LC75	
90	270	900	1LC90	
100	300	1000	1LC100	A1LC1004
125	375	1250	1LC125	A1LC125
150	450	1500	1LC150	A1LC150@

For 300 Ampere Frames: LC, LCA, LCG, LCGA, HLC, HLCA, HLCA, HLCG, HLCGA

150	450	1500	3LC150	
175	525	1750	3LC175	
200	600	2000	3LC200	
225	675	2250	3LC225	A3LC225
250	750	2500	3LC250	A3LC250
275	825	2750	3LC275	A3LC275
300	900	3000	3LC300	A3LC300®
For 400 Ampere Frames: LC, LCA, LCG, LCGA, HLC, HLCA, HLCG, HLCGA				
200	600	2000	4LC200
225	675	2250	4LC225
250	750	2500	4LC250	
300	900	3000	4LC300	A4LC300
350	1050	3500	4LC350	A4LC350
400	1200	4000	4LC400	A4LC400@

For 600 Ampere Frames: LC, LCS, LCG, LCGA, HLC, HLCA, HLCG, HLCGA, LCC, LCCA, HLCC, HLCCA, LCCG, LCCGA, HLCCG, HLCCGA

300	900	3000	6 LC300	$\ldots \ldots \ldots$.
350	1050	3500	$6 L C 350$	$\ldots \ldots .$.
400	1200	4000	$6 L C 400$	A6LC400®
450	1350	4500	$6 L C 450$	A6LC450
500	1500	5000	6LC500	A6LC500
600	1800	6000	6LC600	A6LC600®

For 800 Ampere Frames: MC, MCA, MCG, MCGA, HMC, HMCA, HMCG, HMCGA, MCC, MCCA, HMCC, HMCCA, MCCG, MCCGA, HMCCG, HMCCGA

400	1200	4000	8MC400	
500	1500	5000	8MC500	A8MC5006
600	1800	6000	8MC600	A8MC600
700	2100	7000	8MC700	A8MC700
800	2400	8000	8MC800	A8MC800@
For 1200 Ampere Frames: NC, NCA, NCG, NCGA, HNC, HNCA, HNCG, HNCGA				
800	1600	6400	12NC800	A12NC8004
900	1800	7200	12NC900	A12NC900
1000	2000	8000	12NC1000	A12NC1000
1200	2400	9600	12NC1200	A12NC1200®

Rating Plugs Only (For 2- or 3-Pole Frames)				
Continuous Ampere	Magnetic Trip Setting, Amperes		Fixed Rating Plugs	Adjustable Rating Plugs(23
Rating ${ }^{\text {c }}$	Low	High	Catalog Numbers	
For 2000 Ampere Frames: PC, PCA, PCC, PCCA, PCG, PCGA, PCCG, PCCGA				
1000	2000	8000	20PC1000	
1200	2400	9600	20PC1200	
1400	2800	11200	20PC1400	
1600	3200	12800	20PC1600	A20PC1600
1800	3600	14400	20PC1800	A20PC1800
2000	4000	16000	20PC2000	A20PC2000®

For 2500 Ampere Frames: PC, PCA, PCC, PCCA, PCG, PCGA, PCCG, PCCGA

1400	2800	11200	25PC1400	$\ldots \ldots \ldots \ldots$
1600	3200	12800	25PC1600	$\ldots \ldots \ldots \ldots$
1800	3600	14400	25PC1800	A25PC1800
2000	4000	16000	25PC2000	A25PC2000
2500	5000	20000	25PC2500	A25PC2500@

For 3000 Ampere Frames: PC, PCA, PCC, PCCA, PCG, PCGA, PCCG, PCCGA

1600	3200	12800	30PC1600	$\ldots \ldots \ldots \ldots$
1800	3600	14400	$30 P C 1800$	$\ldots \ldots \ldots \ldots$
2000	4000	16000	$30 P C 2000$	$\ldots \ldots \ldots \ldots$
2500	5000	20000	$30 P C 2500$	A30PC2500
3000	6000	24000	$30 P C 3000$	A30PC3000

NOTE: Refer to your local Cutler-Hammer Field Sales Office for old style (three prong) ground fault rating plugs

[^11]
REPLACEMENT CAPABILITIES

Molded Case Switches

Molded Case Switches are Underwriters' Laboratories, Inc. listed devices and are available only as high magnetic trip type with fixed trip setting.

Molded Case Switches with High Magnetic Trip (Fixed Trip Setting)

Switch Catalog Number0®	No. of Poles	Max. Volts	Max. Amperes
DA2400WK	2	240	400
DA3400WK	3	240	400
EB1100LK	1	120	100
EB2100LK	2	240	100
EB3100LK	3	240	100
EB3100SLK	3	240	100
EHB1100LK	1	277	100
EHB2100LK	2	480	100
EHB3100LK	3	480	100
EHB3100SLK	3	480	100
FB2100LK	2	600	100
FB2150LK	2	600	150
FB3100LK	3	600	100
FB3150LK	3	600	150
FB3150SLK	3	600	150
FB4100LK	4	$277 / 480$	100
FB4150LK	4	$277 / 480$	150
JA2225WK	2	600	225
JA2225WSK	2	600	225
JA3225WK	3	600	225
JA3225WSK	3	600	225

Switch Catalog Number0®	No. of Poles	Max. Volts	Max. Amperes
JB2250WK	2	600	250
JB2250WSK	2	600	250
JB3250WK	3	600	250
JB3250WSK	3	600	250
KA2225WK	2	600	225
KA2225WSK	2	600	225
KA3225WK	3	600	225
KA3225WSK	3	600	225
KB2250WK	2	600	250
KB2250WSK	2	600	250
KB3250WK	3	600	250
KB3250WSK	3	600	250
LB2400WK	2	600	400
LB2400WSK	2	600	400
LB3400WK	3	600	400
LB3400WSK	3	600	400
LBB2400WK	2	600	400
LBB2400WSK	2	600	400
LBB3400WK	3	600	400
LBB3400WSK	3	600	400

Molded Case Switch Terminal Data

MCS Type	Max. Switch Amperes	Standard Terminals				Optional Terminals			
		Terminal Type or Cat. Number	Wire Type	No. of Wires	Wire Range	Terminal Type or Cat. Number	Wire Type	No. of Wires	Wire Range
DA, LB, LBB	400	T400DA2	Cu only	2	3/0-250 MCM
$\begin{aligned} & \mathrm{EB}, \mathrm{EHB}, \mathrm{FB} \\ & \text { FB } \end{aligned}$	$\begin{aligned} & 100 \\ & 150 \end{aligned}$	Pressure Pressure	$\begin{aligned} & \mathrm{Cu} \\ & \mathrm{Cu} / \mathrm{Al} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \# 14-1 / 0 \\ & \# 4-4 / 0 \end{aligned}$	Pressure	$\mathrm{Cu} / \mathrm{Al}$	1	\#4-4/0
$\begin{aligned} & \hline \text { JA, KA } \\ & \text { JB, KB } \end{aligned}$	$\begin{aligned} & 225 \\ & 250 \end{aligned}$	$\begin{aligned} & \hline \text { TA225LA1 } \\ & \text { TA250KB } \end{aligned}$	$\begin{aligned} & \hline \mathrm{Cu} / \mathrm{Al} \\ & \mathrm{Cu} / \mathrm{Al} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	\#4-350 MCM \#4-350 MCM	$\begin{aligned} & \hline \text { T225LA } \\ & \text { T250KB } \end{aligned}$	$\begin{aligned} & \mathrm{Cu} \\ & \mathrm{Cu} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \text { \#6-350 MCM } \\ & \# 4-350 \mathrm{MCM} \end{aligned}$

Molded Case Switches with High Magnetic Trip - Trip Setting and Tolerance

Frame	Rating	Trip Setting (Amperes)	Tolerance (\%)
EB	100	1000	± 20
EHB/FB	100	1200	± 20
FB	150	1500	± 20
DA/LB/LBB	400	4000	+10
JA/KA	225	2250	-0
		2500	-10
JB/KB	250		-10
			-0

(1) Catalog number suffix identification:

K = Molded Case Switch with High Magnetic
Trip (Fixed Trip Setting)
S = Saf-T-Vue ${ }^{\circledR}$ cover
$\mathrm{L}=$ With Line and Load Terminals
$\mathrm{W}=$ No terminals
(2) Molded case switch dimensions are the same as the equivalent thermal magnetic breaker. Refer to Dimension Sheet 29-171.

REPLACEMENT CAPABILITIES, Continued

Molded Case Switches

Molded Case Switches with High Magnetic Trip (Fixed Trip Setting)

Switch Catalog Number0®	No. of Poles	Max. Volts	Max. Amperes
CA2225WK	2	240	225
CA3225WK	3	240	225
LA2400WK	2	600	400
LA2400WSK	2	600	400
LA2600WK	2	600	600
LA2600WSK	2	600	600
LA3400WK	3	600	400
LA3400WSK	3	600	400
LA3600WK	3	600	600
LA3600WSK	3	600	600
LAB2400WK	2	600	400
LAB2400WSK	2	600	400
LAB3400WK	3	600	400
LAB3400WSK	3	600	400
LC2600WKB	2	600	600
LC3600WKB	3	600	600
LCC2600WKB	2	600	600
LCC3600WKB	3	600	600

Switch Catalog Number03	No. of Poles	Max. Volts	Max. Amperes
MA2800WK	2	600	800
MA2800WSK	2	600	800
MA3800WK	3	600	800
MA3800WSK	3	600	800
MC2800WK8	2	600	800
MC3800WK8	3	600	800
MCC2800WK8	2	600	800
MCC3800WK8	3	600	800
NB21200WK	2	600	1200
NB21200WSK	2	600	1200
NB31200WK	3	600	1200
NB31200WSK	3	600	1200
NC21200WKB	2	600	1200
NC31200WKB	3	600	1200
PB22000WK	2	600	2000
PB22500WK	2	600	2500
PB32000WK	3	600	2000
PB32500WK	3	600	2500

Switch Catalog Number(1)	No. of Poles	Max. Volts	Max. Amperes
PBF22000K	2	600	2000
PBF32000K	3	600	2000
PC22000WK	24	600	2000
PC22500WK	24	600	2500
PC23000K	24	600	3000
PC32000WK	34	600	2000
PC32500WK	34	600	2500
PC33000K	34	600	3000
PCC22000WK	24	600	2000
PCC22500WK	24	600	2500
PCC23000K	24	600	3000
PCC32000WK	34	600	2000
PCC32500WK	34	600	2500
PCC33000K	34	600	3000
PCF22000K	24	600	2000
PCF32000K	34	600	2000

Molded Case Switch Terminal Data

MCS	Max.	Standard Term	als (A	inum		Optional Term	nals		
Type	Switch Amperes	Terminal Type or Cat. Number	Wire Type	No. of Wires	Wire Range	Terminal Type or Cat. Number	Wire Type	No. of Wires	Wire Range
CA	225	TA225CA2	$\mathrm{Cu} / \mathrm{Al}$	1	\#1-300 MCM		
LA400, LAB	400	TA400LA1	$\mathrm{Cu} / \mathrm{Al}$	1	\#4-250 MCM, plus 3/0-600 MCM	T401LA	Cu	1	\#4-250 MCM, plus 3/0-600 MCM
LA600, LC600	600	TA600LA	$\mathrm{Cu} / \mathrm{Al}$	2	250/500 MCM	T600LA	Cu	2	250/500 MCM
MC, MA NC, NB NC, NB	$\begin{array}{\|r} \hline 800 \\ 1200 \\ 1200 \end{array}$	TA800MA2 TA1200NB1	$\mathrm{Cu} / \mathrm{Al}$ $\mathrm{Cu} / \mathrm{Al}$...	3 4 .	$\begin{aligned} & \hline \text { 3/0-400 MCM } \\ & 4 / 0-500 \mathrm{MCM} \end{aligned}$	T800MA1 T1200NB1 TA1201NB1	Cu Cu $\mathrm{Cu} / \mathrm{Al}$	$\begin{aligned} & \hline 3 \\ & 4 \\ & 3 \end{aligned}$	3/0-300 MCM 3/0-400 MCM 500-750 MCM
PC2000, PCC2000 PC2500, PCC2500 PC3000, PCC3000	$\begin{aligned} & \hline 2000 \\ & 2500 \\ & 3000 \end{aligned}$	BA2000PB Rear Bus Connector BA2500PB Rear Bus Connector Rear Bus Connector Included in Frame							

Molded Case Switches

Molded Case Switches are Underwriters' Laboratories, Inc. listed devices and are available only as high magnetic trip type with fixed trip setting.
For application information and UL listed withstand ratings, refer to Application Data 29-160.

Molded Case Switches With High Magnetic Trip - Trip Setting and Tolerance

Frame	Rating	Trip Setting (Amperes)	Tolerance (\%)
CA	225	2250	+20 -10
LA (400)	400	4000	+10 -0
LA/LC	600	6000	+10 -0
MA/ MC	800	8000	+10 -0
NB/NC	1200	12000	+10 -0
PB/PC	$2000-3000$	12000	+10 -0

[^12]
REPLACEMENT CAPABILITIES

The Motor Circuit Protector (MCP) is designed specifically for the protection of motor circuits. It operates on the magnetic principle with a current sensing coil in each of the 3 poles, with the trip-point adjustable from the front. MCPs are the fastest devices available for clearing low level faults and offer circuit breaker features and convenience, resettable, quick makequick break, dead front, and protection against single phasing.
MCPs are rated to correspond to NEMA starter size

Current Limiter Attach. (Size 0-4 Only) The EL current limiter is an attachment that bolts to the load end of the MCP to provide increased interrupting capacity. The combination is UL listed as a recognized component for application at up to 200,000 amperes symmetrical at 600 volts AC. It is coordinated with the MCP so that normal short circuits will be cleared automatically by the MCP, opening all 3 poles, and only the rare high fault will cause the limiter to function. Current limiters must be applied as shown in the table below.

Terminals

Terminals are included with both the MCP and Current Limiter. Standard terminals are aluminum alloy, with non-aluminum terminals optional for use with only the MCP. Both standard and optional terminals will accommodate aluminum or copper conductors. 0 When using aluminum conductors, use of joint compound is recommended. Wire ranges are listed below.

MCP or Limiter	Terminals	
	Standard Alum.	Optional Non-Alum.
Size 0, 1, 2	\#14-\#4	\#14-1/0
Size 3	\#6-3/0	\#14-1/0
Size 4	\#4-4/0	\#4-4/0
Size 5 (250 Amp.)	\#4-350MCM	\#4-350MCM
Size 5 (400 Amp.)		(2)-3/0-250MCM
Limiters to 50 Amps.	\#14-\#2	
Limiters to 100 Amps.	\#1-4/0	
Limiters to 150 Amps.	\#1-4/0	

Underwriters' Laboratories, Inc. Listed

The MCP is listed with Underwriters' Laboratories as a recognized component and requires additional listing by the control manufacturer in combination with a contactor and overload relay.

Size 0-4 MCP With Current Limiter

Size 5 MCP 532500

Motor Circuit Protectors

Starter Size	Trip Range, Amperes	Continuous Ampere Rating	With Standard Aluminum Alloy Terminals	With Optional Non-Aluminum Terminals©
			Catalog Numbers	

Modifications for MCP(4
These modifications must be factory installed.

Description
Auxiliary Switches®
1A and 1B, 2As and 2Bs
Shunt Trip@
Undervoltage Release $\boldsymbol{6 ® 8}$
Moisture-Fungus Treatment

Accessories for MCP©

For handle mechanisms refer to pages 66 and 75.

For MCP Size	Use Access. For
$0-4$	FB
$5(250$ Amp.)	KB
5 (400 Amp.)	LB

Current Limiters

| Limiter Catalog |
| :--- | :--- |
Numbers	\quad	For MCP Catalog		
Numbers3	$	$	EL3003R	MCP0322R
:---	:---			
EL3007R	MCP0358R			
EL3015R	MCP03150R			
EL3030R	MCP13300R			
EL3050R	MCP23480R			
EL3100R	MCP331000R			
EL3150R	MCP431550R			
EL3150R	MCP431800R			

Interrupting Ratings

Maximum application current shall be determined by testing the MCP in combination with a contactor and overload relay. Additional capacity can be obtained by using the current limiter attachment.

Base Mounting Hardware

No charge when ordered with MCP. Order separately when required.

Description	Style Number
Size 0-4	21 C 6782 G 18
Size 5 (250 Amperes)	673 B 125 G 12
Size 5 (400 Amperes)	21 C 6782 G 22

(1) Except 400 amperes size 5 . Non-aluminum terminal suitable for copper only.
(2) Catalog numbers ending in CR were previously listed ending in RC. This is a catalog number change only, not a material change.

3 Also applicable to MCPs with optional terminals.
(4) Not Underwriters' Laboratories.
© Mounts only in right pole; only one Modification marked© can be used in MCP. (Size 0-4)
© On 400 amperes size 5, an external resistor is supplied for voltages above 240 volts AC and 24 volts DC.
© On size 0-4 and 250 amperes size 5 , an external resistor is supplied for customer mounting, except for 120 volts AC, 12, 24, 125 volts DC.

Molded case circuit breakers are an integral part of today's sophisticated electrical distribution systems. A Digitrip OPTIM circuit breaker provides new levels of power quality, protection and coordination, energy monitoring, and communications. These breakers can be installed in panelboards, switchboards and motor control centers in a wide variety of industrial applications.

To learn more about Digitrip OPTIM circuit breakers, turn to page 9.

SELTRONIC ${ }^{\text {TM }}$ AND CURRENT LIMIT-R CIRCUIT BREAKERS

Portable Test Kit

Provides verification of performance of all frame sizes of SELTRONIC ${ }^{\text {TM }}$ breakers while devices are still in service under varying load and/or phase unbalance. The tester operates on $120 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ and includes complete instructions and test times for testing the long time, instantaneous operation and optional ground fault operation of the breaker.

Remote Ground Fault Trip Indicator(For use only with SELTRONIC ${ }^{\text {™ }}$ Circuit Breakers (LCG, HLCG, MCG, HMCG, NCG, HNCG, PCG and PCCG) with built-in ground fault protection.

The SELTRONIC ${ }^{\text {TM }}$ Ground Fault indicator is a remotely mounted device with a combination indicating light/reset/test button that will light when the breaker trips on a Ground Fault. Tripping from overloads or short circuits will not activate the device. A separate $120 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ power source is required to power the light and internal relay which has 1 N.O. and 1 N.C. contacts for customer connected alarm etc.
Designed for panel mounting, it can be face-mounted by ordering the optional mounting bracket below.

Face Mounting Bracket for Ground Fault Indicator

Style Number
1264C67G01

ACCESSORIES

Rear Connected Studs(

For complete stud assembly, order a stud and appropriate tube based on thickness of customer's mounting panel. A short stud must be assembled adjacent to a long stud to maintain clearances required by Underwriters' Laboratories, Ince. Two studs are required per pole. Refer to Dimension Sheet 29-171 for stud sizes and extensions behind breaker.

For DA, EB, EHB, FB, JA, KA, JB, KB, LB, LBB, HFB, HKA, HKB, HLB Breakers For insulated panels only; 2 required per pole.

Mounting Panel Thickness Inches	Stud		Tube(3	
	Length	Style Number	Length	Style Number
DA, LB, LBB, HLB Breakers				
$3 / 4-1$	Short	656D565G03	${ }^{27} / 32$	313 C 909 H 17
	Long	656D565G04	$3^{25 / 32}$	313 C 909 H 20
$1 / 2-3 / 4$	Short	656D565G03	$1^{3 / 32}$	313 C 909 H 18
	Long	656D565G04		313 C 909 H 21
$1 / 4-1 / 2$	Short	656D565G03	$1^{11 / 32}$	313 C 909 H 19
	Long	656D565G04	$49 / 32$	313 C 909 H 22

Panelboard Connecting Straps©

For connecting line end of breakers to panelboard bus.

For DA, EB, EHB, FB, JA, KA, JB, KB, LB, LBB, HFB, HKB, and HLB Breakers

Ampere Rating	Connector Type	Style Number
EB, EHB, FB, HFB Breakers Narrow Distribution Panelboards Bus Spacing $2^{3 / 4}$ in. in Box $5^{3} / 4 \mathrm{in}$. Deep (600 Volts Max.)		
50	Center	673B142G02
50	Outside	673B142G09
100	Center	673B142G02
100	Outside	673B142G10
150	Center	673B142G04
150	Outside	673B142G03

(1) Not Underwriters' Laboratories, Inc. listed.
(2) 400 ampere LA studs of the same length have sufficient clearance; however, customer connections may make it necessary to use a short stud adjacent to a long stud.
(3 Included at No Charge when ordered with stud.
(4) 150, 250, 300 and 400 ampere frames only.

Mounting Panel Thickness, Inches	Stud		Tube(3	
	Length	Style Number	Length	Style Number
EB, EHB, FB, HFB (100 Ampere Max.)				
$3 / 8$$1 / 4$	Short	451D874G01	$1^{1 / 16}$	32B9446H20
	Long	451D874G02	37/16	32B9446H24
	Short	451D874G01	$1{ }^{3 / 8}$	32B9446H21
	Long	451D874G02	$3^{3 / 4}$	32B9446H25
	Short	451D874G01	$1^{11 / 16}$	32B9446H22
	Long	451D874G02	$4^{1 / 16}$	32B9446H26
	Short	451D874G01		32B9446H23
	Long	451D874G02	43/8	32B9446H27
FB, HFB 150 Ampere Breakers				
$3 / 8$$1 / 4$	Short	374D883G01	11/16	374D883H06
	Long	374D883G02	4/16	374 D 883 H 10
	Short	374D883G01	$13 / 8$	374D883H07
	Long	374D883G02	45/8	374D883H11
	Short	374D883G01	$1^{11 / 16}$	374D883H08
	Long	374D883G02	$4^{15 / 16}$	374D883H12
		374D883G01		374D883H09
	Long	374D883G02	51/4	374D883H13
JA, KA, HKA Breakers				
$\begin{aligned} & 3 / 4-1 \\ & 1 / 2-3 / 4 \\ & 1 / 4-1 / 2 \end{aligned}$	Short	656D565G01	${ }^{27 / 32}$	456D983H05
	Long	656D565G02	$3^{25 / 32}$	456D983H08
	Short	656D565G01	$1^{3 / 32}$	456D983H06
	Long	656D565G02	$4^{1 / 32}$	456D983H09
	Short	656D565G01	$111 / 32$	456D983H07
	Long	656D565G02	$4{ }^{9 / 32}$	456D983H10
JB, KB, HKB Breakers				
$1 / 4$	Short	5010D23G01	27/32	456D983H05
	Long	5010D23G02	$37 / 8$	5010D23H05
	Short	5010D23G01	13/32	456D983H06
	Long	5010D23G02	$41 / 8$	5010D23H06
	Short	5010D23G01	$1{ }^{11 / 3}$	456D983H07
	Long	5010D23G02	$43 / 8$	5010D23H07

For LAB, LA, MA, HLA, HMA, and HNB Breakers
For insulated panels only; 2 required per pole.

Stud Ampere Rating	Diameter, Inches and Thread	Extension Back of Breaker, Inches	Stud Style Number
LAB, LA, HLA, LC, HLC Breakers			
2254	$1 / 2-13$	$3^{7 / 32}$	1241345
2254	$1 / 2-13$	$6^{9 / 32}$	1241346
22546	$1 / 2-13$	$4^{31 / 32}$	1241392
4004	$3 / 4-16$	$5^{15} / 32$	5B7383G15
4004	$3 / 4-16$	$7^{31 / 32}$	5B7383G16
4004	$3 / 4-16$	$10^{15} / 32$	5B7383G17
6006	$1-12$	$5^{29} / 32$	314C960G07
6006	$1-12$	$8^{13 / 32}$	314C960G08
6006	$1-12$	$10^{29} / 32$	314C960G09

MA, HMA, MC, HMC Breakers

225	1/2-13	$3^{21 / 32}$	314C960G01
400	3/4-16	$5^{29 / 32}$	314C960G04
400	3/4-16	$8^{13 / 32}$	314C960G05
400	3/4-16	1029/32	314C960G06
600	1 -12	529/32	314C960G07
600	$1-12$	$8^{13 / 32}$	314C960G08
600	$1-12$	1029/32	314C960G09
800	11/8-12	$5^{29 / 32}$	314C960G10
800	11/8-12	$8^{13 / 32}$	314C960G11
800	11/8-12	1029/32	314C960G12

NB, HNB, NC, HNC Breakers

800	$1^{11 / 8-12}$	$5^{11 / 2}$	$623 B 222 G 01$
800	$1^{11 / 8-12}$	8	$623 B 222 G 02$
800	$1^{118} 8-12$	$10^{11 / 2}$	$623 B 222 G 03$
1200	$1^{11 / 4-12}$	5^{112}	$373 B 375 G 04$
1200	$1^{11 / 4-12}$	$10^{11 / 2}$	$373 B 375 G 03$

ACCESSORIES, Continued

Plug-in Adapter Kits

For rear connected applications such as switchboards. Facilitates ease of installation and front removal of breaker. Includes conductor for mounting on breaker, plug-in mounting blocks with matching conductor, rear studs and mounting hardware. Order two mounting blocks style number when line and load are required; order one mounting block style number when either line or load is required.

Threaded Studs Type

Flat Bus Type

Flat Bus Type

Description	Style Number
EB, EHB, FB Thermal Magnetic Breakers0 Flat Bus Type	
1 Mounting Block, Line or Load	
2-pole, 100 Ampere	1480D13G05
2-pole, 150 Ampere	1480D13G05
3-pole, 100 Ampere	1480D13G06
3-pole, 150 Ampere	1480D13G06

FB and HFB Magnetic Only, HFB Thermal Magnetic© Flat Bus Type
1 Mounting Block, Line or Load

2-pole, 100 Ampere	1480D13G05
2-pole, 150 Ampere	1480D13G05
3-pole, 100 Ampere	1480D13G06
3-pole, 150 Ampere	1480D13G06

JB, KB, HKB Breakers© Flat Bus Type
2 Mounting Blocks, Line and Load

$\begin{aligned} & \text { 2-pole } \\ & \text { 3-pole } \end{aligned}$	$\begin{aligned} & \text { 506C144G17 } \\ & \text { 506C144G18 } \end{aligned}$
1 Mounting Block, Line Only	
$\begin{aligned} & \text { 2-pole } \\ & \text { 3-pole } \end{aligned}$	$\begin{aligned} & \text { 1260C86G01 } \\ & \text { 1260C86G02 } \end{aligned}$
1 Mounting Block, Line Only	
2-pole 3-pole 3-pole	$\begin{aligned} & \hline \text { 1260C86G03 } \\ & \text { 1260C86G04 } \end{aligned}$
LAB, LA, HLA, LC, HLC (150, 250, 300 and 400 Ampere Frame)© Flat Bus Type	
2 Mounting Blocks, Line and Load	
$\begin{aligned} & \text { 2-pole } \\ & \text { 3-pole } \end{aligned}$	$\begin{aligned} & \hline 313 \mathrm{C} 644 \mathrm{G} 25 \\ & 313 \mathrm{C} 44 \mathrm{G} 26 \end{aligned}$
1 Mounting Block, Line or Load	
$\begin{aligned} & \text { 2-pole } \\ & \text { 3-pole } \end{aligned}$	$\begin{aligned} & \hline \text { 450D010G15 } \\ & \text { 450D010G16 } \end{aligned}$

Description	Style Number
DA, LB, LBB, HLB Breakers(Flat Bus Type	
2 Mounting Blocks, Line and Load	
2-pole	313C644G45
3-pole	313C644G46
1 Mounting Block, Line or Load	
2-pole	314C932G03
3-pole	314C932G04
MA, HMA, MC, HMC Breakers(Threaded Studs	
2 Mounting Blocks, Line and Load	
2-pole, 125-600 Ampere	313C644G27
2-pole, 700-800 Ampere	176C544G012
3-pole, 125-600 Ampere	313C644G28
3-pole, 700-800 Ampere	176C544G029
1 Mounting Block, Line or Load	
2-pole, 125-600 Ampere	313C370G03
2-pole, 700-800 Ampere	507C049G012
3-pole, 125-600 Ampere	313C370G04
3-pole, 700-800 Ampere	507C049G02(2

Threaded Studs Type

Description	Style Number
JA, KA, HKA Breakers3 (Threaded Studs Type)	
2 Mounting Blocks, Line and Load	
2-pole	313C644G29
3-pole	313C644G30
1 Mounting Block, Line or Load	
2-pole	314C932G01
3-pole	314C932G02
LA, HLA, LC, HLC (600 Ampere Frames) ${ }^{(0}$ (Threaded Studs)	
2 Mounting Blocks, Line and Load	
2-pole	313C644G50
3-pole	313C644G51
1 Mounting Block, Line or Load	
2-pole	506C059G03
3-pole	506C059G04
1 Mounting Block, Line or Load Flat Bus Type	
2-pole	1288C19G01
3-pole	1288C19G02
MA, HMA, MC, HMC, NB, HNB, NC, HNC, NB TRI-PAC Breakers® (Flat Bus Type)	
1 Mounting Block, Line or Load	
MA, HMA, MC, HMC 2-poles	2614D53G05
MA, HMA, MC, HMC 3-poles	2614D53G06
NB, HNB, NC, HNC, NB TRI-PAC,	
2-poles	2614D53G03
NB, HNB, NC, HNC, NB TRI-PAC, 3 -poles	2614D53G04
Mounting Plates	
Predrilled Panels for:	
EB, EHB, FB, HFB	507C047H01
JB, KB	179C207H01
JA, KA	504 C 823 H 01
DA, LB, LBB, ALB	178C781H01
LA, LAB, HLA, LC, HLC	504 C 824 H 01
MA, HMA, MC, MMC, NB, HNB, NC, HNC	1290C73H01

(1) These plug-in adapter kits are UL listed as recognized components.
(2) 700-1200 ampere adapter kit is front removable, bolt-on design - not plug-in type.
(3) Not Underwriters' Laboratories, Inc. listed.

ACCESSORIES, Continued

Extended Line Terminal Shields©

For shielding line side terminal connections. One shield required per breaker. Order separately when needed. Sold only in lots of 10, including hardware.

Breaker Frame	Style Number
JB, KB, HKB	1266C07G01
MA, HMA, MC, HMC	208B966G01
NB, HNB, NC, HNC	208B966G02
LAB, LA, (Saf-T-Vue ${ }^{\text {® }}$)	314C420G02
JA, KA, LB, LBB (Saf-T-Vue ${ }^{\circledR}$)	314C420G04
LAB, LA, HLA, LC, HLC	314C420G05
DA	314C420G06
JA, KA, HKA, LB, LBB, HLB (Standard Breaker)	314C420G06
EB, EHB, FB, HFB	625B229G080

Base Mounting Hardware

No charge when ordered with breaker. Order separately when needed.

Description	Style Number
1-pole Breakers	
EB, EHB, HFB8	624B375G01
EB, EHB, HFB4	624B375G02
2- and 3-pole Breakers	
LAB, LA, HLA, LC, HLC	21C6782G05
MA, NB, HMA, HNB, MC, HMC, NC, HNC	1091716
PB, PC, PCC	624B375G22
DA, JA, KA, HKA, LB, LBB, HLB	21C6782G22
EB, EHB, FB, HFB, MCP	21C6782G18
JB, KB, HKB	673B125G12
CA 2-pole	21C6782G28
CA 3-pole	21C6782G29

Handle Locks©

Non-Padlockable

For prevention of unintentional operation of breaker. Fits over breaker handle and may be removed.

Padlockable

For prevention of unauthorized operation of breaker. Is non-removable once installed on breaker. Meets Underwriters' Laboratories, Inc. and California Code requirements.
Note: All breakers are trip free and will trip with handle locks attached. Cannot be used when handle extension is used.

Breaker Frame	Style Number
Non-Padlockable	
CA, EB, EHB, FB, HFB LAB, LA, LC, HLC, MA, NB, HLA, HMA, HNB, MC, HMC, NC, HNC GB, GC, GHB, GHC DA, JA, KA, HKA, LB, LBB, HLB	1720360 1720101 1294C01H01 29B2721H04
Padlockable	
CA EB, EHB, FB, HFB DA, JA, KA, LB, LBB, HKA, HLB JB, KB, HKB LAB, LA, HLA, LC, HLC MA, HMA, MC, HMC MA, HMA, MC, HMC NB, HNB, NC, HNC NB, HNB, NC, HNC PB, PC	506C438G01 765A754G01 673B796G02 673B796G01 373B591G02 6591C30G02 - OFF 6591C30G05 - ON/OFF 6591C30G01 - OFF 6591C30G04 - ON/OFF 6591C30G03 - OFF

Fuse Mounting Base for PB Breakerso
For 2000 amp non-automatic breakers only.

Catalog Number
 FMB2000PB

For use with non-automatic, 3-pole circuit breaker. Includes fuse mounting base and hardware to mount standard Class L current limiting fuses, 801-2000A (fuses not included).©
For complete installation, order:

1. Front connected, non-automatic PB breaker. (Order similar to standard front connected, except omit load conductor extensions)
2. Fuse mounting base.
3. Fuses (from distributor).

Cable Connectors

The fuse mounting base will accept the following terminals for front cable connection (omit " T " connectors from rear connected breakers).

Style Number	Wire Range, Type No. of Cables
672B655G01	$33 / 0-400 \mathrm{MCM} \mathrm{Cu}$
180C046G03	$4400-500 \mathrm{MCM} \mathrm{Cu}$

Molded Type Handle Extension(

For LAB, LA, HLA Breakers

Style Number
372B399G01

For MA, HMA, MC, HMC Breakers

Style Number
1251C65G01

For NB, HNB, NC, and HNC Breakers

Style Number
1251C65G016

For PB, PC, and PCC Breakers

Style Number
6635 C 78 G 02 G

[^13]
ACCESSORIES, Continued

Modifications

Only two internally mounted modifications - shunt trip, undervoltage release, auxiliary switch, alarm switch - may be mounted in EB through PB. Only one of these modifications may be mounted in FB, HFB magnetic only, 2-pole EB, EHB, FB and SELTRONIC ${ }^{\text {TM }}$ breakers. None are available in 1-pole breakers except alarm switch in EB, EHB and HFB. Refer to Cutler-Hammer for possible special combinations of the following modifications not in tabulations.

Shunt Trip

For tripping breaker from a remote point. A solenoid device mounts within breaker case. Breaker trips when coil is energized.
Shunt trips should not be used as circuit interlocks using maintained contact pilot devices.
A cut-off switch breaks the circuit to the momentary rated coil when breaker opens. Available for control voltages up to 250 volts DC or 600 volts AC. Voltage and frequency must be specified. Standard leads extend 18 inches outside the breaker. Longer leads may be specified.

Shunt Trip for Field Mounting(008

Voltage/ Hz	Breaker Type						
	EB, EHB, FB, HFB4 (Thermal-Magnetic only)	JB, KB, HKB	JA, KA, HKA, DA, LB, LBB, HLB	LA, LAB, HLA	MA, HMA	NB, HNB	PB
Right Hand Mounting							
600/50-60 Hz	2609D39G15	2609D42G15	2605D15G15	2606D56G15	2606D57G15	2606D58G15	2606D59G15
$480 / 50-60 \mathrm{~Hz}$	2609D39G16	2609D42G16	2605D15G16	2606D56G16	2606D57G16	2606D58G16	2606D59G16
240/50-60 Hz	2609D39G17	2609D42G17	2605D15G17	2606D56G17	2606D57G17	2606D58G17	2606D59G17
208/50-60 Hz	2609D39G18	2609D42G18	2605D15G18	2606D56G18	2606D57G18	2606D58G18	2606D59G18
$120 / 50-60 \mathrm{~Hz}$	2609D39G19	2609D42G19	2605D15G19	2606D56G19	2606D57G19	2606D58G19	2606D59G19
$60 / 50-60 \mathrm{~Hz}$	2609D39G20	2609D42G20	2605D15G20	2606D56G20	2606D57G20	2606D58G20	2606D59G20
$48 / 50-60 \mathrm{~Hz}$	2609D39G21	2609D42G21	2605D15G21	2606D56G21	2606D57G21	2606D58G21	2606D59G21
$24 / 50-60 \mathrm{~Hz}$	2609D39G22	2609D42G22	2605D15G22	2606D56G22	2606D57G22	2606D58G22	2606D59G22
250 DC	2609D39G23	2609D42G23	2605D15G23	2606D56G23	2606D57G23	2606D58G23	2606D59G23
125 DC	2609D39G24	2609D42G24	2605D15G24	2606D56G24	2606D57G24	2606D58G24	2606D59G24
60 DC	2609D39G25	2609D42G25	2605D15G25	2606D56G25	2606D57G25	2606D58G25	2606D59G25
48 DC	2609D39G26	2609D42G26	2605D15G26	2606D56G26	2606D57G26	2606D58G26	2606D59G26
24 DC	2609D39G27	2609D42G27	2605D15G27	2606D56G27	2606D57G27	2606D58G27	2606D59G27
12 DC	2609D39G28	2609D42G28	2605D15G28	2606D56G28	2606D57G28	2606D58G28	2606D59G28
Left Hand Mounting							
600/50-60 Hz	2609D39G01	2609D42G01	2605D15G01	2606D56G01	2606D57G01	2606D58G01	2606D59G01
$480 / 50-60 \mathrm{~Hz}$	2609D39G02	2609D42G02	2605D15G02	2606D56G02	2606D57G02	2606D58G02	2606D59G02
240/50-60 Hz	2609D39G03	2609D42G03	2605D15G03	2606D56G03	2606D57G03	2606D58G03	2606D59G03
208/50-60 Hz	2609D39G04	2609D42G04	2605D15G04	2606D56G04	2606D57G04	2606D58G04	2606D59G04
$120 / 50-60 \mathrm{~Hz}$	2609D39G05	2609D42G05	2605D15G05	2606D56G05	2606D57G05	2606D58G05	2606D59G05
$60 / 50-60 \mathrm{~Hz}$	2609D39G06	2609D42G06	2605D15G06	2606D56G06	2606D57G06	2606D58G06	2606D59G06
$48 / 50-60 \mathrm{~Hz}$	2609D39G07	2609D42G07	2605D15G07	2606D56G07	2606D57G07	2606D58G07	2606D59G07
$24 / 50-60 \mathrm{~Hz}$	2609D39G08	2609D42G08	2605D15G08	2606D56G08	2606D57G08	2606D58G08	2606D59G08
250 DC	2609D39G09	2609D42G09	2605D15G09	2606D56G09	2606D57G09	2606D58G09	2606D59G09
125 DC	2609D39G10	2609D42G10	2605D15G10	2606D56G10	2606D57G10	2606D58G10	2606D59G10
60 DC	2609D39G11	2609D42G11	2605D15G11	2606D56G11	2606D57G11	2606D58G11	2606D59G11
48 DC	2609D39G12	2609D42G12	2605D15G12	2606D56G12	2606D57G12	2606D58G12	2606D59G12
24 DC	2609D39G13	2609D42G13	2605D15G13	2606D56G13	2606D57G13	2606D58G13	2606D59G13
12 DC	2609D39G14	2609D42G14	2605D15G14	2606D56G14	2606D57G14	2606D58G14	2606D59G14

Factory Mounted Shunt Trips06

All of the above shunt trips can be specified for factory mounting at the same price as listed for the kit. These shunt trips have
the leads out the side and are UL listed when factory mounted, unless other non-UL listed modifications are used.

Factory mounted shunt trips only can be supplied for the following breakers: CA, HCA, CAH, FB magnetic only60, HFB magnetic only 68 and nonautomatic breakers (molded case switches)(2.
(1) 120 volt AC ratings suitable for 55% pickup for ground fault applications.
(2) Not field mountable on non-automatic breakers (molded case switches).
(3) Field mounting voids breakers' UL listing except on LA, HLA, MA, HMA, NB, HNB, KB, HKB, KA, HKA, LB, HLB and SELTRONIC ${ }^{T m}$ breakers.
(4) Available similar to this except "Leads out the load end - (not UL listed)." Order by description.
© Right hand mounting considered standard unless specified otherwise.
© Not UL listed.
(7) Right hand mounting only.

MOLDED CASE CIRCUIT BREAKERS Replacement Circuit Breaker Accessories

ACCESSORIES, Continued

Left Hand Mounting Kits For SELTRONIC ${ }^{\text {™ }}$ Breakers

| Provision to trip flux transfer shunt trip from external |
| :--- | :--- | :--- |
| 32 to 120 volt (DC to 60 Hz) source.0® |\(\quad-\left[\begin{array}{ll}MC, HMC \& Style 1371D72G22

NC, HNC \& Style 1372D39G13

PC, PCC \& Style 1372D35G22

LC, HLC \& Style 1371D11G22\end{array}\right.\)

Shunt Trip Coil Data

Shunt Trip Voltage Rating	For All Breakers Listed Above and on Previous Page Except CA and SELTRONIC ${ }^{\text {m }}$		SELTRONIC ${ }^{\text {™ }}$	
	Coil Inrush		Coil Inrush	
	Amperes	Volt-Amperes	Amperes	Volt-Amperes
600 AC	0.105	63.0
480 AC	0.085	40.8
240 AC	1.7	408.0	\ldots	\ldots
208 AC	1.4	291.2	\cdots	\cdots
120 AC	0.88	105.6	15	18
60 AC	9.10	546.0	...	\ldots
48 AC	7.50	360.0
24 AC	3.95	94.8	\ldots	\cdots
250 DC	2.5	625.0	. . .	\ldots
125 DC	0.975	121.9	\cdots	. .
60 DC	0.525	31.5	\ldots	\ldots
48 DC	1.3	62.4
24 DC (FB)	6.	144.0	\cdots	...
24 DC (KB)	3.8	91.2	\ldots	
24 DC (others)	8.	192.	\ldots	\ldots
12 DC	6.	72.

ACCESSORIES, Continued

Standard Undervoltage Release

For undervoltage protection. A solenoid device mounts within breaker case. Coil must be energized before closing breaker. Trips breaker when voltage drops below 35 to 70% of coil rating. Picks up and seals in at 85% of coil rating. For line voltages up to 250 volts DC or 600 volts AC. Externally mounted resistors are supplied for certain ratings. Standard leads extend 18 inches outside of breaker. Longer leads may be specified.
NOTE: Undervoltage release attachments are not designed for, and should not be used as, circuit interlocks. For further information, consult your local Cutler-Hammer Field Sales Office.

Factory Mounted Undervoltage Releases© All of the above undervoltage releases can be specified for factory mounting at the same price as listed for the kit. These attachments have the leads out the side and are UL listed when factory mounted unless other non-UL listed modifications are used.
Factory mounted undervoltage releases only can be supplied for the following breakers:
SELTRONIC ${ }^{\text {TM }}$ Breakers (120V AC 60 Hz only standard), MC, HMC®, NC, HNC®, PC, PCC, LC, HLC
SELTRONIC ${ }^{\text {™ }}$ Breakers with Remote Trip Provisions, MC, HMC®®, NC, HNC®®, PC, PCCB, LC, HLC®.
EB4, EHB4, FB4, HFB4, FB@® and HFB magnetic only@®, JB, KB, HKB
No UVR available for CA, CAH and HCA
(1) Right hand mounting considered standard unless specified otherwise except JA, KA, DA, HKA, LB, LBB, HLB and SELTRONIC ${ }^{T M}$ available for left hand only, and JB, KB, HKB left hand is standard.
(2) Cannot be used with other attachments except a small 1A-1B auxiliary switch rated 250 volts can be supplied in right hand pole.
(3) Provided with two leads (total of 4) for use with a remote normally open contact (pushbutton etc.) to trip the breaker. No external power required.
(4) Not available on ambient compensating breakers.
© Not UL listed.
© Right hand mounting only.
(7) Not field mountable on non-automatic breakers. (Molded case switches)
© Field mounting voids UL listing of breaker except on LA, HLA, MA, HMA, NB, HNB, PB, KA, HKA, LB, HLB.

Undervoltage Release Attachment Kits for Field Mounting $\boldsymbol{\text { ® }}$

Attachment Voltage, Hz	Breaker Type				
	$\begin{aligned} & \text { JA, KA, DA, } \\ & \text { HKA, LB, LBB, } \\ & \text { HLB } \end{aligned}$	LA, LAB, HLA	MA, HMA	NB, HNB	PB
For Right Hand Mounting					
2460		60A9355G17			
4860		60A9355G08			5674D29G16
12060		60A9355G01	457D727G01	373D632G01	5674D29G09
20860		60A9355G02	457D727G19	373D632G19	5674D29G10
24060		60A9355G03	457D727G02	373D632G02	5674D29G11
48060		60A9355G05	457D727G03	373D632G03	5674D29G13
60060		60A9355G06	457D727G04	373D632G04	5674D29G14
12 DC		458D020G01	457D727G09	372D032G01	4976D85G01
24 DC		458D020G02	457D727G10	372D032G02	4976D85G02
48 DC		458D020G03	457D727G11	372D032G03	4976D85G03
60 DC		458D020G04	457D727G21		4976D85G04
125 DC		458D020G07	457D727G12	372D032G04	4976D85G07
250 DC		458D020G08	457D727G13	372D032G05	4976D85G08

For Left Hand Mounting

4860	$\ldots \ldots \ldots .$.	60A9355G16	\ldots
12060	458D070G01	60A9355G09	45
20860	458D070G05	60A9355G10	45
24060	458D070G02	60A9355G11	45
48060	458D070G03	60A9355G13	45
60060	458D070G04	60A9355G14	45
12 DC	458D070G09	458D020G11	45
24 DC	458D070G10	458D020G12	45
48 DC	458D070G11	458D020G13	45
60 DC	$\ldots \ldots \ldots . .$.	458D020G14	45
125 DC	458D070G12	458D020G17	45
250 DC	458D070G13	458D020G18	45

…........

457D727G20 457D727G06 457D727G07 457D727G08 457D727G14 457D727G15 457D727G16 457D727G22 457D727G17 457D727G18

$\ldots \ldots \ldots \ldots$
373D632G05
373D632G20
373D632G06
373D632G07
373D632G08
372D032G06
372D032G07
372D032G08
$\ldots \ldots . .$.
372D032G09
372D032G10

5674D29G08 5674D29G01 5674D29G02 5674D29G03 5674D29G05 5674D29G06 4976D85G11 4976D85G12 4976D85G13 4976D85G14 4976D85G17 4976D85G18

Undervoltage Release Coil Data

Voltage Rating Hz	Breaker Type								
	EB, EHB, FB, HFB, JB, KB and HKB			JA, KA, HKA, DA, LB, LBB, HLB			LA, LAB, HLA, PB		
	Coil Amperes	External Series Resistance (Ohms)	Total VA	Coil Amperes	External Series Resistance (Ohms)	Total VA	Coil Amperes	External Series Resistance (Ohms)	Total VA
600 AC	0.020	25,000	12.0	0.012	50,000	7.2	0.029	20,000	17.4
480 AC	0.016	20,000	7.7	0.013	30,000	6.3	0.014		6.8
240 AC	0.021	6,000	5.1	0.013		3.2	0.036		8.7
208 AC	0.019	6,000	4.0	0.018		3.8	0.036		7.5
120 AC	0.023	. .	2.8	0.023	\ldots	2.8	0.073		8.8
60 AC	0.203	250	12.2	\ldots.	\ldots	
48 AC	0.245	150	11.8	\ldots	\ldots	\ldots	0.152	\ldots	7.3
24 AC	0.250	50	6.0						
250 DC	0.026	5,000	6.5	0.013	16,500	3.3	0.035	5,000	8.8
125 DC	0.026		3.3	0.013	6,500	1.7	0.039	1,500	4.9
60 DC	0.248	200	14.9	0.013	1,500	0.8	0.034		2.1
48 DC	0.260	150	12.5	0.012	600	0.6	0.040		2.0
24 DC	0.141		3.4	0.023		0.6	0.069		1.7
12 DC	0.286		3.5	0.048		0.6	0.136		1.7
	Breaker Type								
	MA and HMA			NB and HNB			MC, HMC, NC, HNC, PC, PCC, LC, HLC		
600 AC	0.012	50,000	7.2	0.016	35,000	9.6	\ldots	\ldots
480 AC	0.013	30,000	6.3	0.013	30,000	6.3	\ldots	\ldots
240 AC	0.013		3.2	0.013	3.2	\ldots.	
208 AC	0.018		3.8	0.018		3.8			
120 AC	0.023	$\ldots .$.	2.8	0.023	.	2.8	0.5	6
60 AC	\ldots
48 AC		
24 AC									
250 DC	0.013	16,500	3.3	0.013	16,500	3.3			
125 DC	0.013	6,500	1.7	0.013	6,500	1.7		
60 DC	0.013	1,500	0.8						
48 DC	0.012	600	0.6	0.012	600	0.6			
24 DC	0.023		0.6	0.023		0.6			
12 DC	0.048		0.6	0.048		0.6			

MOLDED CASE CIRCUIT BREAKERS Replacement Circuit Breaker Accessories

ACCESSORIES, Continued

Alarm Switch

Availability: EB through PC. For light or alarm indication when breaker trips. Does not function with manual operation. Automatically resets when breaker is relatched. Standard leads extend 18 inches outside of breaker. Longer leads may be specified. Not field mountable.

Breaker Frame	Normal Pole Mounting	Contact Operation (Specify Type Desired)
DA	Left	Make or Break
$\begin{gathered} \text { EB, EHB, FB, } \\ \text { HFB@O } \end{gathered}$	Mechanism	Make or Break
JA, KA, LB		
LBB, HKA, HLB	Left	Make or Break
JB, KB, HKB	Left	Make or Break
LAB, LA, MA, NB, HLA,		
HMA, HNB,	Left	Make or Break
LC, HLC	Left3	Make or Break
MC, HMC	Left only ${ }^{3}$	Make or Break
NC, HNC	Left only ${ }^{3}$	Make or Break
PB	Left	Make or Break
PC, PCC	Left34	Make or Break

Alarm Switch Contact Rating

(Non Inductive)

MC, HMC, LA, LAB, HLA, LC, HLC:
10 amperes, 120 volt AC; 5A, 240 volt AC.
EB, EHB, FB, HFB:
5 amperes, 120 volt AC.
All other breakers:
10 amperes, $120-240$ volt AC.

Auxiliary Switche

For auxiliary control circuits. Miniature switches mount within breaker. Commonly used for remote indication of open or closed breaker and electrically interlocking component control circuits. " A " contacts are closed when breaker is closed. " B " contacts are open when breaker is closed. Standard leads extend 18 inches outside of breaker. Longer leads may be specified.

Auxiliary Switch Attachment Kits for Field Mountinge08

Breaker Type	For Left Hand Mounting		For Right Hand Mounting		Max AC Voltage Rating•	Max Noninductive Amperes
	1A-1B	2A-2B	1A-1B	2A-2B		
EB, EHB, FB, HFB(1)	4979D06G03	4979D06G09	4979D06G03	4979D06G08	240	5
JA, KA, DA, HKA, LB,	458D067G03		458D067G08		480	10
LBB, HLB		656D527G010		656D527G090	240	5
JB, KB, HKB	2600D97G03		2600D97G08		480	10
JB, KB, HKB		2609D45G030		2609D45G080	240	5
LA, LAB, HLA	655D555G12	655D555G13	655D555G05	655D555G06	480	10
MA, HMA	458D013G12	458D013G13	458D013G05	458D013G06	480	10
NB, HNB,	4980D16G12	4980D16G13	4980D16G05	4980D16G06	480	10
PB	2602D32G11	2602D32G12	2602D32G14	2602D32G15	480	10
MC, HMC, MCG, HMCG	1371D72G03	1371D72G06			480	6 (10 @ 240)
NC, HNC, NCG, HNCG	1372D39G03	1372D39G06			480	6 (10@ 240)
PC, PCC, PCG, PCCG	1372D35G03	1372D35G06			480	6 (10@ 240)
LC, HLC, LCG, HLCG	1371D11G03	1371D11G06			480	6 (10 @ 240)

Factory Mounted Auxiliary Switches®

All of the above auxiliary switches can be specified for factory mounting at the same price as listed for the kit. These attachments have the leads out the side of the breaker and are UL listed when factory mounted unless other non-UL listed modifications are used (except as noted).
Factory mounted switches only can be supplied for the following breaker:
JB, LBB, LAB, JA, DA, FB magnetic only©® and HFB magnetic only©®.

[^14]
ACCESSORIES, Continued

Moisture-Fungus-Corrosion Treatment©

Availability: EB through PC. Treatment can be provided to meet customer's specific atmospheric conditions. Moisture-fungus treating material used meets JAN-T-152; treatment meets MIL-V-173a. Requests and orders should specify government specifications or conditions to be met.

Mechanical Interlocks© (A-C)

For mechanically interlocking a pair of breakers so that only one may be closed at one time, but both may be open simultaneously.

A. Walking Beam Type0er

Availability: EB through PC
Mounts on panel (not included) at rear of breaker. Standard breaker spacing: center to center; LAB, LA, LC, HLC, MA, MC, NB, NC, HLA, HMA, HMC, HNB, HNC $81 / 2$ inch center to center; PB, PC, PCC; 12 $1 / 4$ inch center to center; DA, JA, KA, HKA, LB, LBB, HLB 5 ${ }^{3} / 4$ inch center to center; EB, EHB, FB, $\mathrm{JB}, \mathrm{KB}, \mathrm{HFB}, \mathrm{HKB} 43 / 8$ inch center to center. Order as a set of two special factory drilled breakers and 1 walking beam interlock. Specify breaker type, panel thickness and center to center dimension of breakers.
B. Sliding Bar Type (Field Mount-

Availability: EB through PC
Mounts on panel (not included) fitting over front of breakers. Standard breaker spacing: LAB, LA, LC, HLC, MA, MC, NB, NC, HLA, HMA, HMC, HNB, HNC $8 \frac{1}{2}$ inch center to center; DA, JA, KA, HKA, LB, LBB, HLB $53 / 4$ inch center to center; EB, EHB, FB, HFB $43 / 16$ inch center to center; JB, KB, HKB $4^{3} / 8$ inch center to center.

C. Kirk Key Interlock(4)

Availability: EB through PC
Permits interlocking of two breakers or one breaker with other devices. Before breaker can be closed, key must be inserted and turned in breaker interlock. Breaker must be opened before key can be removed. It can then be inserted in interlock or other devices to permit their closure. Requests and orders should completely outline interlocking scheme, ultimate user and his address.

Center Studs©

Availability: 600 ampere Frames (LA) through (NB) 1200 ampere Frames except SELTRONIC ${ }^{\text {TM }}$ and current limiting breakers.
Provides connections for dual voltage generators, so that same trip unit can be used for protection at both voltages. At higher voltage, the trip unit carries full load current. At lower voltage, half the current by-passes the trip unit through the center studs. Trip rating cannot exceed 50% of frame rating.
Field Discharge Switch Availability: 400, 600 Ampere Frame (LA).
Breaker is used exclusively to discharge the field of a DC motor or generator, usually through a resistor. When the two outer poles open, the center pole closes.

© Not UL listed.

(2) 2000 ampere maximum for PB breaker.
(3 Not available on draw-out breakers.
4 Not available on motor operated breakers.

ACCESSORIES, Continued

Motor Operators©

Motor operators provide complete remote control by means of a pushbutton or similar pilot device2. Positive switching action is accomplished by use of an operating arm engaging the breaker handle. The unit is energized momentarily to actuate the lever arm moving it to either the "ON" or "OFF" position. The control is broken by an internal cutoff switch. Means for emergency manual operations is provided.
Motor operations are available with motors rated 120 volts AC, 208 volts AC, and 240 volts AC. 3

The 480 volt operators utilize a 120 volt AC motor in conjunction with a 480/240 to 120 volt dual voltage transformer. (On LA and larger operators, the transformer is supplied for separate mounting by the customer.)
NOTE: The motor operator is intended only for infrequent operation in line with Underwriters' Laboratories, Inc. endurance standards for $A B$ molded case breakers. Minimum 1 kVA transformer is required for use with all motor operations.

Back Mounting Plates

Type Breaker	120, 208, 240, 480 Volts AC
	Style Number
EB, EHB, FB, HFB	$503 C 707 G 01$
DA, JA, KA, LB	$503 C 981 G 01$
JB, KB, HKB	1250 C26G01

For EB, EHB, FB and HFB

For DA, JA, KA, JB, LB, LBB, HKA, HKB and HLB Breakers

For LAB, LA, HLA Breakers

For MA, HMA, NB, HNB Breakers

For PB Breakers

Motor Operator Selection

Type Breaker	AC Voltage				DC Voltage	
	120	208	240	480	125	24
	Style Number					
EB, EHB, FB, HFB	656D148G11	656D148G04	656D148G02	656D148G13
DA, JA, KA, HKA	657D819G23	657D819G10	657D819G08	657D819G24
LB, LBB, HLB	657D819G25	657D819G16	657D819G14	657D819G26
JB, KB, HKB	2600D28G07	2600D28G04	2600D28G02	2600D28G08		
LAB, LA, HLA, LC, HLC	2607D97G37	2607D97G40	2607D97G38	2607D97G39	2607D97G51	2607D97G42
MA, HMA, MC, HMC	5664D54G75	5664D54G78	5664D54G76	5664D54G77	5664D54G96	5664D54G81
NB, HNB, NC, HNC	1494D60G31	1494D60G32	1494D60G33	1494D60G34	1494D60G35	1494D60G36
PB, PC, PCC	5661D52G01	5661D52G04	5661D52G02	5661D52G03	5661D52G17	

Motor Data

Dimensions: Dimension Sheet 29-170

Type Breaker	Motor		Inrush Current, Ampere (Peak)			Continuous Current (RMS)			Operating Time, Open or Close
	Type	HP	$\begin{aligned} & 120 \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & 208 \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & 240 \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & 120 \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & 208 \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & 240 \\ & \text { Volts } \end{aligned}$	
EB, EHB, FB, HFB	Split Phase	1/75	10	4	5	2.3	1.17	1.65	1.5 Seconds
$\begin{gathered} \text { DA, JA, KA, JB, KB, LB, } \\ \text { LBB, HKB, HLB } \end{gathered}$	Split Phase	1/50	14	6	7	3.5	1.6	1.75	1.5 Seconds
LAB, LA, HLA	Reversing		8	5	4	\ldots	. . .		12 Cycles
MA, HMA, NB, HNB	Reversing		11	7	6	. .			12 Cycles
PB	Reversing		20	12	11	\ldots	.		10 Cycles

MOLDED CASE CIRCUIT BREAKERS
 Replacement Circuit Breaker Accessories

ACCESSORIES, Continued

Drawout Frame©

These drawout frames are for use with standard 3-pole Cutler-Hammer molded case circuit breakers. They consist of two separate parts: stationary mounting frame and movable carrier frame. Slide rails are drawer-type, and a screw mechanism is used to engage or withdraw the movable carrier frame.
The drawout frames have three positions: connected, test and disconnected. The frames do not include a safety tripping interlock, or secondary contacts. These are optional items and may be ordered at additional cost.
Breakers mounted in the drawout frames can be equipped with standard breaker accessories including shunt trip, undervoltage release, auxiliary switch, alarm switch and motor operator.

Optional Features

Safety Interlock(2)

This feature trips the breaker as the movable carrier frame is withdrawn, and must be factory installed. Order as follows.

For LA, MA and NB breakers(
Order standard stationary mounting frame. Order breaker and movable carrier frame assembled with safety interlock.

Secondary Contacts

These are used to disconnect auxiliary circuits when attachments such as shunt trip or motor operator are used. Available in multiples of four contacts with a maximum of 24 contacts for the LA 600 or 32 contacts for the MA and NB. They must be factory mounted. Order by description as similar to stationary or moving frame and specify number of contacts required.

Selection Data(88

Breaker Type	Stationary Mounting Frame Style Number®	Movable Carrier Frame Style Numbere
LA600, HLA600, LC600, HLC600	2603D84G01	2608D35G06
MA, HMA, MC, HMC	2603D85G01	2608D35G10
NB, HNB, NC, HNC	2603D85G01	2608D34G08
PB, PC, PCC 2000A	2601D18G04	Order by description4
PB 2500A, PC, PCC 2500A and 3000A	2601D18G05	Order by description4

Ordering Information(3

Standard Installation

Order one stationary mounting frame and one movable carrier frame.
Order breakers without terminals or rear connectors.
Order any attachments desired (shunt trip, undervoltage release, etc.)
Order secondary contacts as required:

- A shunt trip, undervoltage release or alarm switch requires two contacts;
- A 1A-1B auxiliary switch requires three contacts;
- A motor operator requires a maximum of four contacts;
- Others as required.

With Safety Interlock

Order stationary mounting frame and movable carrier frame as directed under Optional Features.

Racking Crank

A special crank to engage or withdraw the moving portion of the drawout. A standard $1 / 2$ inch hex socket with extension can be used for this purpose.

Style Number
765A767G01

Cell Switches Mounted on Draw-out Frames, All Ratings
Up to four switches can be provided. Order by description.
Each switch provides NO and NC contact that transfers before reaching the test position when being withdrawn, and after the test position when being racked in.

REPLACEMENT CAPABILITIES, Continued

Panelboard Replacement Breaker Selection Guide

Panelboard Replacement Breakers are generally for use as replacement for out-of-production panelboard branch circuit breakers where both physical and
electrical interchangeability is required. Where possible, consideration should be given to application of either Series C or Original Westinghouse Circuit Breakers.

For additional information, consult the charts on pages 72-73 or contact your local Cutler-Hammer Field Sales Office.

Breaker Type	Amps	Panelboard Replacement Breaker Interrupting Ampere Rating											
		120 Volts AC		240 Volts AC		277 (1-Pole)		480 Volts AC		600 Volts AC		$\begin{aligned} & \hline 125 \\ & \text { (1-Pole) } \end{aligned}$	250 VDC
		Sym.	Asym.										
RE	15-20					10,000	10,000						
RE	15-100	7,500	7,500	7,500	7,500							5,000	5,000
REA	15-20					10,000	10,000						
REA	15-100	7,500	7,500	7,500	7,500							5,000	5,000
REH	15-100			18,000	20,000	10,000	10,000	14,000	15,000				10,000
RF	15-100			18,000	20,000			14,000	15,000	14,000	15,000		10,000
RFA	15-150			18,000	20,000			14,000	15,000	14,000	15,000		10,000
RHF	15-100			65,000	75,000			25,000	30,000	18,000	20,000		20,000
RHFA	15-150			65,000	75,000			25,000	30,000	18,000	20,000		20,000
RJ	70-225			22,000	25,000			18,000	20,000	14,000	15,000		10,000
LA	70-225			42,000	50,000			30,000	35,000	22,000	25,000		20,000
LA	125-400			42,000	50,000			30,000	35,000	22,000	25,000		20,000
RK	70-225			25,000	30,000			22,000	25,000	22,000	25,000		10,000
RKL	125-400			42,000	50,000			30,000	35,000	22,000	25,000		20,000
RLM	125-800			42,000	50,000			30,000	35,000	22,000	25,000		20,000
RHK	70-225			65,000	75,000			35,000	40,000	25,000	30,000		20,000
RHKL	125-400			65,000	75,000			35,000	40,000	25,000	30,000		20,000
RHLM	125-800			65,000	75,000			35,000	40,000	25,000	30,000		20,000

Replacement Chart

Current Panelboard	Out-of- Production	Volts AC$(50 / 60 \mathrm{~Hz})$		
Circuit Breaker Type	Circuit Breaker Type	240	480	600
REA	EA(\bullet		
RE	E(\bullet		
REH	EH0		\bullet	
RFA	FA(\bullet
RHFA	HFA ${ }^{\text {c }}$			-
RF	F0			-
RHF	HFo			\bullet
RJ	J(2)			\bullet
RK	K(2)			-
RHK	HK(2)			\bullet
RKL	KL(2			-
RHKL	HKL(\bullet
RLM	LM(2)			-
RHLM	HLM(2)			\bullet
LA	JK(2)			
LA	JKL(2			

Replacement of all out-of-production panelboard circuit breakers other than the "JK" and "JKL" types are designated by the easily identifiable addition of an " R^{\prime} prefix to the out-of-production circuit breaker catalog number that they replace.

An Example:

RF3100 is a newly manufactured, 3-Pole, 100-Ampere Trip Panelboard Replacement Breaker for an out-of-production F3100.

R Designates new panelboard replacement breaker
F Identifies the out-of-production circuit breaker frame
3 Number of poles
100 Trip ampere rating

NOTES:

1. Panelboard Replacement Circuit Breakers have non-interchangeable trip units and the same interrupting capacity as the out-of-production circuit breakers they replace.
2. The RE breaker has off-center terminals just like the E breaker it is replacing.
3. For out-of-production breakers, the "B" suffix denotes 277 VAC rating for the Panelboard Replacement Breaker. (EX: RE3020B)

PANELBOARD "ONLY" REPLACEMENT CIRCUIT BREAKER GUIDE

> MOLDED CASE CIRCUIT BREAKERS
> Panelboard Replacement Circuit Breakers

PANELBOARD "ONLY" REPLACEMENT CIRCUIT BREAKER GUIDE

FURTHER INFORMATION

Literature Number	Description
IL 15558	Mounting Information for the RE, REA Breakers
IL 15559	Mounting Information for the RF, RHF Breakers
IL 15562	Mounting Information for the REH, RFA, RHFA Breakers
IL 15563	Mounting Information for the RJ Breaker
IL 15564	Mounting Information for the RK, RHK Breakers
IL 15565	Mounting Information for the RKL, RHKL Breakers
IL 15566	Mounting Information for the RLM, RHLM Breakers

PRICING INFORMATION

Literature Number	Description
PAD	Price and Availability Digest
VISTA/VISTALINE	Discount Symbol RCB-2

REPLACEMENT CAPABILITIES, Continued
Type REA 1-, 2-, 3-Poles; 240 Volts AC Maximum; Thermal Magnetic

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Catalog Numbers		
	1-Pole 120 Volts AC	2-Pole 240 Volts AC	3-Pole 240 Volts AC
10	REA1010		
15	REA1015	REA2015	REA3015
20	REA1020	REA2020	REA3020
25	REA1025	REA2025	REA3025
30	REA1030	REA2030	REA3030
40	REA1040	REA2040	REA3040
50	REA1050	REA2050	REA3050
60	REA1060	REA2060	REA3060
70	REA1070	REA2070	REA3070
80	REA1080	REA2080	REA3080
90	REA1090	REA2090	REA3090
100	REA1100	REA2100	REA3100

Type REA

Type REH 1-, 2-, 3-Poles; 480 Volts AC Maximum; Thermal Magnetic

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Catalog Numbers		
	1-Pole 277 Volts AC	2-Pole 480 Volts AC	3-Pole 480 Volts AC
10	REH1010		
15	REH1015	REH2015	REH3015
20	REH1020	REH2020	REH3020
25	REH1025	REH2025	REH3025
30	REH1030	REH2030	REH3030
40	REH1040	REH2040	REH3040
50	REH1050	REH2050	REH3050
60	REH1060	REH2060	REH3060
70	REH1070	REH2070	REH3070
80	REH1080	REH2080	REH3080
90	REH1090	REH2090	REH3090
100	REH1100	REH2100	REH3100

Type REH

Type RE 1-, 2-, 3-Poles; 240 Volts AC Maximum; Thermal Magnetic

(Includes Terminals on Load Side only)			
Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Catalog Numbers		
	1-Pole 120 Volts AC	2-Pole 240 Volts AC	3-Pole 240 Volts AC
10	RE1010		
15	RE1015	RE2015	RE3015
20	RE1020	RE2020	RE3020
25	RE1025	RE2025	RE3025
30	RE1030	RE2030	RE3030
40	RE1040	RE2040	RE3040
50	RE1050	RE2050	RE3050
60	RE1060	RE2060	RE3060
70	RE1070	RE2070	RE3070
80	RE1080	RE2080	RE3080
90	RE1090	RE2090	RE3090
100	RE1100	RE2100	RE3100

Accessories and Modifications

All accessories and modifications available for Replacement Breakers Types EB, EHB and FB are also available for Panelboard Replacement Breakers Types RE, REH, RFA, RF, RHF, REA, and RHFA.
For accessories and modifications refer to pages 22-23.

Terminals

Max. Amps	Wire Type	Wire Range	Style Number©
Standard Pressure Type Terminals			
20 (EB, EHB)	$\mathrm{Al} / \mathrm{Cu}$	$\# 14-\# 10$	624 B 100 G 14
100	$\mathrm{Al} / \mathrm{Cu}$	$\# 14-1 / 0$	624 B 100 G 02
150	$\mathrm{Al} / \mathrm{Cu}$	$\# 4-4 / 0$	624 B 100 G 17
Optional Al/Cu Pressure Terminals			
50	$\mathrm{Al} / \mathrm{Cu}$	\#14-\#4	624B100G10
100	$\mathrm{Al} / \mathrm{Cu}$	$\# 4-4 / 0$	624 B 100 G 17

$50^{\circ} \mathrm{C}$ Calibration(2

Add suffix " V " to catalog number for breakers to be used in $50^{\circ} \mathrm{C}$ ambients. Same price as standard $40^{\circ} \mathrm{C}$ breakers.

[^15]REPLACEMENT CAPABILITIES, Continued
Type RFA 2-, 3-Poles; 600 Volts AC Maximum; Thermal Magnetic

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Catalog Numbers	
	2-Pole 600 Volts AC	3-Pole 600 Volts AC
15	RFA2015	RFA3015
20	RFA2020	RFA3020
25	RFA2025	RFA3025
30	RFA2030	RFA3030
35	RFA2035	RFA3035
40	RFA2040	RFA3040
50	RFA2050	RFA3050
60	RFA2060	RFA3060
70	RFA2070	RFA3070
80	RFA2080	RFA3080
90	RFA2090	RFA3090
100	RFA2100	RFA3100
125	RFA2125	RFA3125
150	RFA2150	RFA3150

Type RFA

Type RF 2-, 3-Poles; 600 Volts AC Maximum; Thermal Magnetic
(Includes Terminals on Load Side only)

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Catalog Numbers	
	2-Pole 600 Volts Ac	3-Pole 600 Volts AC
15	RF2015	RF3015
20	RF2020	RF3020
25	RF2025	RF3025
30	RF2030	RF3030
35	RF2035	RF3035
40	RF2040	RF3040
50	RF2050	RF3050
60	RF2060	RF3060
70	RF2070	RF3070
80	RF2080	RF3080
90	RF2090	RF3090
100	RF2100	RF3100

Type RF

Type RHFA 2-, 3-Poles; 600 Volts AC Maximum; Thermal Magnetic
(Includes Terminals on Load Side only)

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Catalog Numbers	
	2-Pole 600 Volts AC	3-Pole 600 Volts AC
15	RHFA2015	RHFA3015
20	RHFA2020	RHFA3020
25	RHFA2025	RHFA3025
30	RHFA2030	RHFA3030
35	RHFA2035	RHFA3035
40	RHFA2040	RHFA3040
50	RHFA2050	RHFA3050
60	RHFA2060	RHFA3060
70	RHFA2070	RHFA3070
80	RHFA2080	RHFA3080
90	RHFA2090	RHFA3090
100	RHFA2100	RHFA3100
125	RHFA2125	RHFA3125
150	RHFA2150	RHFA3150

Type RHFA

Type RHF 2-, 3-Poles; 600 Volts AC Maximum; Thermal Magnetic

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Catalog Numbers	
	2-Pole 600Volts AC	3-Pole 600Volts AC
15	RHF2015	RHF3015
20	RHF2020	REA3020
25	RHF2025	RHF3025
30	RHF2030	RHF3030
40	RHF2040	RHF3040
50	RHF2050	RHF3050
60	RHF2060	RHF3060
70	RHF2070	RHF3070
80	RHF2080	RHF3080
90	RHF2090	RHF3090
100	RHF2100	RHF3100

Type RHF

Type RJ 2-, 3-Poles; $\mathbf{6 0 0}$ Volts AC Maximum; Thermal Magnetic

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Catalog Numbers	
	2-Pole 600 Volts AC	3-Pole 600 Volts AC
70	RJ2070	RJ3070
90	RJ2090	RJ3090
100	RJ2100	RJ3100
125	RJ2125	RJ3125
150	RJ2150	RJ3150
175	RJ2175	RJ3175
200	RJ2000	RJ3200
225	RJ2225	RJ3225
225 MCS	RJ2225K	RJ3225K

Type RJ

Type RK 2-, 3-Poles; 600 Volts AC Maximum; Thermal Magnetic
(Includes Terminals on Load Side only)

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$		Catalog Numbers	
	2-Pole 600 Volts AC	3-Pole 600 Volts AC	
70	RK2070	RK3070	
90	RK2090	RK3090	
100	RK2100	RK3100	
125	RK2125	RK3125	
150	RK2150	RK3150	
175	RK2175	RK3175	
200	RK2200	RK3200	
225	RK2225	RK3225	
225 MCS	RK2225K	RK3225K	

Type RK
Type RKL 2-, 3-Poles; 600 Volts AC Maximum; Thermal Magnetic

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Catalog Numbers	
	2-Pole 600 Volts AC	3-Pole 600 Volts AC
125	RKL2125	RKL3125
150	RKL2150	RKL3150
175	RKL2175	RKL3175
200	RKL2200	RKL3200
225	RKL2225	RKL3225
250	RKL2250	RKL3250
300	RKL2300	RKL3300
350	RKL2350	RKL3350
400	RKL2400	RKL3400
400 MCS	RKL2400K	RKL3400K

Type RLM 2-, 3-Poles; 600 Volts AC Maximum; Thermal Magnetic

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Catalog Numbers		
	2-Pole 600 Volts AC	3-Pole 600 Volts AC	-0.0.00
125	RLM2125	RLM3125	.
150	RLM2150	RLM3150	
175	RLM2175	RLM3175	
200	RLM2200	RLM3200	:
225	RLM2225	RLM3225	$\stackrel{\square}{\square}$
250	RLM2250	RLM3250	추ํ -
275	RLM2275	RLM3275	
300	RLM2300	RLM3300	풀․․
350	RLM2350	RLM3350	
400	RLM2400	RLM3400	
500	RLM2500	RLM3500	
600	RLM2600	RLM3600	Type RLM
600 MCS	RLM2600K	RLM3600K	Type RLM
700	RLM2700	RLM3700	
800	RLM2800	RLM3800	

REPLACEMENT CAPABILITIES, Continued

Type RHK 2-, 3-Poles; 600 Volts AC Maximum; Thermal Magnetic

(Includes Terminals on Load Side only)

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Catalog Numbers	
	2-Pole 600 Volts AC	3-Pole 600 Volts AC
70	RHK2070	RHK3070
90	RHK2090	RHK3090
100	RHK2100	RHK3100
125	RHK2125	RHK3125
150	RHK2150	RHK3150
175	RHK2175	RHK3175
200	RHK2200	RHK3200
225	RHK2225	RHK3225
225 MCS	RHK2225K	RHK3225K

Type RHKL 2-, 3-Poles; 600 Volts AC Maximum; Thermal Magnetic

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Catalog Numbers	
	2-Pole 600 Volts AC	3-Pole 600 Volts AC
125	RHKL2125	RHKL3125
150	RHKL2150	RHKL3150
175	RHKL2175	RHKL3175
200	RHKL2200	RHKL3200
225	RHKL2225	RHKL3225
250	RHKL2250	RHKL3250
300	RHKL2300	RHKL3300
350	RHKL2350	RHKL3350
400	RHKL2400	RHKL3400
400 MCS	RHKL2400K	RHKL3400K

Type RHLM 2-, 3-Poles; 600 Volts AC Maximum; Thermal Magnetic

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Catalog Numbers	
	2-Pole 600 Volts AC	3-Pole 600 Volts AC
125	RHLM2125	RHLM3125
150	RHLM2150	RHLM3150
175	RHLM2175	RHLM3175
200	RHLM2200	RHLM3200
225	RHLM2225	RHLM3225
250	RHLM2250	RHLM3250
275	RHLM2275	RHLM3275
300	RHLM2300	RHLM3300
325	RHLM2325	RHLM3325
350	RHLM2350	RHLM3350
400	RHLM2400	RHLM3400
450	RHLM2450	RHLM3450
500	RHLM2500	RHLM3500
550	RHLM2550	RHLM3550
600	RHLM2600	RHLM3600
600 MCS	RHLM2600K	RHLM3600K
700	RHLM2700	RHLM3700
800	RHLM2800	RHLM3800

Accessories and Modifications

All accessories and modifications available for replacement breakers types KA, LA and MA are also available for panelboard replacement breakers types RJ, RK, RKL, RLM, RHK, RHKL, and RHLM.
For additional accessories and modifications refer to pages 35, 43 and 44.

Terminals

Panelboard Circuit Breakers	Terminals \mathbf{D}
RJ	TA225LA1
RK	TA225LA1
RHK	TA225LA1
RKL	TA400LA1
RHKL	TA400LA1
RLM	
RHLM $\}$	TA700MA1 (for <600A)
RA800MA1 (for 700-800A)	

$50^{\circ} \mathrm{C}$ Calibration(2

Add suffix " V " to catalog number for breakers to be used in $50^{\circ} \mathrm{C}$ ambients. Same price as standard $40^{\circ} \mathrm{C}$ breakers.

Special Breakers(2

Magnetic only (includes load terminals). Available for all ampere ratings for 2- and 3-pole RJ, RK, RKL, RLM, RHK, RHKL, and RHLM.
High magnetic molded case switches (K suffix) are available to replace out-of-production non-automatic breakers (N suffix).

[^16](2) Not listed with Underwriters' Laboratories, Inc. Circuit Breakers

REPLACEMENT CAPABILITIES

Cutler-Hammer Motor Control Center replacement circuit breakers are newly manufactured and tested to the latest applicable standards at the CutlerHammer molded case circuit breaker plant in Beaver, PA. This plant has a long and
well-recognized tradition of product safety, integrity and quality.
The Motor Control Center replacement circuit breaker solution eliminates the need to consider alternative approaches. Cutler-Hammer customers are assured that the high standards of product quality and reliability do not have to be sacrificed when replacing Westinghouse out-ofproduction circuit breakers.
All Motor Control Center replacement circuit breakers are easily identified by the prefix "RMC" added to the out-ofproduction type circuit breaker catalog number they replace.

Replacement Chart

Current		
MCC Circuit Breaker Type	Out-of- Production Circuit Breaker Type	Volts AC $(50 / 60 \mathrm{~Hz})$
	600	
RMCFA	FA	\bullet
RMCHFA	HFA	\bullet
RMCF	F	\bullet
RMCHF	HF	\bullet

Replacement MCC Breaker
Motor Control Center Replacement Breaker Interrupting Amp Ratings©@4

Breaker Type	Amperes	$@ 240$ Volts AC	$@ 480$ Volts AC	$@ 600$ Volts AC	@olts AC
RMCF	$15-100$	18000	14000	14000	10000
RMCFA	$15-150$	18000	14000	14000	10000
RMCHF	$15-100$	65000	25000	18000	20000
RMCHFA	$15-150$	65000	25000	18000	20000

Example:
An RMCF3100 is a newly manufactured, three-pole, 100 ampere trip panelboard replacement circuit breaker. It replaces an out-of-production F circuit breaker.

Example:

RMC Designates new Motor Control Center replacement circuit breaker
F Identifies the out-of-production circuit breaker frame
3 Number of poles
100 Trip unit ampere rating
© Last manufacture date - 1974.
(2) Motor Control Center Replacement Breakers do not have the same physical dimensions or mounting holes as the breakers they replace. Types RMCFA and RMCHFA are 6 inches long and the breakers they replace, FA and HFA, are $61 / 2$ inches long. Types RMCF and RMCHF are 6 inches long and the breakers they replace, F and HF, are $93 / 8$ inches long. A mounting plate is provided with each breaker to resolve these differences, and must be installed to ensure a proper fit.
(3 Motor Control Center Replacement Circuit Breakers have non-interchangeable trip units and the same interrupting capacity as the out-of-production circuit breakers they replace.
4 RMCFA and RMCHFA 2-pole breakers are supplied in a 3-pole frame with current carrying parts omitted from the center pole.

REPLACEMENT CAPABILITIES, Continued

Type RMCFA - 15-150 Amperes 2-, 3-Pole; 600 Volts AC Maximum; Thermal Magnetic

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Catalog Numbers		
	1-Pole	2-Pole	3-Pole
15	-	RMCFA2015	RMCFA3015
20	-	RMCFA2020	RMCFA3020
25	-	RMCFA2025	RMCFA3025
30	-	RMCFA2030	RMCFA3030
35	-	RMCFA2035	RMCFA3035
40	-	RMCFA2040	RMCFA3040
50	-	RMCFA2050	RMCFA3050
60	-	RMCFA2060	RMCFA3060
70	-	RMCFA2070	RMCFA3070
80	-	RMCFA2080	RMCFA3080
90	-	RMCFA2090	RMCFA3090
100	-	RMCFA2100	RMCFA3100
125	-	RMCFA2125	RMCFA3125
150	-	RMCFA2150	RMCFA3150

Type RMCFA

Type RMCF - 15-100 Amperes 2-, 3-Pole; 600 Volts AC Maximum; Thermal Magnetic

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$			Catalog Numbers		
	1-Pole	2-Pole	3-Pole		
15	-	RMCF2015	RMCF3015		
20	-	RMCF2020	RMCF3020		
25	-	RMCF2025	RMCF3025		
30	-	RMCF230	RMCF3030		
35	-	RMCF2035	RMCF3035		
40	-	RMCF2040	RMCF3040		
50	-	RMCF2050	RMCF3050		
60	-	RMCF2060	RMCF3060		
80	-	RMCF2070	RMCF3070		
90	-	RMCF2080	RMCF3080		
100	-	RMCF2090	RMCF3090		

Type RMCHFA - 15-150 Amperes 2-, 3-Pole; 600 Volts AC Maximum; Thermal Magnetic

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Catalog Numbers			
	1-Pole	2-Pole	3-Pole	
15	-	RMCHFA2015	RMCHFA3015	
20	-	RMCHFA2020	RMCHFA3020	
25	-	RMCHFA2025	RMCHFA3025	
30	-	RMCHFA2030	RMCHFA3030	
35	-	RMCHFA2035	RMCHFA3035	
40	-	RMCHFA2040	RMCHFA3040	
50	-	RMCHFA2050	RMCHFA3050	
60	-	RMCHFA2060	RMCHFA3060	
70	-	RMCHFA2070	RMCHFA3070	
80	RMCHFA2080	RMCHFA3080		
90	-	RMCHFA2090	RMCHFA3090	
100	-	RMCHFA2100	RMCHFA3100	
125	RMCHFA2125	RMCHFA3125		
150	-	RMCHFA2150	RMCHFA3150	

Type RMCHF - 15-100 Amperes 2-, 3-Pole; 600 Volts AC Maximum; Thermal Magnetic

Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Catalog Numbers			
	1-Pole	2-Pole	3-Pole	
15	-	RMCHF2015	RMCHF3015	
20	-	RMCHF2020	RMCHF3020	
25	-	RMCHF2025	RMCHF3025	
30	-	RMCHF2030	RMCHF3030	
35	-	RMCHF2035	RMCHF3035	
40	-	RMCHF2040	RMCHF3040	
50	-	RMCHF2050	RMCHF3050	
60	-	RMCHF2060	RMCHF3060	
70	-	RMCHF2070	RMCHF3070	
80	-	RMCHF2080	RMCHF3080	
90	-	RMCHF2090	RMCHF3090	
100	-	RMCHF2100	RMCHF3100	

TECHNOLOGY UPGRADE

Series C Retrofit Kits

Product Description
Series C Retrofit Kits are to be used to upgrade existing Type W and 5 Star Motor Control Center units by changing out the old breakers with new Series C models. These kits can be applied to both starter and feeder units.
Some of the breakers that these kits will upgrade include:

MCP, F, FA, FB, HFB, K, KA, KB,
HKB, L, LA, LB, and HLB breakers

Series C Molded Case Circuit Breakers

$\begin{aligned} & \text { Fram } \\ & \text { e } \\ & \text { Type } \end{aligned}$	Interrupting Rating (KAIC)			Trip Rating Amps	Catalog Numbers
	240V	480 V	600 V		
HFD	100	65	25	15	HFD3015
				20	HFD3020
				25	HFD3025
				30	HFD3030
				40	HFD3040
				50	HFD3050
				60	HFD3060
				70	HFD3070
				80	HFD3080
				90	HFD3090
				100	HFD3100
				125	HFD3125
				150	HFD3150
FDC	200	100	35	15	FDC3015
				20	FDC3020
				25	FDC3025
				30	FDC3030
				40	FDC3040
				50	FDC3050
				60	FDC3060
				70	FDC3070
				80	FDC3080
				90	FDC3090
				100	FDC3100
				125	FDC3125
				150	FDC3150
HJD	100	65	25	175	HJD3175
				200	HJD3200
				225	HJD3225
				250	HJD3250
JDC	200	100	35	175	JDC3175
				200	JDC3200
				225	JDC3225
				250	JDC3250
HKD	100	65	35	300	HKD3300
				350	HKD3350
				400	HKD3400
KDC	200	100	50	300	KDC3300
				350	KDC3350
				400	KDC3400

5 Star Series C Retrofit Kit

The 5 Star Series C Retrofit Kit Includes:
A. Series C device, 65 kA (either HMCP or thermal-magnetic breaker)
B. Operating handle, including tripped indication and push-to-trip mechanism
C. Label stating that the MCC unit has been retrofitted with Series C device suitable for 65 kA (similar to UL quality label)
D. Templates for desired frame size
E. Assembly instructions

Customer Benefits:

- Ease of ordering - one catalog number for all required parts
- Series C Technology - higher AIC Rating
- All new components associated with the breaker including new stab assembly, operating mechanism and door, if required

How to Order:
Step 1: Select the correct Series C device from the tables on this page.
Step 2: Create a catalog number based on the MCC type, device selected, modifications, door size, and device panel.

MCC Type: Device Catalog Number:
FT = Type W Use tables
FS = 5 Star

Step 3: Select price from PL8991A page 26.

Type W Series C Retrofit Kit

The Type W Series C Retrofit Kit Includes:
A. Series C device, 65 kA (either HMCP or thermal-magnetic breaker)
B. Operating handle, including tripped indication and push-to-trip mechanism
C. Label stating that the MCC unit has been retrofitted with Series C device suitable for 65 kA (similar to UL quality label)
D. Templates for proper hole placement for desired frame size
E. Series C breaker mounting hardware
F. New door and hardware
G. New stab assembly
H. Assembly instructions

Series C Motor Circuit Protectors

Starter Size	Magnetic Trip Range Amperes	Continuous Rating Amperes	Catalog Numbers
0	$9-\quad 30$	3	HMCP003A0
0	$21-70$	7	HMCP007C0
0	$45-150$	15	HMCP015E0
0	$40-60$	25	HMCP025D0
1	$90-300$	30	HMCP030H1
2	$80-120$	50	HMCP050G2
2	$150-500$	50	HMCP050K2
2	$115-170$	70	HMCP070J2
2	$210-700$	70	HMCP070M2
3	$160-240$	100	HMCP100L3
3	$300-1000$	100	HMCP100R3
4	$450-1500$	150	HMCP150T4
4	$750-2500$	150	HMCP150U4
4,5	$350-700$	250	HMCP250A5
5	$450-900$	250	HMCP250C5
5	$500-1000$	250	HMCP250D5
5	$625-1250$	250	HMCP250F5
5	$750-1500$	250	HMCP250G5
5	$875-1750$	250	HMCP250J5
5	$1000-2000$	250	HMCP250K5
5	$1125-2250$	250	HMCP250L5
5	$1250-2500$	250	HMCP250W5
5	$500-1000$	400	HMCP400D5
5	$625-1250$	400	HMCP400F5
5	$750-1500$	400	HMCP400G5
5	$875-1750$	400	HMCP400J5
5	$1000-2000$	400	HMCP400K5
5	$1125-2250$	400	HMCP400L5
5	$1250-2500$	400	HMCP400M5
5	$1500-3000$	400	HMCP400N5
5	$1750-3500$	400	HMCP400R5
5,6	$2000-4000$	400	HMCP400X5

GENERAL INFORMATION

Accessories and Modifications

All accessories and modifications available for Type FB and HFB molded case circuit breakers are also available for Motor Control Center replacement breakers types RMCFA, RMCHFA, RMCF, and RMCHF.

Terminal

Breakers include both line and load terminals. See Terminal Data for replacement breaker type FB.

$50^{\circ} \mathrm{C}$ Calibration

Add suffix "V" to catalog number for complete breaker, listed above, when ordering listed ampere ratings for breakers to be used in $50^{\circ} \mathrm{C}$ ambients. Same price as standard $40^{\circ} \mathrm{C}$ breakers.

Special Breakers

Magnetic only, front adjustable (includes line and load terminals). Available for 15-150 ampere ratings for 2 - and 3-pole RMCF, RMCHF, RMCFA and RMCHFA.

Handle Mechanism - Slide Plate Type

The same type of handle mechanism as was originally used in Westinghouse Type W and 11-300 Motor Control Centers continues to be available from Cutler-Hammer today.
The "Slide Plate" handle mechanism was originally used on the Westinghouse 11-300 Motor Control Center manufactured from 1935 to 1965. This handle is still used on replacement units today and is also vailable as a component.
The MC handle mechanism was used on the Westinghouse Type W and CutlerHammer 9800 Motor Control Centers manufactured from 1965 to 1975.
This handle mechanism was also used by many other OEM's such as ITE and Federal Pacific. The MC handle is also still used on replacement units today and is available as a component.

Slide Plate Handle Mechanism Selection Chartso

Enclosure Cover Hinged on Right	Vertical Mounting		
	Padlocks in OFF Position	Padlocks in ON or OFF Position	Padlocks in OFF Position
	Style Numbers	Style Numbers	Style Numbers
Circuit Breakers			
KL and HKL Frame	314C386G01	314C386G08	314C386G04
MA, HMA, MC and HMC Breaker			
LA, HLA, LC and HLC Breaker			
JA, KA, HKA, DA, LB, LBB and HLB Breaker			
NB, HNB, NC and HNC Breaker			
JB, KB and HKB Breaker			
LCL Breaker			
EH Breaker 2P with long handle	314C386G02	314C386G09	314C386G05
EH Breaker 3P with long handle			
F Frame 2P			
F and HF Frame 3P			
Type AQB and NQB 100A Frames and Type PF 15-100A Frame			
EH Standard 2P	314C386G03	314C386G10	314C386G06
EH Std. 3P and FA magnetic only 2 and 3P			
FA 2 and 3P Thermal Magnetic			
EB, EHB, FB, HFB $3 P$ MCP HMCP (0-4) $2 P$			
FCL Breaker			
PB, TRI-PAC® ${ }^{\text {® }}$ P, PC, PCC	505C294G03		
Series C Circuit Breakers			
F-Frame Series C	314C386G03	314C386G10	314C386G06
J-Frame Series C	314C386G02	314C386G09	314C386G05
K-Frame Series C			
L-Frame Series C	314C386G18	314C386G08	314C386G04
R-Frame	505C294G03		

Tri-Pac Switches

225A TRI-PAC Type K			
400A TRI-PAC Type KL	$314 C 386 \mathrm{G} 01$	$314 C 386 \mathrm{G} 08$	$314 C 386 \mathrm{G} 04$
LA TRI-PAC			
NB TRI-PAC	314C386G02	314C386G09	314C386G05
100A TRI-PAC	314C386G03	314C386G10	314C386G06
FB TRI-PAC	314C386G01	314C386G08	314C386G04
Visi-Flex Switches (Model T)	314C386G02	314C386G09	314C386G05
60-100A Visi-Flex			
30A and Special 60A Visi-Flex			

De-ion Switches and Disconnect Switches

30-60A (long handle) De-ion	314C386G01	314C386G08	314C386G04
100A (long handle) De-ion			
200A Disconnect Switch			
200 DS Switch			
30-60A Disconnect Switch	314C386G02	314C386G09	314C386G05
100A Disconnect Switch			
30, 60, 100A DS Switch	314C386G03	314C386G10	314C386G06
400 and 600A DS Switch	314C386G15		

GENERAL INFORMATION

Accessories and Modifications

100 Ampere Mechanism

225 Ampere

 MechanismType MC handle mechanisms are linear drive, fixed depth mechanisms designed for through-door mounting in standardized or shallow depth enclosures such as motor control centers or enclosed circuit breakers.
Mounting directly to the front of the disconnect, these mechanisms provide positive operation and handle indication. Both disconnect and mechanism mount simultaneously with mounting hardware supplied with the mechanism.
For security, the handle can be padlocked in the OFF position with up to three $-3 / 8$ inch hasp padlocks. Also, the mechanism is interlocked with the enclosure door so that the disconnect must be OFF before the door can be opened. A defeater is provided to bypass this interlock.
Catalog numbers listed include the mechanism, mounting hardware and door interlock clip.

Type MC Handle Mechanism Selection Charto

Handle Mechanism(2	For Use With	NEMA 1 Enclosure	NEMA 12 Enclosure
		Catalog Numbers ${ }^{(1)}$	Catalog Numbers3
		SMCU150FD SMCU150FB SMCU100FBP SMCU100FCL	CMCU150FD CMCU150FB CMCU100FBP CMCU100FCL
	30-60-100 Amp DS Switch Fusible, Non-fusible. 200 Amp DS Switch Fusible, Non-fusible.	SMCU100DS SMCU200DS	CMCU100DS CMCU200DS
	Series C J Frame HMCP J. Series C K Frame HMCP K DA, JA, KA, HKA, LB, LBB, HLB Breakers, Size 5 MCP (400 Amp.) JB, KB, HKB, Size 5 MCP (250 Amp.)	SMCU250JD SMCU400KD SMCU225KA SMCU250KB	CMCU250JD CMCU400KD CMCU255KA CMCU250KB
	LAB, LA, HLA, LC, HLC Breakers (400 and 600 Amperes Frame) LA TRI-PAC. MA, HMA, MC, HMC Breakers (800 Ampere Frame) NB, HNB, NC, HNC Breakers (1200 Ampere Frame) LCL225 and 400. Series C L Frame HMCP L.	SMCU400LA SMCU400LAP SMCU800MA SMCU1200NB SMCU400LCL SMCU600LD	CMCU400LA CMCU400LAP CMCU800MA CMCU1200NB CMCU400LCL CMCU600LD

FURTHER INFORMATION

Literature Number	Description
IL 15582	Mounting Information for RMCF, RMCHF
IL 15583	Mounting Information for RMCFA, RMCHFA
RPD 8991	Renewal Parts Data for Motor Control Centers

PRICING INFORMATION

Literature Number	Description
PL 8991A	Price List for Aftermarket Renewal Parts
VISTA/VISTALINE	Discount Symbol RCB-2

[^17]MOLDED CASE CIRCUIT BREAKERS

For Motor Control Center Replacement Breakers, Call 1-800-OLD-UNIT

PRODUCT DESCRIPTION

MCCB Handle Mechanism Introduction Cutler-Hammer offers a broad range of handle mechanisms for molded case circuit breakers. Each of these has been designed specifically for safe, dependable operation and ease of installation. Applications include: enclosed molded case circuit breakers, control panels, motor centers, etc.

Whether replacing a damaged handle mechanism with a like unit, switching from fuses to circuit breakers in order to limit downtime, or upgrading to take advantage of the many benefits associated with applying communicating, programmable molded case circuit breaker technology, Cutler-Hammer has the handle mechanism solution that is right for you.

Vari-Depth Type - Page 84

Type SM Safety Handle - Page 86

Side Plate Type - Page 85

Type MC Motor Control - Page 88

Type AMT Vari-Depth - Page 89

Handle Mechanisms

SELECTION AND AVAILABILITY GUIDE

Circuit Breaker and Switch Type	Door Mounted				Flange Mounted			
	Vari-Depth	Series Co Rotary	Slide Plate	MC	Series Co Flex Shaft	SM	AMT Fixed Width	AMT Vari-Depth
Series C Breakers								
F Frame/F HMCP(2	\bullet							
J Frame/J HMCP	\bullet							
K Frame/K HMCP	\bullet							
L Frame/L HMCP	\bullet	\bullet	\bullet	-	\bullet	\bullet	\bullet	\bullet
M Frame	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	N/A	\bullet
N Frame	N/A	\bullet	N/A	N/A	\bullet	N/A	N/A	N/A
R Frame	N/A	N/A	\bullet	N/A	\bullet	N/A	N/A	N/A
Other Industrial Breakers								
GB/GHB/GC/GHC/GD/GMCP	\bullet	N/A						
LA/LAB/HLA	\bullet	N/A	\bullet	\bullet	N/A	\bullet	-	\bullet
LC/HLC/LCG	\bullet	N/A	\bullet	\bullet	N/A	\bullet	\bullet	\bullet
MA/HMA	\bullet	N/A	\bullet	\bullet	N/A	\bullet	N/A	\bullet
MC/HMC	\bullet	N/A	\bullet	\bullet	N/A	\bullet	N/A	\bullet
NB/HNB	\bullet	N/A	\bullet	\bullet	N/A	\bullet	N/A	\bullet
NC/HNC	\bullet	N/A	\bullet	\bullet	N/A	\bullet	N/A	\bullet
PB	N/A	N/A	\bullet	N/A	N/A	N/A	N/A	N/A
PC/PCC	N/A	N/A	\bullet	N/A	N/A	N/A	N/A	N/A
FB TRI-PAC	\bullet	N/A	\bullet	\bullet	N/A	\bullet	N/A	\bullet
LA TRI-PAC	\bullet	N/A	\bullet	N/A	N/A	\bullet	N/A	\bullet
NB TRI-PAC	\bullet	N/A	\bullet	N/A	N/A	\bullet	N/A	\bullet
PB TRI-PAC	N/A	N/A	\bullet	N/A	N/A	N/A	N/A	N/A
FCL	\bullet	N/A	N/A	\bullet	N/A	\bullet	N/A	N/A
LCL	\bullet	N/A	N/A	\bullet	N/A	\bullet	N/A	\bullet
EB/EHB/FB/HFB	\bullet	N/A	\bullet	\bullet	N/A	\bullet	\bullet	\bullet
JA/KA/HKA/DA/LB/LBB/HLB	\bullet	N/A	\bullet	\bullet	N/A	\bullet	\bullet	\bullet
JB/KB/HKB	\bullet	N/A	N/A	\bullet	N/A	\bullet	\bullet	\bullet
Disconnect Switches								
De-ion 30, 60, 100	\bullet	N/A	\bullet	N/A	N/A	N/A	N/A	N/A
DS 30, 60, 100, 200	\bullet	N/A	\bullet	\bullet	N/A	\bullet	\bullet	\bullet
DS 400, 600	N/A	N/A	\bullet	N/A	N/A	N/A	N/A	N/A
Visi-Flex Model "T" 30, 60, 100	N/A	N/A	\bullet	N/A	N/A	N/A	N/A	N/A
KEY								
N/A = Not Available								
- = Available								

VARI-DEPTH TYPE

Westinghouse general purpose vari-depth handle mechanisms are suitable for use with NEMA 1 fabricated enclosures. They are designed for use with breakers or disconnect switches when used in deep enclosures.
Required for a standard application are a padlockable operating handle, shaft and mechanism. Two variable depth shafts are offered to better cover the wide range of depths of various enclosures... these are
referred to in the table as the standard and the long shaft. The dimensions for panel depth given in the table are from the mounting surface of the breaker or disconnect to the inside of the enclosure cover.
Standard mechanisms do not include an internal lockoff device. Mechanisms with this feature are, however, offered as an optional item. The internal lockoff provides a means of padlocking the breaker or switch in the "off" position while the enclosure door is open.

These mechanisms may also be used in conjunction with NEMA 4, 7 and 9 cast enclosures. When used with these enclosures, the special handle kits shown as accessory items must be ordered in place of the standard handle.
The adapter bushing, a component of the special handle kit, may be ordered separately.

CATALOG NUMBERS

For Complete Applications Order Mechanism, Handle and Shaft	Mechanism(1)		Handle 5	Shaft			
	Standard - (No Internal Lockoff)	Special - (With Internal Lockoff)	NEMA 1, 3R, 12 (With Hardware)	Standard		Long	
	Style Number	Style Number	Style Number	Style Number	Panel Depth	Style Number	Panel Depth
Circuit Breakers							
Series C F Frame \& HMCP F© EB, EHB, FB, HFB, MCP CA Series C J Frame \& HMCP J Series C K Frame \& HMCP K Series C L Frame \& HMCP L JA, KA, HKA, DA, LB, LBB, HLB JB, KB, HKB LA, HLA, LC, HLC TRI-PAC FB FCL	373D958G22 373D958G05 458D493G20 5092A62G03 5092A62G01 5092A62G05 458D493G03 373D958G18 458D493G04 373D958G10 373D958G16	373D958G23 373D958G06 458D493G21 5092A62G04 5092A62G02 5092A62G06 458D493G11 373D958G19 458D493G12 373D958G11 373D958G17	504C323G07 504C323G07	47A4446G38 47A4446G36	5 $-10^{1 / 1 / 4}$ 5 $-10^{1 / 4}$ $4^{3 / 4}$ $-99^{3 / 4}$ $5^{7} / 8$ $-11^{11 / 8}$ $5^{7 / 8}$ $-11^{1 / 18}$ $6^{1 / 8}$ $-11^{1 / 4}$ $5^{7 / / 8}$ $-11^{11 / 8}$ $5^{7 / / 8}$ $-11^{1 / 8}$ $6^{1 / 8}$ $-11^{1 / 1 / 4}$ 5 $-10^{11 / 4}$ 5 $-10^{1 / 4}$	47A4446G37 47A4446G37	$10^{1} 1 / 2$ -14 $10^{1 / 2}$ -14 $9^{3} / 4$ $-13^{1 / 2}$ $11^{11 / 8}$ $-14^{7} / 8$ $11^{1 / 8}$ $-14^{7} / 8$ $11^{11 / 4}$ -15 $11^{11 / 8}$ $-14^{7} / 8$ $11^{11 / 8}$ $-14^{7} / 8$ $11^{11 / 4}$ -15 $10^{1 / 4}$ -14 $10^{1} / 4$ -14
MA, HMA, MC, HMC, Series C M Frame (800 Amp max.) NB, HNB, NC, HNC TRI-PAC LA TRI-PAC FB FCL	458D493G05 373D958G07 374D075G02 373D958G12 458D493G22	458D493G13 373D958G08 374D075G01 373D958G13 458D493G23	504C323G07 504C323G07 504C323G07 504C323G07 504C323G07	47A4446G36 47A4446G36 47A4446G36 47A4446G36 47A4446G36	$\begin{array}{ll} 6^{111 / 16} & -11^{13 / 13 / 6} \\ 7^{15 / 16} & -13^{1 / 4} \\ 6^{1 / 8} & -11^{11 / 4} \\ 7^{15 / 166} & -13^{11 / 4} \\ 6^{11 / 16} & -11^{13 / 1 / 6} \end{array}$	47A4446G37 47A4446G37 47A4446G37 47A4446G37 47A4446G37	$\begin{array}{lll} 11^{13 / 13 / 1} & -159 / 16 \\ 12^{15} / 16 & -16^{15} / 16 \\ 11^{1 / 4} & -15 \\ 12^{15 / 15} & -16^{15} / 16 \\ 11^{13 / 1616} & -15^{9 / 166} \end{array}$
Disconnect Switches							
30, 60, 100 Amp De-ion(Type DS 30, 60, 100 Amp Type DS 200 Amp 200 Amp De-ion	$\begin{aligned} & \text { 47A4446G34 } \\ & \text { 4987D14G02 } \\ & \text { 4987D14G01 } \\ & \text { 458D493G04 } \end{aligned}$	458D493G12	$\begin{gathered} \boldsymbol{\ominus} \\ \text { 504C323G07 } \\ \text { 504C323G07 } \\ 504 \mathrm{C} 323 \mathrm{G} 07 \end{gathered}$	47A4446G36 47A4446G36 47A4446G36	$\begin{array}{ll} 5^{3 / 4} & -11 \\ 5^{3 / 8} & -10^{5} / 8 \\ 6^{11 / 166} & -11^{3 / 1 / 6} \\ 6^{1 / 8} & -11^{1 / 1 / 4} \end{array}$	47A4446G37 47A4446G37 47A4446G37 47A4446G37	$\begin{array}{ll} 11 & -14^{3} / 4 \\ 10^{3} / 8 & -14^{5} / 16 \\ 10^{7} / 8 & -14^{7 / 8} \\ 11^{1 /} / 4 & -15 \end{array}$

ACCESSORIES

Special Handles®

Meet NEMA 4 sheet steel requirements. These handles are similar to standard handles, except they include an internal neoprene gasket. Due to gasketing effect between
handle and housing, handle will not indicate a tripped position when used with circuit breakers. Standard Finish

Style Number
504C323G08

Handle Kits

These kits are for use with NEMA 4, 7 and 9 cast enclosures. They include a special operating handle, mounting bolts and an adapter bushing (bushing may be purchased separately). Kits may be used with standard mechanisms and shafts. Instruction drawing 314C809 applies for assembly.

For NEMA 4, 9 Enclosure
Style Number
314C794G10
For NEMA 7 Enclosure
Style Number
314C794G09
Adapter Bushing Only
Style Number
314C794G04
(1) Includes hardware
(2) When used with plug-in adapter kits or rear connected studs, special mounting hardware is required. Refer to Westinghouse.
(3) Mechanism style includes handle and a standard shaft. Long shaft may be ordered separately if required.
(4) Extra long shaft includes support bracket for Series C F-Frame with no internal lockoff. Order 373D958G24, which includes the mech, shaft, and bracket. Order handle separately. Panel depth $163 / 8-241 / 4$.
© UL File No. E56845 Vol. 1 Sect. 4.

SLIDE PLATE TYPE

Horizontal Mounting

Vertical Mounting

These compact Westinghouse slide plate handle mechanisms are especially designed for use with AB De-ion circuit breakers and disconnect switches when they are mounted in a shallow enclosure. They are suitable for use on NEMA 1 applications.
Because of the mechanisms' simplified installation - three mounting holes - and preassembled construction, these units are commonly used where high volume, standardized enclosures are being fabricated.
The mechanism styles listed on this page are for use on enclosures which have covers hinged on the right side. If these mechanisms are used on enclosures which have covers hinged on the left side, the door interlock will not function.

Outdoor or Hazardous Location Type

This handle mechanism is designed for use with fabricated or cast, NEMA 3, 4 or 5 enclosures. A butterfly cam type mechanism may be used on enclosures with either right or left hand hinged covers or on enclosures with bolted covers. The mechanism has a provision for padlocking. Will accept up to three locks. Assembly of this mechanism is accomplished by welding it to the enclosure door or cover. Refer to IL29C287 for drilling plan. For PB, PC and RD, refer to Drawing 372D690.

ACCESSORIES

Door Interlock Kits
For use with slide plate mechanisms used in larger panels where regular interlock is not adequate.

Style Number	Description	Drilling Plan Reference
28A2656G08	3 point - For mechanisms, style numbers: 314C386G01, 02, $03,04,05,06,08$, 09 and 10	208B624
1532990	2 point For PB mechanism, style number 505C294G03	372D690

(1) Handle mechanisms cannot be used on Visi-flex switches with 200 ampere fuse kits. (2) Does not padlock in OFF position. NEMA 3R version available as special. Contact your Cutler-Hammer representative.

CATALOG NUMBERS

Standard Slide Plate Mechanisms

Enclosure Cover Hinged on Right	Vertical Mounting		Horizontal Mounting Padlocks in OFF Position	
	Padlocks in OFF Position	Padlocks in ON or OFF Position		
	Style Number	Style Number	Style Number	
Circuit Breakers				
KL and HKL Frame	314C386G01	314C386G08	314C386G04	
MA, HMA, MC and HMC Breaker				
LA, HLA, LC and HLC Breaker				
JA, KA, HKA, DA, LB, LBB and HLB Breaker				
NB, HNB, NC and HNC Breaker				
JB, KB and HKB Breaker				
LCL Breaker				
EH Breaker 2P with long handle	314C386G02	314C386G09	314C386G05	
EH Breaker 3P with long handle				
F Frame 2P				
F and HF Frame 3P				
Type AQB and NQB 100A Frames and Type PF 15-100A Frame				
EH Standard 2P	314C386G03	314C386G10	314C386G06	
EH Standard 3P and FA mag only 2 and 3P				
$\begin{aligned} & \text { FA } 2 \text { and 3P Thermal Mag } \\ & \hline \text { EB, EHB, FB, HFB 3P } \end{aligned}$				
EB, EHB, FB, HFB 3P MCP, НMCP (0-4) 2P				
FCL Breaker				
PB, TRI-PAC® ${ }^{\text {P }}$ P, PC, PCC, PCF	505C294G03	\ldots.	
Series C Circuit Breakers				
F-Frame Series C + HMCP-F	314C386G03	314C386G10	314C386G06	
J-Frame Series C + HMCP-J	314C386G02	314C386G09	314C386G05	
K-Frame Series C + HMCP-K				
L-Frame Series C + HMCP-L	314C386G18	314C386G08	314C386G04	
M-Frame Series C	314C386G01	314C386G08	314C386G04	
R-Frame ${ }^{\text {2 }}$	505C294G03	\ldots.	
TRI-PAC Switches				
225A TRI-PAC Type K	314C386G01	314C386G08	314C386G04	
400A TRI-PAC Type KL				
LA TRI-PAC				
NB TRI-PAC				
100A TRI-PAC	314C386G02	314C386G09	314C386G05	
FB TRI-PAC	314C386G03	314C386G10	314C386G06	
Visi-Flex Switches (Model T) ${ }^{\text {c }}$				
60-100A Visi-Flex	314C386G01	314C386G08	314C386G04	
30A and Special 60A Visi-Flex	314C386G02	314C386G09	314C386G05	
De-ion Switches and Disconnect Switches				
30-60A (long handle) De-ion	314C386G01	314C386G08	314C386G04	
100A (long handle) De-ion				
200A Disconnect Switch				
200 DS Switch				
30-60A Disconnect Switch	314C386G02	314C386G09	314C386G05	
100A Disconnect Switch				
30,60, 100A DS Switch	314C386G03	314C386G10	314C386G06	
400 and 600A DS Switch	314C386G15	
Mechanisms for Outdoor or Hazardous Locations				
Description	Complete Handle Mechanisms NEMA 3, 4, 5			Drilling Plan Reference
	Padlocks in OFF Position	Padlocks in ON or OFF Position		
	Style Number	Style Number		
Circuit Breakers				
Series C F Frame EB, EHB, FB, HFB JA, KA, LA, MA, HKA, HLA, HMA, LB, HLB	$\begin{aligned} & \text { 48A3656G03 } \\ & \text { 452D028G01 } \end{aligned}$	48A3656G04		$\begin{aligned} & \text { 48A3656 } \\ & \text { 452D028 } \end{aligned}$
De-ion Switches				
30, 60, 100 Amp	48A3656G03	48A3656G04		48A3656

TYPE SM SAFETY HANDLE

The Westinghouse Type SM safety handle mechanism is designed to prevent tampering by unauthorized individuals and provides the optimum in personnel safety. When properly applied, these mechanisms conform to NEMA 12 and J.I.C. requirements, and are thus well-suited for use by the automotive and machine tool industries.
Completely preassembled in a rugged cast housing, the Type SM safety handle mechanism includes a predrilled mounting plate for simplified customer installation. Standard handles are $51 / 8$ inches long and can be padlocked in "OFF" position with as many as three padlocks. A shorter handle $37 / 8$ inches long can be supplied on SM100, SM101, or SM150 mechanisms when specified.
All Type SM safety handle mechanisms can be used on any size enclosure. Order handle mechanism from table at right, plus desired door hardware for complete application. Dress nameplate required to meet automotive specifications is available from accessories section.

CATALOG NUMBERS

Handle Mechanism	For Use With:	Catalog Number 0	
		Right Hand Mounting Enclosure Cover Hinged On Left	Left Hand Mounting Enclosure Cover Hinged On Right
	Series C - F Frame, MCP, HMCP F EB, EHB, FB, HFB Breakers, and Type DS 30, 60, 100 Ampere Non-fusible Switches Type DS 30, 60, 100 Ampere Fusible Switches. \qquad FB TRI-PAC ${ }^{\circledR}$, FB Breaker with Current Limiter, or Type FCL 30, 60, 100 Ampere De-ion Switches	SM150R SM100SFR SM101PR SM100R	SM150L SM100SFL SM101PL SM100L
	DA, JA, KA, HKA, LB, LBB, HLB Breakers. Series C - J Frame, HMCP J JB, KB, HKB Series C - K Frame, HMCP K. LAB, LA, HLA, LC, HLC Breakers (400 and 600 Ampere) Series C - L Frame, HMCP L Series C - M Frame MA, HMA, MC, HMC Breakers TRI-PAC LA Breaker. TRI-PAC NB NB, HNB, NC, HNC Breakers. Type DS 200 Ampere Non-Fusible Switch Type DS 200 Ampere Fusible Switch. Type LCL.	SM225R SM250JR SM250R SM400KR SM400R SM600R SM800R SM800R SM400PR SM800PR SM1200R SM200SR SM200SFR SM400LCLR	SM225L SM250JL SM250L SM400KL SM400L SM600L SM800L SM800L SM400PL SM800PL SM1200L SM200SL SM200SFL SM400LCLL

Mechanisms for NEMA 4 Applications
Mechanisms with stainless steel parts and special gasketing can be supplied. Order by description. 30% adder.

FURTHER INFORMATION	
Literature Number	Description
IL 14439	F Frame, EB, EHB, FB, FCL, HFB, MCP, FB-P, 30-200 De-ion SW
IL 29C274	J\&K Frame
IL 29C284	L Frame
IL 13282	JA, KA, JB, KB, LAB, LA, MA, NB, HLA, NB-P, 200A, De-ion SW
IL 13327	DH1L Door Hardware
IL 13326	DH1R Door Hardware
IL 13325	DH2R Door Hardware
IL 13324	DH3L Door Hardware
IL 13322	DH3R Door Hardware
IL 13287	Electrical Interlock

TYPE SM SAFETY HANDLE

Door Hardware

Three choices of door hardware and an auxiliary handle are offered to provide the best latching scheme for individual needs. The door hardware is designed with a provision for padlocking, and a coin-proof slot that requires the use of a tool to open the door, for maximum security.
Select desired hardware below. Additional latches can be ordered from accessories section if desired. NEMA 1, 12 only.

Hardware Item	Description
	With sliding latches for smaller panels up to approx. 30 inches high.
	Catalog Numbers Reft Hand: DH1L(

Dress Nameplates
Required to meet automotive specifications. Mounts from inside enclosure and covers operating mechanism mounting bolts, making mechanism non-removable when enclosure door is closed.

For SM100, SM150 Mechanisms

Style Number
373D260G05

For SM200, and larger mechanisms

Style Number
373D260G05

Auxiliary Latch Kits

Provide an additional latch for use with applications where two point latching may not be adequate.

Slide Latch

Roller Latch

For Door Hardware Using Sliding Latches Right or Left Hand Mounting.

Style Number
656D669G01

For Door Hardware Using Roller Latches Right Hand Mounting.

Style Number
370D801G04

Left Hand Mounting.

Style Number
370D802G04

Electrical Interlock Kit Provides 1 N.C. and 1 N.O. contacts (SPDT switch) for use with auxiliary circuits. Mounts to end of mechanism housing
 as shown.

Style Number
622B747G01

Door Operated Interlock Defeater Kit

Required when door hardware is not used; operates as door closes. Additional method of securing door such as screw latch, also required (to be supplied by box manufacturer).

Style Number
623B214G02

TYPE MC MOTOR CONTROL

Type MC handle mechanisms are linear drive, fixed depth mechanisms designed for through-door mounting in standardized or shallow depth enclosures such as motor control centers or enclosed circuit breakers.
Mounting directly to the front of the disconnect, these mechanisms provide positive operation and handle indication. Both disconnect and mechanism mount simultaneously with mounting hardware supplied with the mechanism.
For security, the handle can be padlocked in the OFF position with up to three $3 / 8$ inch hasp padlocks. Also, the mechanism is interlocked with the enclosure door so that the disconnect must be "OFF" before the door can be opened. A defeater is provided to bypass this interlock.
Catalog numbers listed include the mechanism, mounting hardware and door interlock clip.

CATALOG NUMBERS

Selection Data for Handle Mechanism Only; Circuit Breaker Not Included

Handle Mechanism(For Use With:	NEMA 1 Enclosure	NEMA 12 Enclosure
		Catalog Number ${ }^{\text {(}}$	Catalog Number(2)
	Series C F Frame HMCP F EB, EHB, FB, HFB Breakers and MCP (Size 0-4). FB TRI-PAC ${ }^{\circledR}$ FCL Breakers.	SMCU150FD SMCU150FD SMCU100FBP SMCU100FCL	CMCU150FD CMCU150FD CMCU100FBP CMCU100FCL
	30-60-100 Ampere DS Switch Fusible, Non-fusible. 200 Ampere DS Switch Fusible, Non-fusible.	SMCU100DS SMCU200DS	CMCU100DS CMCU200DS
	Series C J Frame HMCP J Series C K Frame HMCP K. DA, JA, KA, HKA, LB, LBB, HLB Breakers, Size 5 MCP (400 Ampere). JB, KB, HKB, Size 5 MCP (250 Ampere) Series C L Frame HMCP L Series C M Frame.	SMCU250JD SMCU400KD SMCU225KA SMCU250KB SMCU600LD SMCU800MA	CMCU250JD CMCU400KD CMCU225KA CMCU250KB CMCU600LD CMCU800MA
	LAB, LA, HLA, LC, HLC, Breakers (400 and 600 Amperes Frame) LA TRI-PAC MA, HMA, MC, HMC Breakers (800 Ampere Frame) NB, HNB, NC, HNC Breakers (1200 Ampere Frame) LCL225 and 400. Series C L Frame HMCP L .	SMCU400LA SMCU400LAP SMCU800MA SMCU1200NB SMCU400LCL SMCU600LD	SMCU400LA SMCU400LAP SMCU800MA SMCU1200NB SMCU400LCL SMCU600LD

FURTHER INFORMATION

Literature Number	Description
IL 14572	F Frame, EB, EHB, FB, MCP, HFB
IL 29 C273	J\&K Frame
IL 29C283	L Frame
IL 14571	FB-P
IL 14938	JB, KB
IL 14573	$30,60,100$ A DS Switch
IL 14574	200 A DS Switch

[^18](2) These mechanisms are recognized under the component program of Underwriters' Laboratories, Inc

AMT VARI-DEPTH

Fixed Width Type

CATALOG NUMBERS

Complete Assembly consists of and is shipped as the Component Parts listed below.

Breaker or Switch Type	Complete Catalog Number	Backplate and Yoke Catalog Number	Rod and Brace Catalog Number	Pivot Mechanism Catalog Number	Operating Handle Catalog Number

Below the Handle - Fixed Width - with Short Brace and/or Rod as Listed (For all enclosures including Hoffman A-25 Enclosures)

Series C F Frame HMCP Fi	AMTFDBSFH	AMTFD-B	AMTR	AMTPM-FH	AMTOP
Series C J Frame HMCP Jo	AMTJDBSFH	AMTKB-B	AMTRB1	AMTPM-FSH	AMTOP
Series C K Frame HMCP K0	AMTKDBSFH	AMTLB-B	AMTRB1	AMTPM-FSH	AMTOP
Series C L Frame HMCP Lo	AMTLDBSFH	AMTLD-B	AMTRB1	AMTPM-FS	AMTOP
DS-30, 60, 100 Unfused	AMTDSBSFH	AMTDS100-B	AMTR	AMTPM-FH	AMTOP
DS-30,60, 100 Fused ${ }^{\text {a }}$	AMTDSFBSFH	AMTDS100F-B	AMTR	AMTPM-FH	AMTOP
DS-30,60, 100 Fused(3	AMTDSF1BSFH	AMTDS100F1-B	AMTR	AMTPM-FH	AMTOP
DS-200 Unfused	AMTDS2BSFH	AMTDS200-B	AMTRB1	AMTPM-FSH	AMTOP
DS-200 Fused	AMTDS2FBSFH	AMTDS200F-B	AMTRB1	AMTPM-FSH	AMTOP

Below the Handle - Fixed Width - with Short Brace and/or Rod as Listed (Not for use with Hoffman A-25 Enclosures)

| EB, EHB, FB, HFB, MCP (0-4) | AMTFBBSF | AMTFD-B | AMTR | AMTPM-F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| JB, KB, MCP (250 Amp) | AMTKBBSF | AMTKB-B | AMTRB1 | AMTPM-FS |
| JA, KA, HKA, LB, LBB, HLB, DA MCP (400 Amp) | AMTLBBSF | | | |
| FB TRI-PAC®, FCL | AMTLB-B | AMTRP | | |
| | AMTFBPBSF | AMTFBP-B | AMTRB1 | AMTPM-FS |

Standard Door Hardware (Requires Adapter Kit below)
Catalog Number
DH1R
DH2R
DH3R
NOTE: For standard door hardware description, see page 87.

Door Hardware Adapter Kit (Required on Standard Door Hardware only when used with any AMT Handle Mechanisms)
Catalog Number
AMTDHA
Door Hardware Kit for Hoffman A-25 Enclosure (For use with AMT Fixed Width Mechanisms only)
Kit consists of special door hardware and door interlock pin. Available for right hand flange mounting only.
Catalog Number
HDH-2R4
HDH-3R®

FURTHER INFORMATION

Literature Number	Description
IL 29C277	AMT Vari-depth Handle Mechanism

(1) Also for use with equivalent HMCP Frame.
(2) For switches using 30, 60, 100 amperes 250 volt NEC Class H or R fuses.
(3) For switches using 30, 60, 100 amperes 600 volt NEC Class H, R or J fuses.
(4) 2 point latch for use with panels up to approximately 40 inches high.
© 3 point latch for use with panels approximately 40 inches and higher.
© AMTR and AMTRB1 for use with enclosure depth of $61 / 2-14 \frac{1}{4}$ inches. For $121 / 4-181 / 4$ inch depth use optional AMTRB2. For 18-24 inch depth use optional AMTRB3.
θ AMTR is rod only; AMTRI is rod and brace assembly.

AMT VARI-DEPTH

Vari-Width Type

Type AMT For Above Handle Mounting The Type AMT is an extra heavy duty handle mechanism designed for mounting in flange-type enclosures, and has
provisions for mounting in various depth enclosures and for varying the width relationship between the disconnect device and the external handle.

A door interlock is provided to prevent opening the enclosure door with the disconnect in the ON position or to close the disconnect with the enclosure door open. The external handle can be locked in the OFF position with up to three padlocks. The AMT mechanism is supplied for mounting in right hand flange enclosures but can be easily converted for left hand mounting.
AMT mechanisms are available for above the handle mounting or below the handle mounting. Mechanisms for below the handle mounting are also available as fixed width units. When door hardware is used with AMT handle mechanism a door hardware adapter kit is required.

CATALOG NUMBERS

Complete Assembly consists of and is shipped as the Component Parts listed below.

Breaker or Switch Type	Complete Assembly	Backplate and Yoke Assembly	Operating Rod and Brace Assembly	Flange Mounted Pivot Mechanism Assemblyos	External Operating Handle
	Catalog Number				
Above the Handle Mounting with Short Rod and Brace					
```Series C F Frame® EB, EHB, FB, HFB, MCP (0-4) Series C J Frame(3 JB, KB, MCP (250 Ampere) Series C K Frame(3 Series C L Frame \({ }^{(1)}\) JA, KA, HKA, LB, LBB, HLB, DA, MCP (400 Ampere) LA, HLA, LC, HLC MA, HMA, MC, HMC, Series C M, Frame, LCL NB, HNB, NC, HNC FB TRI-PAC®, FCL LA TRI-PAC® NB TRI-PAC \({ }^{\circledR}\) DS-30, 60, 100 Unfused DS-30, 60, 100 Fused \(\mathbf{B}\) DS-30, 60, 100 Fused 9 DS-200 Unfused DS-200 Fused```	AMTFDASV AMTJDASV AMTKBASV AMTKDASV AMTLDASV AMTLBASV AMTLAASV AMTMAASV AMTNBASV AMTFBASV AMTLAPASV AMTNBPASV AMTDSASV AMTDSFASV AMTDSF1ASV AMTDS2ASV AMTDS2FASV	AMTFB   AMTJD   AMTKB   AMTKD   AMTLD   AMTLB   AMTLA   AMTMA   AMTNB   AMTFB   AMTLAP   AMTNBP   AMTDS 100   AMTDS100F   AMTDS100F1   AMTDS200   AMTDS200F	AMTRB1   AMTRB1 AMTRB1   AMTRB1	AMTPM AMTPM AMTPM AMTPM AMTPM AMTPM AMTPM AMTPM AMTPMNB AMTPM AMTPM AMTPMNB AMTPM AMTPM AMTPM AMTPM AMTPM	
Above the Handle Mounting with Long Rod and Brace					
Series C F Frame(2 EB, EHB, FB, HFB, MCP (0-4)   Series C J Frame (3   JB, KB, MCP (250 Ampere)   Series C K Frame ${ }^{2}$   Series C L Frame ${ }^{2}$   JA, KA, HKA, LB, LBB, HLB, DA, MCP (400 Ampere)   LA, HLA, LC, HLC   MA, HMA, MC, HMC, Series C M Frame, LCL   NB, HNB, NC, HNC   FB TRI-PAC ${ }^{\circledR}$, FCL   LA TRI-PAC ${ }^{\circledR}$   NB TRI-PAC ${ }^{\circledR}$   DS-30, 60, 100 Unfused   DS-30, 60, 100 Fused 3   DS-30, 60, 100 Fused 4   DS-200 Unfused   DS-200 Fused	AMTFDALV AMTJDALV AMTKBALV AMTKDALV AMTLDALV AMTLBALV AMTLAALV AMTMAALV AMTNBALV AMTFBALV AMTLAPALV AMTNBPALV AMTDSALV AMTDSFALV AMTDSF1ALV AMTDS2ALV AMTDS2FALV	AMTFB   AMTJD   AMTKB   AMTKD   AMTLD   AMTLB   AMTLA   AMTMA   AMTNB   AMTFB   AMTLAP   AMTNBP   AMTDS100   AMTDS100F   AMTDS100F1   AMTDS200   AMTDS200F	AMTRB2	AMTPM AMTPM AMTPM AMTPM AMTPM AMTPM AMTPM AMTPM AMTPMNB AMTPM AMTPM AMTPMNB AMTPM AMTPM AMTPM AMTPM AMTPM	

## FURTHER INFORMATION

Literature Number $\quad$ Description

IL 14946	AMT Vari-depth Handle Mechanism

(1) Width spacer kit not included.
(2) Also for use with equivalent HMCP Frame.
(3) For switches using 30, 60, 100 amperes 600 volt NEC Class H, R or J fuses.
(4) For switches using 30, 60, 100 amperes 600 volt NEC Class H or R fuses.
$\boldsymbol{\sigma}$ This spacer kit is for up to 1 -inch variation and consists of multiples of thin spacers to be used as required. A maximum of two kits per installation may be used. Due to the possible variation in dimensions, hardware is not supplied. Use standard $1 / 4-20$ bolts.

ACCESSORIES
Spacer Kit to Vary Width (Not for use with fixed mechanisms)
Catalog Number AMTSK16 for up to 1 inch variation.

AMT VARI-DEPTH
Vari-Width Type


## CATALOG NUMBERS

Complete Assembly consists of and is shipped as the Component Parts listed below.

Breaker or Switch Type	Complete Assembly	Backplate and Yoke Assembly	Operating Rod and Brace Assembly	Flange Mounted Pivot Mechanism Assembly 0 ©	External Operating Handle
	Catalog Number				
Below the Handle Mounting with Short Rod and Brace					
Series C F Frame(3 EB, EHB, FB, HFB, MCP (0-4)   Series C J Frame (2)   JB, KB, MCP (250 Ampere)   Series C K Frame ${ }^{2}$   Series C L Frame ${ }^{3}$   JA, KA, HKA, LB, LBB, HLB, DA, MCP (400 Ampere)   LA, HLA, LC, HLC   MA, HMA, MC, HMC, Series C M Frame, LCL   NB, HNB, NC, HNC   FB TRI-PAC ${ }^{\circledR}$, FCL   LA TRI-PAC®   NB TRI-PAC ${ }^{\circledR}$   DS-30, 60, 100 Unfused   DS-30, 60, 100 Fused ${ }^{3}$   DS-30, 60, 100 Fused 4   DS-200 Unfused   DS-200 Fused	AMTFDBSV AMTJDBSV AMTKBBSV AMTKDBSV AMTLDBSV AMTLBBSV AMTLABSV AMTMABSV AMTNBBSV AMTFBPBSV AMTLAPBSV AMTNBPBSV AMTDSBSV AMTDSFBSV AMTDSF1BSV AMTDS2BSV AMTDS2FBSV	AMTFD-B   AMTJD-B   AMTKB-B   AMTKD-B   AMTLD-B   AMTLB-B   AMTLA-B   AMTMA-B   AMTNB-B   AMTFBP-B   AMTLAP-B   AMTNBP-B   AMTDS100-B   AMTDS $100 \mathrm{~F}-\mathrm{B}$   AMTDS100F1-B   AMTDS200-B   AMTDS200F-B		AMTPM-B	AMTOP
Below the Handle Mounting with Long Rod and Brace					
Series C F Frame(3 EB, EHB, FB, HFB, MCP (0-4)   Series C J Frame(2)   JB, KB, MCP (250 Ampere)   Series C K Frame (3)   Series C L Frame ${ }^{(2)}$   JA, KA, HKA, LB, LBB, HLB, DA, MCP (400 Ampere)   LA, HLA, LC, HLC   MA, HMA, MC, HMC, Series C M Frame, LCL   NB, HNB, NC, HNC   FB TRI-PAC ${ }^{\circledR}$, FCL   LA TRI-PAC®   NB TRI-PAC®   DS-30, 60, 100 Unfused   DS-30, 60, 100 Fused 3   DS-30, 60, 100 Fused 9   DS-200 Unfused   DS-200 Fused	AMTFDBLV AMTJDBLV AMTKBBLV AMTKDBLV AMTLDBLV AMTLBBLV AMTLABLV AMTMABLV AMTNBBLV AMTFBPBLV AMTLAPBLV AMTNBPBLV AMTDSBLV AMTDSFBLV AMTDSF1BLV AMTDS2BLV AMTDS2FBLV	AMTFD-B   AMTJD-B   AMTKB-B   AMTKD-B   AMTLD-B   AMTLB-B   AMTLA-B   AMTMA-B   AMTNB-B   AMTFBP-B   AMTLAP-B   AMTNBP-B   AMTDS100-B   AMTDS 100F-B   AMTDS100F1-B   AMTDS200-B   AMTDS200F-B	AMTRB2   AMTRB2	AMTPM-B	AMTOP   AMTOP

## (1) Width spacer kit not included.

(2) Also for use with equivalent HMCP Frame.
(3) For switches using 30,60, 100 amperes 600 volt NEC Class H, R or J fuses.
(4) For switches using 30, 60, 100 amperes 600 volt NEC Class H or R fuses.
© This spacer kit is for up to 1 -inch variation and consists of multiples of thin spacers to be used as required. A maximum of two kits per installation may be used. Due to the possible variation in dimensions, hardware is not supplied. (Use standard $1 / 4-20$ bolts).

## ACCESSORIES

Spacer Kit to Vary Width (Not for use with fixed mechanisms)
Catalog Number AMTSK15 for up to 1-inch variation.

# 92 MOLDED CASE CIRCUIT BREAKERS Handle Mechanisms 

THIS PAGE INTENTIONALLY LEFT BLANK

# 94 MOLDED CASE CIRCUIT BREAKERS Handle Mechanisms 

THIS PAGE INTENTIONALLY LEFT BLANK

## PRODUCT DESCRIPTION

Panelboards and switchboards are enclosed assemblies for lighting and distribution that accept incoming power and consist of a series of circuit breakers and/or fusible switches. These devices protect each circuit by providing overcurrent and short circuit protection.


Cutler-Hammer NFB


Westinghouse FDP


Cutler-Hammer MP40


Westinghouse
Pow-R-Line 3


Cutler-Hammer CHB


Westinghouse WEB


Cutler-Hammer EE


Westinghouse CDP

## PRODUCT HISTORY

In 1994, Cutler-Hammer acquired the Distribution and Control Business Unit (DCBU) of Westinghouse. This product history tracks the evolution of panelboard and switchboard products for both manufacturers.
In the 1920s, prior to the development of circuit breakers, Westinghouse sold panelboards designed for main and branch circuit fuses. Circuit breakers were first introduced in 1927 and put Westinghouse in the forefront of circuit breaker technology. A few years later the first Westinghouse "NOFUSE" circuit breakers were introduced. "NOFUSE" panelboards were initially available in ratings up to 225 amperes at 250 volts. Panelboards were designed at higher ratings as circuit breakers ratings became available. By 1958, panelboards were available at ratings up to 800 amperes and 600 volts.

The most significant panelboard types were the CDP and FDP panels. For more than 34 years, these two types encompassed most Westinghouse molded case breakers and fusible switches.
In 1962, Cutler-Hammer entered the panelboard and switchboard market with the purchase of Mullenbach. Soon after the Mullenbach acquisition, Cutler-Hammer entered into an agreement with Westinghouse to supply breakers and fusible devices for panelboards and switchboards and Cutler-Hammer also began manufacturing Westinghouse type panelboards under the agreement. This relationship made in the early 1960s provided users of both trade name products access to aftermarket service for add-on branch devices and hardware. Classic Cutler-Hammer panelboards and switchboards were designed and listed for use with Westinghouse breakers.

In 1988, Westinghouse redesigned the panelboard and switchboard line to incorporate the new Series C design breakers. This new design became a true family of products. These new panelboards and switchboards became today's Pow-R-Line Family which are manufactured in state-of-the-art facilities strategically located throughout the United States.
Cutler-Hammer's unique Satellite plants support aftermarket services for all current Pow-R-Line panelboard and switchboard products. Aftermarket service for out-ofproduction panelboards and switchboards for both the classic Westinghouse and Cutler-Hammer designs is supported by the Aftermarket Center in Sumter, SC and is staffed with experienced and knowledgeable representatives.

NOTE: Switchboards manufactured by Cutler-Hammer and Westinghouse.

PRODUCT HISTORY TIMELINE

Page	Product	1935	1940	1945	1950	1955	1960	1965	1970	1975	1980	1985	1990	1995	Present
$\begin{aligned} & 100 \\ & 100 \end{aligned}$	Westinghouse A2B   Westinghouse NM/NMM   Westinghouse NAIB   Westinghouse NLAB				I										
$\begin{array}{r} 100 \\ 100 \\ 100 \\ 98 \end{array}$	Westinghouse NAB   Westinghouse ABH   Westinghouse NDP   Cutler-Hammer CDP														
$\begin{aligned} & 102 \\ & 100 \\ & 100 \\ & 101 \end{aligned}$	Westinghouse CDP/FDP   Westinghouse NQB/NOC/NOP   Westinghouse NEB/NHEB   Westinghouse WCA/WEB/NEHB/WFB/WGB/														
$\begin{array}{r} 98 \\ 98 \\ 103 \\ 100 \end{array}$	WGHB   Cutler-Hammer CHP/CHB   Cutler-Hammer NFB   Cutler-Hammer MP40/MP100												$\pm$		
$\begin{aligned} & 103 \\ & 103 \\ & 104 \\ & 101 \end{aligned}$	Westinghouse B10B/Q10P   Cutler-Hammer PB   Cutler-Hammer PH   Cutler-Hammer EE														
$\begin{aligned} & 104 \\ & 106 \\ & 105 \end{aligned}$	Westinghouse W10B/W10P   Cutler-Hammer EP   Westinghouse PRL3   Westinghouse PRL1, PRL2														
106   107   105	Cutler-Hammer PRL1a, 2a   Cutler-Hammer PRL3a   Westinghouse PRL4B, F   Cutler-Hammer PRL5P   Westinghouse PRL1, PRL2, PRL3, PRL4B, PRL4F														

General Information

ORIGINAL CUTLER-HAMMER PANELBOARD BREAKER
REPLACEMENT CHART

Cutler-Hammer Panelboard Type	Original Branch Circuit Breaker	REPLACEMENT SOLUTIONS		
		New Panelboard Type	New Breaker	Panelboard Replacement Breaker(2
CHP©	CH	PRL1a	CH	-
CHB©	CHB	PRL1a	CHB	-
NPLAB©	P	PRL1a	-	-
NLAB0	QL	PRL1a	-	-
NA1B0	$\begin{aligned} & \mathrm{E} \\ & \mathrm{EA} \end{aligned}$	$\begin{aligned} & \hline \text { PRL3a } \\ & \text { PRL3a } \end{aligned}$	-	$\begin{aligned} & \hline \text { RE } \\ & \text { REA } \end{aligned}$
NH1B0	EH	PRL3a	-	REH
NDP©	$\begin{array}{\|l\|} \hline \mathrm{E} \\ \mathrm{EA} \\ \hline \end{array}$	$\begin{aligned} & \hline \text { PRL3a } \\ & \text { PRL3a } \end{aligned}$	-	$\begin{aligned} & \hline \text { RE } \\ & \text { REA } \end{aligned}$
HNDP©	EH	PRL3a	-	REH
NFB	EB   EHB   EHC   EC   CA   CC   FB   HFB   FD   FC   FH   FS   HFC   CCH   CHH	$\begin{aligned} & \hline \text { PRL3a } \\ & \text { or } \\ & \text { PRL4B } \end{aligned}$	EHD EHD FD EHD CA CC FD FD FD FD HFD FD HFD $\overline{C H H}$	- - - - - - - - -
CDP8	E   EA   EH   EB   EHB   F   FA   HF   HFA   FB   HFB   CA   DA   JA   KA   HKA   HK   HKL   LA   HLA   LAB   LM   HLM   MA   HMA   NB   HNB   CC   CCH CHH	PRL4B	-   -   EHD   EHD   -   -   -   -   FDB   FD   CA   DK   KDB   KD   HKD   -   -   LD   LD   LDB   -   $M D$   MD   ND   ND   CC   CHH	RE   REA   REH   -   RF   RFA   RHF   RHFA   -   $-$   -   -_   RHK   RHKL   - -   -   RLM   RHLM   -   $-$   $-$   $-$   $-$

HOW TO SELECT REPLACEMENT BREAKERS

Cutler-Hammer offers a complete line of new, UL listed, physically and electrically interchangeable molded case circuit breakers.
To properly select the breaker for your existing panelboard:

1. Identify the panel type and existing branch breaker.
2. Select the appropriate breaker from the direct replacement solution column. As shown, three options are available.
Option 1: Series C breakers are available as direct replacement for installation in Cutler-Hammer panelboards. They are available at your local distributor's and are the most economic solution.
Option 2: Original, but still-inproduction breakers, (sometimes referred to as replacement breakers) are available from Cutler-Hammer's national warehouse. These are identical to the existing branch breakers.
Option 3: Panelboard replacement breakers, available for out-ofproduction molded case breakers, are physically and electrically interchangeable with the existing breaker.
3. For additional information, contact your local Cutler-Hammer Field Sales Office or the Customer Support Center.
(1) Connectors not available.
(2) New breakers which are a direct physical and electrical replacement for out-of-production breakers.
(3 Not rated for 100\% rated breakers.

ORIGINAL CUTLER-HAMMER PANELBOARD BREAKER REPLACEMENT CHART

Cutler-Hammer Panelboard Type	Original Branch Circuit Breaker	REPLACEMENT SOLUTION	
		New Panelboard Type	New Breaker
MP40	CC   CCH   CHH   EB   EHB   EC   EHC   FB   HFB   FC   HFC   FH   FS   JA   JB   JS   JH   JL   KA   HKA   KB   HKB   KS   KH   DA   LA   HLA   HLA   LAB   LB   LBB   HLB   LC   LS (A)   LH (A)   MA   HMA   MC   HMC   MS   MH   NB   HNB   NC   HNC   NS   NH	PRL4B	CC   CHH   EHD   EHD   EHD   FD   FDB   FD   FDB   HFD   HFD   FD   KDB   JB   HJD   HJD   JDC   KD   HKD   JD   JD   KD   KD   DK   LD   LD   LD   LDB   KD   KDB   KD   LD   LD   HLD   MD   MD   MD   MD   MD   MD   ND   ND   ND   ND   ND   ND
MP100	M50 Fusible Switch	PRL4F	M50 Fusible Switch
PH	CH   CHB   CC   CCH   CHH   EB   EHB   EC   EHD   FC   FS   FH   FD	PRL3a	CH   CHB   CC   CCH   CHH   EHD   EHD   EHD   EHD   FD   FD   HFD   FD
PB(	$\begin{aligned} & \hline \mathrm{CH} \\ & \mathrm{CHB} \end{aligned}$	PRL1a	$\begin{aligned} & \hline \mathrm{CH} \\ & \mathrm{CHB} \end{aligned}$

## PLUG-IN POWER PANELBOARDS AND SWITCHBOARDS

Cutler-Hammer   Panelboard Type	Original Branch   Circuit Breaker	New Panelboard   Type	New Breaker
EE(2	FS	PRL5P	FD   HFD

ORIGINAL WESTINGHOUSE PANELBOARD BREAKER REPLACEMENT CHART

Westinghouse Panelboard Type	Existing Branch Circuit Breaker	REPLACEMENT SOLUTIONS		
		New Panelboard Type	New Breaker	Panelboard Replacement Breaker(
Panelboards Manufactured Between 1937 and 1988				
ABH( A2BQ B10BQ B10B-LX© B10B-LXX B65BQ CDP/HCDP©	E E BA BA BA HBA E, EA, EH F, FA	PRL3a   PRL3a   PRL1a   PRL1aLX   PRL1aLX   PRL1a   PRL4B	-   BAB   BAB   BAB   -   -	
CDP/HCDP8	EB, EHB, EHD, FB, HFB, FDB, FD, HFD, FDC FB-P TRI-PAC   JB, KB, HKB, JDB, JD, HJD, JDC   CA, CAH, HCA   DA, LB, LBB, HLB4 JA, KA, HKA, DK, KD, HKD, KDC   LA, LAB, HLA (400A)   LA-P TRI-PAC   LA, LC, HLA (600A)   MA, HMA, MC, HMC LCL   NB, HNB, NC, HNC   NB-P TRI-PAC	PRL4B	EHD   FDB, FD, HFD, FDC   FB-P TRI-PAC   JDB   JD, HJD, JDC   ED, EDH, EDC   4   DK,   KD, HKD, KDC   LD, HLD   LA-P TRI-PAC   LD, HLD, LDC   MDS   LCL   ND, HND   NB-P TRI-PAC	Contact your local Cutler-Hammer Field Sales Office.
FDP	Fusible Switches	PRL4F		Fusible Switches
H10PO   H10B6   NAB( 8   NAIB( 2   NDP(2   NEB(   NHDP(2   NHEB 2   NHIB©	HQP   BA   E   E   E, EA, EAH   EA   EH   EH, FA   E-277	PRL2a   PRL2a   PRL3a   PRL3a   PRL3a   PRL3a   PRL3a   PRL3a   PRL2a	$\begin{aligned} & \mathrm{HQP} \\ & \mathrm{BAB} \end{aligned}$	RE   RE   RE, REA, REH   REA   REH   REH, RFA   RE
NLAB 8   NLAB-LX(2   NLAB-AB©   NLAB-ABH(2   NPLABO   NPLAPQ®   NQC(	$\begin{aligned} & \text { QC } \\ & \text { QP } \\ & \text { QP } \\ & \text { QC } \end{aligned}$	PRL1a   PRL1aLX   PRL3a   PRL3a   PRL1a   PRL1a   PRL1a	$\begin{aligned} & \text { HOP } \\ & \text { HQP } \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$

(1) Not Rated for $100 \%$ rated breakers.
(2) Connectors not available.
(3) Only breakers of the same frame size can be installed across from each other (i.e. in the same horizontal plane).

For other configurations, call 1-800-556-4569.
4 KD breakers can be mounted across from LB breakers if a TAD3 line side adapter is utilized. All hardware works with this configuration.

## ORIGINAL WESTINGHOUSE PANELBOARD BREAKER REPLACEMENT CHART

Westinghouse Panelboard Type	Original Branch Circuit Breaker	REPLACEMENT SOLUTIONS		
		New Panelboard Type	New Breaker	Panelboard Replacement Breaker
Panelboards Manufactured Between 1937 and 1988, Continued				
NOB©   NOP©   Q10P©   Q22P©   Q22B©   Q65P©   W10B©   W10P©   W22B©   W22P©   WCA   WEB   WEHB   WFB   WGB©   WGHB©	BA   QP   QP   QPH   QBH   HP   BA   HQP   QBH   QPH   CA   EB   EHB   FB   GB   GHB	PRL1a   PRL1a   PRL1a   PRL1a   PRL1a   PRL2a   PRL1a   PRL1a   PRL1a   PRL1a   PRL3a   PRL3a   PRL3a   PRL3a   PRL2a   PRL2a	BAB   HOP   HQP   QPHW   QBHW   QHPW   BAB   HQP   QBHW   QPHW   CA   EB, EHD   EHB, EHD   FB, FDB   GB   GHB	
Panelboards Manufactured After 1988				
PRL12	BAB, QBHW HOP, QPHW	PRL1a	BAB, QBHW	
PRL2(	GB, GHB, GHBS	PRL2a	GB, GHB, GHBS-D	
PRL3 3	BAB, OBH   GB, GHB, GHBS   EHD, FD, FDB, HFD, FDC   ED, EDH, EDC   CA, HCA, CAH	PRL3a	BAB, QBHW   GB, GHB, GHBS-D   EHD, FD, FDB, HFD, FDC   ED, EDH, EDC   CA, HCA, CAH	
PRL4B(	EHD, FD, FDB   HFD, FDC   ED, EDH, EDC   CA, CAH, HCA   FCL, FB-P, FDB/LFB   JD, JDB, HJD, JDC   DK, KDB, KD, HKD, KDC   LCL   LA-P TRI-PAC   LC, HLC, LA, HLA   LD, HLD, LDC   MD, MDS   ND, HND, NDC   MC, HMC, MA,   HMA   NC, HNC, NB, HNB   NB-P TRI-PAC   BAB, QBGF, QBHW, QBHGF, GB, GHB	PRL4B	EHD, FD, FDB   HFD, FDC   ED, EDH, EDC   CA, CAH, HCA   FCL, FB-P, FDB/LFB   JD, JDB, HJD, JDC   DK, KDB, KD, HKD, KDC   LCL   LA-P TRI-PAC   LC, HLC, LA, HLA   LD, HLD, LDC   MD, MDS   ND, HND, NDC   MC, HMC, MA, HMA   NC, HNC, NB, HNB   NB-P TRI-PAC   BAB, QBGF, QBHW, QBHGF, GB, GHB	
PRL4F(3)	Fusible Switches(3	PRL4F		Fusible Switches

[^19]
## CDP/FDP

## Originally a Westinghouse Product

The panel layouts shown on this and the following pages will aid in determining the space available for the addition of molded case circuit breakers and fusible switches into your Cutler-Hammer panelboards.

- Determine the amount of space available in the panelboard for adding circuit breakers.
- 1-3/8 inches of panel height = one $X$ space
- Determine the type of breaker needed for the required amp rating and number of poles.
- Panel layouts shown aids in determining the space available for adding breakers to CDP/HCDP panels or fusible switches for FDP panelboards. First determine the available space for additions. Determine height of new device per layout. Order breaker hardware from RPD 31-480. Complete breaker retrofit kits are available which include breaker, connectors and hardware from the Sumter, SC Aftermarket Center. (1-800-556-4569)


CDP Panel Layout
One $X$ space = 1-3/8 inches.
Blank fillers are required for unused $x$ spaces.

Ratings: 1600A Maximum
Replacement Devices: Breakers and Fusible Switches


Westinghouse CDP


Westinghouse FDP


FDP Panel Layout

- When only one EB, EHB, or HFB single pole breaker is required in conjunction with other frame size breakers, the single pole breaker space required changes from 1 X to 2 X .
(2) Must use 3-pole connector kit.


## PB/PH/PH-L

Originally a Cutler-Hammer Product


15 or 21 inches wide Cutler-Hammer PB


21 or 26 inches wide Cutler-Hammer PH


21 inches wide Cutler-Hammer PH-L

Refer to RPD 31-470 for more information on the PB, PH, and PH-L.

## MP40

Originally a Cutler-Hammer Product


Cutler-Hammer MP40

Refer to RPD 31-460 for more information on Cutler-Hammer MP-40 panelboards.

Panel Layout

-
(1) If the panelboard has a main breaker, no neutral, no split bus, or no sub feed or feed through lugs, add 1 X to provide space for a nameplate.
(2) Breakers of the same frame size, regardless of poles, may be mounted opposite of each other.
(3) Only Type NC and HNC breakers require a 11.38 inch deep box. Standard box depth is 10.50 inches.
(4) When 1600A Lug Mains are for (4)-600MCM maximum copper cables per phase, the $X$ unit space can be reduced to $4 X$.

EE
Originally a Cutler-Hammer Product


Panel Layout
Refer to RPD 31-470 for more information on the Cutler-Hammer EE panelboard.

## EP

Originally a Cutler-Hammer Product


Cutler-Hammer EP Panelboard


Panel Layout

Refer to RPD 31-470 for more information on the Cutler-Hammer EP panelboard.

## PRL1 AND PRL2 PANELBOARDS

## Originally a Westinghouse Product



PRL1 and PRL2

## REPLACEMENT CAPABILITIES

## The Aftermarket Center in Sumter, SC

offers a wide variety of Cutler-Hammer parts to support its installed base of panelboards and switchboards.
The parts available include:

- Panelboard Connector Kits
- Breaker Mounting Hardware
- Breaker Plug-in Units and Retrofit Kits
- Trims and Covers
- Lugs and Lug Landing Kits
- Neutral and Ground Bars
- Trim Locks
- Back Boxes
- Back Box Endwalls
- Trims
- Neutrals
- Ground Bars
- Isolated Ground Bars
- Branch Deadfront Covers
- Main Breakers
- Branch Breakers
- Branch Breaker Connector Kits

For more information, contact your local Cutler-Hammer Field Sales Office or call the Sumter Aftermarket Center at 1-800-556-4569.

## Connector Kits



Each kit contains two sets of A, B, and C phase connectors, phase isolators, hardware and instructions for mounting up to 12 poles. Silver plated copper connectors are suitable for use with copper or aluminum bus. Maximum amperes connected to any one connector cannot exceed 140A.

Panel Type	Catalog Number
PRL1	KPRL1BAB
PRL2	KPRL2GHB

If a connector strap kit is not available and connectors are required to install a replacement breaker, in most cases, the customer should replace the entire panel. Any breakers, connectors, and parts from the old panel that are in usable condition should be retained for repair of other panels of the same type and vintage.

## PRL3

Originally a Westinghouse Product


Westinghouse PRL3


Panel Layout
Refer to RPD 31-490 for more information on the Westinghouse Pow-R-Line 3.


Refer to RPD 31-490 for more information on the Cutler-Hammer/ Westinghouse Pow-R-Line 3a.

# PANELBOARDS <br> General Information 

## PRL4B/PRL4F

## Originally a Westinghouse Product

The panel layouts shown on this and the following pages will aid in determining the space available for the addition of molded case circuit breakers and fusible switches into your Cutler-Hammer panelboards.

- Determine the amount of space available in the panelboard for adding circuit breakers.
- 1-3/8 inches of panel height $=$ one $X$ space
- Determine the type of breaker needed for the required ampere rating and number of poles.
- Panel layouts shown aids in determining the space available for adding breakers to PRL4B panels or fusible switches for PRL4F panelboards. First determine the available space for additions. Determine height of new device per layout. Order breaker hardware from RPD 31-490. Complete breaker retrofit kits are available which include breaker, connectors and hardware from the Sumter Aftermarket Center. (1-800-556-4569)


PRL4B Panel Layout
One $X$ space $=1-3 / 8$ inches.
Blank fillers are required for unused $x$ spaces.

Ratings: 1200A Maximum
Replacement Devices: Breakers and Fusible Switches


Westinghouse PRL4B


Westinghouse PRL4F


PRL4F Panel Layout

[^20]
## CLIPPER POWER SYSTEM



Clipper Power System
Transient Voltage Surge Suppressor

## Description

The Clipper Power System is a hybrid Transient Voltage Surge Suppressor (TVSS) used to protect sensitive electronic equipment from the damaging effects of voltage transients and electrical line noise. The Clipper's hybrid design combines both suppression and filtering elements to provide best in class performance. Field installation is required.

## Benefits

- Clipper can be externally mounted to existing distribution equipment
- Five models - 90kA, 120kA, 160kA, 250kA and 400 kA
- Standard NEMA 12 enclosure, optional NEMA 4
- Surface or flush mounting
- Full range of diagnostic options including the Tri-Monitor ${ }^{\text {™ }}$
- Five year warranty

For more information about Clipper Power Systems, contact your local Cutler-Hammer Field Sales Office.

## POW-R-COMMAND



Pow-R-Command Lighting Control

## Description

Pow-R-Command is a microprocessor-based lighting control system designed for today's modern facilities. The system may be utilized as a stand alone or networked as a system for the control of lighting and other branch circuits.

## System Features Include:

- Day/Date/Time of Day Scheduling
- Holiday Scheduling - up to 30 days/year
- Astronomical Time Scheduling
- Real Time Clock
- Hardware Diagnostics
- Off Warning by Blinking Lights
- Manual Load Override Control
- Brownout and Power Failure Recovery
- Telephone Override of Schedules
- Switch Override of Schedules
- Remote Access to System
- Dimming Systems for Fluorescent Fixtures
- Priority Load Management

Existing facilities can be retrofitted to include various Pow-RCommand scenarios allowing customers varying degrees of control. For more information on upgrading your building to include the energy savings and control of Pow-R-Command, contact your local Cutler-Hammer Field Sales Office.

## PRODUCT SUPPORT SERVICES

Satellite Locations


## FURTHER INFORMATION

Literature Number	Description
RP.38F.03.T.E	Renewal Parts Data for MP40, MP200
RP.38F.03.T.E	Renewal Parts Data for PB, PH, PH-L, EP, EE
RP.38F.02.T.E	Renewal Parts Data for CDP/HCDP, FDP,   PRLILX, PRL1, PRL2, PRL3
RP.38F.01.T.E	Renewal Parts Data for PRL1A, PRL2A,   PRL3A, PRL4B, PRL4F, PRL5P
SA-12033A	Sales Aid for Pow-R-Line 3a   SA-156
SA-155A	Sales Aid for TVSS
SA-302	Sales Aid for Pow-R-Command Pow-R-Line 5P
SA-268	Sales Aid for Instant Switchboards

## PRICING INFORMATION

Literature Number	Description
PL.38F.03A.P.E	Price List for MP40, MP200
PL.38F.03A.P.E	Price List for PB, PH, PH-L, EP, EE
PL.38F.02A.P.E	Price List for CDP/HCDP, FDP, PRLILX, PRL1,   PRL2, PRL3
PL.38F.01A.P.E	Price List for PRL1A, PRL2A, PRL3A, PRL4B,   PRL4F, PRL5P   Discount Symbol CE9



Loadcenters are enclosed assemblies used for power distribution and circuit protection in residential, commercial and light industrial applications. The assembly consists of a box, an interior assembly and a trim. The interior assembly consists of a backpan where the bus assembly is mounted. Incoming power is terminated at main lugs or a main circuit breaker. Load circuit protection is provided by molded case circuit breakers which plug onto the bus assembly. Loadcenters are used on services providing no more than 240 VAC, and are available with bus rated from 40 to 600 amperes. Loadcenter covers are available as surface, flush or combination.

PRODUCT HISTORY		
CH Family   Cutler-Hammer began manufacturing the CH series of loadcenters and circuit breakers in 1962. Many changes occurred over the years due to code changes, UL Listed requirements and product enhancements. Three major design changes occurred in 1969, 1982 and 1995 . The $3 / 4$-inch wide feeder circuit breakers, bolted copper bus, Sandalwood (tan) painted box and industry-leading warranties have been the trademarks of this premium product through the years.	BR Family   With the acquisition of Westinghouse's Distribution and Control Business Unit in 1994, Cutler-Hammer gained the circuit breaker and loadcenter manufacturing and marketing operations of Westinghouse. Prior to 1989, these products were manufactured by Westinghouse's Bryant subsidiary in Bridgeport, CT. The products from this facility bore the Westinghouse and Bryant nameplates. In 1988, Westinghouse purchased Challenger Electric, redesigned the product, and moved all production from Bridgeport to Jackson, MS. As Cutler-Hammer integrated the product lines in 1995, all loadcenter production shifted to the Lincoln, IL facility.	To achieve economies of scale, the product line was completely redesigned and is currently marketed as the Cutler-Hammer type BR 1-inch loadcenter. Though redesigned, it retained many of its unique characteristics. The product features aluminum bus as standard with optional copper bus available on limited styles. The bus is cut and formed to produce the breaker stabs. The current design also maintains the use of the Westinghouse (previously Bryant) breakers familiar to many by the characteristic color-coded handles. The different color handles indicate the various ampacities of the breakers.

LOADCENTERS

## PRODUCT HISTORY TIMELINE

Originally a Cutler-Hammer Product 3/4-Inch Non-Interchangeable Product Line

Type	Design Features	1960	1965	1970	1975	1980	1985	1990	1995	Present
Current Vintage (CH)0	Door latch is tan plastic, twin neutrals									
Vintage-1 (CH1)0	Metal latch, single neutral									
Vintage-2 (CH2)0	Cover catalog numbers CH 7 _S or F (Blank is 1 letter indicating box size i.e. B,C,D,E,G,J,K)									
Originally a Westinghouse Product 1-Inch Interchangeable Product Line										
Type	Design Features	1960	1965	1970	1975	1980	1985	1990	1995	Present
Current Vintage (BR)(	Catalog numbers start w/"BR" or "3BR"									
Vintage-1 (BR1)0	Twin neutral, combination trim									
Vintage-2 (BR2) ${ }_{\text {c }}$	Single neutral, combination trim									
Vintage-3 (BR3)0	Single neutral, surface or flush trim									

## REPLACEMENT CAPABILITES

-4 Loadcenter Generations							
Parte	CH	CH1	CH2	BR	BR1	BR2	BR3
Breakers	$\bullet$						
Surge Arrestors	$\bullet$						
Covers	$\bullet$	$\bullet$		$\bullet$	$\bullet$		
Deadfronts (NEMA 3R)	-	$\bullet$		$\bullet$	$\bullet$		
Door Assemblies (NEMA 3R)	$\bullet$	$\bullet$		$\bullet$	$\bullet$		
MCB Kits	-	$\bullet$		$\bullet$	$\bullet$		
Neutral Bars	$\bullet$						
Ground Bars	$\bullet$						
Breaker Accessories	$\bullet$						
Labels	$\bullet$						
Lugs	$\bullet$	$\bullet$		$\bullet$	$\bullet$		
Door Locks	-			$\bullet$			
Door Latches	$\bullet$			$\bullet$			
Paint	$\bullet$						
Closure Plates	$\bullet$						
Hubs	$\bullet$	$\bullet$		$\bullet$	$\bullet$		
Spare Parts Kit	$\bullet$			$\bullet$			

## FURTHER INFORMATION

Literature   Number	Description
Catalog 25-000	CH Quick Selector Guide
Catalog 30-320	Cutler-Hammer Residential Products (CH)
Catalog 30-325	Cutler-Hammer Residential Products (BR)
LATER	Renewal Parts Data for Standard Products

## PRICING INFORMATION

PAD	Pricing and Availability   Digest
VISTA/VISTALINE	Discount Symbol 22-CD

(1) CH and BR are the current product designations. $\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{BR} 1, \mathrm{BR} 2$, and BR 3 are used only to identify previous generations of the product described in the replacement capabilities chart above. These are not actual product designations.
(2) Catalog number of loadcenter required to obtain correct part.

PRODUCT DESCRIPTION


Meter centers are designed for use where an individually metered distribution center is required. Meter centers house meter sockets which measure power consumption at service entrances. Metering is designed for use with multi-family dwelling units, commercial units and light industrial application.

## PRODUCT HISTORY

In the beginning, all multiple metering applications were assembled on the job site using wire troughs, individual meter sockets and enclosed circuit breakers.
In the early 1960s, factory assembled meter packs began to be made on a job-by-job basis. Soon after, modular metering was introduced for 1-phase 200 ampere max. ring style applications.

In 1981, a few utilities began to require ringless meter covers and in 1983 the first 3 -phase commercial meter modules with lever type bypass were introduced.
The Westinghouse Meter Center designs, type WM and/or WP, and facilities were sold to Thomas and Betts in 1994. Today, wall hung multiple metering is used in virtually all areas of the country for both
residential and commercial applications. Main ratings range from 250 to 2000 ampere and 125, 200 and 320 ampere sockets are available in both 1 -phase and 3 -phase versions.

## PRODUCT HISTORY TIMELINE



REPLACEMENT CAPABILITIES

	CG3	CG5	CG7	CG9	CG11	WCG3	WCG5	WCG7	WCG9	WCG11
Accessories	$\bullet$									
Covers	$\bullet$									
Jaws	$\bullet$	$\bullet$				$\bullet$	$\bullet$			
Bus End Caps	$\bullet$		$\bullet$	$\bullet$	$\bullet$	$\bullet$		$\bullet$	$\bullet$	$\bullet$
Tenant Breaker Hinged Cover	$\bullet$									
Drip Hoods			$\bullet$							
Socket Replacement	$\bullet$	$\bullet$	$\bullet$	$\bullet$		$\bullet$	$\bullet$	$\bullet$	$\bullet$	

## FURTHER INFORMATION

Literature Number	Description
TIP WCG3	Technical Information Publication (Application and Dimensions)
TIP WCG3-M	Technical Information Publication (Application and Dimensions)
TIP WCG5	Technical Information Publication (Application and Dimensions)
TIP WCG7/9	Technical Information Publication (Application and Dimensions)
Template SA-168	Layout Template
LATER	Renewal Parts Data for Standard Products

## PRICING INFORMATION

PAD	Pricing and Availability   Digest
VISTA/VISTALINE	Discount Symbol 22-CD



Safety switches have a number of applications from service entrance to branch circuit protection. They are also horsepower rated for use as motor circuit switches. Safety switches offer a wide variety of switching capabilities with General Duty, Heavy Duty and Double Throw Switches.

## PRODUCT HISTORY

Cutler-Hammer began manufacturing safety switches with the 4103 line in 1957. In 1977, the new 4105 line was moved from the New York plant to the manufacturing facility in Lincoln, IL. The last design change came in 1983, where the manufacture of the new K-Series switch was moved to our Cleveland, TN facility. The K-Series design represents our current product offering and is still manufactured
at the Cleveland plant. The Westinghouse safety switch design and facilities were sold to Thomas and Betts in 1994. Prior to this, there were various design and code changes which caused changes in catalog numbering and utilization of the switches. In 1984, a " $N$ " was added to the middle of the catalog numbers to signify the new National Electrical Code (NEC) regulations. During this time period,

Westinghouse's safety switches were manufactured in Beaver, PA. In 1989, the manufacture of the switches was moved to Vidalia, GA. There was then another code change in 1992 which necessitated another change in catalog numbering. The previous " N " in the middle of the catalog number was deleted for the 400 to 1200 ampere units.

PRODUCT HISTORY TIMELINE


REPLACEMENT CAPABILITIES

	K-Series
Operating Handle	$\bullet$
Ground	$\bullet$
Neutral	$\bullet$
Fuse Base	$\bullet$
Fuse Block	$\bullet$
Line Shield	$\bullet$
Operating Mechanism	$\bullet$
Switching Base	$\bullet$

## FURTHER INFORMATION

Literature   Number	Description
B1227	Safety Switch Binder (Trafford)   Rotary Switch Pocket Brochure
SA-12147	
Catalog 30-320	
Cutler-Hammer Residential	
Products (CH)	
Cutler-Hammer Residential	
Catalog 30-325	Products (BR)   Renewal Parts Data for Standard   Products
RPD 30-326	

PRICING INFORMATION

PAD	Pricing and Availability   Digest
VISTA/VISTALINE	Discount Symbol 22-CD

## 114 DRY-TYPE DISTRIBUTION TRANSFORMERS

PRODUCT DESCRIPTION


Family of Dry-type Distribution Transformers

Dry-type distribution transformers are electrical devices that transfer energy by magnetic induction from one circuit to another. They are typically used to change the voltage in an electric power system from its distribution level to the proper level for practical and safe use.
Typical loads for dry-type distribution transformers include lighting, heating, air conditioning, fans and machine tools. Such loads are found in commercial, institutional, industrial and residential structures.
Different types of dry-type distribution transformers are used for various applications throughout facilities. Therefore, drytype distribution transformers are classified in distinct product groups as follows: General Purpose-Resin Encapsulated, General Purpose-Ventilated, Energy Efficient, Shielded Isolation, Motor Drive Isolation, Non-Linear, Mini-Power Center, and Buck-Boost.

## PRODUCT HISTORY

## Originally a Westinghouse Product

The first transformer built in the United States was manufactured by Westinghouse Electric in 1892. It was a 2 kVA dry- type transformer. For over a century, Westinghouse manufactured numerous varieties of transformers for countless applications worldwide.

The Westinghouse design transformer is now available through Cutler-Hammer. Dry-type transformers, the workhorse of modern industry, are the foundation of modern AC power distribution. It is a transformer that solves the problems of maintenance, installation, safety and
efficiency by using air to cool the coils instead of liquids. Many older transformers, which in some cases pre-date the product families listed below, can be updated to the modern designs currently manufactured by Cutler-Hammer.


## FURTHER INFORMATION

Literature   Number	Description
CAT.200.01.T.E   B.36B.01.S.E	Cutler-Hammer Distribution Products Catalog   KT Dry-Type Distribution Transformers for   Nonlinear Loads
B.36D.01.S.E	Class 1, Division 2 Hazardous Location   Transformers
B.36F.01.S.E	Mini Power Centers   B1228A
Industrial Control Transformer Binder	

## PRICING INFORMATION

PAD	Pricing and Availability Digest
VISTA/VISTALINE	Discount Symbol DT-1

## BUSWAY VS. CABLE AND CONDUIT



# Who Buys... Where Do They Use... Why Do They Choose? 

Target Customers	Common Uses	Why Busway?
High Rise Construction	Riser Feeder/Plug-in Runs	Lower Installation Costs
Industrial Facilities	Multiple Load Plug-in Busway	Flexibility
Institutions	Single Load Feeder Busway	Compact Size
Small Commercial Businesses	Service Entrance	Lower Voltage Drop

PRODUCT DESCRIPTION
Standard
Plug-in

## PRODUCT HISTORY

Westinghouse began marketing low voltage busway in 1938. The first product offering was Power Distribution Busway, utilizing a multiple bolt joint that later evolved into Standard Plug-in Busway. Victory Bus Duct was developed during the Second World War to comply with federal limitations placed on usage of materials such as steel and copper which were critical to the war effort. In 1947, Westinghouse began manufacturing busway at the newly acquired facility in Beaver, PA with Standard Plug-in and feeder bus in ratings up to 1500 amperes. All of these early designs used separated, uninsulated bus bars inside a totally enclosed or perforated steel housing. In 1951, Low Impedance Feeder Busway was introduced as the first design to utilize heat shrinkable tubing for insulation on the bus bars and a ventilated steel housing. An internal ground bus was not available with this product line but provisions were made for mounting an external ground
bus directly to the busway housing. Low Impedance Feeder and Standard Plug-in Busway accounted for the majority of busway business written by Westinghouse through the 1950s and into the 1960s. Low Impedance Plug-in Busway was introduced in 1961. With this design, the product offering was expanded to a maximum of 5000 amperes for feeder and 4000 amperes for plug-in.
During the 1950s, various other designs were introduced to meet specific customer needs. Westinghouse Lifeline Unibus, rolled out in 1955, provided low impedance characteristics with plug-in openings and incorporated flexible armored cable into the design for use as elbows, offsets and flat to edgewise adapters.
Westinghouse High Frequency Busway was introduced in 1958 to address the inherent problems of transmitting power at frequencies from 180 to $20,000 \mathrm{~Hz}$. Cut-ler-Hammer also marketed High Frequency BV (balanced voltage) Busway during
the late '50s and early '60s. Westinghouse High Frequency Busway and CutlerHammer BV Busway both found success in aircraft manufacturing plants, industrial induction heating systems, military missile and radar bases.
Electric Utility Busway was also introduced by Westinghouse in 1958 and was designed to conduct direct current with low voltage drop. By 1963, Electric Utility Busway had been expanded to meet the growing industrial market for direct current power and was marketed simply as DC Busway. This product line was applied to feeding plating processes, welding installations, mill drives and motors.
In 1958, Westinghouse sold the rights to the Lifeline Unibus product line to EDP of Allentown, PA which marketed EDP Unibus until 1962 when EDP became a wholly owned subsidiary of Cutler-Hammer. Cutler-Hammer successfully marketed Unibus until the product line was discontinued in 1974.

BUSWAY (LOW VOLTAGE)

## PRODUCT HISTORY, Continued

In 1966, Westinghouse introduced its first true sandwich bus design with H5000 feeder busway. H5000 was also the first single bolt joint design offered by Westinghouse and it initially utilized a PVC shrink tubing and later a mylar wrap for bus bar insulation. A combination of steel and aluminum channels were used to form a lightweight non-magnetic housing. The grounding method for H 5000 was similar to Low Impedance Busway and an external ground bus mounted onto the housing was the only offering. H5000 Plug-in Busway rolled out in 1968 as a non-sandwich design with separated and uninsulated bus bars.
In 1970, the Cutler-Hammer Bethlehem, PA plant introduced CP2 SAFETYBUS which utilized an innovative single bolt, bridge joint design with a steel housing for plug-in and a combination of steel and aluminum channels for the feeder housing. CP2 used a mylar wrap for busbar insulation and an Alstan process for plating. The feeder busway was a sandwich design while the plug-in design utilized separated bus bars which were braced and support-
ed by corrugations formed in the housing sides.
Westinghouse introduced the Pow-R-Way product line in 1971. Pow-R-Way employed the sandwich design in both feeder and plug-in. At that time Pow-R-Way utilized a combination of PVC, applied by the fluidized bed process, and mylar sheeting for busbar insulation which achieved a Class A, $105^{\circ} \mathrm{C}$ rating. Silver plating of all joint and contact surfaces was applied by a Zincate process. Pow-R-Way is a bolt end/slot end design with a single bolt connection at the joint and is rated from 600 to 5000 amperes. Pow-R-Way II was rolled out in 1975 with ratings of 225 and 400 amperes in feeder and plug-in. Pow-R-Way II is a single, captive, bolt per bar design for indoor, horizontal, applications only.
During 1980, Cutler-Hammer upgraded its busway design and began marketing CP3 SAFETYBUS. CP3 featured an improved bridge joint package and a polyethylene terephthalate wrap for busbar insulation. CP3 maintained the CP2 housing design with busbar separation in the plug-in product configuration.

Cutler-Hammer introduced CP4 SAFETYBUS in 1985 and incorporated the sandwich design into the plug-in busway. CP4 featured a UL recognized case ground path rating, and $130^{\circ} \mathrm{C}$ mylar busbar insulation. CP4 utilized the CP3 bridge joint package and accepted CP2 and CP3 Bus Plugs. The CP4 product line was successful in both the commercial and industrial markets until it was discontinued in 1994.
In 1988, Westinghouse moved the busway product line to the Greenwood, SC manufacturing facility. At that time an improved Alstan plating process was implemented for silver plating the joint and contact surfaces. In 1993, the automated fluidized bed process was changed to Class $\mathrm{B}, 130^{\circ} \mathrm{C}$, epoxy insulation.
In 1997, Cutler-Hammer introduced Pow-R-Way III. As in the past, specific customer needs have driven the design of this product line. High short circuit ratings, finger safe protection at the plug-in openings, integral housing ground path, two piece extruded aluminum housing, and an optional $200 \%$ neutral are just some of the features with this product line.

## PRODUCT HISTORY TIMELINE



## REPLACEMENT CAPABILITIES



## OLD LINE BUSWAY

## Originally a Cutler-Hammer Product

- Replacement pieces or additions to old line Cutler-Hammer bus (CP2, CP3, CP4) are being handled whenever possible by transitioning to our current design Pow-R-Way bus.
- Obtain style number and complete nameplate information from existing busway and contact your Low Voltage Busway product engineer for pricing and availability.
- Plugs for old line Cutler-Hammer bus and Pow-R-Way bus are not interchangeable.
- Aftermarket support for Unibus busway is not provided.


## REPLACEMENT CAPABILITIES, Continued

## Originally a Westinghouse Product

## Breaker Plug-in Units

Reference Catalog Number for Existing Complete Plug-in Unit	Replacement Stab Base Assembly	Reference Catalog Number for Existing Complete Plug-in Unit	Replacement Stab Base Assembly
Pow-R-Way		Standard Plug-in and Low Impedance Busway ${ }^{2}$	
IBPFB   IBPFBP   IBPFCL   IBPFD   IBPJD   IBPKB   IBPKD   IBPLAP   IBPLB   IBPLCL   IBPMC   IBPNBP	2528D04G01   2528D04G01   2528D04G01   2528D04G01   2528D04G12   2528D04G07   2554D03G06   2532D45G06   2554D03G05   2554D03G03   2537D17G03   2537D17G07	BPFB BPFBP   BPFCL   BPFD   BPJD   BPKB   BPKD   BPLAP   BPLB   BPLCL   BPMC	$\begin{aligned} & \text { 2528D03G01 } \\ & \text { 2528D03G10 } \\ & \text { 2528D03G07 } \\ & \text { 2537D20G06 } \\ & \text { 5D01988G01 } \\ & \text { 2537D20G05 } \\ & \text { 2537D20G01 } \\ & \text { 374D017G03 } \end{aligned}$
Fusible Plug-in Units			
Reference Catalog Number for Existing Complete Plug-in Unit	Replacement Stab Base Assembly		Replacement Fuse Base
Pow-R-Way Busway			
ITAP321   ITAP361   ITAP322   ITAP362   ITAP323   ITAP363   ITAP324   ITAP364   ITAP325   ITAP365   ITAP326   ITAP366   ITAP367   ITAP361H   ITAP362H   ITAP363H   ITAP364H   ITAP365H   ITAP366H	2528D04G02 2528D04G02 2528D04G02 2528D04G02 2528D04G02 2528D04G02 767A373G02 767A373G02 2554D03G03 2554D03G03 2554D03G02 2554D03G02 2554D03G01 2528D04G02 2528D04G02 2528D04G02 2568D13G09 2554D03G03 2554D03G02	5009D52G01   5009D52G13   5009D52G03   5009D52G04   5009D52G05   5009D52G05   2532D78G01   2532D78G01   627B426G02   627B426G02   627B426G04   627B426G04   2553D93G02   2535D92G09   2535D92G10   2535D92G11   2532D78G02   1205C02G02   2599D97G02	
Standard Plug-in and Low Impedance Busway ${ }^{2}$			
TAP321   TAP361   TAP322   TAP362   TAP323   TAP363   TAP324   TAP364   TAP325   TAP365   TAP326   TAP366   TAP361H   TAP362H   TAP363H   TAP364H   TAP365H   TAP366H	2528D03G02 2528D03G02 2528D03G02 2528D03G02 2528D03G02 2528D03G02 767A373G01 767A373G01 2537D20G04 2537D20G04 2584D73G01 2584D73G01 2528D03G02 2528D03G02 2528D03G02 767A373G01 2537D20G04 374D017G03	5009D52G01   5009D52G13   5009D52G03   5009D52G04   5009D52G05   5009D52G05   2532D78G01   2532D78G01   627B426G02   627B426G02   627B426G04   627B426G02   2535D92G09   2535D92G10   2535D92G11   2532D78G02   1448D09G05   373D043G06	

[^21](2) Replacement stab base assembly and fuse base style numbers specified correspond to the most recent design of the reference catalog number for the complete plug-in unit. For verification that this style number is the correct replacement for your existing plug-in unit, contact your local Cutler-Hammer Field Sales Office.

## REPLACEMENT CAPABILITIES, Continued

## Originally a Westinghouse Product

Catalog Numbers

Duct Only Includes One Hanger per 10 ft . of Busway(2	Catalog Numbers for 10 ft . Lengths		Fittings   Price of footage through each fitting must be added.		
Ampere Rating	Aluminum	Copper	Universal Cable Tap Box(3 (Lugs Included)(s)	End Closer(s)	
				Aluminum	Copper
	Catalog Number				
3-Phase, 3-Wire, 600 Volts with 50\% Ground Bus					
225	AST302G	ST302G	UCTB302G	UEC10	UEC10
400	AST304G	ST304G	UCTB304G	UEC20	UEC15
600	AST306G	ST306G	UCTB306G	UEC35	UEC20
800	AST308G	ST308G	UCTB308G	UEC50	UEC30
1000	AST310G	ST310G	UCTB310G	UEC60	UEC40
3-Phase, 4-Wire, Full Neutral, 277/480 Volts with 50\% Ground Bus					
225	AST502G	ST502G	UCTB402G	UEC10	UEC10
400	AST504G	ST504G	UCTB404G	UEC20	UEC15
600	AST506G	ST506G	UCTB406G	UEC35	UEC20
800	AST508G	ST508G	UCTB408G	UEC50	UEC30
1000	AST510G	ST510G	UCTB410G	UEC60	UEC40

Cantilever Hangers©

Rmpere   Rating	Aluminum	Copper
	Catalog Number	
3-Phase, 3-Wire, 600 Volts		
225	CLH10	CLH10
400	CLH20	CLH15
600	CLH35	CLH20
800	CLH50	CLH30
1000	CLH60	CLH40
3-Phase, 4-Wire, Full Neutral, 277/480 Volts		
225	CLH10	CLH10
400	CLH20	CLH15
600	CLH35	CLH20
800	CLH50	CLH30
1000	CLH60	CLH40

## Miscellaneous Accessories

Description
Wall/Floor Flange
Extra Cantilever Hangers
Hookstick Kit (8-14 ft.) HS8-14®
Renewal Parts
Joint Hardware - EXWK10
Access Covers (two)
Splice Plates (two)



Typical Standard Plug-in Straight Length
(s) Normally available from stock.
(1) Suitable for horizontal mounting only.
(2) When ordering from stock, all hangers must be shown as a separate item marked included in price.
(3) If UCTB is used on end of run, an end closer must also be used for that end.

Standard and Low Impedance
Plug-in Busway - Circuit Breaker Units

## REPLACEMENT CAPABILITIES, Continued

## Originally a Westinghouse Product

Circuit Breaker Plug-in Units© (Breaker Not Included)


Circuit Breaker Plug-in Units.
The enclosure, circuit breaker, neutral, and ground are ordered and shipped assembled.

## Catalog Numbers

Breaker Frame	Enclosure	Neutral (If Required)(2)		Ground (If
		Standard Plug-in	Low Impedance	
	Catalog Number			
EHD, FDB, FD, HFD, FDC (15-150A)	BPFD®	N110® (15-110A) N250KB(s) (125-150A)	ZN110® (15-110A) ZN250KB® (125-150A)	GS104
$\begin{aligned} & \hline \text { JDB, JD, } \\ & \text { HJD, JDC, } \\ & \text { (70-250A) } \end{aligned}$	BPJD®	$\begin{aligned} & \hline \text { N250KB® } \\ & (125-250 \mathrm{~A}) \end{aligned}$	$\begin{aligned} & \hline \text { ZN250KB® } \\ & (125-250 \mathrm{~A}) \end{aligned}$	GS104®
$\begin{aligned} & \hline \text { KDB, KD, } \\ & \text { HKD, KDC } \\ & (125-400 \mathrm{~A}) \end{aligned}$	BPKD(	$\begin{aligned} & \text { N400® } \\ & (250-400 \mathrm{~A}) \end{aligned}$	$\begin{aligned} & \hline \text { ZN400@ } \\ & (250-400 \mathrm{~A}) \end{aligned}$	GS104
$\begin{aligned} & \text { LDB, LD, } \\ & \text { HLD, LDC } \\ & (300-600 A) \end{aligned}$	BPLD	4	4	4
$\begin{aligned} & \hline \text { MC, HMC } \\ & (500-800 \mathrm{~A}) \end{aligned}$	BPMC®	Not Available	(4)	(4)
$\begin{aligned} & \hline \text { NC, HNC } \\ & (900-1200 \mathrm{~A}) \end{aligned}$	BPNC	4	4	(4)
$\begin{aligned} & \hline \text { FB (TRI-PAC) } \\ & (15-100 A) \end{aligned}$	BPFBP	$\begin{aligned} & \hline \text { N110® } \\ & (15-100 \mathrm{~A}) \end{aligned}$	$\begin{aligned} & \hline \text { ZN110 } \\ & (15-100 A) \end{aligned}$	GS104
$\begin{aligned} & \hline \text { LA (TRI-PAC) } \\ & (125-400 \mathrm{~A}) \end{aligned}$	BPLAP	$\begin{aligned} & \text { N400® } \\ & (125-400 \mathrm{~A}) \end{aligned}$	$\begin{aligned} & \hline \text { ZN400@ } \\ & (125-400 \mathrm{~A}) \end{aligned}$	GS104®
$\begin{aligned} & \text { NB (TRI-PAC) } \\ & \text { ( } 500-800 \mathrm{~A} \text { ) } \end{aligned}$	BPNBP	4	(4)	GS104®

Circuit Breaker Selection and Interrupting Ratings

Breaker Frame	Ampere Rating	Symmetrical Amperes		
		240VAC	480VAC	600VAC
EHD	$\begin{array}{lr} 15-\quad 60 \\ 70-100 \end{array}$	$\begin{aligned} & 18000 \\ & 18000 \end{aligned}$	$\begin{aligned} & 14000 \\ & 14000 \end{aligned}$	
FDB	$\begin{array}{rr} 15- & 60 \\ 70- & 100 \\ 110- & 150 \end{array}$	$\begin{aligned} & 18000 \\ & 18000 \\ & 18000 \end{aligned}$	$\begin{aligned} & 14000 \\ & 14000 \\ & 14000 \end{aligned}$	$\begin{aligned} & 14000 \\ & 14000 \\ & 14000 \end{aligned}$
FD	$\begin{array}{rr} 15- & 60 \\ 70- & 100 \\ 110- & 150 \end{array}$		$\begin{aligned} & 25000 \\ & 25000 \\ & 25000 \end{aligned}$	$\begin{aligned} & 18000 \\ & 18000 \\ & 18000 \end{aligned}$
HFD	$\begin{array}{rr} 15- & 60 \\ 70- & 100 \\ 110- & 150 \end{array}$	$\begin{aligned} & 100000 \\ & 100000 \\ & 100000 \end{aligned}$	$\begin{aligned} & 65000 \\ & 65000 \\ & 65000 \end{aligned}$	$\begin{aligned} & 25000 \\ & 25000 \\ & 25000 \end{aligned}$
FDC	$\begin{array}{rr} 15- & 60 \\ 70- & 100 \\ 110- & 150 \end{array}$	$\begin{aligned} & 200000 \\ & 200000 \\ & 200000 \end{aligned}$	$\begin{aligned} & 100000 \\ & 100000 \\ & 100000 \end{aligned}$	$\begin{aligned} & 50000 \\ & 50000 \\ & 50000 \end{aligned}$
JDB	$\begin{aligned} & 70-225 \\ & 250 \end{aligned}$	$\begin{aligned} & 65000 \\ & 65000 \end{aligned}$	$\begin{aligned} & 25000 \\ & 25000 \end{aligned}$	$\begin{aligned} & 18000 \\ & 18000 \end{aligned}$
JD	$\begin{aligned} & 70-225 \\ & 250 \end{aligned}$	$\begin{aligned} & 65000 \\ & 65000 \end{aligned}$	$\begin{aligned} & 25000 \\ & 25000 \end{aligned}$	$\begin{aligned} & 18000 \\ & 18000 \end{aligned}$
HJD	$\begin{aligned} & 70-225 \\ & 250 \end{aligned}$	$\begin{aligned} & 100000 \\ & 100000 \end{aligned}$	$\begin{aligned} & 65000 \\ & 65000 \end{aligned}$	$\begin{aligned} & 25000 \\ & 25000 \end{aligned}$
JDC	$\begin{aligned} & 70-225 \\ & 250 \end{aligned}$	$\begin{aligned} & 200000 \\ & 200000 \end{aligned}$	$\begin{aligned} & 100000 \\ & 100000 \end{aligned}$	$\begin{aligned} & 50000 \\ & 50000 \end{aligned}$
KDB	250-400	65000	35000	25000
KD	250-400	65000	35000	25000
HKD	250-400	100000	65000	35000
KDC	250-400	200000	100000	50000
LDB	300-600	65000	45000	25000
LD	300-600	65000	45000	25000
HLD	300-600	100000	65000	35000
LDC	300-600	200000	100000	50000
MC	500-800	42000	30000	22000
HMC	500-800	65000	50000	25000
NC	900-1200	42000	30000	22000
HNC	900-1200	65000	50000	25000
$\begin{aligned} & \text { FB } \\ & \text { (TRI-PAC) } \end{aligned}$	15-100	200000	200000	200000
LA (TRI-PAC)	$\begin{aligned} & 125-225 \\ & 250-400 \end{aligned}$	$\begin{aligned} & 200000 \\ & 200000 \end{aligned}$	$\begin{aligned} & 200000 \\ & 200000 \end{aligned}$	$\begin{aligned} & 200000 \\ & 200000 \end{aligned}$
$\begin{aligned} & \text { NB } \\ & \text { (TRI-PAC) } \end{aligned}$	$\begin{aligned} & \hline 500-600 \\ & 700-800 \end{aligned}$	$\begin{aligned} & 200000 \\ & 200000 \end{aligned}$	$\begin{aligned} & 200000 \\ & 150000 \end{aligned}$	$\begin{aligned} & 200000 \\ & 200000 \end{aligned}$

[^22]REPLACEMENT CAPABILITIES, Continued

## Originally a Westinghouse Product

Fusible Plug-in Units
For Standard Plug-in and Low Impedance Plug-in Busway (Not for use on Pow-R-Way Busway)


Fusible TAP
Fuses not included, mechanical lugs only.
Plug-in unit, neutral, and ground ordered separately and shipped unassembled.

Ampere Rating	600 Volts	240 Volts	Neutral (If Required)		Ground (If Required)	Class R Fuse Clips (If Required)	
			Standard Plug-in	Low Impedance		600 Volts	240 Volts
	Catalog Number						
30	TAP361®	TAP321®	N110®	ZN110®	GS104⑨	RFK161®	RFK121®
60	TAP362®	TAP322(s)	N110®	ZN110®	GS104®(	RFK262®	RFK2229
100	TAP363s	TAP323(	N110®	ZN110®	GS104⑨	RFK464(	RFK464(
200	TAP364s	TAP324®	N250KB(	ZN250KB	GS104⑨	RFK464 ${ }^{\text {S }}$	RFK464(
400	TAP365s	TAP325s	N400®	ZN400®	GS104®(	RFK666s	RFK666s
600	TAP366®	TAP326®	N400®(2)	(3)	-	RFK666 ${ }^{\text {S }}$	RFK666
800	4	4					

## Special Industry Fusible Plug-in Units

Special industry plugs are $I^{2} t$ rated. Knockouts are not provided.
Grounding lug included on 200A and above. Lugs ordered and shipped separately. Fuses are not included.
If neutral or ground assembly required, refer to Cutler-Hammer/Westinghouse Busway.

3-Wire, 600 Volt Plug-in Unit		Neutral (If Required)	Ground (If Required)	Terminal Kits for Industry Fusible Plug-in Units						
		Mechanical Lugs		Compression Lugs(s)						
Ampere Rating	Catalog Number			Catalog Number	Lugs Per Phase	Wire Size	Catalog Number	Lugs Per Phase	Wire Size	
30	TAP361H(9)		(3)	(3)	MTK30SC	1	\#14 to \#4	CTK30SC	1	\#12 to \#10
60	TAP362H(9)	©	(3)	MTK160SC	1	\#14 to 1/0	CTK60SC	1		
100	TAP363H	3	3	MTK160SC	1	\#14 to 1/0	CTK100SC	1	\#4	
200	TAP364H(3)	(3)	-	MTK200SC	1	\#6-350MCM	CTK200BSC	1	2/0	
400	TAP365H	(3)	3	MTK400DPW	2	\#2 to 4/0	CTK400SPW	1	750 MCM	
600	TAP366H	(3)	3	MTK600DFW	2	500 MCM	CTK600DPM	2	500 MCM	

Ground Detector and Neutralizer Plug

3-Wire	
Catalog Number	Maximum Volts
GND36®	600

(s) Normally available from stock.
(1) Not available for low impedance busduct.
(2) Only half neutral available. For full neutral use a TAP366BO or TAP326BO unit.
(3 Must be factory assembled. Order by description.
4 For units mounting on all feeder type ducts, see the Busway section of the Quick Selector Catalog 25-000.
Plug-in Busway - Bolt-On Units

## REPLACEMENT CAPABILITIES, Continued

## Originally a Westinghouse Product

## Bolt-on Units©

Breaker Frame	Ampere Rating	Enclosure	Neutral(2 (If Required)	Ground(3 (If Required)
		Catalog Number		
Circuit Breaker Bolt-on Units (Breaker Not Included)				
$\begin{aligned} & \text { EHD, FDB, FD } \\ & \text { HFD, FDC } \end{aligned}$	15-150	BPFDBO	4	4
$\begin{aligned} & \text { JDB, JD, HJD, } \\ & \text { JDC } \end{aligned}$	125-250	BPJDBO	4	(4)
$\begin{aligned} & \text { KDB, KD, HKD, } \\ & \text { KDC } \end{aligned}$	250-400	BPKDBO	4	4
$\begin{aligned} & \text { LDB, LD, HLD } \\ & \text { LDC } \end{aligned}$	300-600	BPLDBO	4	4
MC, HMC	500-800	BPMCBO	4	4
FB (TRI-PAC)	15-100	BPFBPBO	4	4
LA (TRI-PAC)	125-400	BPLAPBO	4	4
NB (TRI-PAC)	500-800	BPNBPBO	4	4
Fusible Bolt-on Units 5				
240 Volts	30 60 100 200 400 600 800	$\begin{aligned} & \text { TAP321BO } \\ & \text { TAP322BO } \\ & \text { TAP323BO } \\ & \text { TAP324BO } \\ & \text { TAP325BO } \\ & \text { TAP326BO } \\ & \text { TAP327BO } \end{aligned}$	$\begin{array}{\|l\|} \hline \boldsymbol{4} \\ \mathbf{4} \\ \mathbf{4} \\ \mathbf{4} \\ \mathbf{4} \\ \mathbf{4} \\ \mathbf{4} \end{array}$	$\begin{aligned} & \hline \boldsymbol{4} \\ & \mathbf{4} \end{aligned}$
600 Volts	30 60 100 200 400 600 800	$\begin{aligned} & \text { TAP361BO } \\ & \text { TAP362BO } \\ & \text { TAP363BO } \\ & \text { TAP364BO } \\ & \text { TAP365BO } \\ & \text { TAP366BO } \\ & \text { TAP367BO } \end{aligned}$	$\begin{array}{\|l\|} \hline \mathbf{4} \\ \mathbf{4} \\ \mathbf{4} \\ \mathbf{4} \\ \mathbf{4} \\ \mathbf{4} \end{array}$	$\begin{aligned} & \hline \mathbf{4} \\ & \mathbf{4} \end{aligned}$

Circuit Breaker Selection and Interrupting Ratingse

Breaker   Frame	Ampere   Rating	Symmetrical Amperes			
		240 VAC	480 VAC	600 VAC	
EHD	$15-60$	18000	14000	$\ldots \ldots$	
	$70-100$	18000	14000	$\ldots \ldots$	
FDB	$15-60$	18000	14000	14000	
	$70-100$	18000	14000	14000	
	$110-150$	18000	14000	14000	
FD	$15-60$	65000	25000	18000	
	$70-100$	65000	25000	18000	
	$110-150$	65000	25000	18000	
HFD	$15-60$	100000	65000	25000	
	$70-100$	100000	65000	25000	
	$110-150$	100000	65000	25000	
FDC	$15-60$	200000	100000	50000	
	$70-100$	200000	100000	50000	
JDB	$110-150$	200000	100000	50000	
JD	250	7025	65000	25000	
	$70-225$	65000	25000	18000	
HJD	$70-225$	100000	25000	18000	
	250	65000	25000	18000	
JDC	$70-225$	2000000	100000	50000	
	250	200000	100000	50000	
KDB	$250-400$	65000	35000	25000	
KD	$250-400$	65000	35000	25000	
HKD	$250-400$	100000	65000	35000	
KDC	$250-400$	200000	100000	50000	
LDB	$300-600$	65000	45000	25000	
LD	$300-600$	65000	45000	25000	
HLD	$300-600$	100000	65000	35000	
LDC	$300-600$	200000	100000	50000	
MC	$500-800$	42000	30000	22000	
HMC	$500-800$	65000	50000	25000	
FB	$15-100$	200000	200000	200000	
(TRI-PAC)					
LA	$125-225$	200000	200000	200000	
(TRI-PAC)	$250-400$	200000	200000	200000	
NB	$500-600$	200000	200000	200000	
(TRI-PAC)	$700-800$	200000	150000	$\ldots \ldots$	

[^23]THIS PAGE INTENTIONALLY LEFT BLANK

BUSWAY (LOW VOLTAGE)

THIS PAGE INTENTIONALLY LEFT BLANK

REPLACEMENT CAPABILITIES, Continued

## Originally a Cutler-Hammer Product

Fusible Switch Plug-in Units

Class R Fuse Clip Included				
Ampere Rating	Max. HP   Rating 0	Catalog Number	Max. HP Rating(1)	Catalog Number
240V, 3-Phase, 3-Wire			120-208V, 3-Phase, 4-Wire	
30	$71 / 2$	CP4HD321	5	CP4HD421
60	15	CP4HD322	10	CP4HD422
100	30	CP4HD323	25	CP4HD423
200	60	CP4HD324	60	CP4HD424
400	100	CP4HD325	250	CP4HD425
6008	100	CP4HD326	400	CP4HD426
600V, 3-Phase, 3-Wire			277-480V, 3-Phase, 4-Wire	
30	20	CP4HD361	15	CP4HD461
60	50	CP4HD362	30	CP4HD462
100	75	CP4HD363	60	CP4HD463
200	100	CP4HD364	100	CP4HD464
400	350	CP4HD365	250	CP4HD465
6003	500	CP4HD366	400	CP4HD466

NOTE: We have replaced the 3-Phase, 3-Wire plugs with 3-Phase, 4-Wire plugs.
(1) Maximum HP ratings apply when time delay fuses are used.
(2) 120-208V HP ratings are based on 200 V motor usage.
(3) Requires two adjacent plug-in outlets that do not span a busway joint.

4 For ground stab to engage internal ground bus, add suffix " G " to Catalog Number.
© Requires two adjacent plug outlets that do not span a busway joint.
© Also accepts (2) \#1-300 kcmil Al/Cu.

Plug-in Cable Tap Boxes
Plug into CP2, CP3 or CP4 Busway© - 600A and 800A Size Also Have Bolt-on Clips

Volts	Ampere Rating	Catalog Number	Approximate Dimensions In Inches						Load Lugs Each Phase
			Wide	High	Deep	Mounting Clearance		Conduit Sizes	
						Top	Front		
3-Phase, 3-Wire	225	CP2SB34	15.5	8.1	6.9	6.3	10.5	$11 / 2,2,2^{112}, 3$	(1) \#6-300 kcmil Al/Cu
600 V	400	CP2SB35	22.3	8.1	7.9	7.0	11.3		(1) \#1/0-750 kcmil Al/Cu®
Maximum	$600$		$37.2$		$11.7$	12.5	$16.8$		(2) \#2-600 kcmil Al/Cu
	800	CP2SB37®	$37.2$	$15.8$	$11.7$	12.5	16.8		(3) \#2-600 kcmil Al/Cu
3-Phase, 4-Wire	225	CP2SB44	15.5	8.1	6.9	6.3	10.5	$11 / 2,2,21 / 2,3$	(1) \#6-300 kcmil Al/Cu
120/208V	400	CP2SB45	22.3	8.1	7.9	7.0	11.3		(1) \#1/0-750 kcmil Al/Cu®
or 277/480V	600	CP2SB460	37.2	15.8	11.7	12.5	16.8		(2) \#2-600 kcmil Al/Cu
100\% Neutral	800	CP2SB476	37.2	15.8	11.7	12.5	16.8		(3) \#2-600 kcmil Al/Cu

## BUSWAY (LOW VOLTAGE) Plug-in Units - Used With CP2, CP3 or CP4 Safetybus Busway

## REPLACEMENT CAPABILITIES, Continued

## Originally a Cutler-Hammer Product

Approximate Dimensions


## Required Mounting Clearances



Typical Side and Front

Plug-in Units
May be Used with Either CP2, CP3 or CP4 Plug-in Busway Sections

Frame or Type	Maximum   Ampere   Rating	Dimensions in Inches							Wire Size Range $\mathrm{Al} / \mathrm{Cu}$
		A	B	C	D	E	F	Conduit Sizes Top, Bottom and Side	
Fusible Switch Type									
CP4HD	$\begin{array}{r} 30 \\ 60 \\ 100 \end{array}$	19.3	11.5	8.8	5.2	7.0	9.0	$1 / 2,3 / 4,1,11 / 4,1^{1 / 2}, 2$	(1) \#14-2   (1) \#14-2   (1) \#14-1/0
CP4HD	200	23.0	16.5	9.2	6.0	7.5	13.3	$11 / 2,2,2^{1 / 2}, 3$	(1) \#6-300 kcmil
	40008	45.6	24.3	15.8	13.1	14.0	20.5	...............	(1) \#1/0-300 kcmil or (1) 750 kcmil
	60003	45.6	24.3	15.8	13.1	14.0	20.5		(2) \#2-600 kcmil

## CLIPPER POWER SYSTEMS, BUSWAY TVSS PROTECTION

The Low Voltage Busway aftermarket product offering includes Transient Voltage Surge Suppression (TVSS) which is ideal for busway fed distribution systems. Cutler-Hammer has developed the Clipper Power System (CPS) family of products to ensure that the quality power required to maximize productivity in today's competitive environment is supplied to commercial, industrial, medical and institutional facilities. Without power protection devices, microprocessors and electronic based loads are not provided with the noise and disturbance-free power which they require. Since microprocessor loads are now
common in every facility, engineers must ensure the AC power supply is properly filtered. The CPS busway family of products consists of transient voltage surge suppression and filter components (TVSS filter) integrated into a bus plug with a fusible disconnect. TVSS bus plugs are available for the following types of plug-in busway:

> Westinghouse Standard Plug-in
> Westinghouse Low Impedance Plug-in Westinghouse H5000 Plug-in Cutler-Hammer CP2 Plug-in Cutler-Hammer CP3 Plug-in Cutler-Hammer CP4 Plug-in

## Westinghouse Pow-R-Way Westinghouse Pow-R-Way II Cutler-Hammer Pow-R-Way III

Significant performance advantages are achieved by integrating TVSS filters into busway systems. Since the TVSS unit is directly connected to the busway, the CPS minimizes let-through voltage, a significant performance advantage compared to cable-connected TVSS solutions. Due to the integrated design, the CPS bus plug also saves the user wall space and greatly reduces the installed project cost.

CPS (TVSS) Bus Plug-in Units Performance Specification

Key Feature	CPS-M	CPS-H	CPS-S2	CPS-S	CPS-B
Surge current per phase	400kA	250kA	160kA	120kA	90kA
Surge current mode:					
Line-Neutral	200kA	125kA	60kA	60kA	45kA
Line-Ground	200kA	125kA	60kA	60kA	45kA
Neutral-Ground	200kA	125kA	60kA	60kA	45kA
Line-Line (Delta and ungrounded applications only)	200kA	125kA	60kA	60kA	45kA
Protection modes:					
3 -phase wye system	7	7	7	7	7
3-phase delta system	6	6	6	6	6
Filter attenuation at 100 kHz (based on MIL-STD-22A)	55 dB				
(beE Cat B3 Ringwave	55 dB				
suppression (l-n mode; 6000V 500A)	<150V	<150V	<150V	<150V	<150V
Surge Withstand capabilities IEEE C3 Wave (10kA)	>4000	>3500	>2500	>2500	>1500
TVSS TRI-Monitor system					
1. Overcurrent Protection	Yes	Yes	Yes	Yes	Yes
2. Infrared Detection	Yes	Yes	Yes	Yes	Optional
3. Thermal Detection	Yes	Yes	Yes	Yes	Optional

Catalog Numbers for CPS Bus Plugso

| TVSS Unit | Standard <br> Plug-in | Low <br> Impedance | H5000 <br> Plug-in | CP2/CP3 <br> Plug-in | CP4 <br> Plug-in | Pow-R-Way <br> Pow-R-Way II |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 90kA | TAP-CPSB | ZTAP-CPSB | HTAP-CPSB | CP3-CPSB | CP4-CPSB | ITAP-CPSB |
| 120 kA | TAP-CPSS | ZTAP-CPSS | HTAP-CPSS | CP3-CPSS | CP4-CPSS | ITAP-CPSS |
| 160 kA | TAP-CPS2 | ZTAP-CPS2 | HTAP-CPS2 | CP3-CPS2 | CP4-CPS2 | ITAP-CPS2 |
| $250 k A ~$ | TAP-CPSH | ZTAP-CPSH | HTAP-CPSH | CP3-CPSH | CP4-CPSH | ITAP-CPSH |
| $400 k A ~$ | TAP-CPSM | ZTAP-CPSM | HTAP-CPSM | CP3-CPSM | CP4-CPSM | ITAP-CPSM |

## IO ENERGY SENTINEL FOR BUS PLUGS

The IQ Energy Sentinel was designed as part of the Cutler-Hammer Integrated Monitoring Protection and Control Communications System (IMPACC) and is a highly accurate, microprocessor-based submeter which monitors power and energy. It offers a centralized alternative to individually mounted watt meters, watt hour meters, and watt demand meters. Key advantages include unmatched savings in space, lower installation costs, and the capability to communicate data readings in a variety of ways. IQ Energy Sentinels with built in Current Transformers (CTs) and communications have the added benefit of overall system accuracy. The IQ Energy Sentinel mounts on the load side of Cutler-Hammer F, J and K breakers within
the bus-plug enclosure. The IQ Energy Sentinel is also available with a universal mounting which utilizes external CTs and is offered for fusible bus plug applications. Submetering application examples for the IO Energy Sentinel include energy monitoring and demand management, energy cost analysis/allocation and tenant or interdepartmental billing. To accomplish the communications system, the customer must provide a twisted pair communication cable in half-inch conduit between the IO Energy Sentinel bus plug and a Cutler-Hammer Central Energy Display or customer computer to display the information. IQ Energy Sentinel bus plugs are available for Pow-R-Way, Pow-R-Way II and Pow-R-Way III busway.


Bus Plug with Energy Sentinel

## CUSTOMER REOUIRED INFORMATION

## Originally a Westinghouse Product

1. Style number or shop order number from existing busway nameplate and complete nameplate information.
2. Height and width dimensions of housing from existing busway.
3. Order by Style Number on Suffix 077.

## FURTHER INFORMATION

Literature Number	Description
AD 30-560	Application Data for Pow-R-Way
AD 30-560	Application Data for Pow-R-Way II
TD.42.01A.T.E	Technical Data for Pow-R-Way III

T.42.01A.T.E

Technical Data for Pow-R-Way III

## Originally a Cutler-Hammer Product

1. Leadtime $14-16$ weeks; check VISTA for pricing.
2. Order by catalog number on suffix 073.

## PRICING INFORMATION

VISTA/VISTALINE	Discount Symbols CE3 and CE4

Contact your local Cutler-Hammer Field Sales Office.

Please refer to Catalog 2001, Section 26 of the Distribution Volume pages 26-1 through 26-56 or Section 56 of the Control Volume pages 56-1 through 56-56 for current IQ Products.
WEB Reference: Power Management Products on www.ch.cutler-hammer.com

The IMPACC Series III is no longer available, but is supported. Please refer to Catalog 2001 pages 26-57 through 26-86 or pages 56-57 through 56-86 for the PowerNet Software Suite and communications products.
WEB Reference: Power Management Products on www.ch.cutler-hammer.com

## PRODUCT DESCRIPTION



The IQ Metering and Protection group of products are multifunctional communicating products based on microprocessor technology. They are designed to replace existing electromechanical devices and can be applied at low, medium, and high voltage points in the electrical distribution system. These devices offer communications capabilities

to link electrical distribution equipme an Integrated Monitoring Protectior Control Communications (IMPAC' tem master.
These products generally surr ities available with older anmechanical technologies.' the features available frc

se devices may be analyze power system events or problems and wer systems protection on. With communications, , may be used for energy and management with trended se in future power system
s.

## PRODUCT HISTORY

## Originally a Westinghouse Product

In the early 1980s, power metering and protective relaying functions were performed by electromechanical devices. Analog meters and induction disk protective relays were found on virtually every switchgear lineup manufactured up to then. With the maturing of solid-state electronics, microprocessor-based replacements for the electromechanical devices became available. These new devices provided increased functionality and flexibility, in a smaller space, for less cost. Westinghouse led the movement towards electronic metering and prote tion devices with the introduction of IQ 2000 motor protection and contr


GENERAL INFORMATION
Application Overview Chart


## GENERAL INFORMATION




The IQ Data provides simultaneous current and voltage metering. In one compact, standard package, this device provides an alternative to individually mounted and wired ammeters, voltmeters, ammeter and voltmeter switches.

## Features and Benefits

- Space savings in structure - Replaces ammeter, voltmeter, selector switches and frequency meter (IQ Generator).
- Standardization of design - One doormounted device.
- Direct voltage input up to 600 V - No additional Potential Transformers (PTs) required.
- User friendly - Field settable DIP switches.
- Standard model derives power from separate source 120/240VAC supply.
- Only two style numbers
- No need to stock multiple units fo' different Current Transformers (r and PT ratios.
- Interface r work for printo




IQ Generator


The IQ Generator provides simultaneous current and voltage metering. In addition, the IQ Generator monitors frequency. This device provides an alternative to individually mounted and wired ammeters, voltmeters, ammeter and voltmeter switches, and frequency meters.

Features and Benefits

- Space savings in str ammeter, voltmet and frequency $m$
- Standardizatior mounted dev
- Direct voltar additional
- User-frie switch
- Stan ser - o

IQ Energy Sentinels

ing often is less accuCTs and separate trans, have inaccuracies of $1 \%$ sy Sentinel provides a unique fective method to implement abmetering at lower levels in the .cion system economically. retering application examples for the -nergy Sentinel include energy moniring and demand management, product cost analysis, process/machine tool efficiency and productivity improvement. Additional applications include energy cost allocation of tenant billing for commercial, industrial, recreational, and residential facilities.

## Retrofitting

The space saving design characteristics of the breaker mount IQ Energy Sentinels allow them to be added to existing Series C Circuit Breakers at any time often with no additional space or modifications required.

Or they may be installed when upgrading to Series C from older circuit breakers often with no additional space or modifications required.
The Universal mount IO Energy Sentinel with internal CTs may be utilized wherever breaker mounting is not feasible or possible.
The Universal mount IO Energy Sentinel for external CTs may be utilized for monitoring loads larger than 400 amperes or when the use of existing CTs is desired.

Description	Catalog Number
For F-Frame Breakers	*IOESF
For J-Frame Breakers	*IOESJ
For K-Frame Breakers	*IQESK
Universal with Internal CTs	*IQESUI
Universal for External CTs	*IQESUE
* Final three characters of catalog number are for Voltage Rating ie. $\underline{2} \underline{0} \underline{8}$ for 120/240, 240, 208Y/120 Systems	

ce capability to computer net. for data collection, storage and/or ntout via IMPACC.
rembrane faceplate, designed and tested to perform in harsh industrial environment (NEMA 3R, 12).

- Retains preset parameters through power failure with use of field settable DIP switches (no batteries).

Description	Catalog Number
Basic Metering   Basic Metering with 3-Phase   Power Module	IQGEN
IQGENPM	

IO Energy Sentinels with its nuilt-in CTs and communications has the added benefit of greater overall system accuracy. tit greater overall system accuracy.

The IO Energy rate, micropr designed ts readings. installin meters, a.
Key advantag,
savings in space, lov ,ts, and the capability to con. tta readys.

## GENERAL INFORMATION/TECHNOLOGY UPGRADES, Continued

IQ DP-4000/4100


The IQ DP-4000 is a microprocessor-based monitoring and protective device that provides complete electrical metering and system voltage protection. In one compact, standard package the IQ DP-4000 will provide an alternative to individually mounted and wired conventional meters
and switches. The new IQ DP-4000 also monitors Apparent Power (VA), Reactive Energy (VAR-Hours), Apparent Energy (VAHours), and percent Total Harmonic Distortion (THD) to provide the user with basic power quality information. The IQ DP-4000 meets and surpasses UL/CSA/CE standards.

## Features and Benefits

- Space savings in structure - Replac conventional individual metering de
- Standardization of design - One mounted device.
- Direct voltage input up to 60 r
- New DIP switch design.
- Standardization of CT and' tions.
- With additional setpoir used in HV setting.


## IQ Analyzer



The IQ Analyzer is a complete solution for users who want to monitor all aspects of their electrical distribution system. It provides extensive metering, power qualit analysis, remote input monitoring, con' relaying, analog input/outputs and c munications capability. All prograr can be done through the faceplat through the communications o' on-line Help Pushbutton featy

## information on df

 gramming and ${ }^{+}$Features and'

- All infor comm
- Qual har
- ${ }^{\prime}$

ısoidal est factor. g units, kilo .ed.
meters at the tom screens.
yzer Model 6200 with
ay at the device and subdisturbance capture
ovides the capability to monitor a wide range of harmonic parameters. These include harmonic voltage, current magnitudes and phase angles as well as system disturbances such as transient voltage disturbances and sub-cycle voltage interruptions. This unit is also available in a portable version.

Description	Catalog Number
IQ Analyzer, Model 6000	IQA6030
Power from line	
IQ Analyzer, Model 6000	
Requires special control	
power	

## Digitrip 3000/MV Trip I


integral to each trip unit.
$\rho$ MV features a user friendly opera, panel to monitor, program and test trip unit. Operating parameters and oubleshooting information are displayed in the two highly visible display windows. In addition, all locally viewed trip unit data and information can be delivered to a host computer equipped with the appropriate software. A "Communication Trip" and "Communication Close" control command can also be initiated by a host computer, if desired.
Two styles are available with both offering the same features and functions except for the communication capability. One style includes a built-in INCOM communication capability compatible with the Westinghouse IMPACC system. The other style includes provisions for future communication by simply field installing a Product Operated Network Interface (PONI) communications module.

## Electrical Power System Protection

 Digitrip MV Trip Units provide phase and ground protection for most types of medium voltage electrical power distribution systems. Protection curves are similar to those on low-voltage power circuit breaker trip units, and provide close coordination with downstream devices, as well as upstream fuse and/or electromagnetic relays. Just one Digitrip MV Trip Unit replaces the normal complement of three or four conventional electromagnetic overcurrent relays, an ammeter, a demand ammeter, an ammeter switch and, in some situations, a lockout relay switch (device 86).| Description | Catalog Number |
| :--- | :--- |
| Digitrip with communication <br> Digitrip MV with provision <br> for future communication | DTMV01 <br> DTMV02 |

## ACCESSORIES

## IQ Flange

For applications where extra door mounting space is required, a flange-mounting unit is available. The IQ Flange provides an extra 2.5 in . of clearance for the device.


Description	Catalog Number
IQ Flange Option, to provide   extra clearance when   mounting	IQFLANGE

## IO DC Power Supply

invertor $r$
DC pow requirea.

10
1000 IIs, IQ L tronic Monitor I . Elecdevices requiring m power at any power fa

Description	Catalog Number
IQ DC Power Supply	IQDCPS

IQ Surface Mount Enclosure
NEMA 1, 12, 3R


Heavy Gauge \#14 painted $A$ sure for mounting IO fam: wall, panels, or doors w: large cutouts. Six mou mounting hardware; drilling for (three) $P$ 10 or PB products

7.375 in. W y
6.13 in. Df

Plus II, w. commu

cations where remote mounting ower supply is required, a 36 in . sion cable is available.
$\jmath$ types of cable are available. The first atalog number IO CABLE) is for the IQ Sata, Generator, and Data Plus II. The second (catalog number IQA CABLE) is exclusively for the IQ Analyzer.

Description	Catalog Number
36 in. extension cable   IQ Data, Generator,   Data Plus II	IQCABLE
36 in. extension cable	
IQ Analyzer	
45 in. extension cable	
IQ Analyzer	

## IO Floor Mov

NEMA 1, 12
Standard /
tion, pair
up extf
Each
doc
doc
Q prod-


Addressable Relay II


The Addressable Relay II has two status inputs and a Form C contact output. Input rating: 48-120 VAC, 48-125 VDC. Output contact rating: 10A @ 277 VAC, 10A @ 30 VDC. Features include a communications watchdog and relay pulse. Baud rate is selectable.

Description	Catalog Number
Addressable Relay II	ARII



IMPACC and IQ Family of Hardware and Software Products

Integrated Monitoring Protection and Control Communications (IMPACC) provides reliable low cost communication capabilities to electrical equipment to enhance the performance of a facility's electrical destination system. IMPACC communication is done via the Cutler-Hammer INCOM chip which permits information to be transferred from IQ Devices by radio frequency signal over a shielded twisted pair of wires to a master computer.
IMPACC is designed to help manage your entire electrical system investment equipment operational and manpower costs, energy cost and the electrical impact on product quality.

## Some Significant Benefits of an IMPACC System Includes:

## Improved Energy Management

- Historical trending functions us develop daily or seasonal loar
- Rapid reaction to utility load requirements
- Accurate allocation of en within a facility
- Reduce loads to peak
- Equalize loads to re downtime

Scheduled Maint

- Preventive r be develor time mer ment ur
- Alerts are provided preventive mainte monitored equir
- Costs can be re nance on act intervals.
- Emergenc reduced
$\qquad$ Early $V$
Probl Probl
ver
.ng peak d by shedding ale the cause is ied. e and correct probre that a process or .nue to run.
ion on which breaker tripped, use and magnitude is available .ntaneously.
rms with time stamping provide an idication of which event occurred first, second and so forth. This narrows the potential cause of a given trip.
- Maintenance personnel are provided with information to identify the problem and to have the system up and operating in minutes instead of hours.


## PRODUCT HISTORY

## Originally a Westinghouse Product

The Integrated Monitoring Protection and Control Communications (IMPACC) product line emerged in 1987 with the introduction of the first microprocessor-based multifunctional meters, the IQ Data Plus. The IQ Data Plus set the standard for a new class of intelligent meters which offered modular communication capability. The first modular communication card, the Product Operated Network Interface (PONI), targeted the noisy environment associated with electrical distribution equipment. The introduction of the PONI card provided the ability to daisy chain a thousand devices back to a computer in order to continuously monitor and trend all points.

In 1988, Westinghouse offered IMPACC Series III software, the first Microsoft ${ }^{\circledR}$ Windows compatible electrical distribution monitoring package. Since that time, the speed of communication has improved tremendously. Today, over twenty different devices found in motor control centers, low and medium voltage switchgear, switchboards and transfer switches can be linked with Series III software.
The technology and solutions ava ${ }^{\text {i }}$ to customers now are greater th before. Cutler-Hammer has intr three new software program 1995 which work in conjuns

## PRODUCT HISTORY TIMELINE



[^24]
# COMMUNICATIONS SYSTEMS (IMPACC) 

 For New and Existing Electrical Equipment
## GENERAL INFORMATION, Continued

## The Power of Information

## Centralized Data Collection

An IMPACC System collects, processes and stores distribution system operational data. Trend data can help analyze overall electrical distribution system operation or a specific load's historical performance.

## Early Warning

Constant monitoring can alert an operator to potential problems before they occur, thus minimizing costly downtime while keeping the distribution system running smoothly.
Troubleshor
Time and
vided to
probler

Monitoring, Controlling and Communicating from a Central Location - On-sir
From a master control PC, either on-site or off-site, the plant operator, facilities engineer and/or maintenance engineer can monitor and/or control the entire power distribution system. Information can be made available to other PCs at different locations within a facility.
Shielded twisted pair communications wire in an IMPACC System can extend $7,500 \mathrm{ft}$. without the use of repeaters. Phone lines and modems may be used to extend an IMPACC System to monitor and control off-site locations that may be hundreds or thousands of miles from the master control unit.

## On-site Location



Troubleshor probler

## GENERAL INFORMATION, Continued



## COMMUNICATIONS SYSTEMS (IMPACC)

 For New and Existing Electrical Equipment

## GENERAL INFORMATION, Continued

Electronic Device IMPACC System Selection Chart


IMPACC HARDWARE

INCOM Product Operated Network Interface (IPONI) Card


The IPONI Card adds communications to various Cutler-Hammer products, including the IO Data, IO Generator, IO Data Plus II, IQ Data Plus II HV, IQ DP-4000, IO Analyzer version 1.06 and later, IO Transfer, IQ 1000 II, Digitrip MV, IQ Central Energy Display II (CED II), Assemblies Electronic Monitor II (AEM II), Central Monitoring Unit (CMU) and the Breaker Interface Module (BIM), enabling these devices to communicate with a master control unit over an INCOM network. (Several other devices, such as the IO Energy Sentinel, Digitrip MV, Digitrip RMS trip units, OPTIM trip units, the Addressable Relay II, and the Universal RTD Module contain built-in communications capability and do not require a PONI.) The PONI can be easily mounted on the back of these devices and requires no external power. Selectable communication rate of 1200 or 9600 baud is available.
Also available are the special RS-232 PONI and the Telephone Modem PONI, which enable the above mentioned devices to communicate with a master control unit through either an RS-232 channel or over a telephone line. Two application restrictions must be considered when utilizing either of these special PONI's: 1 - they both operate exclusively at 1200 baud; 2 -the both operate over a single point-to-poin' (non-shared) communication channel

Buffered PONI (BPONI)


The funct
above $\epsilon$
products:
Universal RTD
AF 400
IO 500
IQ 1000
IQ Analyzer 1.05 and earlier

Computer Operated Network Interface (CONI) Card


The CONI Card interfaces the informa from IMPACC devices to personal cor software. It is installed into the exr slot of an IBM compatible with a network RS-23 RS-23
seria

$\checkmark$


PLC Interface

Network Gateways/Bridges


The Mod Bus Gateway and Ethernet Bridge translate INCOM network communications into either Mod Bus or Ethernet protocol. The Mod Bus Gateway uses a register mapping technique to place information from up to 200 IMPACC meters and protective relays into Mod Bus registers. The gateway also supports control features to allow the customer (Mod Bus master) to send control commands to the IMPACC devices. The Ethernet Bridge provides the ability to bridge all IMPACC information onto a new or existing Ethernet network.

IMPACC Series III Software


IMPACC Series III software is a Microsoft Windows based program that provides complete monitoring and controlling functions from a centralized location. Data can be stored to generate standard or customized reports, charts or graphs. Series III can expand with the system as devices are added.

## Software Features

- Real time monitoring
- Alarming
- Control
- Trend/Report generation
- Maintenance scheduling
- Available in 20,200 or 1000 device packages


## E-Bill Software

Enhanced Graphics Software

Enhanced Graphics is an ar package to IMPACC Serif ports a complete set of ing, data logging, alar networking. It also $C$ ics capabilities.

## Software Featy

- Custom on site plans
- Color cr ing br
- Mair
- Al $v$

itor arm is

Wavefr



## PRICING INFORMATION

PAD	Price and Availability Digest
VISTA/VISTALINE	Discount Symbol C10-S25

## PRODUCT DESCRIPTION



D50
Programmable Logic Controllers (PLC) are microprocessor-based devices used to control industrial processes or machines.
PLCs were originally designed to replace the control relays, timers, and counters found in conventional hardwired control systems. From this origin, PLCs have expanded in capability to perform virtually


D300
all of the complex functions required to control an industrial process or machine. Today's PLCs can provide advanced functions, including analog monitoring, control and high speed motion control. Also, newer PLCs can share data over communications networks.

## PRODUCT HISTORY

The company has offered programmable controller products since the early '70s.
These products have been marketed under several trade names such as Numa-Logic and model names such as D100.
Westinghouse entered the solid-state logic and control business with the Numa-Logic 300 series products. The 300 series was a set of hardwired logic components that could be custom wired to perform the desired logic functions.
Cutler-Hammer entered the market with its first programmable control in 1977. The unit was called the D120 and was a true programmable control with no hard wiring required.
Many models have been introduced since then.
Organizationally, the programmable controller product line is located in the Milwaukee OTC facility. It is a part of the Industrial Control Division.

PRODUCT HISTORY TIMELINE


## 100/110 SERIES



Introduction and Description
The Numa-Logic 100/110 Series, known as
"the Pico," consisted of the PC-100 and
PC-110 models. Both products were
"brick" style PLCs and provided a small number of digital inputs and outputs mounted in the same enclosure as the processor.
Various styles offered the ability to select the type and amount of $I / O$ required. I/O expanders were available to expand the I/O capacity.

## Chronology

The 100/110 Series PLCs were offered as current product from 1981 until 1989. In 1989 the product was discontinued.

## Replacement

A PC-100 or PC-110 can be functionally replaced with either a PC-50 or PC-500 with the appropriate I/O modules.

## 300 SERIES



Introduction and Description
The Numa-Logic 300 Series was Westinghouse's original solid-state controls offering. The 300 Series consisted of printed circuit boards (modules) that performed specific logic functions (AND, OR, NOT, etc.). These modules could then be custom wired by the user to perform the required control functions.
All 300 Series components can be
identified by catalog numbers of NL-3XX.

## Chronology

The Numa-Logic 300 Series products were manufactured by Westinghouse beginning in the early 1970s and continuing until 1988. Replacement products are currently available from Instrument Specialties, Inc.

## Replacement

For replacement of the 300 Series, contact:

Instruments Specialties, Inc.
1886 Larchwood
Troy, MI 48083
(313) 689-0176

## 400 SERIES

## Introduction and Description

The Numa-Logic 400 Series was Westinghouse's first PLC offering. After being manufactured for two years, the 400 Series was replaced by the 700 Series of products. Few, if any, 400 Series systems remain in service today.

## Chronology

The 400 Series was manufactured by Westinghouse in Madison Heights, MI from 1975 until 1978. The product was no longer manufactured after 1979.

## Replacement

400 Series can be replaced by a 50 Series or 500 Series PLC along with the appropriate expansion I/O modules.

D120 SERIES


## Introduction and Description

The D120 Family of PLCs consisted of several l/O cards and the racks used to mount them.
The self-contained troubleshooting was identical in concept to the buzzer and jumpers common to relay controls. The D120 requires no new language. It utilizes decimal numbering and memory size is determined simply by adding all elements on the ladder diagram.

## Chronology

The D120 products were offered by
Cutler-Hammer from 1976 through 1983.

## Replacement

For replacements of the D120 products, contact:

ATS Inc.
East Peoria, IL
309-698-5700

## MPC1 SERIES



## Introduction and Description

The MPC1 was a complete PLC system for applications up to $128 \mathrm{I} / \mathrm{O}$. Programmed in easily understood relay ladder logic with digital and analog capabilities. Analog processor has the same functions as the discrete version and supports "intelligent" analog input and output modules.

## Chronology

The MPC1 products were offered by
Cutler-Hammer from 1983 through 1993.

## Replacement

For replacements of the MPC1 products, contact:

ICS Inc.
Decatur, IL
217-422-6700

## D500 SERIES



## Introduction and Description

The D500 Family of PLCs consisted of several I/O cards and the racks used to mount them. The D500 was a full function programmable logic controller offering all of the capabilities of larger frame PLCs in a compact, economical, space saving design.

## Chronology

The D500 products were offered by
Cutler-Hammer from 1985 through 1994.

PRODUCT SUPPORT SERVICES		
Technical Application	Training	Repair Services
Assistance	Cutler-Hammer provides	Contact CORE at:
Cutler-Hammer can pro-	comprehensive training on	
vide technical application	all aspects of Cutler-	$\mathbf{1 - 8 0 0 - 4 1 0 - 2 9 1 0}$
assistance via the	Hammer programmable	
Technical Resource Center.	controllers from our	
Available by telephone,	Pittsburgh Training Center.	
Cutler-Hammerpersonnel	Courses cover system	
quickly respond to	configuration and design,	
customer needs, including	programming, trouble-	
troubleshooting,	shooting and mainte-	
analyzing system opera-	nance.TheTraining Center	
tion, and coordinating	also offers on-site training	
component repair or	for all its courses. Course	
replacement. The	description, schedule and	
Technical Resource	pricing can be found	
Center can be reached	through training	
by telephoning:	department:	
1-800-809-2772	412-494-3715	

## FURTHER INFORMATION

For currently manufactured products, see the Programmable Logic Controllers section of Catalog 25-000 or the following Cutler-Hammer publications.

## PRICING INFORMATION

VISTA/VISTALINE	Discount Symbol 2CD-3

## PRODUCT DESCRIPTION



ADVANTAGE


Freedom

The Cutler-Hammer line of starters and contactors were and are designed to control functions of a connected motor by starting, stopping, reversing, regulating and protecting. When functions do not include speed regulation, this device is known as a starter rather than a controller.
Applications for starter functions are fans, pumps, constant horsepower, constant or variable torque machine tools, constant torque metal working machinery, variable torque and horsepower fans and blowers, constant power heating, lighting, pumps and motors for all types of applications.

## PRODUCT HISTORY

The Cutler-Hammer line of contactors and starters dates back to the early 1920s in Milwaukee, WI. Changes in coil construction, making the first moisture-proof vacuum with impregnated coils, were innovations in this line of contactors and starters manufactured before the 3-Star line (now known as the Pre 3-Star). Eutectic alloy overloads were used later in this design with the design change to the 3-Star line. A few of the new features of the 3-Star line of contactors and starters were the first standard three coil overload relays, new molding compounds, new metals and cast resin coils.

The Type F magnetic contactor is the first magnetically controlled contactor in our Westinghouse records. It was open in design, simple in construction and was state-of-the-art due to its magnetically controlled armature. The Type F contactor was replaced by the De-ion contactor which featured the Westinghouse trademark De-ion arc quenching. The De-ion was followed by the Type DN, Type N, and the Type A, today known as the A200. The Type B was developed in the late 1970s and was obsoleted two or three years later. The A200 open control is still a current offering. Prior to 1985, some of the larger sizes (5-9) were known as GCA and GCD.

The Citation line of contactors and starters was introduced in 1968 with many new features: the new Cl non-wearing totally enclosed permanent air gap magnet structure; dual wound magnet coil with plug-in feature; color coded, twin break dust-safe contacts; and straight through wiring. Although the Citation line was obsoleted in 1997, replacement contact kits, magnet coils and heater coils will continue to be available.
Today, the Freedom contactor, launched in 1986, coexists with the solid-state heaterless ADVANTAGE contactor, a microprocessor-controlled magnetic contactor introduced in 1991.

## TABLE OF CONTENTS

	Pages
Pre 3-Star	150
3-Star	151
Citation	
$\quad$ Contactors and Starters	$152-154$
Overload Relays and Heaters	$155-162$
Definite Purpose	163
Type N	164
A200	
$\quad$ Contactors and Starters	$165-167$
Overload Relays and Heaters	$168-171$
A202 Lighting Contactor	$172-173$
JF Autostarter	174
Further Information	175
Pricing Information	175

PRODUCT HISTORY TIMELINE FOR PRE 3-STAR, BULLETIN 95861

Originally a Cutler-Hammer Product														
Size	1920	1925	1930	1935	1940	1945	1950	1955	1960	1965	1970	1975	1980	1985
Sizes 00-5														

## GENERAL INFORMATION

Pre 3-Star

Size 1 Contactor



Size 5 Contactor
Parts are no longer available for Pre-3 Star

## REPLACEMENT CAPABILITIES

There are no replacement parts available. Replace with new contactor or starter.

## TECHNOLOGY UPGRADES

```
Size 00-3 ADVANTAGE, Freedom or IT
Size 4-5 ADVANTAGE, Freedom, Vacuum or IT
```

CONTACTORS AND STARTERS 3-Star

PRODUCT HISTORY TIMELINE FOR 3-STAR, BULLETIN 9560, 9586, 9589, 9591, 9556, 9658, 9736, 97391


## GENERAL INFORMATION

## 3-Star




Typical Size 5
Starter

## REPLACEMENT CAPABILITIES

NEMA Size	Replacement 3-Pole Contact Kits	AC Coils		
	Part Number	Control Voltage and Hertz		
		$\begin{aligned} & 120 / 110 \mathrm{~V} \\ & 60 / 50 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 240 / 220 \mathrm{~V} \\ & 60 / 50 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 480 / 440 \mathrm{~V} \\ & 60 / 50 \mathrm{~Hz} \end{aligned}$
		Part Number		
0	(2)	9-1318-108	9-1318-109	9-1318-110
1	(2)	9-1323-68	9-1323-92	9-1323-93
2	(2)	9-1359-41	9-1359-67	9-1359-68
3	(2)	9-1360-41	9-1360-59	9-1360-60
4	(2)	9-1360-41	9-1360-59	9-1360-60
5	3	9-1510-14	9-1510-15	9-1510-16

## TECHNOLOGY UPGRADES

Sizes 00-3 ADVANTAGE, Freedom or IT
Sizes 4-5 ADVANTAGE, Freedom, Vacuum or IT

152 CONTACTORS AND STARTERS
Citation

PRODUCT HISTORY TIMELINE FOR CITATION A10, A11, A13, A30, A31, A40, A41, A50, A51, A70, A71, A80, A81, B10, B11, B50, B51, B52, C10, C30, C50
Originally a Cutler-Hammer Product


## GENERAL INFORMATION

Citation Starter and Nameplate

(1) Although the number " 9 " is not imprinted on the coil, it must be used when ordering. For example, the proper ordering number for a $120 \mathrm{~V}, 60 \mathrm{~Hz}, \mathrm{AC}$ magnet coil would be 9-1887-1 (Refer to the style numbers on page 153).

## REPLACEMENT CAPABILITIES

Contacts and Coils											
Description		Size 00				Size 0	Size 1	Size 2		Size 3	
		Series A10	Series B1	Series C1	Series D1			Series A1	Series B1	Series A1	Series B1
		Style and Part Numbers	Style and Part Numbers	Style and Part   Numbers	Style and   Part   Numbers	Style and   Part   Numbers	Style and Part   Numbers	Style and   Part   Numbers	Style and Part Numbers	Style and Part   Numbers	Style and Part Numbers
CONTACT KITS											
Part No. on Contactor or Starter Name Plate											
3 3-Pole without Interlock		6-21-2	(2)	(2)	(2)	6-22-2	6-23-2	6-24-2	6-34-2	6-25-2	6-35-2
3-Pole with Interlock		6-21-3	(2)	(2)	$\ldots$			...		$\ldots$	......
4-Pole without Interlock						6-22-3	6-23-3		6-34-3	......	......
5-Pole without Interlock		......	$\ldots$	...		6-22-4	6-23-4	......	6-34-4	$\ldots .$.	$\ldots .$.
MAGNET COILS	Coil										
	Suffix										
120 V 60 Hz or 110 V 50 Hz	A	9-1945-1	9-2183-1	9-2650-1	9-2823-1	9-1887-1	9-1887-1	9-1889-1	9-2526-1	9-1891-1	9-1889-1
240 V 60 Hz or 220 V 50 Hz	B	9-1945-2	9-2183-2	9-2650-2	9-2823-2	9-1887-2	9-1887-2	9-1889-2	9-2526-2	9-1891-2	9-1889-2
480 V 60 Hz or 440 V 50 Hz	C	9-1945-3	9-2183-5	9-2650-3	9-2823-3	9-1887-3	9-1887-3	9-1889-3	9-2526-3	9-1891-3	9-1889-3
600 V 60 Hz or 550 V 50 Hz	D	9-1945-4	9-2183-19	9-2650-4	9-2823-4	9-1887-4	9-1887-4	9-1889-4	9-2526-4	9-1891-4	9-1889-4
208 V 60 Hz	E	9-1945-5	9-2183-17	9-2650-5	9-2823-5	9-1887-5	9-1887-5	9-1889-13	9-2526-5	9-1891-13	9-1889-13
24 V 60 Hz	T	9-1945-8	9-2183-16	9-2650-7	9-2823-18	9-1887-7	9-1887-7	9-1889-20	9-2526-6	9-1891-15	9-1889-20
380 V 50 Hz	L	9-1945-6	9-2183-3	9-2650-6	9-2421-183	9-1887-8	9-1887-8	9-1889-14	9-2526-7	9-1891-14	9-1889-14
$120 / 240 \mathrm{~V} 60 \mathrm{~Hz}$ or 110/220V 50 Hz	F	........	........	........	........	9-1888-1	9-1888-1	9-1890-1	9-2527-1	9-1892-1	9-1890-1
$240 / 480 \mathrm{~V} 60 \mathrm{~Hz}$ or 220/440V 50 Hz	G					9-1888-2	9-1888-2	9-1890-2	9-2527-2	9-1892-2	9-1890-2
277 V 60 Hz	H	9-1945-16	9-2183-18	9-2650-13	9-2823-12 9-2823-17	9-1887-16	9-1887-16	9-1889-31	9-2526-15	9-1891-26	9-1889-31
120 V DC4	A1					9-2024-2	9-2024-2	9-2025-2	9-2626-2	9-2026-2	9-2025-2
240 V DC¢	B1					9-2024-1	9-2024-1	9-2025-1	9-2626-1	9-2026-1	9-2025-1
24 V DC¢	T1				.......	9-2024-4	9-2024-4	9-2025-4	9-2626-4	9-2026-4	9-2025-4
48 V DC4	W1					9-2024-3	9-2024-3	9-2025-3	9-2626-3	9-2026-3	9-2025-3


Description		Size 4		Size 5	Size 6			Size 7		Size 8	
		Series A1	Series B1		Series A1	Series B1	Series C1	Series A1	Series B1	Series A1	Series B1
		Style and Part Numbers	Style and Part   Numbers	Style and Part   Numbers	Style and Part   Numbers						
CONTACT KITS											
Part No. on Contactor or Starter Name Plate											
2-Pole without Interlock		6-26	6-36-3	6-27	6-28		6-601-2	6-28			
3-Pole without Interlock		6-26-2	6-36-4	6-27-2	6-28-2	6-570	6-601	6-28-2	6-570	646C829G05	6-571
3-Pole with Interlock		. . . . .	. . . . .	. . . . .	. . . . .	......	.	.	......	. . . . .	...
4-Pole without Interlock		......	......	. . . . .	. . . . .	. . . . .	......	.....	.....	. . . . .	.....
5-Pole without Interlock											
MAGNET COILS	Coil										
	Suffix										
120 V 60 Hz or 110 V 50 Hz	A	9-1891-1	9-1891-1	9-1891-1	9-1875-1	9-2651	9-2698	9-1875-1	9-2651	438C805G12	9-2654
240 V 60 Hz or 220 V 50 Hz	B	9-1891-2	9-1891-2	9-1891-2	9-1875-2	9-2651-2	9-2698-2	9-1875-2	9-2651-2	438C805G11	9-2654-2
480 V 60 Hz or 440 V 50 Hz	C	9-1891-3	9-1891-3	9-1891-3	9-1875-3	9-2651-3	9-2698-3	9-1875-3	9-2651-3	438C805G10	9-2654-3
600 V 60 Hz or 550 V 50 Hz	D	9-1891-4	9-1891-4	9-1891-4	9-1875-4	9-2651-4	9-2698-4	9-1875-4	9-2651-4		9-2654-4
208 V 60 Hz	E	9-1891-13	9-1891-13	9-1891-13	9-1875-14	9-2651-6	9-2698-5	9-1875-14	9-2651-6	438C805G11	9-2654-6
24 V 60 Hz	T	9-1891-15	9-1891-15	9-1891-15	........	. . . . . ${ }^{\text {. }}$	. . . . . . .	........	........		. . . . . . .
380 V 50 Hz	L	9-1891-14	9-1891-14	9-1891-14	9-1875-19	9-2651-5	9-2698-6	9-1875-19	9-2651-5	438C805G15	9-2654-5
$120 / 240 \mathrm{~V} 60 \mathrm{~Hz}$ or $110 / 220 \mathrm{~V} 50 \mathrm{~Hz}$	F	9-1892-1	9-1892-1	9-1892-1		. . . . . . .	. .......	. . . . . . .	. . . . . . .	. . . . . . . . . . .	. . . . . . .
$240 / 480 \mathrm{~V} 60 \mathrm{~Hz}$ or $220 / 440 \mathrm{~V} 50 \mathrm{~Hz}$	G	9-1892-2	9-1892-2	9-1892-2	. . . . . . .	. . . . . . .	. . . . . . .	. . . . . . .	. . . . . . .	. . . . . . . . . .	. . . . . .
$277 \mathrm{~V} 60 \mathrm{~Hz}$	H	9-1891-26	9-1891-26	9-1891-26			. . . . . . .	........	$\ldots$	. ...........	$\cdots$
120 V DC4	A1	9-2026-2	9-2026-2	9-2026-2	.						
240V DC4	B1	9-2026-1	9-2026-1	9-2026-1	. . . . . . .	. .......	. .......	. .......	. .......	. ............	. .......
24V DC4	T1	9-2026-4	9-2026-4	9-2026-4	. . . . . . .	. . . . . . .	. . . . . .	........	. . . . . . .	. . . . . . . . . .	. . . . . .
48 V DC4	W1	9-2026-3	9-2026-3	9-2026-3	. . . . . . .	. . . . . . ${ }^{\text {c }}$	.	$\ldots$	$\ldots . .$.	. ...........	. . . . . .

© For non-reversing contactors and starters only.
(2) Replace complete contactor.

3 Non-encapsulated coil.
4 For use in existing DC operated devices. Not for conversion of existing AC operated devices to DC.

## REPLACEMENT CAPABILITIES, Continued



3-Pole Contact Kit, Size 3, Series B1

3-Pole Contact Kit, Size 5


## TECHNOLOGY UPGRADES

Sizes 00-3 ADVANTAGE, Freedom or IT
Sizes 4-6 ADVANTAGE, Freedom, Vacuum or IT
Sizes 7-8 Freedom


Magnet Coil, 120V/60 Hz for Size 3, Series A1

CONTACTORS AND STARTERS
Citation

REPLACEMENT CAPABILITIES, Continued

Overload Relays										
Description	Size 00				Size 0	Size 1	Size 2		Size 3	
	Series A10	Series B1	Series C1	Series D1			Series A1	Series B1	Series A1	Series B1
	Style and Part Numbers	Style and Part   Numbers	Style and   Part   Numbers	Style and Part Numbers	Style and Part   Numbers	Style and Part   Numbers	Style and   Part   Numbers	Style and Part   Numbers	Style and   Part   Numbers	Style and Part Numbers
REPLACEMENT THERMAL ELEMENTS Standard Trip Eutectic Slow Trip Eutectic	$\begin{aligned} & 10-4767 \\ & 10-5018 \end{aligned}$									
Description	Size 4		Size 5	Size 6			Size 7		Size 8	
	Series A1	Series B1		Series A1	Series B1	Series C1	Series A1	Series B1	Series A1	Series B1
	Style and Part Numbers	Style and   Part   Numbers	Style and   Part   Numbers	Style and Part Numbers	Style and   Part   Numbers	Style and Part   Numbers	Style and   Part   Numbers	Style and Part   Numbers	Style and   Part   Numbers	Style and   Part   Numbers
REPLACEMENT THERMAL ELEMENTS   Standard Trip Eutectic Slow Trip Eutectic CURRENT TRANSFORMER	$\begin{aligned} & 10-4767 \\ & 10-5018 \end{aligned}$	$\begin{aligned} & 10-4767 \\ & 10-5018 \end{aligned}$	10-4767   10-5018   42-2807	$\begin{aligned} & 10-4767 \\ & \hdashline . . . . . \\ & 9-1914-1 \end{aligned}$	$\begin{aligned} & 10-4767 \\ & \ldots \ldots . . \\ & 42-3418-3 \end{aligned}$	10-4767   42-3418-3	$\begin{aligned} & 10-4767 \\ & \ldots \ldots \ldots \\ & 42-2648 \end{aligned}$	$\begin{aligned} & 10-4767 \\ & \ldots \ldots \ldots \\ & 42-3418 \end{aligned}$	$\begin{aligned} & 10-4767 \\ & \ldots . . . . \end{aligned}$	$\begin{aligned} & 10-4767 \\ & \ldots \ldots \ldots \\ & 42-3418-2 \end{aligned}$

## REPLACEMENT CAPABILITIES, Continued

## Heater Selection

## For Replacement in Existing Applications Only

Heaters are rated to protect $40^{\circ} \mathrm{C}$ rise of motors; and, open and drip proof motors having a service factor of 1.15 where the motor and the controller are at the same ambient temperature.

For other conditions:
a. For $50^{\circ} \mathrm{C}, 55^{\circ} \mathrm{C}, 75^{\circ} \mathrm{C}$ rise motors and enclosed motors having a service factor of 1.0, select one size smaller.
b. Ambient temperature of the starter lower than the motor by $26^{\circ} \mathrm{C}\left(47^{\circ} \mathrm{F}\right)$, use one size smaller.
c. Ambient temperature of the starter higher than the motor by $26^{\circ} \mathrm{C}\left(47^{\circ} \mathrm{F}\right)$, use one size larger.
Ultimate tripping current of heaters is approximately 1.25 times the minimum current rating listed in the tables.

## INDEX OF OVERLOAD RELAY HEATER SELECTION TABLES

Use This Index to Cross-Reference the Tables on Pages 157-162									
Relay Type Catalog Number	Type	Heater Selection Table Numbers							
		NEMA Size of Starter							
		$\begin{aligned} & \hline 00-0-1 \\ & (1-1 / 2) \end{aligned}$	2	3	4	5	6	7	8
A10	Open Enclosed	$\begin{aligned} & \hline \text { ST-1 } \\ & \text { ST-2 } \end{aligned}$	$\begin{aligned} & \text { ST-3 } \\ & \text { ST-4 } \end{aligned}$	$\begin{aligned} & \text { ST-5 } \\ & \text { ST-6 } \end{aligned}$	$\begin{aligned} & \hline \text { ST-7 } \\ & \text { ST-7 } \end{aligned}$	$\begin{aligned} & \hline \text { ST-16 } \\ & \text { ST-16 } \end{aligned}$	$\begin{aligned} & \text { ST-10 } \\ & \text { ST-10 } \end{aligned}$	$\begin{aligned} & \text { ST-11 } \\ & \text { ST-11 } \end{aligned}$	$\begin{aligned} & \text { ST-12 } \\ & \text { ST-12 } \end{aligned}$
A11	Open Enclosed	$\begin{aligned} & \hline \text { BNC-1 } \\ & \text { BNC-2 } \end{aligned}$	$\begin{aligned} & \text { BNC-3 } \\ & \text { BNC-4 } \end{aligned}$	$\begin{aligned} & \text { BNC-5 } \\ & \text { BNC-6 } \end{aligned}$	$\begin{aligned} & \text { BNC-7 } \\ & \text { BNC-7 } \end{aligned}$	$\begin{aligned} & \hline \text { BNC-9 } \\ & \text { BNC-9 } \end{aligned}$	$\ldots$	$\ldots .$.	.....
A13	Open Enclosed	$\begin{aligned} & \text { LT-2 } \\ & \text { LT-1 } \end{aligned}$	$\begin{aligned} & \text { LT-4 } \\ & \text { LT-3 } \end{aligned}$	$\begin{aligned} & \text { LT-6 } \\ & \text { LT-5 } \end{aligned}$	$\begin{aligned} & \hline \text { LT-7 } \\ & \text { LT-7 } \end{aligned}$	$\begin{aligned} & \text { LT-8 } \\ & \text { LT-8 } \end{aligned}$			.
A30 and A40	Enclosed	ST-9	ST-3	ST-6	ST-7	ST-16	ST-10	ST-11	ST-12
A31 and A41	Enclosed	BNC-8	BNC-3	BNC-6	BNC-7	BNC-9	. . . . .	.....	.....
A50	Open Enclosed	$\begin{aligned} & \text { ST-1 } \\ & \text { ST-2 } \end{aligned}$	$\begin{aligned} & \text { ST-3 } \\ & \text { ST-4 } \end{aligned}$	$\begin{aligned} & \text { ST-5 } \\ & \text { ST-6 } \end{aligned}$	$\begin{aligned} & \text { ST-7 } \\ & \text { ST-7 } \end{aligned}$	$\begin{aligned} & \text { ST-16 } \\ & \text { ST-16 } \end{aligned}$	$\begin{aligned} & \hline \text { ST-10 } \\ & \text { ST-10 } \end{aligned}$	$\begin{aligned} & \text { ST-11 } \\ & \text { ST-11 } \end{aligned}$	$\begin{aligned} & \text { ST-12 } \\ & \text { ST-12 } \end{aligned}$
A51	Open Enclosed	$\begin{aligned} & \hline \text { BNC-1 } \\ & \text { BNC-2 } \end{aligned}$	$\begin{aligned} & \text { BNC-3 } \\ & \text { BNC-4 } \end{aligned}$	BNC-5 BNC-6	$\begin{aligned} & \text { BNC-7 } \\ & \text { BNC-7 } \end{aligned}$	$\begin{aligned} & \text { BNC-9 } \\ & \text { BNC-9 } \end{aligned}$			. ${ }^{\text {. }}$. . .
A70 and A80	Enclosed	ST-9	ST-3	ST-6	ST-7	ST-16	ST-10	ST-11	ST-12
A71 and A81	Enclosed	BNC-8	BNC-3	BNC-5	BNC-7	BNC-9	......	. . . . ${ }^{\text {c }}$	. . . . ${ }^{\text {S }}$
A400-A420	Enclosed	......	......	ST-14	ST-15	ST-16	ST-10	ST-11	ST-12
A4600	Enclosed	ST-20	ST-40	ST-60	ST-70	ST-160	ST-100	ST-110	ST-120
A4900	Enclosed	ST-2(	ST-42	ST-62	ST-72	ST-164	ST-100	ST-110	ST-129
A700	Open Enclosed	$\begin{aligned} & \hline \text { ST-1 } \\ & \text { ST-2 } \end{aligned}$	$\begin{aligned} & \text { ST-3 } \\ & \text { ST-4 } \end{aligned}$	$\begin{aligned} & \text { ST-5 } \\ & \text { ST-6 } \end{aligned}$	$\begin{aligned} & \hline \text { ST-7 } \\ & \text { ST-7 } \end{aligned}$	$\begin{aligned} & \hline \text { ST-16 } \\ & \text { ST-16 } \end{aligned}$	ST-10		. . . .
A800-A803	Enclosed	ST-9	ST-3	ST-5	ST-7	ST-16	ST-10	ST-11	. $\cdot$.
A804-A806	Enclosed	ST-9	ST-3	ST-5	......	. . . . .	......	$\ldots .$.	.....
A808-A809	Enclosed	......	ST-13	ST-5	ST-5	$\ldots .$.	$\ldots$	$\ldots .$.	$\ldots .$.
B10 B50	Enclosed	ST-1	ST-3	ST-5	ST-7	. . . . .	$\ldots$	$\cdots$	. . . . ${ }^{\text {c }}$
B11 and B51	Open Enclosed	$\begin{aligned} & \hline \text { BNC-1 } \\ & \text { BNC-2 } \end{aligned}$	BNC-3	BNC-5			$\ldots$	. $\quad .$.	.....
C300	Open and Enclosed	ST-1	ST-3	ST-5	ST-7	$\ldots$	. . . .	$\ldots .$.	. . . . .
C301	Open and Enclosed	BNC-1	BNC-4	BNC-5	BNC-7	$\ldots .$.	$\cdots$	$\cdots$	. . . .
C303	Open and Enclosed	LT-2	LT-4	LT-6	LT-7	$\ldots .$.	$\cdots$		. . . . .

Citation

## OVERLOAD RELAY HEATER SELECTION TABLES, Continued

Type ST Standard Trip Eutectic Alloy
For Replacement in Existing Applications Only
For Motors with 1.15 Service Factor

Table ST-1	Table ST-2	Table ST-3	Table ST-4	Table ST-5	Table ST-6	Heater Catalog Number
NEMA Sizes 00, 0, 1, 1-1/2		NEMA Size 2		NEMA Size 3		
For Open Type   Cat. No. A10, A50,   A700, B10, B50,   C300   For Enclosed Type   Cat. No. B10, B50,   C300	For Enclosed Type Cat. No. A10, A50, A460©, A4900, A700	For Open Type   Cat. No. A10, A50,   A700, B10, C300   For Enclosed Type   Cat. No. B10, C300,   A30, A40, A70, A80,   A800-A803	For Enclosed Type   Cat. No. A10, A50,   A460©, A490@,   A700	For Open Type   Cat. No. A10, A50,   A700, B10, C300   For Enclosed Type   Cat. No. A70, A80,   A800-A803,   A808-A809, B10	For Enclosed Type Cat. No. A10, A30, A40, A50, A4600, A490@, A700	
Heater Ampere Range						
.167- . 187	.155- . 173					H1101
.188- . 210	.174- . 195					H1102
.211- . 237	.196- . 220					H1103
.238- . 266	.221- . 247					H1104
.267- . 298	.248- . 278					H1105
.299- . 334	.279- . 310			.............		H1106
.335- . 376	.311-. 349	............		.............		H1107
.377- . 422	.350- . 391					H1108
.423- . 474	.392- . 441					H1109
.475- . 532	.442- . 495					H1110
.533- . 598	.496- . 555					H1111
.599- . 672	.556- . 624					H1112
.673- . 757	.625- . 703	. . . . . . . . . .	. . . . . . . . .			H1113
.758- . 855	.704- . 795					H1114
.865- . 959	.796- . 895					H1115
.960-1.07	.896- 0.999					H1116
1.08-1.21	1.00-1.12			............	.............	H1117
1.22-1.35	1.13-1.25			............	............	H1018
1.36-1.52	1.26-1.41					H1019
1.53-1.70	1.42-1.58					H1020
1.71-1.90	1.59-1.77					H1021
1.91-2.10	1.78-1.96	....-. - .	. . . . . . . .	. . . . . . . .	.............	H1022
2.11-2.33	1.97-2.17	............	............	. . . . . . . . . .	. . . . . . . . . .	H1023
2.34-2.62	2.18-2.44					H1024
2.63-2.93	$2.45-2.72$			............	.............	H1025
2.94-3.27	2.73-3.04	. . . . . . . . .				H1026
3.28-3.64	3.05-3.38			. . . . . . . . .	. . . . . . . . . .	H1066
3.65-4.06	3.39-3.73	3.72-4.10				H1027
4.07-4.55	3.74-4.18	4.11-4.59	3.86-4.31			H1028
4.56-5.03	4.19-4.63	4.60-5.07	4.32-4.77			H1029
5.04-5.59	4.64-5.15	5.08-5.65	4.78-5.31			H1030
$5.60-6.25$	5.16-5.68	5.66-6.29	5.32-5.90			H1031
6.26-6.92	5.69-6.30	6.30-7.00	5.91-6.55			H1032
6.93-7.75	6.31-7.05	7.01-7.82	6.56-7.33			H1033
7.76-8.63	7.06-7.76	7.83-8.79	7.34-8.15	8.32-9.27	8.24-9.19	H1034
8.64-9.59	7.77-8.63	8.80-9.67	8.16-9.03	9.28-10.1	9.20-10.1	H1035
9.60-10.6	8.64-9.51	9.68-10.8	9.04-10.1	$10.2-11.4$	10.2-11.3	H1036
$10.7-11.9$	9.52-10.5	10.9 -12.0	$10.2-11.2$	11.5 -12.8	$11.4-12.7$	H1037
12.0 -13.3	$10.6-11.8$	$12.1-13.4$	11.3 -12.5	12.9 -14.3	12.8 -14.1	H1038
$\begin{array}{lll}13.4 & -14.7\end{array}$	$11.9-13.1$	13.5	12.6-13.9	14.4 -16.0	14.2-15.8	H1039
14.8-16.6	$13.2-14.8$	15.0 -17.6	14.0 -15.7	16.1-17.8	15.9 -17.7	H1040
$16.7-18.8$	14.9 -16.7	17.7-19.0	15.8	17.9 -20.3	17.8-20.1	H1041
18.9 -21.2	16.8-18.9	19.1 -21.5	17.6-19.8	$20.4-22.9$	20.2-22.7	H1042
21.3-23.9	19.0 -21.3	$21.6-24.5$	19.9 -22.3	23.0 -26.0	22.8-25.5	H1043
24.0-27.0	21.4-24.1	24.6 -27.9	22.4 -25.4	26.1-29.5	25.6-28.9	H1044
.............	$24.2-27.0$	28.0 -32.0	25.5-28.7	29.6-33.5	29.0-32.5	H1045
		$32.1-36.6$	28.8-32.5	$\begin{array}{lll}33.6 & -37.8\end{array}$	32.6-36.7	H1046
		$36.7-41.8$	$32.6-36.6$	$37.9-42.8$	36.8 -41.0	H1047
.............		41.9 -45.0	$36.7-41.0$	$42.9-48.5$	$41.1-46.0$	H1048
			$41.1-45.0$	$48.6-55.1$	$46.1-51.8$	H1049
				$55.2-62.3$	$51.9-58.6$	H1050
. . . . .	. . . . . . . . .	. . . . . . . . .	. . . . . . . . .	$62.4-69.5$	$58.7-64.6$	H1051
				$69.6-79.1$	$64.7-72.7$	H1052
				$79.2-90.0$	72.8 -83.1	H1054
		. . . .		............	$83.2-90.0$	H1055

Citation

## OVERLOAD RELAY HEATER SELECTION TABLES, Continued

## Type ST Standard Trip Eutectic Alloy

## For Replacement in Existing Applications Only

For Motors With 1.15 Service Factor

Table ST-7	Heater Catalog Number	Table ST-8	Heater   Catalog   Number	Table ST-9	Heater Catalog Number	
NEMA Size 4		NEMA Size 5		NEMA Size 0 and 1		
For Open Type   Cat. No. A10, A50, C300   For Enclosed Type   Cat. No. A10, A30, A40, A50,   A70, A80, A4600, A490®,   A700, A800-A803		For Open and Enclosed Type A10, A50, A30-40, A70, A80, A400, A410, A420, A460, A490, A800-A801		For Enclosed Type   Cat. No. A30, A40, A70, A80, A800-A803		
				Heater Ampere Range		
		Heater Ampere Range		.164- . 183	H1101	
Heater Ampere Range		$\begin{array}{r} \hline 92-101 \\ 102-113 \\ 114-125 \\ 126-139 \\ 140-157 \end{array}$	H1020 H1021	$.184-205$ $.206-$	H 1102 H 1103	
. . .	$\begin{aligned} & \hline \text { H1034 } \\ & \text { H1035 } \\ & \text { H1036 } \\ & \text { H1037 } \\ & \text { H1038 } \end{aligned}$		H1022	.233- . 260	H1104	
			H1023	.261- . 293	H1105	
			H1024	.294- . 328	H1106	
		$\begin{aligned} & 158-175 \\ & 176-196 \\ & 197-218 \\ & 219-243 \\ & 244-270 \end{aligned}$	H1025 H1026	$\begin{array}{ll}.329-1.369 \\ .370- & .414\end{array}$	$\begin{aligned} & \mathrm{H} 1107 \\ & \mathrm{H} 1108 \end{aligned}$	
	H1039		H1066	.415- . 465	H1109	
	H1040		H1027	.466- . 522	H1110	
20.6-23.3	H1041		H1028	.523- . 586		
$\text { 23.4- } 26.3$	H1042 H1043			.587- . 659	H1112	
	H1043			.660- . 743	H1113	
26.4- 30.8	H1044			.744- . 839	H1114	
30.9- 34.0	H1045			.840- . 943	H1115	
$34.1-38.3$$38.4-43.4$	H1046					
	H1047			1.06-1.17	H1117	
43.5-49.3	H1048			1.18-1.31		
49.4-55.8	H1049			1.32-1.47	H1019	
55.9- 63.1	H1050			1.48-1.66	H1020	
63.2- 70.4	H1051					
70.5-79.9	H1052			1.67-1.85	H1021	
80.0-92.7	H1054			1.86-2.04	H1022	
92.8-105	H1055			$2.05-2.26$ $2.27-2.54$	H1023   H1024	
$\begin{array}{ll} 106 & -121 \\ 122 & -135 \end{array}$	H1056			$2.27-2.54$ $2.55-2.85$	H1025	
				2.86-3.18	H1026	
				3.19-3.53	H1066	
Table ST-10	Table ST-11	Table ST-12	Heater Catalog Number	3.54-3.95	H1027	
NEMA Size 6	NEMA Size 7	NEMA Size 8		$3.96-4.41$ $4.42-4.88$	$\begin{aligned} & \mathrm{H} 1028 \\ & \mathrm{H} 1029 \end{aligned}$	
```For Open Type - Cat. No. A10, A50, A700 For Enclosed Type - Cat. No. A10, A30, A40, A50, A70, A80, A400, A4600, A4900, A700```				4.89-5.42		
			$4.89-5.42$ $5.43-6.07$	H1030		
			6.08-6.64	H1032		
Heater Ampere Range				6.65-7.43	H1033	
$\begin{aligned} & 154-171 \\ & 172-192 \\ & 193-215 \end{aligned}$	229-255			H1018	7.44-8.23	H1034
	256-287	384-429		H1019	8.24-9.19	H1035
	288-321	430-482	H1020	9.20-10.1	H1036	
	322-359	483-538	H1021	$10.2-11.3$	H1037	
216-237	360-397	539-595	H1022	$\begin{array}{ll}11.4 & -12.6 \\ 12.7 & \end{array}$	H1038	
238-263	398-439	596-657	H1023	12.7	H1039	
264-295	440-492	658- 741	H1024	14.1 -15.7	H1040	
296-330	493-551	742-827	H1025	15.8 -17.7	H1041	
331-369	552-615	828-924	H1026	17.8 -19.8	H1042	
$\begin{aligned} & 370-410 \\ & 411-458 \\ & 459-512 \\ & 513-574 \end{aligned}$	616-685	925-1027	H1066	19.9 -22.0	H1043	
	686-763	1028-1147	H1027	22.1-24.9	H1044	
	764-855	1148-1285	H1028	25.0 -27.0	H1045	
	H1029			

CONTACTORS AND STARTERS
Citation

OVERLOAD RELAY HEATER SELECTION TABLES, Continued

Type ST Standard Trip Eutectic Alloy
For Replacement in Existing Applications Only
For Motors with 1.15 Service Factor

Table ST-13	Table ST-14	Table ST-15	Heater Catalog Number
NEMA Size 2	NEMA Size 3	NEMA Size 4	
For Enclosed Type A808, A809	For Enclosed Type A400	For Enclosed Type A400	
Heater Ampere Range			
$3.89-4.35$ $4.36-4.81$ $4.82-5.35$ $5.36-5.96$ $5.97-6.63$			H1028 H1029 H1030 H1031 H1032
$\begin{gathered} 6.64-7.41 \\ 7.42-8.23 \\ 8.24-9.19 \\ 9.20-10.2 \\ 10.3-11.4 \end{gathered}$	$\begin{gathered} \cdots .84-8.71 \\ 7.72-9.67 \\ 9.68-10.8 \\ 10.9-12.0 \end{gathered}$		$\begin{aligned} & \text { H1033 } \\ & \text { H1034 } \\ & \text { H1035 } \\ & \text { H1036 } \\ & \text { H1037 } \end{aligned}$
$\begin{array}{ll} 11.5 & -12.8 \\ 12.9 & -14.1 \\ 14.2 & -15.9 \\ 16.0 & -18.1 \\ 18.2 & -20.4 \end{array}$	$\begin{array}{ll} 12.1 & -13.5 \\ 13.6 & -15.0 \\ 15.1 & -16.8 \\ 16.9 & -19.1 \\ 19.2 & -21.6 \end{array}$	$19.5-21.9$	$\begin{aligned} & \text { H1038 } \\ & \text { H1039 } \\ & \text { H1040 } \\ & \text { H1041 } \\ & \text { H1042 } \end{aligned}$
20.5 -23.3 23.4 -26.5 26.6 -30.3 30.4 -34.7 34.8 -39.6	21.7 -24.5 24.6 -27.8 27.9 -31.5 31.6 -35.5 35.6 -40.3	$22.0-24.7$ $24.8-29.0$ $29.1-31.9$ $32.0-36.1$ $36.2-40.7$	$\begin{aligned} & \hline \text { H1043 } \\ & \text { H1044 } \\ & \text { H1045 } \\ & \text { H1046 } \\ & \text { H1047 } \end{aligned}$
$39.7-45.0$	40.4 -45.6 45.7 -51.8 51.9 -58.6 58.7 -65.2 65.3 -74.3	$40.8-46.2$ $46.3-52.4$ $52.5-59.2$ $59.3-66.3$ $66.4-75.1$	$\begin{aligned} & \text { H1048 } \\ & \text { H1049 } \\ & \text { H1050 } \\ & \text { H1051 } \\ & \text { H1052 } \end{aligned}$
	$\begin{array}{ll} \hline 74.4 & -86.3 \\ 86.4 & -90.0 \end{array}$	$\begin{array}{r} 75.2-87.1 \\ 87.2-99.9 \\ 100 .-113.0 \\ 114 . \\ 130 . \\ 129.0 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { H1054 } \\ & \text { H1055 } \\ & \text { H1056 } \\ & \text { H1057 } \\ & \text { H1058 } \end{aligned}$

OVERLOAD RELAY HEATER SELECTION TABLES, Continued

Type BNC Bimetal

For Replacement in Existing Applications Only
For Motors with 1.15 Service Factor

Table BNC-1	Table BNC-2	Table BNC-3	Table BNC-4	Heater Catalog Number
NEMA Sizes 00, 0, 1, 1-1/2		NEMA Size 2		
```For Open Type Cat. No. A11, A51, B11, B51, C301 For Enclosed Type Cat. No. C301```	For Enclosed Type Cat. No. A11, A51, B11, B51	For Open Type   Cat. No. A11, A51, B11, C301   For Enclosed Type   Cat. No. A31, A41, A71, A81, B11	For Enclosed Type Cat. No. A11, A51, C301	
Heater Ampere Range				
$.180-$ .201   $.202-$ .226   $.227-$ .254   $.255-$ .285   $.286-$ .320	$.167-$ .187   $.188-$ .210   $.211-$ .236   $.237-$ .266   $.267-$ .297			$\begin{aligned} & \text { H1101 } \\ & \text { H1102 } \\ & \text { H1103 } \\ & \text { H1104 } \\ & \text { H1105 } \end{aligned}$
$.321-$ .357   $.358-$ .402   $.403-$ .451   $.452-$ .506   $.507-$ .568	$.298-$ .332   $.333-$ .373   $.374-$ .419   $.420-$ .470   $.471-$ .528			$\begin{aligned} & \text { H1106 } \\ & \text { H1107 } \\ & \text { H1108 } \\ & \text { H1109 } \\ & \text { H1110 } \end{aligned}$
$.569-$ .638   $.639-$ .716   $.717-$ .799   $.800-$ .911   $.912-1.01$	$.529-$ .592   $.593-$ .663   $.664-$ .743   $.744-$ .847   $.848-$ .951			$\begin{aligned} & \text { H1111 } \\ & \text { H1112 } \\ & \text { H1113 } \\ & \text { H1114 } \\ & \text { H1115 } \end{aligned}$
$\begin{aligned} & 1.02-1.14 \\ & 1.15-1.29 \end{aligned}$	$\begin{array}{r} .952-1.06 \\ 1.07-1.20 \end{array}$			$\begin{aligned} & \mathrm{H} 1116 \\ & \mathrm{H} 1117 \end{aligned}$
$\begin{aligned} & 1.30-1.44 \\ & 1.45-1.61 \\ & 1.62-1.80 \end{aligned}$	$\begin{aligned} & 1.21-1.33 \\ & 1.34-1.49 \\ & 1.50-1.67 \end{aligned}$			$\begin{aligned} & \hline \text { H1018 } \\ & \text { H1019 } \\ & \text { H1020 } \end{aligned}$
$1.81-2.03$ $2.04-2.25$ $2.26-2.49$ $2.50-2.76$ $2.77-3.05$	$1.68-1.89$ $1.90-2.09$ $2.10-2.32$ $2.33-2.57$ $2.58-2.83$			$\begin{aligned} & \text { H1021 } \\ & \text { H1022 } \\ & \text { H1023 } \\ & \text { H1024 } \\ & \text { H1025 } \end{aligned}$
$3.77-3.39$ $3.40-3.83$ $3.84-4.22$ $4.23-4.63$ $4.64-5.19$	$2.58-3.15$ $2.16-3.51$ $3.52-3.87$ $3.88-4.25$ $4.26-4.76$	$\begin{aligned} & 3.87-4.18 \\ & 4.19-4.60 \\ & 4.61-5.10 \\ & 5.11-5.60 \end{aligned}$	$\begin{array}{r} 3.94-4.33 \\ 4.34-4.78 \\ 4.79-5.27 \end{array}$	$\begin{aligned} & \hline \text { H1026 } \\ & \text { H1066 } \\ & \text { H1027 } \\ & \text { H1028 } \\ & \text { H1029 } \end{aligned}$
$5.20-5.73$ $5.74-6.49$ $6.50-7.32$ $7.33-8.07$ $8.08-9.03$	$4.77-5.27$ $5.28-5.90$ $5.91-6.63$ $6.64-7.35$ $7.36-8.15$	$5.61-6.20$ $6.21-6.92$ $6.93-7.76$ $7.77-8.63$ $8.64-9.67$	$5.28-5.83$ $5.84-6.51$ $6.52-7.29$ $7.30-8.07$ $8.08-9.03$	$\begin{aligned} & \text { H1030 } \\ & \text { H1031 } \\ & \text { H1032 } \\ & \text { H1033 } \\ & \text { H1034 } \end{aligned}$
9.04 -9.99   10.0 -11.1   11.2 -12.5   12.6 -14.1   14.2 -15.9	8.16 -8.87   8.88 -9.99   10.0 -11.1   11.2 -12.5   12.6 -14.1	9.68 -10.5   10.6 -11.8   11.9 -13.2   13.3 -15.0   15.1 -17.2	8.04 -9.99   10.0 -11.1   11.2 -12.3   12.4 -14.1   14.2 -16.1	$\begin{aligned} & \text { H1035 } \\ & \text { H1036 } \\ & \text { H1037 } \\ & \text { H1038 } \\ & \text { H1039 } \end{aligned}$
16.0 -18.0   18.1 -19.8   19.9 -22.2   22.3 -25.0   25.1 -27.0	14.2 -16.1   16.2 -17.7   17.8 -19.8   19.9 -22.2   22.3 -25.0	17.3 -19.1   19.2 -21.5   21.6 -23.6   23.7 -27.0   27.1 -30.6	16.2 -17.8   17.9 -19.9   20.0 -21.9   22.0 -24.7   24.8 -27.9	$\begin{aligned} & \hline \text { H1040 } \\ & \text { H1041 } \\ & \text { H1042 } \\ & \text { H1043 } \\ & \text { H1044 } \end{aligned}$
	$\begin{array}{ll} \hline 25.1 & -27.0 \end{array}$	30.7 -35.1   35.2 -39.8   39.9 -45.0   $\ldots$ $\ldots$	28.0 -31.6   31.7 -35.3   35.4 -39.4   39.5 -44.4   44.5 -45.0	$\begin{aligned} & \text { H1045 } \\ & \text { H1046 } \\ & \text { H1047 } \\ & \text { H1048 } \\ & \text { H1049 } \end{aligned}$

Citation

## OVERLOAD RELAY HEATER SELECTION TABLES, Continued

## Type BNC Bimetal

## For Replacement in Existing Applications Only

For Motors with 1.15 Service Factor

Table BNC-5	Table BNC-6	Table BNC-7	Heater   Catalog   Number
NEMA Size 3		NEMA Size 4	
For Open Type   Cat. No. A11, B11, A51,   C301   For Enclosed Type   Cat. No. B11, A71, A81	For Enclosed Type Cat. No. A11, A31, A41, A51	For Open Type   Cat. No. A11, A51, C301   For Enclosed Type   Cat. No. A11, A31, A41, A51, A71, A81	
Heater Ampere Range			
7.57-8.47	7.57-8.39		H1033
8.48-9.35	8.40-9.27		H1034
9.36-10.1	9.28-10.1	........	H1035
10.2-11.2	10.2-11.1		H1036
11.3-12.2	11.2-12.1		H1037
12.3-13.7	12.2-13.6		H1038
13.8-15.7	13.7-15.5		H1039
15.8-17.3	15.6-17.2		H1040
17.4-19.9	17.3-19.8		H1041
20.0-22.9	19.9-22.7	20.0-22.9	H1042
23.0-26.4	22.8-26.0	23.0- 26.4	H1043
26.5-30.6	26.1-30.0	26.5-30.6	H1044
30.7-35.5	30.1-34.4	30.7-35.5	H1045
35.6-41.2	34.5-39.5	35.6-41.2	H1046
41.3-46.5	39.6-44.3	41.3-46.5	H1047
46.6-52.4	44.4-49.9	46.6-52.4	H1048
52.5-57.8	50.0-54.3	52.5-57.8	H1049
57.9-63.6	54.4-59.8	57.9-63.6	H1050
63.7-69.9	59.9-65.1	63.7-69.9	H1051
70.0-79.5	65.2-73.1	70.0-79.5	H1052
79.6-90.0	73.2-83.9	79.6-92.0	H1054
. . . . . . .	84.0-90.0	92.1-104.0	H1055
		$\begin{array}{ll}105 & -119.0\end{array}$	H1056
$\ldots .$.	$\cdots \cdots$	$120-135.0$	H1057 H1058
$\cdots$	. . . . . . .	. . . . . . .	H1058

For Motors with 1.15 Service Factor

Table BNC-9	
NEMA Size 5	
For Open and Enclosed Type   A11, A31-41, A51, A71, A81	Catalog   Number
Heater Ampere Range	
$96.8-108$	H1020
$109-121$	H1021
$122-135$	H1022
$136-149$	H1023
$150-166$	H1024
$167-182$	H1025
$183-203$	H1026
$204-229$	H1066
$230-253$	H1027
$254-283$	H1028

For Motors with 1.15 Service Factor

Table BNC-8	Heater   Catalog   Number
NEMA Size 0 and 1	
For Enclosed Type Cat. No. A31, A41, A71, A81	
Heater Ampere Range	
.176- . 198	H1101
.199- . 221	H1102
.222- . 249	H1103
.250- . 279	H1104
.280- . 313	H1105
.314- . 350	H1106
.351- . 395	H1107
.396- . 442	H1108
.443- . 497	H1109
.498- . 556	H1110
.557- . 626	H1111
.627- . 703	H1112
.704- . 783	H1113
.784- . 895	H1114
.896- . 999	H1115
1.00-1.12	H1116
1.13-1.25	H1117
1.26-1.40	H1018
1.41-1.56	H1019
1.57-1.74	H1020
1.75-1.97	H1021
1.98-2.19	H1022
2.20-2.42	H1023
2.43-2.68	H1024
2.69-2.95	H1025
2.96-3.29	H1026
3.30-3.72	H1066
3.73-4.10	H1027
4.11-4.49	H1028
4.50-5.04	H1029
5.05-5.56	H1030
$5.57-6.23$	H1031
6.24-7.03	H1032
7.04-7.75	H1033
7.76-8.71	H1034
8.72-9.59	H1035
9.60-10.5	H1036
$10.6-11.8$	H1037
11.9 -13.3	H1038
13.4-14.9	H1039
15.0 -16.9	H1040
17.0 -18.5	H1041
18.6 -20.7	H1042
20.8 -23.0	H1043
23.1-25.7	H1044
25.8-27.0	H1045

## OVERLOAD RELAY HEATER SELECTION TABLES, Continued

Type LT Slow Trip Eutectic Alloy

For Replacement in Existing Applications Only
For Motors with 1.15 Service Factor

Table LT-1	Table LT-2	Table LT-3	Table LT-4	
NEMA Sizes 00, 0, 1, 1-1/2		NEMA Size 2		Heater Catalog Number
For Enclosed Type Cat. No. A13	For Open Type Cat. No. A13, C303   For Enclosed Type   Cat. No. C303	For Enclosed Type Cat. No. A13	For Open Type Cat. No. A13, C303   For Enclosed Type   Cat. No. C303	
Heater Ampere Range				
.167- . 186	.167- . 186			H1001
.187- . 209	.187- . 209			H1002
.210- . 233	.210- . 233			H1003
.234- . 260	.234- . 260			H1004
.261- . 293	.261- . 293			H1005
.294- . 329	.294- . 329			H1006
.330- . 373	.330- . 373			H1007
.374- . 417	.374- . 417			H1008
.418- . 471	.418- . 471			H1009
.472- . 531	.472- . 531			H1010
.532- . 591	.532- . 591			H1011
.592- . 660	.592- . 660			H1012
.661- . 739	.661- . 739			H1013
.740- . 823	.740- . 823			H1014
.824- . 919	.824- .919			H1015
.920-1.01	.920-1.01			H1016
1.02-1.14	1.02-1.14			H1017
1.15-1.27	1.15-1.27			H1018
1.28-1.41	1.28-1.41			H1019
1.42-1.61	1.42-1.61			H1020
1.62-1.86	1.62-1.86			H1021
1.87-2.01	1.87-2.01			H1022
2.02-2.27	2.02-2.27			H1023
2.28-2.51	2.28-2.51			H1024
2.52-2.80	2.52-2.80			H1025
2.81-3.21	2.81-3.21			H1026
3.22-3.51	3.22-3.51			H1066
3.52-3.86	3.52-3.86	3.67-3.99	$3.67-3.99$	H1027
3.87-4.36	3.87-4.36	4.00-4.51	4.00-4.51	H1028
4.37-4.78	4.37-4.83	4.52-5.03	4.52-5.03	H1029
4.79-5.35	4.84-5.41	5.04-5.59	5.04-5.59	H1030
5.36-6.00	5.42-6.07	5.60-6.20	5.60-6.20	H1031
6.01-6.59	6.08-6.66	6.21-6.88	6.21-6.88	H1032
6.60-7.35	6.67-7.51	6.89-7.80	6.89-7.80	H1033
7.36-8.14	7.52-8.31	7.81-8.71	7.81-8.71	H1034
8.15-9.11	8.32-9.27	8.72-9.59	8.72-9.59	H1035
9.12-10.0	9.28-10.3	9.60-10.5	9.60-10.7	H1036
$10.1-11.3$	$10.4-11.7$	$10.6-11.8$	10.8-12.0	H1037
$11.4-12.5$	11.8 -13.0	11.9 -13.3	$12.1-13.4$	H1038
$12.6-13.9$	13.1 -14.5	$13.4-14.8$	13.5-14.9	H1039
14.0 -15.5	14.6 -16.3	14.9 -16.6	15.0-16.8	H1040
15.6-17.0	$16.4-18.1$	16.7-18.5	16.9 -18.8	H1041
$17.1-18.9$	$18.2-20.3$	$18.6-20.7$	18.9 -21.1	H1042
19.0 -21.2	$20.4-23.0$	20.8-23.3	21.2-24.1	H1043
21.3-23.3	$23.1-25.9$	23.4-26.5	24.2-27.3	H1044
23.4 -26.1	26.0 -27.0	26.6-30.0	27.4 -31.3	H1045
26.2-27.0		$30.1-33.7$	31.4 -35.5	H1046
		33.8 -37.5	$35.6-40.3$	H1047
		$37.6-41.9$	$40.4-45.0$	H1048
........	. . . . . . .	42.0 -45.0	. .	H1049

For Motors with 1.15 Service Factor

Table LT-5	Table LT-6	Table LT-7	Heater Catalog Number
NEMA Size 3		NEMA Size 4	
For Enclosed Type Cat. No. A13	For Open Type Cat. No. A13, C303	For Open Type Cat. No. A13, C303 For Enclosed Type Cat. No. A13	
Heater Ampere Range			
8.16-9.11	8.24-9.19		H1034
9.12-9.99	9.20-10.0		H1035
10.0-11.2	10.1-11.3		H1036
11.3-12.3	11.4-12.5		H1037
12.4-13.9	12.6-14.1		H1038
14.0-15.5	14.2-15.7		H1039
15.6-17.4	15.8-17.6		H1040
17.5-19.6	17.7-19.8		H1041
19.7-21.9	19.9-22.1	20.0-22.3	H1042
22.0-24.7	22.2-25.2	22.4- 25.5	H1043
24.8-28.1	25.3-28.7	25.6-28.9	H1044
28.2-31.8	28.8-32.7	29.0-33.7	H1045
31.9-36.1	32.8-37.3	33.8-37.5	H1046
36.2-40.7	37.4-42.3	37.6-42.6	H1047
40.8-45.5	42.4-47.9	42.7-48.2	H1048
45.6-52.0	$48.0-55.4$	48.3-55.9	H1049
52.1-58.2	$55.5-61.9$	56.0-62.3	H1050
58.3-63.2	62.0-67.9	62.4- 68.4	H1051
63.3-68.3	$68.0-73.3$	68.5-73.7	H1052
68.4-79.9	73.4-87.9	73.8-88.7	H1054
$80.0-89.5$	88.8-90.0	88.8-99.9	H1055
89.6-90.0		100. -113.0	H1056
		114. -128.0	H1057
		129. -135.0	H1058

Note: Individually boxed heater coils master packed 10 per carton.
For Motors with 1.15 Service Factor

Table LT-8	Heater   Catalog   Number
NEMA Size 5	
For Open and Enclosed Type A13	
Heater Ampere Range	
96.8-111	H1021
112-120	H1022
$121-136$	H1023
137-150	H1024
151-168	H1025
169-192	H1026
193-210	H1066
211-231	H1027
232-261	H1028
262-293	H1029

CONTACTORS AND STARTERS Definite Purpose

## PRODUCT HISTORY TIMELINE FOR DEFINITE PURPOSE, BULLETIN 9560, 9584 AND 95861

Originally a Cutler-Hammer Product


## REPLACEMENT CAPABILITIES

Contact Kits for Types 9560, 9584, 9586

Description			Contact Kit Part Number					
			Contactor or Starter Size, Amperes					
			12 Inductive 15 Resistive	25, 30 Inductive   30, 40 Resistive	40 Inductive   50 Resistive	50, 60 Inductive   60, 75 Resistive	75 Inductive 90 Resistive	90 Inductive 120 Resistive
Auxiliary Contact (1 NO - 1 NC)   Auxiliary Contact (1 NO - 1 NO)						$\begin{aligned} & 10-3654 \\ & 10-3654-5 \end{aligned}$	$\begin{aligned} & \hline 10-3654 \\ & 10-3654-5 \end{aligned}$	$\begin{aligned} & 10-3654 \\ & 10-3654-5 \end{aligned}$
2-pole   2-pole w/Quick Connect Terminals			(2)	$\begin{aligned} & 6-331-10 \\ & 6-331-9 \end{aligned}$	$6-331-11$	$6-331-38$	$6-331-13$	6-331-24 $\ldots . .$.
3-pole   3-pole w/Quick Connect Terminals			(2)	$\begin{aligned} & \hline 6-331-15 \\ & 6-331-14 \end{aligned}$	6-331-16	$6-331-39$	6-331-18	6-331-25
4-pole   4-pole w/Quick Connect Terminals			(2)	$\begin{aligned} & \hline 6-331-20 \\ & 6-331-19 \end{aligned}$	6-331-21	. .	$\ldots$	. . . . . . . . . . .
Magnetic Coils for Types 9560, 9584, 9586								
Coil Suffix	Coil Voltage		Coil Part Number					
			Ampere Rating					
	60 Hz	50 Hz	12, 25 and 30 Inductive 15, 30 and 40 Resistive		40 Inductive 50 Resistive		50, 60, 75 and 90 Inductive $60,75,90$ and 120 Resistive	
$\begin{aligned} & \hline-7 \\ & -47 \end{aligned}$	277	380 $\ldots$	$\begin{aligned} & \text { (2) } \\ & \text { (2) } \end{aligned}$		$\begin{array}{\|l\|} \hline \mathbf{2} \\ \mathbf{O} \end{array}$		$\begin{aligned} & \hline \text { (2 } \\ & 2 \end{aligned}$	
$\begin{aligned} & \hline-49 \\ & -50 \\ & -69 \end{aligned}$	$\begin{aligned} & 104-120 \\ & 208-240 \\ & 24 \end{aligned}$	$\begin{aligned} & 104-120 \\ & 208-240 \\ & 24 \end{aligned}$	$\begin{aligned} & \text { (2) } \\ & \text { 2 } \\ & \text { 2 } \end{aligned}$		$\begin{array}{\|l\|} \hline 9-1814-21 \\ 9-1814-8 \\ 9-1814-1 \end{array}$		$\begin{aligned} & 9-1518-22 \\ & \text { (2 } \\ & \text { (2) } \end{aligned}$	
$\begin{aligned} & \hline-72 \\ & -74 \end{aligned}$	$\begin{aligned} & 480 \\ & 600 \end{aligned}$	$\begin{aligned} & 480 \\ & 600 \end{aligned}$	$\begin{aligned} & \hline \text { O } \\ & 2 \end{aligned}$		$\begin{array}{\|l\|} \hline \text { (2 } \\ \text { O } \end{array}$		$\begin{aligned} & \hline \text { (2 } \\ & \text { ( } \end{aligned}$	

## TECHNOLOGY UPGRADES

Type	A25	C25	C32	B25
9560 Contactors		15 Thru 90A	120 Thru 350A	. . . . . . ${ }^{\text {. }}$
9584 Starters				25 Thru 40A
9586 Starters	25 Thru 60A			

(1) Use for ampere rated starters/contactors only.
(2) Obsolete.

PRODUCT HISTORY TIMELINE FOR TYPE N
Originally a Westinghouse Product

Size	1940	1945	1950	1955	1960	1965	1970	1975	1980	1985	1990
0-4											

## REPLACEMENT CAPABILITIES

Contact Kits		
NEMA Size	Poles	Style   Number
0	3	1605226
1	3	165212
2	3	1605202
3	3	1625563
4	3	1625564

## AC Coils

To order, specify complete part number - 9969D followed by number listed in table. Example: 9969D90G01.

Voltage	Hz	Part Numbers			
		2-, 3-Pole		4-, 5-Pole	
		Original	New	Original	
SIZE 0, 1					
110	60	1470241	9969D90G01	1470261	9969D90G16
110/208/220	25/60/60	1470242	9969D90G02	1470262	9969D90G17
220/380/440	25/50/60	1470243	9969D90G03	1470263	9969D90G18
550	60	1470244	9969D90G04	N/A	N/A
220	50	1470247	9969D90G06	N/A	N/A
440	50	1470248	9969D90G07	1470268	9969D90G19
440	25	1470250	9969D90G08	1470270	9969D90G21
120	60	1605268	9969D90G09	N/A	N/A
115/208/230	60/60/60	1605513	9969D90G15	N/A	N/A
600	60	1470245	9969D90G20	N/A	N/A
550	25	1470251	9969D90G22	N/A	N/A
SIZE 2					
110	60	1470201	9969D92G01	1470221	9969D93G01
110/208/220	25/60/60	1470202	9969D92G02	1470222	9969D93G02
220/380/440/480	25/50/60/60	1470203	9969D92G03	N/A	N/A
550	60	1470204	9969D92G04	1470224	9969D93G10
110	50	1470206	9969D92G05	1470226	9969D93G05
220	50	1470207	9969D92G06	1470227	9969D93G06
440	50	1470208	9969D92G07	1470228	9969D93G07
600	60	1470205	9969D92G08	1470225	9969D93G08
440	25	1470210	9969D92G09	N/A	N/A
120/110	60/50	1605478	9969D92G10	N/A	N/A
550	50	1470209	9969D92G11	N/A	N/A
415	50	N/A	N/A	L1557647	9969D93G09
220/380/440	25/60/60	N/A	N/A	1470223	9969D93G03
SIZE 3					
110	60	1490645	9969D96G04	1490645	9969D96G04
110/208/220	25/60/60	1490646	9969D96G05	1490646	9969D96G05
220/380/400/440	25/50/50/60	1490647	9969D96G06	1490647	9969D96G06
110	50	1490652	9969D96G08	1490652	9969D96G08
120/110	60/50	1600770	9969D96G09	1600770	9969D96G09
600/500	60/50	1490649	9969D96G21	1490649	9969D96G21
600/500/400	60/50/40	1659421	9969D96G23	1659421	9969D96G23
220	50	1490653	9969D96G24	1490653	9969D96G24
550	60	1490648	9969D96G29	1490648	9969D96G29
SIZE 4					
110	60	1596633	9969D96G10	1597723	9969D96G01
110/208/220	25/60/60	1490658	9969D96G11	1597724	9969D96G02
110	50	1596636	9969D96G13	N/A	N/A
220	50	1596637	9969D96G14	N/A	N/A
240	50	1596639	9969D96G15	N/A	N/A
600/500	60/50	1596635	9969D96G16	1490649	9969D96G21
440	25	1596641	9969D96G17	N/A	N/A
600	60	1596634	9969D96G19	N/A	N/A
440	60	1490659	9969D96G12	N/A	N/A
120/110	60/50	1600771	9969D96G20	N/A	N/A
220/380/400/440	25/50/50/60	N/A	N/A	1597725	9969D96G31

## TECHNOLOGY UPGRADES

Sizes 00-3 ADVANTAGE, Freedom or IT
Sizes 4-5 ADVANTAGE, Freedom, Vacuum or IT

CONTACTORS AND STARTERS
A200

PRODUCT HISTORY TIMELINE FOR A200, A201, A203, A204, A206, A210, A211, A213, A214, A216, A220, A223, A224, A226, A250, A251, A600, A603, A604, A606, A700, A703, A704, A706, A800, A804, A806
Originally a Westinghouse Product

Size	Model	1960	1965	1970	1975	1980	1985	1990	1995	Present
00-3	J									
4	J									
	K									
5-6	Electrically Held									
5-6	Mechanically Held									
7-8										
9										

## REPLACEMENT CAPABILITIES

Kits for Model J, Sizes 00, 0, 1, 20

Description	Poles	Size 00	Size 0	Size 1	Size 2
Contact Kit	$\begin{array}{\|l} \hline 2 \\ 3 \\ 4 \\ 5 \end{array}$	373 B 331 G 17 373 B 331 G 18 373 B 331 G 18 373 B 331 G 19	373B331G02 373B331G04 373B331G04 373B331G05	$\begin{aligned} & \hline \text { 373B331G07 } \\ & \text { 373B331G09 } \\ & \text { 373B331G09 } \\ & \text { 373B331G10 } \end{aligned}$	$\begin{aligned} & \hline 373 \mathrm{~B} 331 \mathrm{G} 11 \\ & \text { 373B331G12 } \\ & \text { 373B331G139 } \\ & \text { 373B331G148 } \end{aligned}$
Arc Box4	$\begin{array}{\|l\|} \hline 2-4 \\ 5 \end{array}$	$\begin{aligned} & \text { 6714C74G01 } \\ & \text { 6714C74G04 } \end{aligned}$	$\begin{aligned} & \text { 6714C74G02 } \\ & \text { 6714C74G05 } \end{aligned}$	$\begin{aligned} & \text { 6714C74G03 } \\ & \text { 6714C74G06 } \end{aligned}$	$\begin{aligned} & \text { 6714C74G07 (2-, 3-pole) } \\ & \text { 6714C74G08 (4-, 5-pole) } \end{aligned}$
Cross Bar	$\begin{aligned} & 2-3 \\ & 4-5 \end{aligned}$	$\begin{aligned} & \text { N/A } \\ & \text { N/A } \end{aligned}$	$\begin{aligned} & \text { N/A } \\ & \text { N/A } \end{aligned}$	$\begin{aligned} & \text { N/A } \\ & \text { N/A } \end{aligned}$	$\begin{aligned} & \hline \text { 672B788G32 } \\ & \text { 672B788G34 } \end{aligned}$
Upper Base (for single rated coils only)	$\begin{array}{\|l\|} \hline 2-3 \\ 4-5 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { N/A } \\ & \text { N/A } \end{aligned}$	$\begin{aligned} & \hline \text { N/A } \\ & \text { N/A } \end{aligned}$	$\begin{aligned} & \text { N/A } \\ & \text { N/A } \end{aligned}$	$\begin{aligned} & \text { 672B788G33 } \\ & \text { 672B788G35 } \end{aligned}$
Lower Base	$\begin{aligned} & 2-3 \\ & 4-5 \end{aligned}$	$\begin{aligned} & \text { N/A } \\ & \text { N/A } \end{aligned}$	$\begin{aligned} & \hline \text { N/A } \\ & \text { N/A } \end{aligned}$	$\begin{aligned} & \hline \text { N/A } \\ & \text { N/A } \end{aligned}$	$\begin{aligned} & \text { 1250C33G09 } \\ & \text { 1250C33G05 } \end{aligned}$
KO Spring (Pk. of 10)	All	N/A	N/A	N/A	503C796G01
Terminal Line/Load (Pk. of 3)	All	N/A	N/A	N/A	371B870G03

## AC Coils

Voltage	Hz	Size 00, 0, 1		Size 2	
		2-, 3-, 4-Pole	5-Pole	2-, 3-Pole	4-, 5-Pole
120/110	60/50	505C806G01	505C808G01	505C806G01	505C818G01
208	60	505C806G02	505C808G02	505C806G02	505C818G02
600/550	60/50	505C806G05	505C808G05	505C806G05	505C818G05
380	50	505C806G07	505C808G07	505C806G07	505C818G07
240/220	60/50	505C806G12	505C808G12	505C806G12	505C818G12
480/440	60/50	505C806G13	505C808G13	505C806G13	505C818G13
24	60	505C806G16	N/A	505C806G16	505C818G15
227	60	505C806G18	505C808G16	505C806G18	505C818G16
240/480@	60/60	505C806G03	505C808G03	505C806G03	505C818G03
120/2406	60/60	505C806G10	505C808G10	505C806G10	505C818G10


DC Coils6		
Voltage	Size 0, 1, 2	
	1-, 2-, 3-, 4-Pole	1-, 2-, 3-Pole
12	1268C86G07	
24	1268C86G04	
48	1268C86G05	
125	1268C86G02	
250	1268C86G01	
$125 / 250 \oplus$	1268C86G03	



Contact Kit for A200 Model J, Size 2, 3-Pole


A200 AC Coil, $120 / 110 \mathrm{~V} 60 / 50 \mathrm{~Hz}, 2-3$-, 4-Pole, Size 00, 0, 1

[^25]
## REPLACEMENT CAPABILITIES, Continued

## Kits for Model J-K, Sizes 3, 40

Description	Poles	Size 3 - Model J	Size 4 - Model J	Size 4 - Model K(2)
Contact Kit	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \end{aligned}$	626B187G12 626B187G13 626B187G143 626B187G154	626B187G16 626B187G17 626B187G185 626B187G196	5250C81G16 5250C81G17 5250C81G18 5250C81G19
Arc Box	$\begin{aligned} & \hline 2-3 \\ & 4-5 \end{aligned}$	6714C74G09 6714 C 74 G 10	6714C74G11   6714C74G12	6714C74G11   6714C74G12
Cross Bar	$\begin{aligned} & \hline 2-3 \\ & 4-5 \end{aligned}$	672B788G36   672B788G38	$\begin{aligned} & \hline \text { 672B788G36 } \\ & \text { 672B788G38 } \end{aligned}$	672B788G40
Upper Base	$\begin{aligned} & \hline 2-3 \\ & 4-5 \end{aligned}$	672B788G37 672B788G39	$\begin{aligned} & \hline \text { 672B788G37 } \\ & \text { 672B788G39 } \end{aligned}$	672B788G52
Lower Base	$\begin{aligned} & 2-3 \\ & 4-5 \end{aligned}$	$\begin{aligned} & \text { 1250C33G03 } \\ & 1250 \mathrm{C} 3 \mathrm{GG} 06 \end{aligned}$	$\begin{aligned} & \text { 1250C33G03 } \\ & \text { 1250C33G06 } \end{aligned}$	1250C33G10
KO Spring (Pk. of 10)	All	503C796G02	503C796G02	672B788G50
Terminals Line/Load (Pk. of 3)	All	372B357G12	372B357G13	372B357G13

## AC Coils

Voltage	Hz	Model J Size 3-4		Model K Size 42	
		2-, 3-Pole	4-, 5-Pole	2-, 3-Pole	4-, 5-Pole
120/110	60/50	505C633G01	505C635G01	5250C79G01	5250C80G01
208	60	505C633G02	505C635G02	5250C79G02	5250C80G02
600/550	60/50	505C633G05	505C635G05	5250C79G05	5250C80G05
380	50	505C633G07	505C635G07	5250C79G07	5250C80G07
240/220	60/50	505C633G12	505C635G12	5250C79G12	5250C80G12
480/440	60/50	505C633G13	505C635G13	5250C79G13	5250C80G13
24	60	505C633G34	N/A	5250C79G34	N/A
277	60	505C633G14	N/A	5250C79G14	N/A
240/4807	60/60	505C633G03	505C635G03	5250C79G03	5250C80G03
120/2407	60/60	505C633G10	505C635G10	5250C79G10	5250C80G10



A200 AC Coil, 110/120V 60Hz, Size 6


A200 AC Coil, 120/110V $60 / 50 \mathrm{~Hz}, 2$-, 3-pole, Size 3 and 4 Model J

DC Coils8	
Voltage	Model J Size 3-4
	2-, 3-Pole
24	1255 C68G04
48	1255 C 68 G 05
125	1255 C 6 G 01
250	1255C68G02
$125 / 250$	1255C68G03

(1) Model C contact kits and coils 00-4, 2-, 3-, 4- and 5-pole contactors are same as Model J. All other parts are unavailable.
(2) Model K replaces Model J.

3 Use Oty 2 - 626B187G12 (2-pole Kits).
4 Use one of each of 626B187G12 (2-pole Kit) and 626B187G13 (3-pole Kit).
© Use Oty 2 - 626B187G16 (2-pole Kit).
© Use one each of 626B187G16 (2-pole Kit) and 626B187G17 (3-pole Kit).
© Dual voltage coils. Use only on contactors or starters originally supplied with a dual voltage coil.
8 Use only on units originally supplied with DC coil.
REPLACEMENT CAPABILITIES, Continued
Kits for GCA 530/630, Sizes 5-9 - and GPD Sizes 7-9 1

Kit	Size 5	Size 6	Size 7	Size 8	Size 9
Contact Kit   (1 per pole)	477B477G052	2066A10G11	461A757G17	646C829G05	5264C42G01 (Rear Connected)
Arc Box				5264C42G02 (Front Connected)	
Magnet Assy	2050A15G45	2066A10G45	831D580G01	831D580G01	9917D69G02
Mag. Spg. Kit	2050A15G47	2050A15G46	N/A	N/A	N/A
Arc Cup Kit	2050A15G48	N/A	N/A	N/A	
Load Conn. Kit	2050A15G49	2066A10G49	N/A	N/A	N/A
Line Conn. Kit	2050A15G50	2066A10G50	N/A	N/A	N/A
KO Spring-6	2050A15G51	2066A10G46	N/A	N/A	N/A
CT 300/5	655C285H03	N/A	N/A	N/A	N/A
CT 400/5	655C285H04				
CT 600/53	N/A	2066A10G18	N/A	N/A	N/A
CT 800/53	N/A	2066A10G19	N/A	N/A	N/A
Phase Barrier	N/A	N/A	640C441G01	640C441G01	5264C35G03 (Rear Connected)
Cross Bar	2050A15G12	2066A10G15	N/A	N/A	N/A
Shunt	N/A	2066A10G48	650C129G01	646C831G02	5264C39G02
			(Set of 3)	(Set of 4)	

(1) Catalog No. A201/A200 Series replaces GCA/GPD series. Renewal parts are the same.
(2) Use 477B477G06 for Silver Tungsten applications.

3 CT Kit which replaces the single molded one CT assembly used on the old size six airbrake. The kit includes a single molded three CT assembly, two bus bar, and hardware. This CT Kit also replaces the single molded three CT assembly used on the present size six airbrake and size six vacuum contactor.
(4) Rectifier 125V 2018A40G01 (one required)
© Rectifier 250V 2018A40G02 (one required).
© Rectifier 600V 2018A40G03 (one required).
(7) These coils require an external rectifier. If the rectifier needs to be replaced, order by the appropriate style number.

Coils			
Voltage	Hz	Size 5	Size 6
110/120	60	2050A14G05	2050A12G05
110/120	50	2050A14G06	2050A12G06
200/208	50	2050A14G07	2050A12G07
220/240	50	2050A14G08	2050A12G08
200/208	60	2050A14G09	2050A12G09
220/240	60	2050A14G10	2050A12G10
277/303	60	2050A14G12	2050A12G12
380/415	50	2050A14G14	2050A12G14
440/480	60	2050A14G15	2050A12G15
440/480	50	2050A14G16	2050A12G16
550/600	60	2050A14G17	2050A12G17
550/600	50	2050A14G18	2050A12G18
380/415	60	2050A14G19	2050A12G19
120/240	60	2050A14G20	2050A12G20
24 DC		2050A14G21	2050A12G21
48 DC		2050A14G22	2050A12G22
125 DC		2050A14G25	2050A12G25
250 DC		2050A14G27	2050A12G27


Line Voltage	Size 7-8	Req.	Size 9
115V DC	438C805G01	2	100 V DC
125V DC	438C805G04	2	5264 C 34 G 01
230V DC	438C805G02	2	(Contains
250V DC	438C805G03	2	
110/120VAC47	438C805G12	2	resistor)
220/240VAC67	438C805G11	2	
380VAC67	438C805G15	2	
440/480VAC67	438C805G10	2	
550/575VAC67	438C805G13	2	

CONTACTORS AND STARTERS
A200

## REPLACEMENT CAPABILITIES, Continued

## Accessories for Size 5-9 AC Contactors

## Coils

AC Contactors	Voltage	AC/DC Coil Conversion Kit	Replacement Coil
Size 5	120VAC	7864A28G01	7856A15G05
	240VAC	7864A28G02	7856A15G10
	480VAC	7864A28G03	7856A15G15
	120VAC	7864A29G01	7856A16G05
	240VAC	780VAC	78564A29G02

A rectifier circuit converts the AC supply to DC supply. This conversion provides quiet operation and improves pick up and drop out characteristics. All necessary parts are included in the kit.


DC Coil Conversion Kit Style No. 7864A29G01

## Auxiliary Electrical Interlock

Contactor Size	Catalog Number (Obsolete)	Style Number (Obsolete)	Circuits	Catalog Number Current	Style Number Current
00-6	(L-56) (L-56D) (L-56E) (L-56B) (L-56H) (L-56J) (T-56A) (T-56B) (L-56F) (L-56G) (L-56C) (L-56M) (L-56P) (L-56R) (L-56S)	(2609D01G01) (2609D01G02) (2609D01G03) (2609D01G04) (2609D01G05) (2609D01G06) (2609D01G07) (2609D01G08) (2609D01G09) (2609D01G10) (2609D01G11) (2609D01G12) (2609D01G17) (2609D01G18) (2609D01G19)	1 NO \& 1 NC 2 NO 1 NO \& 1 NC 2 NO 2 NO 1 NO \& 1 NC DB N/A N/A N/A 1 NO \& 1 NC DB 2 NC N/A 1 NO \& 1 NC 2 NC 1 NO \& 1 NC	$\begin{aligned} & \hline \text { J11 } \\ & \text { J20 } \\ & \text { J11 } \\ & \text { J20 } \\ & \text { J20 } \\ & \text { J1C } \\ & \text { N/A } \\ & \text { N/A } \\ & \text { N/A } \\ & \text { J1C } \\ & \text { J02 } \\ & \text { N/A } \\ & \text { J11 } \\ & \text { J02 } \\ & \text { J11 } \end{aligned}$	9084A17G01 9084A17G02 9084A17G01 9084A17G02 9084A17G02 9084A17G04 N/A N/A N/A 9084A17G04 9084A17G03 N/A 9084A17G01 9084A17G03 9084A17G01
7-8	$\begin{aligned} & \hline \text { L63 } \\ & \text { L63 } \end{aligned}$	. . . . . . . . .	$\begin{aligned} & \hline \text { NO } \\ & \text { NC } \end{aligned}$	$\cdots$	$\begin{aligned} & \text { 578D461G01 } \\ & \text { 578D461G03 } \end{aligned}$
9	$\begin{aligned} & \hline \text { L64 } \\ & \text { L64 } \\ & \text { L64 } \end{aligned}$		$\begin{aligned} & \hline \text { NO/NC } \\ & 2 \mathrm{NO} \\ & 2 \mathrm{NC} \end{aligned}$	. $\cdots$ $\cdots$ $\ldots$	$\begin{aligned} & \hline \text { 843D943G04 } \\ & \text { 843D943G05 } \\ & \text { 843D943G06 } \end{aligned}$



L63
Style No. 578D461G01


L64
Style No. 843D943G04

## TECHNOLOGY UPGRADES

Sizes 00-3	ADVANTAGE, Freedom or IT
Sizes 4-6	ADVANTAGE, Freedom, Vacuum or IT
Sizes 7-8	Freedom
Size 9	No upgrade available

## PRODUCT DESCRIPTION

## Manual Reset, Class 20, Thermal Type B

## Application

The Type B overload relay is designed to protect industrial motors against overload conditions. Using modern block-type, bimetallic design, this relay will provide Class 20 operation in either single phase or 3-phase applications.

## Features

- Ambient compensation standard
- Alarm contact field mountable
- Class 20-600 volt design
- Inverse time delay trip
- Test trip device for weld check
- High visibility up front trip indication
- Trip free reset mechanism


## Operation

The Type B overload relay is a bimetallic actuated device. The bimetal elements are operated by precisely calibrated heaters. The heater elements connect either directly in the circuit to be measured, or through current transformers on applications NEMA Size 5 and larger.
As the bimetals are heated by motor current flow, a deflection force is produced. Upon a sustained level of abnormal current flow, the deflection becomes great enough to open the snap action output contact.

## Ambient Compensation

The Type B ambient compensated design is supplied as standard on all A200 starters. This design uses a second compensating bimetal responsive to ambient air temperature in the surrounding enclosure. This feature reduces nuisance tripping in applications using compact control panels and motor control centers where internal temperature rise is significant compared to motor ambient temperature. The compensating characteristic is maintained in ambient temperatures from $40^{\circ} \mathrm{C}$ to $77^{\circ} \mathrm{C}$.

## Design Standards

UL508, CSA, ANSI/NEMA ICS 2-222

## OVERLOAD RELAY SELECTION TABLE

Motor Full Load	Panel Mounted Catalog Numbers		Starter Mounted Catalog Numbers			
Amperes			Replacement for Type B Overload Relays		Replacement for Type A Overload Relays in Manual Reset Mode (3-Pole Only) $\mathbf{D}$	
	Ambient Comp.	Non-Comp.	Ambient Comp.	Non-Comp.	Ambient Comp.	Non-Comp.
1-Pole (One NC Contact)						
$\begin{array}{r} .25-26.2 \\ 26.3-45.0 \end{array}$	$\begin{aligned} & \hline \text { BA11JP } \\ & \text { BA21JP } \end{aligned}$	BN11JP BN21JP	$\begin{aligned} & \text { BA11A } \\ & \text { BA21A } \end{aligned}$	BN11A BN21A		. $\quad . .$.
$\left.\begin{array}{r} 19.0-90.0 \\ 19.0-135.0 \end{array}\right\}$	Use 3-pole design, wire 3-poles in series					
3-Pole (One NC Contact)						
$.25-26.2$ $26.3-45.0$ $19.0-90.0$ $19.0-135.0$	BA13JP BA23JP BA33P BA43P	BN13JP   BN23JP   BN33P   BN43P	$\begin{aligned} & \hline \text { BA13A® } \\ & \text { BA23A } \\ & \text { BA33A } \\ & \text { BA43A } \end{aligned}$	$\begin{aligned} & \hline \text { BN13A® } \\ & \text { BN23A } \\ & \text { BN33A } \\ & \text { BN43A } \end{aligned}$	$\begin{aligned} & \hline \text { BA13J } \\ & \text { BA23J } \\ & \text { BA33A } \\ & \text { BA43A } \end{aligned}$	BN13J   BN23J   BN33A   BN43A
Alarm Contact Kit Selection						
Type B Overload   1,2   3,4	elay Size	$\begin{aligned} & \hline \text { B3NO-2 } \\ & \text { B3NO-4 } \end{aligned}$				
	Type B Overlo	d Relay Panel Mo		Field Mountable	larm Contact ${ }^{\text {P }}$	

(1) Includes contactor mounting bracket, overload relay and connection straps to contactor.
(2) For replacement on B200 sizes 00, 0, 1, use BA23A instead of BA13A and use BN23A instead of BN13A.
(3) Alarm contact available as factory modification of field mountable. For factory modification, add suffix B.

## HEATERS

Price of overload relay does not include heaters. Select from table on page 171.

CONTACTORS AND STARTERS
A200

## PRODUCT DESCRIPTION

## Auto/Manual Reset, Class 20, Thermal Type A

## Application

The Type A overload relay is designed to protect industrial motors against overload conditions. Using modern block-type, bimetallic design, this relay will provide Class 20 operation in either single or 3 -phase applications.

## Features

- Field selectable manual/auto reset
- Alarm contract factory available
- Class 20-600 volt design
- Inverse time delay trip
- Adjustable trip rating $\pm 15 \%$
- Color-coded reset rod: Compensated (Gray) Non-compensated (Red)


## Operation

The Type A overload relay is a bimetallic actuated device. The bimetal elements are operated by precisely calibrated heaters. The heater elements connected either directly in the circuit to be measured, or through current transformers on applications NEMA Size 5 and larger.
As the bimetals are heated by motor current flow, a deflection force is produced. Upon a sustained level of abnormal current flow, the deflection becomes great enough to open the snap action output contact.

## Automatic Reset

The Type A overload relay can be supplied as an option on all A200 starters to provide automatic reset operation. The overload relay is always shipped in the non-automatic mode. To set up auto operation, reposition the reset rod by loosening and re-tightening a hold down clamp at the base of overload relay.

## Design Standards

UL508, CSA, ANSI/NEMA ICS 2-222

## OVERLOAD RELAY SELECTION TABLE

For Replacement in Existing Applications Only

Motor Full Load Amperes	Panel Mounted Catalog Numbers		Starter Mounted Catalog Numbers	
	Ambient Comp.	Non-Comp.	Ambient Comp.	Non-Comp.
1-Pole (One NC Contact)				
$\begin{array}{r} .25-26.2 \\ 26.3-45.0 \\ 19.0-90.0 \\ 19.0-135.0 \end{array}$	AA11P   AA21P   AA31P   AA41P	AN11P   AN21P   AN31P   AN41P	AA11A   AA21A   AA31A   AA41A	AN11A AN21A AN31A AN41A
3-Pole (One NC Contact)(				
$\begin{array}{r} .25-26.2 \\ 26.3-45.0 \\ 19.0-90.0 \\ 19.0-135.0 \end{array}$	$\begin{aligned} & \hline \text { AA13P } \\ & \text { AA23P } \\ & \text { AA33P } \\ & \text { AA43P } \end{aligned}$	$\begin{aligned} & \text { AN13P } \\ & \text { AN23P } \\ & \text { AN33P } \\ & \text { AN43P } \end{aligned}$	AA13A   AA23A   AA33A   AA43A	AN13A   AN23A   AN33A   AN43A



3-Pole Panel Mounted


1-Pole Panel Mounted

## HEATERS

Price of overload relay does not include heaters. Select from table on page 171.

## 170 CONTACTORS AND STARTERS A200

## PRODUCT DESCRIPTION

## Type FT Fast Trip, Class 10

## Application

The Type FT overload relay is designed to protect special purpose motors having restricted thermal and locked rotor capabilities. Using modern block-type, bimetallic design, this relay will provide Class 10 operation in single or 3-phase applications.

## Features

- Class $10-600$ volt design
- Inverse time delay trip
- Color coded reset rod - green
- Alarm contact factory available
- Field selectable manual/auto reset
- Adjustable trip rating $\pm 20 \%$
- Ambient compensation included


## Operation

The Type FT overload relay is a bimetallic actuated device. The bimetal elements are operated directly from line current, thus separate calibrating heater elements are not utilized. The overload relay may be wired directly in the motor circuit, or through current transformers on applications larger than 150 amperes.
As the bimetals are heated by motor current flow, a deflection is produced. Upon a sustained level of abnormal current flow, the deflection becomes great enough to open the snap action output contact.

## OVERLOAD RELAY SELECTION TABLE

## For Replacement in Existing Applications Only

1-Pole (One NC Contact); 3-Phase (Three NC Contacts in Series)

Motor Full Load Amperes	Panel Mounted Catalog Numbers		Starter Mounted Catalog Numbers(	
	1-Pole(	3-Pole(3	NEMA Size	1-Pole
.76-1.1	FT11P-1.1	FT13P-1.1	$\cdots$	FT11A-1.1
$1.1-1.6$	FT11P-1.6	FT13P-1.6		FT11A-1.6
$1.6-2.4$	FT11P-2.4	FT13P-2.4	0, 1	FT11A-2.4
$2.4-3.6$	FT11P-3.6	FT13P-3.6	0, 1	FT11A-3.6
$3.6-5.4$	FT11P-5.4	FT13P-5.4	0, 1	FT11A-5.4
$5.4-8.0$	FT11P-8	FT13P-8	0, 1	FT11A-8
8.0-12	FT11P-12	FT13P-12	0, 1	FT11A-12
$12-18$	FT11P-18	FT13P-18	1	FT11A-18
16-24	FT11P-24	FT13P-24	1	FT11A-24
22-32	FT11P-32	FT13P-32	0, 1	FT11A-32
24-36	FT21P-36	FT23P-36	2	FT21A-36
36-54	FT21P-54	FT23P-54	2	FT21A-54
22-32	FT31P-32	FT33P-32	3	FT31A-32
32-48	FT31P-48	FT33P-48	3	FT31A-48
48-72	FT31P-72	FT33P-72	3	FT31A-72
$72-110$	FT41P-110	FT43P-110	4	FT41A-110
100-150	FT41P-150	FT43P-150	4	FT41A-150



1-Pole Fast Trip, Panel Mounted


3-Pole Fast Trip, Panel Mounted
(1) 1-pole (One NO - NC Contact): Add suffix B.
(2) 3-pole (Three NO - NC Contacts): Add suffix B. EXAMPLE: FT13PB-12

# CONTACTORS AND STARTERS <br> A200 

## PRODUCT DESCRIPTION

## Types A and B

Each heater is identified by a catalog number stamped on one terminal. The heater application table indicates the range of full load motor current to which a given heater may be applied. Heaters should be selected on the basis of the actual full load current and service factor as shown on the motor nameplate or in the manufacturer's published literature.
When motor and overload relay are in the same ambient and the service factor of the motor is
1.15 to 1.25 , select heaters from the heater application table. If the service factor of the motor is 1.0 , or there is no service factor shown, or a maximum of $115 \%$ protection is desired, select one size smaller heater than indicated.
When motor and overload relay are in different ambients and when using non-compensated overload relays, select heaters from the table using adjusted motor currents as follows: decrease rated motor current $1 \%$ for each ${ }^{\circ} \mathrm{C}$
motor ambient exceeds controller ambient. Increase rated motor current $1 \%$ for each ${ }^{\circ} \mathrm{C}$ controller ambient exceeds motor ambient.

For temperature compensated overload relays, select heaters according to the table and selection information above regardless of ambient.
Protect the starter against short circuits by providing branch circuit protection per National Electric Code (NEC).

## OVERLOAD RELAY HEATER SELECTION TABLES

## For Replacement in Existing Applications Only

## For Type A and B Overload Relays, Size 00, 0, 1 and 2 Starters


(1) Based on $60^{\circ} \mathrm{C}$ and $75^{\circ} \mathrm{C}$ wire for 30 amperes or less. (2 Based on $60^{\circ} \mathrm{C}$ wire for 31 to 95 amperes.
(3) Based on $75^{\circ} \mathrm{C}$ wire for greater than 95 amperes.
(4) Based on $75^{\circ} \mathrm{C}$ wire.

For Type A and B Overload Relays, Size 3 and 4 Starters1023

Size Starter	Ambient Compensated Encl. Starters	NonCompensated Encl. Starters	Heater Catalog Number
	All Applications		
	Full Load Current of Motor (Amperes) 0		
	12.8-14.1	$11.9-13.0$ FH68   $13.1-14.3$ FH69   $14.4-15.9$ FH70   $16.0-17.4$ FH71   $17.5-19.1$ FH72   $19.2-21.1$ FH73   $21.2-23.2$ FH74   $23.3-25.6$ FH75   $25.7-28.1$ FH76   $28.2-30.8$ FH77   $30.9-34.5$ FH78   $34.6-38.2$ FH79   $38.3-42.6$ FH80   $42.7-46$ FH81   $47-51$ FH82   $52-56$ FH83   $57-61$ FH84   $62-67$ FH85   $68-72$ FH86   $73-77$ FH87   $78-84$ FH88   $85-91$ FH89   $92-99$ FH90   $100-110$ FH91   $111-122$ FH92   $123-128$ FH93   $129-133$ FH94	
	14.2-15.5		
	15.6-17.1		
	17.2-18.9		
	19.0-20.8		
	20.9-22.9		
	23.0-25.2		
	25.3-27.8		
	27.9-30.6		
	30.7-33.5		
	33.6-37.5		
	37.6-41.5		
	41.6-46.3		
	46.4-50		
	$51-55$ $56-61$		
	62-66		
	67-73		
	74-78		
	79-84		
	85-92		
	93-101		
	102-110		
	111-122		
	123-129		
	130-133		

For Type A and B Overload Relays, Size 5 and 6 Starters 4

Compensated Overload Relay		Heater   Catalog   Number
Open Starter	Enclosed Starter	
Full Load Current of Motor (Amperes)		
Size 5 (With 300/5 current transformers)		


$-118-129$	-	FH2
$130-141$	$118-129$	FH2
$142-155$	$130-141$	FH2
$156-170$	$142-155$	FH2
$171-187$	$156-170$	FH2
$188-205$	$171-187$	FH2
$206-224$	$188-205$	FH2
$225-244$	$206-224$	FH3
245263	$225-244$	FH3
$264-292$	$245-263$	FH33
$293-300$	-	FH3
Size 6 (With 600/5 current transformers)		


-	-	FH23	
$236-259$	$236-259$	FH24	
$260-283$	$260-283$	FH25	
$2841-310$	$284-310$	FH26	
$311-340$	$311-340$	FH27	
$341-374$	$341-374$	FH28	
$375-411$	$375-411$	FH29	
$412-448$	$412-448$	FH30	
$449-489$	$449-489$	FH31	
$490-527$	$490-527$	FH32	
5286585	$528-540$	FH33	
$586-600$	-	FH34	
Size 7 and Larger: Advise Full Load Current			

NOTE: Heaters are packaged in strips of six.
Minimum ordering quantity is 12 .

# CONTACTORS AND STARTERS <br> A202 Lighting Contactor <br> $$
\begin{aligned} & \text { ALUZ Lignting Contactor } \\ & \text { (Electrically Held/Magnetically Latched) } \end{aligned}
$$ (Electrically Held/Magnetically Latched) 

## PRODUCT HISTORY TIMELINE

Originally A Westinghouse Product

Size	Amperes	Model	1965	1970	1975	1980	1985	1990	1995	Present
Size 1	30A									
Size 2	60A									
Size 3	100A									
Size 4	200A	$J$								
Size 4	200A	K								

## A202 REPLACEMENT CAPABILITIES

Kits for 30A to 200A

Description	Poles	30A	60A	100A	200A - Model J®	200A - Model K8
Contact Kit	$\begin{array}{\|l\|} \hline 2 \\ 3 \\ 4 \\ 5 \end{array}$	373B331G07 373B331G09 373B331G09 373B331G10	$\begin{aligned} & \text { 373B331G11 } \\ & \text { 373B331G12 } \\ & \mathbf{0} \\ & \text { (3) } \end{aligned}$	$\begin{aligned} & \text { 626B187G12 } \\ & \text { 626B187G13 } \\ & \mathbf{8} \\ & \text { © } \end{aligned}$	$\begin{aligned} & \text { 626B187G16 } \\ & \text { 626B187G17 } \\ & \boldsymbol{\top} \\ & \boldsymbol{0} \end{aligned}$	$\begin{aligned} & 5250 \mathrm{C} 81 \mathrm{G} 16 \\ & 5250 \mathrm{C} 1 \mathrm{G} 17 \\ & 5250 \mathrm{C} 1 \mathrm{G} 18 \\ & 5250 \mathrm{C} 81 \mathrm{G} 19 \end{aligned}$
Arc Box	$\begin{aligned} & \hline 2-, 3-, 4 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 6714C74G03 } \\ & \text { 6714C74G06 } \end{aligned}$	$\begin{aligned} & \text { 6714C74G07 } \\ & 6714 \mathrm{C} 74 \mathrm{G} 08 \end{aligned}$	$\begin{aligned} & \text { 6714C74G09 } \\ & 6714 \mathrm{C} 74 \mathrm{G} 10 \end{aligned}$	$\begin{aligned} & \text { 6714C74G11 } \\ & 6714 \mathrm{C} 74 \mathrm{G} 12 \end{aligned}$	$\begin{aligned} & \text { 6714C74G11 } \\ & 6714 \mathrm{C} 74 \mathrm{G} 12 \end{aligned}$
Cross Bar	$\begin{array}{\|l\|} \hline 2-3 \\ 4-5 \end{array}$	$\begin{aligned} & \text { N/A } \\ & \text { N/A } \end{aligned}$	$\begin{aligned} & \text { 672B788G32 } \\ & \text { 672B788G34 } \end{aligned}$	$\begin{aligned} & \text { 672B788G36 } \\ & \text { 672B788G38 } \end{aligned}$	$\begin{aligned} & \text { 672B788G36 } \\ & \text { 672B788G38 } \end{aligned}$	672B788G40
Upper Base (for single rated coils only)	$\begin{array}{\|l\|} \hline 2-3 \\ 4-5 \end{array}$	$\begin{aligned} & \hline \text { N/A } \\ & \text { N/A } \end{aligned}$	$\begin{aligned} & \hline \text { 672B788G33 } \\ & \text { 672B788G35 } \end{aligned}$	$\begin{aligned} & \hline \text { 672B788G37 } \\ & \text { 672B788G39 } \end{aligned}$	$\begin{aligned} & \hline \text { 672B788G37 } \\ & \text { 672B788G39 } \end{aligned}$	672B788G52
Lower Base	$\begin{array}{\|l\|} \hline 2-3 \\ 4-5 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { N/A } \\ & \text { N/A } \end{aligned}$	$\begin{aligned} & \text { 1250C33G09 } \\ & \text { 1250C33G05 } \end{aligned}$	$\begin{aligned} & \hline \text { 1250C33G03 } \\ & \text { 1250C33G06 } \end{aligned}$	$\begin{aligned} & \hline \text { 1250C33G03 } \\ & \text { 1250C33G06 } \end{aligned}$	1250C33G10
Electrically Held Only						
KO Spring (Pk of 10)	All	N/A	503C796G01	503C796G02	503C796G02	672B788G50
Terminal Line/Load (Pk of 3)	All	N/A	371B870G03	372B357G12	372B357G13	372B357G13

## AC Coils Electrically Held

Voltage	Hz	30A		60A	
		2-, 3-, 4-Pole	5-Pole	2-, 3-Pole	4-, 5-Pole
120/110	60/50	505C806G01	505C808G01	505C806G01	505C818G01
208	60	505C806G02	505C808G02	505C806G02	505C818G02
600/550	60/50	505C806G05	505C808G05	505C806G05	505C818G05
380	50	505C806G07	505C808G07	505C806G07	505C818G07
240/220	60/50	505C806G12	505C808G12	505C806G12	505C818G12
480/440	60/50	505C806G13	505C808G13	505C806G13	505C818G13
24	60	505C806G16	N/A	505C806G16	505C818G15
227	60	505C806G18	505C808G16	505C806G18	505C818G16
240/4809	60/60	505C806G03	505C808G03	505C806G03	505C818G03
120/2409	60/60	505C806G10	505C808G10	505C806G10	505C818G10
Voltage	Hz	100A and 200A - Model J		200A - Model K8	
		2-, 3-Pole	4-, 5-Pole	2-, 3-Pole	4-, 5-Pole
120/110	60/50	505C633G01	505C635G01	52050C79G01	5250C80G01
208	60	505C633G02	505C635G02	52050C79G02	5250C80G02
600/550	60/50	505C633G05	505C635G05	52050C79G05	5250C80G05
380	50	505C633G07	505C635G07	52050C79G07	5250C80G07
240/220	60/50	505C633G12	505C635G12	52050C79G12	5250C80G12
480/440	60/50	505C633G13	505C635G13	52050C79G13	5250C80G13
24	60	505C633G34	N/A	52050C79G34	N/A
227	60	505C633G14	N/A	52050C79G14	N/A
240/4800	60/60	505C633G03	505C635G03	52050C79G03	5250C80G03
120/2449	60/60	505C633G10	505C635G10	52050C79G10	5250C80G10

(1) Use Oty 2 - 373B331G11 (2-pole kit).
(2) Use one each of 373B331G11 (2-pole kit) and 373B331G12 (3-pole kit).
(3) Use Oty 2 - 626B187G12 (2-pole kit).

4 Use one each of 626B187G12 (2-pole kit) and 626B187G13 (3-pole kit).
© For 200 ampere A202 Magnetically Latched Lighting contactors order 3-pole contact kit style 672B788G07.
© Use Oty 2 - 626B187G16 (2-pole kit).
© Use one each of 626B187G16 (2-pole kit) and 626B187G17 (3-pole kit).
© Model K replaces Model J, offering superior design and life characteristics. Renewal parts are different. Use parts for proper model only.
$\Theta$ Dual voltage coils. Use only on contactors or starters originally supplied with a dual voltage coil.

CONTACTORS AND STARTERS

A202 REPLACEMENT CAPABILITIES, Continued

## AC Coils Magnetically Latched

Voltage			Hz		2-, 3-, 4-Pole		5-Pole	
30A								
$\begin{aligned} & 110 / 120 \\ & 208 / 240 \\ & 277 \\ & 440 / 480 \\ & 575 \end{aligned}$					7874A93G01 7874A93G02 7874A93G03 7874A93G04 7874A93G05		7874A89G01 7874A89G02 7874A89G03 7874A89G04 7874A89G05	
60A								
					2-, 3-Pole		4-, 5-Pole	
$\begin{aligned} & 110 / 120 \\ & 208 / 240 \\ & 277 \\ & 440 / 480 \\ & 575 \end{aligned}$					7874A93G01 7874A93G02 7874A93G03 7874A93G04 7874A93G05		7874A87G01 7874A87G02 7874A87G03 7874A87G04 7874A87G05	
100A and 200A								
$\begin{aligned} & 110 / 120 \\ & 208 / 240 \\ & 277 \\ & 440 / 480 \\ & 550 / 575 \end{aligned}$			50/60   50/60   50/60   50/60   50/60		$\begin{aligned} & \text { 7874A85G01 } \\ & \text { 7874A85G02 } \\ & \text { 7874A85G03 } \\ & \text { 7874A85G04 } \\ & \text { 7874A85G05 } \end{aligned}$		$\begin{aligned} & \hline \text { 7874A83G01 } \\ & \text { 7874A83G02 } \\ & \text { 7874A83G03 } \\ & \text { 7874A83G04 } \\ & \text { 7874A83G05 } \end{aligned}$	
Terminals (Line and Load)								
Size								
30A	2-, 3-, 4-Pole				5-Pole			
	N/A				N/A			
60A	2-Pole		3-Pole		4-Pole		5-Pole	
	179C755G17		179C755G16		179C755G170		179C755G16 + G172	
100A	2-Pole		3-Pole		4-Pole		5-Pole	
	179C755G19		179C755G18		179C755G190		179C755G18 + G192	
200A	2-Pole		3-Pole		4-Pole		5-Pole	
	Model K	Model J						
	179C755G28	179C755G31	179C755G27	179C755G30	179C755G280	179C755G310	179C755G27 + G28	179C755G30 + G312
Other Accessories								
$\begin{aligned} & \text { 30A to } \\ & 200 \mathrm{~A} \end{aligned}$	Control Module (Rectifier)				3915B98G01			

## PRODUCT PICTURES



120V Coil for Electrically Held Lighting Contactor Style No. 505C633G01

## (1) Order quantity of two for 4-pole design.

(2) Group numbers for the 5 -pole terminals represent the combination of the 2-pole and 3 -pole number.

PRODUCT HISTORY TIMELINE
Originally a Westinghouse Product


## REPLACEMENT CAPABILITIES

Manual Autostarter Kits


## TECHNOLOGY UPGRADES

- ECN42 - ECN44 reduced voltage auto-transformer starter
- IT or ADVANTAGE solid-state reduced voltage starter


## FURTHER INFORMATION

Literature   Number	Description
SA-135	Quick Reference Guide for Contactor and Starter   Replacement Contact Kits and Coils   Cutler-Hammer Motor Starters Selection Guide
SA-175A	Enclosed Control Cross Reference Guide
SA-161	
SA-11746A	Westinghouse Full Family of Vacuum Contactors   and Starters   Continuing Citation Support
SA-509	Facts to Consider Before Purchasing Third-Party   Contact Kits for Your Cutler-Hammer Starters   When You Need Cutler-Hammer Replacement   Control Parts
LEM006	For replacement parts information, contact LV Control Aftermarket at   1-800-535-8992.

PRICING INFORMATION

Literature   Number	Description
CAT.201.01.T.E	Control Products
VISTA/VISTALINE	Discount Symbol 1CD-5C   Discount Symbol 1CD-1C   Discount Symbol 1CD-1



Easy Start Reduced Voltage Solid-State Motor Starter Motor Control Center Plug-in Unit

Reduced voltage solid-state motor starters serve to provide reduced voltage starting, protection, and control for standard three-phase induction motors. They are commonly found in applications like conveyors, compressors, extruders, pumps, blowers, etc.
Reduced voltage starting is beneficial because current and torque are reduced during the motor starting process. This reduces the electrical and mechanical shock experienced during motor starting, prolonging motor and equipment life. Reduced voltage starters also provide for maximum efficiency of the motor duty cycle by electronically sensing the motor load and reducing the voltage applied to the motor when it is running at less than full load torque.

Solid-state motor starters also provide short circuit and various types of electronic protective functions. Common features include phase loss, undervoltage, current balance, phase rotation, current limit, over temperature, etc.
Reduced voltage solid-state controllers are similar to reduced voltage motor starters, except they include no overload or short-circuit protection. Motor controllers are applied in series with conventional electromechanical starters to provide the benefits of reduced voltage starting at lower cost. Electromechanical starter contact life is also improved by the reduced voltage motor controller.

## PRODUCT HISTORY

Culter-Hammer's present line of reduced voltage starters is the culmination of 38 years of product development. In 1958, Vectrol Engineering began manufacturing SCR Gate Driver circuitry and progressed into their own soft starter product line, known as the Vectrol Motor Starter (VMS). In 1980, Vectrol was purchased by Westinghouse. The VMS was quickly phased out of production and the Vectrol ES (Energy Saver) solid-state reduced voltage starter was introduced. The Vectrol ES combined features of automatic power
factor adjustment and reduced voltage, maximizing the efficiency of the motor duty cycle. The Vectrol ES starter was actively manufactured until 1988 when the EasyStart Motor Starter was introduced.
Cutler-Hammer entered the market in 1975 with the A415, A445, and A485 product lines. By 1983, Cutler-Hammer had released the A515/A545 Model A Solid-State Reduced Voltage Starter and followed up in late 1984 with the improved Model B A515. This starter utilized a solid-state controller,
overload relay, and a six SCR full-wave power section. In 1988, Westinghouse introduced its Easy Start and Easy Start Jr. product lines that also utilized a solidstate control circuit and a six SCR fullwave power section. In 1995, the newly formed Solid-State Motor Control Division (SSMC) of the new Cutler-Hammer released the Easy Start EA
Reduced Voltage Starter, combining the voltage control of SCRs with the durability of the ADVANTAGE motor starter into a uniquely small package.

PRODUCT HISTORY TIMELINE


SOLID-STATE LOW VOLTAGE MOTOR CONTROL
Reduced Voltage Motor Starters

## SUPPORT CHART




Typical Adjustable Frequency Controller Block Diagram

Adjustable Frequency Controllers (AFCs) serve to provide adjustable speed and control for standard AC induction motors. AFCs rectify the incoming AC line voltage to supply a fixed potential DC bus. An inverter section is employed to invert the DC bus voltage to an adjustable frequency output voltage. The solid-state logic section controls the inverter and ultimately the magnitude and frequency of the output voltage to the motor. Input to the solid-state logic can be manual (from an operator type keypad) or automatic (from design features programmed into the drive logic).

The advent of microprocessor-based logic and the advancements of solid-state power technology have dramatically reduced the costs of AFCs and enhanced their product features. This has permitted a more economical solution for adjustable speed motor applications because AFCs permit the use of standard squirrel cage induction motors instead of DC motors, which are more expensive and harder to maintain. AFCs are ideal for variable torque applications, like centrifugal pumps and fans, and constant torque applications, like conveyers and extruders.


SOLID-STATE LOW VOLTAGE MOTOR CONTROL Adjustable Frequency AC Drives

GENERAL INFORMATION

Model	HP   Range	Input Voltage	Output Devices	Output Algorithmn	Control Type
VLT-5	1 to 5	240, 415	SCR	VVI	Analog
AF-1000	1 to 50	230, 480	Transistors	PWM	Analog
AF-1500	1 to 30	240, 480	Transistors	PWM	Digital
AF-1600	1 to 20	240, 480	IGBT	Vector PWM	Digital
AF-2000	5 to 10	230	SCR	VVI	Analog
AF-300	N/A	N/A	SCR	CSI	Analog
AF-3000®	30 to 250	230, (460 opt)	SCR	PWM	Analog
AF-5000	5 to 100	380 to 480	Transistor	PWM	Analog
AF-5000+	5 to 600	380 to 480	Transistor	PWM	Digital
AF-6000	15 to 300	480	SCR	VVI	Analog
AF-7000	20 to 600	480, 575	Transistor	VVI	Analog
AF-8000	3 and 5	480	SCR	PWM	Analog
Accutrol 100	1 to 5	230	Transistor	PWM	Analog
Accutrol 110	1 to 75	230, 460	Transistor	PWM	Digital3
Accutrol 150	3 to 50	460	Transistor4	PWM	Analog
Accutrol 200	3 to 250	460	Transistor ${ }^{\text {( }}$	PWM	Analog
Accutrol 300	15 to 600	460,575	Gate Turn-off Thyristor	VVI	Analog
Accutrol 400	3 to 150	460	Transistor	PWM	Digital
Accutrol 700	100 to 600	480	IGBT	Vector PWM	Digital
AF93	2 to 20	240, 480	Insulated Gate Bi-polar Transistor	Vector PWM	Digital
AF95	15 to 200	480	Insulated Gate Bi-polar Transistor	PWM	Digital
AF97	100 to 600	480	Insulated Gate Bi-polar Transistor	Vector PWM	Digital
AF91	Fractional to 10	240, 460	Insulated Gate Bi-polar Transistor	PWM	Digital
9000 Series	Fractional to 1100	208 to 690	Insulated Gate Bi-polar Transistor	PWM	Digital

(1) Also available with a single-phase output.
(2) Standard 220 V output only.
(3 Analog controls on pre-1988 models.

## REPLACEMENT CAPABILITIES


(1) The AF-1500, Accutrol 110 and Accuflow Jr. are identical units.
(2) Though not fully factory-supported, repair may be possible in some cases.
(3 No upgrades are available for Gate Turn-off Thyristor (GTO) versions. Transistor versions are identified by a leading "A1T" or "A2T" in the model number. (4) GTOs are not available as spare parts for models below 100 HP .

## Definitions

PCB Repair: Printed circuit boards may be returned to the factory for repair. All PCBs are upgraded to the most current revision at the time of the repair.
Upgrade Kits: Retrofit kits are available to upgrade the basic performance of certain vintage products.
Factory Repair: Entire assemblies may be returned to the factory for repair, upgrade or refurbishment. A test-and-inspect fee applies to assemblies to evaluate the cost of repair.
Field Service: Over 25 factory service employees nationwide provide first party service solely on SSMC products.
Technical Support: Field service specialists located in major cities are prepared to offer on-site expertise.
Spare Parts:
Series 9000 parts are available from factory stock. Vintage (legacy) parts are available through ATS 1-877-645-3606.

## TECHNOLOGY UPGRADES

## Reduced Voltage Motor Starter

Easy Start EA Reduced Voltage Starters utilize SCRs to provide adjustable voltage soft starts and stops and the ADVANTAGE
starter for operation at full motor voltage. These are combined into a unique com-

The breadth of the 9000 series provides the maximum flexibility needed to meet the demands of today's commercial and
industrial applications.
pact package which makes it the perfect solution for new or retrofit applications.

## Adjustable Frequency Drives

The 9000 series of Adjustable Frequency Drives offers a broad range of high performance AC drives.

The full range of horsepowers and voltage ratings, enclosure types, control, communication and power options positions the 9000 series as one of the most complete AC lines available.

## PRODUCT SUPPORT SERVICES

## For all Product Support Services, Call 1-800-322-4486 or Fax 813-852-6532

## Service

Technical support and services for the AF91 and 9000 series adjustable frequency drives are coordinated through the Product Integrity Center (PIC) located in Watertown, WI. Contact the PIC at 1-800-322-4986 for all your aftermarket in relation to these products.
The vintage (legacy) drive products referenced in the previous charts are supported through Advanced Technology
Systems (ATS). Contact ATS at 1-877-6453606.

## Training

Factory training on the AF91 and 9000 series adjustable frequency drives is available on a regularly scheduled basis. A schedule of classes can be located on the C-H University web page. Registration can be completed online. If factory training is not convenient, on-site training can be performed. To schedule on-site training contact the PIC.

## Renewal Parts

Renewal parts are available for both the current and vintage products. Parts for the 9000 series adjustable frequency drives can be purchased as complete kits covering a given frame size or as individual components. Contact the PIC for help in identifying your 9000 series adjustable frequency drives parts requirements.
For help in identifying your vintage (legacy) drive parts requirements contact ATS.

## Repair Services

Complete assemblies related to the 9000 series can be tested, upgraded, repaired and re-warranted upon return to the PIC. All factory repair use genuine, original parts.
Repair of vintage (legacy) products is available through ATS.

## Telephone Support

Technical support and troubleshooting are available via the PIC toll-free number 1-800-322-4986. You will be connected to a PIC engineer who can assist you with your questions.
In addition, warranty claims and renewal parts can all be handled through this single point of contact. Normal business hours for telephone support are MondayFriday, 8 a.m. to 5 p.m. Central Standard Time. Emergency assistance is available 24 hours a day.

## FURTHER INFORMATION

Literature Number Description
LEL-019 $\quad$ Solid-State Motor Control Quick Reference Guide
CAT.201.01.T.E

PG.08.04.T.E

PL.08H.13A.P.E

- Eddy Current Product Line was sold in 1995 to Dynamatic Corporation, Kenosha, WI (1-800-548-2169)


## PRICING INFORMATION

Literature Number	Description
PL 8790 PL 8791	Price List of Renewal Parts for Solid-State   Reduced Voltage Starters and Adjustable   Frequency Drives   Price List of Factory Repair for Solid-State Re-   duced Voltage Starters and Adjustable Fre-   quency Drives
CAT.201.01.T.E	Control Products Catalog   Pages 39-1 through 39-28
PL 8810	Price List for AMPGARD MV Starters   VISTA/VISTALINE      Discount Symbols
	SS-1 1CD1
	SS-2
	SS-3
	SS-4

## PRODUCT DESCRIPTION

## Synchronous Motors

Polyphase synchronous motors are employed primarily to obtain high pullout torques, constant operating speed or generation of leading reactive kVA for Power Factor (PF) correction. To bring a motor to a constant speed, DC power is applied to a special winding in a synchronous motor. This winding is called a field coil winding and is controlled by "field control." DC power for a brush type motor is usually supplied with the starter and entails using an exciter. DC power for a brushless type motor is supplied by an exciter mounted on the motor. Refer to pages 182 and 183 for further description of brush and brushless type motors.

Synchronous Motor Control Westinghouse Slipsyn ${ }^{\text {® }}$
Synchronous motor "field application
control" generally includes a synchronous device to apply DC power to the motor field circuit at the optimum speed. It may also include protective features such as locked rotor protection, failure to synchronize, incomplete sequence, field failure, pull-out protection, etc. depending on the type of field application control selected. Refer to pages $\mathbf{1 8 2}$ and $\mathbf{1 8 3}$ for further description on the control required for brush and brushless type motors.

Relay Type vs. Solid-State Type - Mark V
Relay Type
The relay type uses the ASR synchronizing relay. Inherent in using the relay type are the problems that are associated with using contacts or mechanical closing devices such as arcing, spring and bearing deterioration and wear, dirty atmospheres etc.

## Solid-State - Mark V

The Mark V is $100 \%$ solid-state and features a "soft-turn-on" circuit which applies DC field voltage to the motor field. It enables all required functions for correct synchronization to be accomplished without the use of moving contacts or mechanical closing devices.
With the Mark V, the static exciter power supply is always supplied and is part of the "system."

Also available as a modification with the Mark V is a VAR/PF/DC field current regulator. The regulator consists of a printed circuit board, auxiliary devices and potentiometers for adjustment.

## PRODUCT HISTORY

## Originally a Westinghouse Product

## Synchronous Motor Control

Westinghouse has offered brush type synchronous field control since the 1940s. Motor starters for brushless synchronous motors have been offered since the late 1960s. Synchronous motors can be medium voltage ( $2300-7200 \mathrm{~V}$ ) or low voltage ( 600 V and below). A synchronous motor starter includes the basic motor control PLUS the synchronous control and protection functions. Typically, the basic motor control and the field application control are mounted in separate compartments within the starter. Ratings of synchronous control are in terms of the maximum DC field amperes required by the motor. Current ratings are $45,90,135,160,200$ and 270A DC, through 6000 HP and 5 kV .

## Relay and Solid-State Type Control

Relay type Slipsyn was introduced in 1947 and uses the ASR synchronizing relay. This type of control is still available and used today. Forms of solid-state type Slipsyn were introduced in the late ' 50 s and early '60s but were not completely solid-state and had some of the operation problems the relay type control encountered. These were called Mark I and Mark II Static Slipsyn. In 1989 the Mark V SolidState Slipsyn field control was introduced.

## Medium Voltage (AMPGARD) Starters

 The AMI AMPGARD synchronous starter (1957-1970) used a 60 -inch deep enclosure with the synchronous control in the low voltage section in the front bottom $2 / 3$ of the starter enclosure. The basic motor control was located in the rear bottom $2 / 3$ of the enclosure, barriered off from the low voltage section. The AMI AMPGARD for synchronous motors used the ASR relay type control.The LF AMPGARD (1962-1988) primarily used the ASR field application relay control. Mark I and Mark II Static Slipsyn were also used during their availability periods. The LF AMPGARD for synchronous motors included the basic induction motor control (ISO switch, contactor and starter control) in the bottom half of the structure. The upper half contained the step down static excitation transformer with current limiting fuses, the Silicon Controlled Rectifier (SCR) type static exciter and the synchronizing control and motor field protection panel.
The SJ AMPGARD (1982-2000) family of synchronous control is very similar to the LF AMPGARD. Until the availability of the Mark V solid-state synchronous control, the SJ used the ASR relay type field con-
trol. With the advent of the Mark V, $90 \%$ of the synchronous starters are supplied with this type control. In both ASR and Mark V control schemes the synchronous gear is usually mounted in the top half of the starter.

## Low Voltage Synchronous Starters

Low voltage synchronous starters are similar in nature to high voltage synchronous starters except in two regards. High voltage starters, unlike low voltage starters, must isolate the low voltage from the high voltage. The components for the field control are the same.
The second difference lies in the primary disconnect used in the starters. Low-voltage starters can be supplied with no short circuit protection, with a non-fusible disconnect, a fusible disconnect switch or with a molded case circuit breaker. Low voltage synchronous starters were manufactured in the late ' 40 s , with the introduction of the ASR relay, until September of 1989. In 1991 the product was reintroduced using the Mark V solid-state field control. Marketing for the current line is handled in Asheville, NC. The starters are manufactured in Fayetteville, NC.

## PRODUCT HISTORY TIMELINE

Page	Product	1945	1950	1960	1965	1970	1975	1980	1985	1990	1995	Present
182	ASR Relay Slipsyn (Brush Type)											
	Mark I Static Slipsyn (Brush Type)											
	Mark II Static Slipsyn (Brush Type)											
184	Mark V Static Slipsyn											
190	Brushless Motor Control											

## GENERAL INFORMATION

Brush Type Synchronous Motor
Brush type (slip ring) motors have stators similar to squirrel-cage induction motors and most have rotors with DC slipring circuits which must be energized for normal operation. They have two basic switching functions. The first is the energizing of the stator to produce breakaway torque and acceleration to synchronizing speed. The second is the energizing of the DC rotor field at optimum speed and rotor stator pole relationship.

## Motor Field Excitation - Brush Type

For brush type motors, DC power for the field circuit is required. This DC power may be obtained from plant buses, direct drive DC generators or individual MG sets. An alternative to the above is a factory installed static power exciter which may be supplied with the field application panel. This unit may be a "constant potential" exciter with silicon diodes and transformer with adjustable taps or an "adjustable potential" exciter with SCRs which has its voltage output adjustable via a door mounted potentiometer.

## Ratings:

Low Voltage - 600V max.
Medium Voltage - 7200V max.
High Voltage $-15,000 \mathrm{~V}$ max. (Service)

## Chronology:

Synchronous control was introduced in 1947 at Buffalo General Control. The product moved with General Control to Asheville, NC in 1978 where it is currently manufactured.

Selection Guide - Brush Type Control

Catalog   Number	Primary   3-Phase   Voltage		Relay Type   with or without   Static Exciter   Maximum Field   Amperes 400	Solid-State   Type -   Mark V   with Static Exciter   Max. Field   Amperes 400	Page   Number   this   Publication   or Price   List		Synchronous Motor   Control Instructions

## GENERAL INFORMATION

Brushless Type Synchronous Motor
Synchronous motors are available without slip rings and are referred to as "Brushless Synchronous Motors." Such motors have rotors equipped with rectifier and sensing circuits providing selfcontained DC supplies for the rotor field. The AC power to the rotor is supplied from alternator armatures or through rotary transformers (shaft driven). Rotor field currents are adjusted by proportional values in the stationary excitation windings. The rotor circuits contain means for static switching of discharge resistor and excitation power at preset speed-slip angle points. Thus brushless motors provide self-contained excitation sources and automatic field application.

Brushless Type Control
This type of control consists basically of the following:
A. Field contactor
B. Power factor relay
C. Timing relay to block the power factor relay from tripping during start
D. Damper winding relay to protect the motor in the event that it fails to start or accelerate
E. Constant voltage transformer which allows the motor to respond to momentary drops in line voltage
F. Full wave bridge rectifier that provides DC for the motor exciter field
G. Volt cap for protecting the rectifier from voltage spikes
H. Auto-transformer (powerstat) to adjust the voltage to the motor exciter field
I. DC field ammeter.

## Ratings:

Low Voltage - 600V max.
Medium Voltage - 7200 V max.
High Voltage - 15,000V max.
Chronology:
Synchronous control was introduced in 1947 at Buffalo General Control. The product moved with General Control to Asheville, NC in 1978 where it is currently manufactured.

## Selection Guide - Brushless Type Control

Catalog   Number	Primary Voltage	Relay Type	Solid-State   Type -   Mark V   with Static Exciter   with VAR/PF/DC   Current Field Regu-   lator	Page Number this Publication or Price List	Synchronous Instructions	Comments
14-100   Field application panel only	$208-600$ $2300-7200$ $2300-15000$ $208-600$ $2300-7200$ $2300-15000$	$\bullet$	$\bullet \bullet$	$\begin{aligned} & \text { 190, } 191 \\ & 190,191 \\ & 190,191 \\ & 192 \\ & 192 \\ & 192 \end{aligned}$	IL 17097   IL 17097   IL 17097   IL 17224, IL 17381   IL 17381, IL 17224   IL 17224, IL 17381	Primary control existing or supplied by others. Primary control may be low-voltage motor starter, FV or RV or medium-voltage motor starter, FV or RV or circuit breaker motor control
$\begin{aligned} & \text { 14-200, 14-203, } \\ & \text { 14-204, 14-206, } \\ & \text { 14-600, 14-603, } \\ & 14-604,14-606 \end{aligned}$	208-600	$\bullet$		(1)	IL 17097	Primary control consists of low-voltage, full-voltage, or reduced-voltage motor starter combination or non-combination type
S/V F02, S/V R02, S/V A02	2400-7200	-	$\bullet$	PL 8810	IL 17097 (Relay)   IL 17381 (S-State)   IL 17224 (S-State)   IB 48008   IB 48009	Primary control consists of an AMPGARD type medium-voltage, full-voltage motor starter -full-voltage or reduced-voltage type

## Brush Type Relay Slipsyn ${ }^{\circledR}$ Class 14-100 Field Application Panel

$\square$

## PRODUCT DESCRIPTION

## Relay Slipsyn Automatic Field Application Panel

Automatic Field Application Control The field application panel provides Slipsyn automatic field application identical to that in complete synchronous motor starters. It is designed for use in conjunction with a primary line closing device such as a circuit breaker or a linestarter. One interlock on the primary device is used to actuate the field application control. When the motor accelerates to proper speed for pull in, the field is automatically applied.
The controller is available for floor mounting. Floor mounted cabinets are NEMA 1 with hinged front door and removable rear plates.

The cabinets contain the following equipment:
1 - Polarized slip frequency field application relay type ASR (FR) with halfwave rectifier (REC).
1 - Time relay with contacts available for unloader circuit (2TR).
1 - Pull-out relay and transformer (PO).
1 - Field contactor, 2-pole (FC).
1 - Damper winding protective relay (SC).
1 - Starting and field discharge resistor (when size permits; otherwise, provided for separate mounting) (IRES).
1 - DC field ammeter, panel type, semiflush mounted.
1 - DC field ammeter shunt.
1 - DC field failure protection (FLA).
2 - Auxiliary relays (2TRX), (2MX).
1 - Incomplete sequence relay (IS).


Field Panel without Static Exciter

Typical Schematic


Typical 14-100 Panel with Constant Potential Static Exciter (Optional) for use with Primary Motor Starter.

## Static Excitation Power Supply Panel

## Constant Potential Type

$A C$ to $D C$ power conversion units are designed for individual synchronous motor field excitation. These units are convection cooled, solid state and completely assembled and wired as a self-contained package with a relay Slipsyn automatic field application control. The connections necessary to the external circuits are line leads, motor leads, field connections, and control interconnection.

The static system consists of a convectioncooled silicon rectifier three-phase fullwave bridge assembly, a set of current limiting fuses in the secondary side of the transformer, and a set of surge protecting devices. The transformer has secondary taps that are adjustable with four course taps which provide approximately $12 \%$ adjustment per tap and three fine taps which provide $4 \%$ adjustment per tap.

## Adjustable Potential Type

An adjustable potential exciter is similar to the constant potential exciter except that it utilizes SCRs and the voltage adjustment is made with a potentiometer mounted on the door.

# SYNCHRONOUS MOTOR CONTROL Brush Type Relay Slipsyn ${ }^{\circledR}$ Class 14-100 Field Application Panel 

## GENERAL INFORMATION

Modifications	
Modification	List Price Addition
Enclosures	
a. NEMA 1 , with gasketed door   b. NEMA 3, weather-resisting.   c. NEMA 12, dust-tight	....................$~$ 2740
Omit Enclosure (Floor Mounted)¢ ............................................	Deduct 375
Space Heater.	.............. 140
Thermostat for Space Heater................................................................................. 100	
Voltmeter DC - Panel Type	............. 480
Voltmeter DC - Switchboard Type .	.... 680
Ammeter DC - Switchboard Type (In lieu of Panel Type) ...........	............... 200
DC voltage failure protection - Shuts down motor if field voltage is lost while motor is running.	

Adjustable potential voltage static exciter
Contact your local Cutler-Hammer Field Sales Office.
For additional modifications, refer to PL 8810.

## REPLACEMENT CAPABILITIES - TYPICAL RELAY COMPONENTS



ASR Synchronous Relay


PO Pull-Out Relay


DP Damper Protective Relay

[^26] synchronous control

List Price					
Relay Slipsyn Field Panel With and Without Static Exciter NEMA 1 Enclosure					
Max.   Field   Amps   DC	Field   Panel   Only   Without   Exciter	With Constant Potential Exciter			
		Primary Volts			
		Low Voltage $230 / 4603 \mathrm{PH}$,60 Hz 60 Hz		Medium Voltage 2300/4160, 3PH, 60 Hz	
		DC Field Volts		DC Field Volts	
		125	250	125	250
45	\$ 9454	\$17725	\$19480	\$21350	\$24530
90	10515	18825	20700	22740	26080
135	11575	19970	22005	24045	27630
160	12065	21030	23100	25430	29260
200	13285	23150	25430	28040	32200
270	14955	26410	29015	31900	36650

## DIMENSIONS IN INCHES

Approximate only   Field Panel Only - Open Panel					
135 Amps. Max.				Over 135 Amps.	
Height	Width		Depth		
24	24	12		Contact your local Cutler-Hammer Field Sales Office	
Field Panel with Static Exciter 13 kW Max.					
Open Cell			Floor Mounted - NEMA 1		
Height	Width	Depth	Height	Width	Depth
45	36	30	90	36	30

## CUSTOMER REQUIRED INFORMATION

1. Complete motor data: HP, volts, amperes, rpm, phase, power factor, Hz, locked rotor amperes, full load DC amperes, excitation volts, induced field amperes at zero speed, induced field amperes at $95 \%$ and $0 \%$ speed, recommended discharge resistor ohms, maximum locked time at zero speed.
2. Excitation control.

For exciter field rheostat or motor field resistor to adjust motor excitation, refer to Cutler-Hammer.
3. Application data (including any unusual service conditions) and 100\% synchronous motor data MUST accompany each other.

## PRICING INFORMATION

1. Enter order on AMP
2. Discount Symbol: SYNCH

## Brush Type Mark V Solid-State Slipsyn ${ }^{\circledR}$ Class 14-100 Field Application Panel

## PRODUCT DESCRIPTION

## Slipsyn Automatic Field Application Panel with Static Exciter

## Automatic Field Application Control

The Slipsyn panel provides automatic field application identical to that in complete synchronous motor starters. It is designed for use in conjunction with a primary line closing device, such as a circuit breaker or a linestarter. When the motor accelerates to proper speed for pull in, the field is automatically applied.
The solid-state Mark V Slipsyn controller will provide the following protective functions:
A. Locked rotor protection
B. Incomplete sequence
C. Failure to synchronize
D. Fuse failure (Mark V)
E. Pull out protection
F. DC current failure protection

Also the application of the DC power to the motor field windings is accomplished without mechanically moving parts, and the device features a "soft-turn-on" circuit when applying DC voltage to the motor field.
Depending on the size of the solid-state application panel, the controler is available in a NEMA 1 floor mounted enclosure or an AMPGARD type cell construction.


In both designs, a hinged front door with externally ventilated heat sinks will be provided. The cabinets will contain the following equipment:
1 - Step down exciter transformer -3-Phase (TX)
3 - Primary fuses (3 PRI)
3 - Secondary fuses ( 3 seconds)
1 - "SCR" power supply panel

1 - Synchronous control board (CB) 1 - DC ammeter - panel type (DC Amm)
3 - "MOV" for surge protection (MOV)
1 - Starting and field discharge resistor (when size permits; otherwise provided for separate mounting)
1 - Field failure relay (FLA)
1 - Incomplete SEO Timer (FLT)
1 - Start Timer (SYTR)
1 - Potentiometer (P2)

Typical Schematic


## GENERAL INFORMATION



## REPLACEMENT CAPABILITIES - TYPICAL SOLID-STATE

 COMPONENTS

Power Module, 200A, 3 req'd


Heat Sink

Snubber for Thyristor Stack



MOV

Main Synchronizing Control/ Protection Board


Typical Solid-State components used in Mark V Slipsyn — Refer to RPD 8855S for renewal parts for synchronous control.

List Price				
Solid-State Slipsyn Field Panel With Static Exciter   NEMA 1 Enclosure				
Max. Field Amps DC	Primary Motor Volts, 3PH. 60 Hz			
	Low Voltage 230/460 3PH, 60 Hz		Medium Voltage 2300/4160, 3PH, 60 Hz	
	DC Field Volts		DC Field Volts	
	125	250	125	250
36	\$16300	\$17930	\$19725	\$22740
60	17445	19185	21110	24290
100	18585	20440	22495	25920
160	20700	22775	25100	28935
200	22820	25100	27710	32520
260	31300	34425	37870	43560
300	41400	45545	49310	57865
400	45640	50200	55420	63750

## DIMENSIONS IN INCHES

## Approximate only

Field Panel with Static Exciter 20 kW Max.

Open Cell		Floor Mounted — NEMA 1			
Height	Width	Depth	Height	Width	Depth
45	36	30	90	36	30

## CUSTOMER REQUIRED INFORMATION

1. Complete motor data: HP, volts, amperes, rpm, phase, power factor, Hz , locked rotor amperes, full load DC amperes, excitation volts, recommended discharge resistor ohms, amperes, and time.
2. Application data (including any unusual service conditions) and 100\% synchronous motor data MUST accompany each other.

## PRICING INFORMATION

1. Enter order on AMP
2. Discount Symbol: SYNCH
[^27]
## PRODUCTION DESCRIPTION

## Application

Application automatic starting of synchronous motors. Automatic synchronization is provided by the Mark V Solid-State Field Panel which assures application of the field at proper motor speed, and at a favorable angular position of stator and rotor poles. As a result, line disturbance resulting from synchronization is reduced and effective motor pull-in torque is increased. Application of DC power to motor field windings is accomplished without mechanically moving parts, and the device features a "soft-turn on" circuit when applying DC voltage to the motor field.
The solid-state Mark V Slipsyn controller will provide the following protective functions:
A. Locked rotor protection
B. Incomplete sequence
C. Failure to synchronize
D. Fuse failure (Mark V)
E. Pull out protection
F. DC current failure protection

The cabinet will contain the following:
1 - Primary starter full voltage or reduced voltage
1 -Ammeter shunt (when required)


1 -Auxiliary relay for main line contactor (when required) (MX)
1 -Starting and field discharge resistor (IRES)
1 -Current transformer for AC ammeter through NEMA Size 4; Sizes 5 and larger use three current transformers for overload relays and AC ammeter
1 -Set control circuit terminal blocks
3 - Type AN manual reset thermal overload relay and three heater elements (OL)
1 -Step down exciter transformer 3 phase (TX)
3 - Primary fuses (3 PRI)

3 - Secondary fuses (3 SEC)
1 - SCR power supply panel
1 - Synchronous control board (CB)
3 - MOV for surge protection (MOV)
1 -Starting and field discharge resistor (when size permits; otherwise provided for separate mounting)
1 - AC ammeter, panel type (AM)
1 - DC ammeter, panel type (DC AMM)
1 - Exciter field potentiometer (P2)
1 - Field failure relay (FLA)
1 - Incomplete SEQ Timer (FLT)
1 - Start Timer (SYTR)

Typical Schematic


# SYNCHRONOUS MOTOR CONTROL Brush Type Mark V Solid-State Slipsyn ${ }^{\text {® }}$ Class 14-200 Low-Voltage Motor Starters 

GENERAL INFORMATION

Volts 3-Phase 60 Hz	Maximum HP		Size	Full-Voltage Starters Non-reversing Classes 14-200, 14-203, 14-204, 14-206 in NEMA 1 Enclosure								Reduced Voltage   Adder for   Auto-transformer   Type - NEMA 1   Enclosure 3	
	1.0 PF	0.8 PF		Without Short Circuit Protection(		With Non-Fusible Disconnect•		Disconnect Fusible or Fused ${ }^{2}$		With Molded Case Circuit Breaker			
				Catalog Number 14-200	List Price	Catalog   Number   14-203	List Price	Catalog   Number   14-204	List Price	Catalog   Number   14-206	List Price	Catalog Number 14-60_	List Price
230	40	30	3	S3	\$16270	S3	\$17045	S3	\$17310	S3	\$17220	S3	\$ 4000
	60	50	4	S4	17220	S4	18275	S4	19040	S4	18960	S4	5800
	125	100	5	S5	20945	S5	22865	S5	23760	S5	24350	S5	7600
	250	200	6	S6	25800	S6	28560	S6	29840	S6	30020	S6	14490
	350	300	7	S7	34290	S7	38165	S7	38760	S7	46020	S7	21770
	500	400	8	S8	36110	S8	41720	S8	42330	S8	47330	S8	30600
460	30	25	2	S2	15895	S2	16507	S2	16660	S2	16770	S2	3200
	60	50	3	S3	16270	S3	17045	S3	17310	S3	17220	S3	4200
	125	100	4	S4	17220	S4	18275	S4	19040	S4	18960	S4	5940
	250	200	5	S5	20945	S5	22865	S5	23760	S5	24350	S5	8730
	500	400	6	S6	25800	S6	28560	S6	29840	S6	30020	S6	15230
	700	600	7	S7	34290	S7	38720	S7	38760	S7	46020	S7	23100


MODIFICATIONS	
Modification	List Price Addition
Enclosures	
a. NEMA 1 , with gasketed door $\qquad$ \$ 340   b. NEMA 12, dust-tight $\qquad$ 2740	
Space Heater (per enclosure)......................................................................................... 140	
Thermostat for space heater (per enclosure) ........................................................... 100	
Voltmeter DC — Panel Type.................................................................................................................................................................................................... 200Voltmeter DC — Switchboard Type.........Ammeter DC — Switchboard Type (In lieu of Panel Type) .....	
Pilot Devices	
Pushbuttons .......................................................................................................... 80	
Selector Switches................................................................................................ 100	
Indicator Lights - Full Voltage................................................................................................................................. 120Indicator Lights - Push-to-Test ....... $22 .$.	
Automatic Power Factor/VAR/DC Field Current Regulations©.................................. 9780	
For Vacuum or ADVANTAGE Type Contactors, contact your local Cutler-Hammer Field Sales Office.	

## DIMENSIONS IN INCHES

Contact your local Cutler-Hammer Field Sales Office.

## CUSTOMER REQUIRED INFORMATION

1. Complete motor data: HP, volts, amperes, rpm, phase, power factor, Hz , locked rotor amperes, full load DC amperes, excitation volts, recommended discharge resistor ohms, amperes, and time.
2. Application data (including any unusual service conditions) and 100\% synchronous motor data MUST accompany each other.

## PRICING INFORMATION

1. Enter order on AMP
2. Discount Symbol: SYNCH
(1) Interrupting capacity: 10 times motor full load current.
(2) Fuses not included up to and including size 5 . Sizes 6, 7, 8 include current limiting fuses with 100KAIC asymmetrical amperes interrupting capacity. A load break disconnect is supplied.
© For reduced voltage auto-transformer starter - Add list price from column \#1 or \#2, or \#3 or \#4 to column \#5 price - This total will be list price for reduced voltage autotransformer - synchronous starter. Also ordering catalog number becomes 14-60_ not 14-20_.
(4) Power Factor Regulation - Note: Cannot provide regulation below $50 \%$ of rated voltage and/or $25 \%$ of rated current. Regulation cannot be accomplished on light loads, i.e., less than $20 \%$ load. Not for use with reciprocating compressors.

## Brushless Type Relay Slipsyn ${ }^{\circledR}$ Class 14-100 Field Application Panel

## PRODUCT DESCRIPTION

## Relay Slipsyn Automatic Field Application Panel

This field application panel provides DC power to the exciter field and is designed for use in conjunction with a primary line closing device such as a contactor motor starter or a circuit breaker motor starter. A normally open electrical interlock on the primary device is used to actuate the field application control. This panel utilizes electromechanical devices to apply DC power to the motor exciter field circuit. Note that the power rectifiers for the motor field circuit and automatic synchronizer are mounted on the synchronous motor rotor.

## Brushless Synchronous Control

The controller can be supplied with or without enclosure. Panel mounted, or open cell are suitable for mounting within other larger enclosures.
The cabinet or open panel or open cell contains the following equipment:
1 - Sola transformer (1CPT)
1 - Power factor relay (PO)
1 - Auto-transformer (AT) Powerstat
1 - Damper winding protection relay (DP)
1 - Field contactor (FC)
1 - Volt trap (VT)
1 - Rectifier (REC)
1 - Sequence relay (TR)
1 - Damper winding protection hold in relay (DPX) - if required
2 - Fuses (SEC FU), (2 SEC FU)
1 - DC ammeter - panel type

Typical Schematic


Typical Starter Schematic. Devices shown without 1 constitute 14-100 panel.

# SYNCHRONOUS MOTOR CONTROL Brushless Type Relay Slipsyn ${ }^{\circledR}$ Class 14-100 Field Application Panel 

## GENERAL INFORMATION



REPLACEMENT CAPABILITIES - TYPICAL COMPONENTS


Rectifier


Damper Winding Protection Relay
Proten


Pullout/Power Factor Relay


Volt Trap


Powerstat for synchronous control.

List Price		
Relay Slipsyn Field Panel NEMA 1 Enclosure - Floor Mounted		
Max. Field Amperes DC	DC Field Volts	
	125	250
9	\$10465	\$11510
22	13450	14795

## DIMENSIONS IN INCHES

Approximate Only					
			Open Panelı		
			Height   24	Width   24	Depth   12
Open Cell			Floor Mounted - NEMA 1		
Height	Width	Depth	Height	Width	Depth
45	36	30	90	36	30

## CUSTOMER REQUIRED INFORMATION

1. Complete motor data: HP, volts, amperes, rpm, phase, power factor, Hz, locked rotor amperes, full load DC amperes, excitation volts, maximum locked time at zero speed.
2. Application data (including any unusual service conditions) and $100 \%$ synchronous motor data MUST accompany each other.

## PRICING INFORMATION

1. Enter order on AMP
2. Discount Symbol: SYNCH

## PRODUCT DESCRIPTION

## Slipsyn Automatic Field Application Panel with Static Exciter

Automatic Field Application Control The field application panel provides Slipsyn automatic field application identical to that in complete synchronous motor starters. It is designed for use in conjunction with a primary line closing device such as a circuit breaker or a linestarter. Automatic synchronization is provided by the Mark V Solid-State Field Panel which assures application of the field at proper motor speed and at a favorable angular position of stator and rotor poles. As a result, line disturbance resulting from synchronization is reduced and effective motor pull-in torque is increased. Application of DC power to motor field windings is accomplished without mechanically moving parts, and the device features a "soft-turn-on" circuit when applying DC field voltage to the motor field.
This unit also comes standard with a VAR/ PF/DC field current regulator. The VAR regulator controls the AC reactive current flow out of the motor during varying load
conditions by varying the motor field excitation. The PF regulator controls the motor power factor under varying load conditions by varying the motor field excitation. The DC field current regulator compensates for the motor field resistance as the motor field heats up by increasing the motor field voltage. $\boldsymbol{C}$
The solid-state Mark V Slipsyn controller will provide the following protective functions:
A. Locked rotor protection
B. Incomplete sequence
C. Failure to synchronize
D. Fuse failure (Mark V)
E. Pull out protection
F. DC current failure protection

This control is available in a NEMA 1 floor mounted enclosure or an AMPGARD type cell construction. In both designs, a hinged front door with externally ventilated heat sinks will be provided.

The cabinets will contain the following equipment:
1 - Step down exciter transformer 3 phase (TX)
3 - Primary fuses (3 PRI)
3 - Secondary fuses (3 Sec)
1 - SCR power supply panel
1 - Synchronous control board (CB)
3 - MOV for surge protection (MOV)
1 - Starting and field discharge resistor (when size permits; otherwise provided for separate mounting)
1 - AC ammeter, panel type (AM)
1 - DC ammeter, panel type (DC AMM)
4 - Potentiometer (P2, P3, P4, P5)
1 - Field failure relay (FLA)
1 - Incomplete SEO Timer (FLT)
1 - Start Timer (SYTR)
1 - MP 3000 w/o RTD module
1 - DP 4000
1 - VAR/PF/DC field current board (CB1)
1 - Auto/manual selector switch (SSI)
1 - Timer (AUTO)
1 - Pullout relay (PO)

## GENERAL INFORMATION

## Modifications

Modification	List Price   Addition
Enclosures	
a. NEMA 1, with gasketed door .......................................................................................................................................................................................................................................	

## Omit Enclosure

Floor Mounted
Deduct
375
Space Heater ................................................................................................................... 140
Thermostat for Space Heater ........................................................................................... 100
Voltmeter DC — Panel Type............................................................................................ 480
Voltmeter DC — Switchboard Type....................................................................................... 680
Ammeter DC — Switchboard Type (In lieu of Panel Type) .............................................. 200
For additional modifications, refer to PL 8810.

## CUSTOMER REQUIRED INFORMATION

1. Complete motor data: HP, volts, amperes, rpm, phase, power factor, Hz , locked rotor amperes, full load DC amperes, excitation volts, maximum locked time at zero speed.
2. Application data (including any unusual service conditions) and $100 \%$ synchronous motor data MUST accompany each other.

## PRICING INFORMATION

1. Enter order on AMP
2. Discount Symbol: SYNCH

List Price				
Solid-State Slipsyn Field Panel With Static Exciter NEMA 1 Enclosure				
Max.   Field   Amps   DC	Primary Motor Volts, 3PH, 60 Hz			
	Low Voltage $230 / 460,3 \mathrm{PH}, 60 \mathrm{~Hz}$		Medium Voltage 2300/4160, 3PH, 60 Hz	
	DC Field Volts		DC Field Volts	
	125	250	125	250
22	\$34230	\$38410	\$37650	\$40670

## DIMENSIONS IN INCHES

Approximate					
Open Cell		Floor Mounted - NEMA 1			
Height	Width	Depth	Height	Width	Depth
45	36	30	90	36	30

[^28]\[

$$
\begin{aligned}
& \text { SYNCHRONOUS MOTOR CONTROL } \\
& \text { Relay and Solid-State Slipsyn }{ }^{\circledR} \text { Control }
\end{aligned}
$$
\]

## CUSTOMER REOUIRED INFORMATION

## Identifying Renewal Parts

Renewal parts data for the entire history of synchronous control is contained in RPD 8855S, which provides the proper identification of standard parts which may be required under normal operation:

1. Identify the design of synchronous control (Relay, Mark I, Mark II or Mark V Slipsyn) from the synchronous panel nameplate.
2. Now that you have identified the type of the synchronous control, determine from the photographs in RPD 8855S which parts are required and identify them by style number.
3. Since many starters are supplied to meet specific customer requirements, other parts not shown in 8855S might occasionally be needed. Price and availability of parts not listed may be
obtained by contacting Aftermarket Products Asheville, NC. Provide a complete description of the part, along with the complete data on the starter nameplate which is found in the low voltage area. Be sure to include the following: ratings, shop order and diagram reference.

## FURTHER INFORMATION



## PRICING INFORMATION

Product	Date	Literature   Number	Description
Synchronous	Mar. 93	PL 8810   VISTA/VISTALINE	Price List for Complete Synchronous AMPGARD Control   Discount Symbol: SYNCH

The most complete medium voltage starter family in the industry. AMPGARD

# STARTERS (MEDIUM VOLTAGE) AMPGARD Assemblies, Retrofit Kits and Renewal Parts 

PRODUCT DESCRIPTION


## PRODUCT HISTORY

## Originally a Westinghouse Product

The AMPGARD starter line originated in the early 1940s and has undergone two major design changes and one major evolution.
Prior to the introduction of the AMI, the AMPGARD was simply a fused motor starter in a cabinet with no disconnect switch. It was built in the early 1940s through the 1950s. There was no standard design.
The AMI AMPGARD (1950s through 1960s) was a standardized design. The AMI was one starter per structure de-
signed to cover all ratings and incorporated a disconnect switch (Iso-Switch) in the upper compartment and either an air or oil contactor in the bottom compartment.
In the mid 1960s, a full line of starters was introduced - tailored to the horsepower requirement of the motor and utilizing the LF air contactor. The starter incorporated the Iso-Switch and power fuses into the same cell as the air contactor. Starters were one, two or three high per structure, depending on rating required. The ratings of the LF AMPGARD were 200, 400 and 700A.

PRODUCT HISTORY TIMELINE


NOTE: Manufacturing moved from Buffalo, NY to Asheville, NC in 1978.

## GENERAL INFORMATION

Typical Schematic Diagram Reduced Voltage Autotransformers with IQ 1000 II


Typical Schematic Diagram FVNR (Type A Thermal Overload Relay)


# STARTERS (MEDIUM VOLTAGE) <br> General Information 

## GENERAL INFORMATION, Continued

Typical Schematic Diagram Reduced Voltage Autotransformer (Type A Thermal Overload Relay)


## GENERAL INFORMATION, Continued

SJO 400A OEM Vacuum Break Contactors

> All dimensions are in inches.
> Weight - 70 lbs. approx.
> Refer to SA-11244A for ratings.



Fig. 1 - Wiring Diagram, Single DC Operated Solenoid (Latch)


Fig. 2 - Wiring Diagram, Without Latch

## GENERAL INFORMATION, Continued




Fig. 1 - Wiring Diagram, Single DC Operated Solenoid (Latch)


Fig. 2 - Wiring Diagram, Without Latch

## 200 STARTERS (MEDIUM VOLTAGE) General Information

## GENERAL INFORMATION,Continued

Old Catalog System - Contactors Only


Current Catalog System - Contactors Only


Old Catalog System - Starters (with Isolating Switch, Power Fuses, Contactor, etc.)


Current Catalog System - Starters (with Isolating Switch, Power Fuses, Contactors, etc.)


## TECHNOLOGY UPGRADES

## AMPGARD Selection Table

Installed Equipment	Vintage	AMPGARD Aftermarket Products Available							Reference Material
		Add-on Structure $\mathbf{C}$	Cell(2)	Isolation Switch(3	Contactor4	Parts©	Vacuum Retrofits©	Tune-Up Service $\boldsymbol{O}$	
AMPGARD OIL AMPGARD AH AMPGARD AMI AMPGARD 25 L2 AMPGARD 50L2 AMPGARD 50V4 AMPGARD 25/50 L4 AMPGARD 25/50 L7 AMPGARD V202 AMPGARD S202 Non-W MV Starters Synchronous Control	$\begin{aligned} & 1945-1957 \\ & 1948-1957 \\ & 1957-1970 \\ & 1962-1990 \\ & 1963-1981 \\ & 1972- \\ & 1966-1989 \\ & 1969-1989 \\ & 1982 \\ & 1987 \\ & 1950- \\ & 1950- \end{aligned}$	$\stackrel{\bullet}{\bullet}-$		$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \end{aligned}$			$\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$	$\stackrel{\bullet}{\bullet}$	RPD8855C   RPD8855C   RPD8855C   RPD8855A   RPD8855A, C   RPD8855A,V,C   RPD8855A, C   RPD8855A, C   RPD8855C, V   RPD8855C,V   RPD8855C   CAT 26000,   RPD8855S

NOTE: 8855V updated and expanded RP.48J.01.T.E, March 2000.
(1) Add-on structures, air or vacuum.
(2) Complete cell including frame, Iso switch, vacuum or air contactor, and all components to complete a starter.
(3) Isolation switch only.

4 Complete contactor, air or vacuum, manufactured with all new parts and per original specs.
© New, genuine parts per original specs. Recommended spare parts.
© Vacuum retrofits - OIL, AH, AMI (typ. one high starters) Complete cell retrofit

50L2
50V4, 25/50L7
25/50L4
25/50L4
Synchronous
Non-Westinghouse Starters

Vacuum retrofit kit
Complete cell retrofit
Direct replacement vacuum contactor
Mark V solid state control retrofit
Complete cell retrofit
(6) Asheville, NC contactor tune-up service for air and vacuum break contactors.

## PRODUCT DESCRIPTION

## Originally a Westinghouse Product

The AMI design AMPGARD starter, introduced in 1957, was a complete line of starters for magnetic control of squirrel cage, wound rotor and synchronous motors. The AMI was the first front accessible starter and was available with air break (type H) or oil immersed (type K) contactors. The standard AMI for full voltage starting was 30 inches deep, 38 inches wide and 90 inches high. All components were accessible from the front through three doors opening into separate compartments. The top compartment enclosed the isolating switch and current limiting power fuses. The middle compartment enclosed the AC low voltage control panel, and behind it, the CTs. The bottom compartment housed the contactor.


As a note, the pre-AMI design was a rear access assembly with two compart-ments- current limiting fuses on the top and the contactor below.

## Ratings (maximum)

400A
1500 HP @ 2500V; 2500 HP @ 5000V
Chronology
The AMI design AMPGARD was manufactured from 1957 until 1970 at the General Control Division in Buffalo, NY and Westinghouse Manufacturing and Repair ( $M \& R$ ) facilities around the country. The air contactor was available through 1966. The oil contactor was available through 1970.

## REPLACEMENT CAPABILITIES

Synchronous Control Retrofit Using Mark V Solid-State Control
To include replacing existing relay type synchronous control with state-of-the-art Solid-State Mark V control. Refer to
pages 186-189, 192 of this publication for synchronous motor field control panels.

## Add-on Structure

New add-on vacuum structures as an extension to the AMI type structure may
be connected directly to the main bus without a transition section using special bus links. Contact your local Cutler-Hammer Field Sales Office.

## TECHNOLOGY UPGRADES

## AMI Starter Retrofits

Standard AMI 36-inch Wide Vacuum Starter Retrofit Kit
This kit is used to include a standard full voltage non-reversing vacuum starter in a welded cell assembly with horizontal top barriers and deep flanged doors. It will retrofit the AMI designs that are at least 36 inches wide and 30 inches deep. The cell is 45 inches high.
Refer to RPD 8855C, for more details.
Style No. 2147A95G41

## Narrow AMI 30-inch Wide Vacuum

## Starter Retrofit Kit

This kit is used to include a standard full voltage non-reversing vacuum starter in a welded cell assembly with horizontal top barriers and deep flanged doors. It will retrofit the AMI designs that are at least 30 inches wide and 30 inches deep. The cell is 58 inches high.
Refer to RPD 8855C, for more details.
Style No. 2147A95G42


## IO Retrofit Kits



## IQ Surface Mounting for IQ Products

 Includes drilling for (one) IQ device and (three) 30 mm devices. Supplied with or without IQ and PB devices. Refer to RPD 8855C for more details.
## IQ Floor Mounted Enclosure for Mounting

 10 ProductsIncludes standard AMPGARD structure construction to be used as a line-up
extension. Each $10-$ inch wide, $90-$ inch high and 30 -inch deep section comes with (two) doors, each with a works-in-a-drawer drawout panel. Each door has (three) standard IO cutouts with device panels. Supplied with or without IQ and PB devices. Refer to RPD 8855 C for more details.

## PRODUCT DESCRIPTION

## Originally a Westinghouse Product

The LF air-break design AMPGARD starter was introduced in 1962. The LF design introduced the component-to-component circuitry concept. This design greatly reduced the current-carrying connections and allowed significant space savings.
The 25L2 and 50L2 floor mounted NEMA 1 starters were 26 inches wide $\times 30$ inches deep $\times 90$ inches high. These 200 ampere starters could have been mounted two or three high per structure, respectively.
The 25L4 and 50L4 floor mounted NEMA 1 starters were 36 inches wide $\times 30$ inches deep $\times 90$ inches high. These 400 ampere starters could have been mounted two high per structure.
The 25L7 and 50L7 floor mounted NEMA 1 starters were 40 inches wide $\times 30$ inches deep $\times 90$ inches high. These 700 ampere starters were mounted one per vertical structure.


Ratings (Max.)
200A, 400A, 700A
2500 HP @ 2500V; 4500 HP @ 5000V

## Chronology

The LF air-break design starter was introduced in the early 60 s, first with the 2500 V , 200 ampere starter, then with the 5000 V design and the 400 and 700 ampere ratings. The starters were built in Buffalo, NY until the operation was transferred to Asheville, NC in 1978, where it was obsoleted in the late 1980s.

## REPLACEMENT CAPABILITIES

## Renewal and Replacement Parts for LF Design Starters

Refer to RPD 8855A for identifying the parts needed. Refer to Price/Style Number Index 8855 for prices by style number and old style number-to-new style number cross reference information.
Among the parts available are:

- Current and Potential Transformers
- Control Transformers
- Fuses
- O/L Heaters
- ADM Switches
- Enclosure Parts

Synchronous Control Retrofit Using
Mark V Solid-State Control
Replace existing relay type synchronous control with state-of-the-art Solid-State Mark V control. Refer to pages 186-189, 192 of this publication for synchronous motor field control panels.

## Add-on Vacuum Starter Structures

New add-on vacuum structures as an extension to the LF type starter assembly may be connected directly to the main bus without a transition section. Contact your local Cutler-Hammer Field Sales Office for more information.

Replacement Air Contactors
New replacement air break contactors are available for the following ratings: 25L2, 25L4, 50L4, 25L7, 50L7.


Replacement 50L4 Contactor

## Factory Repair/Refurbishment of

 LF and SJ Contactors - Tune-up Service Cutler-Hammer offers a factory repair and refurbishment service for Westinghouse AMPGARD type LF and SJ mediumvoltage contactors. This is a factory service using the original manufacturing techniques, tooling, design and test specifications. All replacement components are genuine new Cutler-Hammer replacement parts. No refurbished, used or rebuilt parts are used. Contact your local Cutler-Hammer Field Sales Office for more information.
## 204 STARTERS (MEDIUM VOLTAGE) <br> LF Air AMPGARD Assemblies, Retrofit Kits and Renewal Parts

## TECHNOLOGY UPGRADES, Continued

## IO Retrofit Kits

## IQ Floor Mounted Enclosure

This kit is for mounting IQ family products. Includes standard AMPGARD structure construction to be used as a line-up extension. Each 90 -inch high $\times 30$-inch deep section comes with two doors, each with a works-in-a-drawer drawout panel. Each door has a maximum of three standard IQ cutouts with device panels. Supplied with or without IQ and PB devices. Refer to RPD 8855C for more details. (Photo below shows two auxiliary sections with optional bus enclosure, IQ and PB devices.)


Description	Style Number
Auxiliary section with cutouts	2147A95G35
only. 12-inch wide $\times 30$-inch	
deep $\times 90$-inch high (Does not	
include bus enclosure, IQ or PB	
devices)	

## IO Surface Mount

For mounting IQ family products. Includes drilling for one 10 device and three 30 mm devices. Supplied with or without IQ and PB devices. Refer to RPD 8855C for more details.


Slanted Enclosure for High Structure Mounting

## IO 1000 II and Data Plus II Retrofit Kit

(Refer to picture on page 206.) This kit includes parts necessary to retrofit IQ products into AMPGARD starters very easily. The IO devices are included and are prewired to terminal blocks on the drawout panel.
Included: Typical starter schematics, 400A low-voltage door with three-device panels Works-in-a-drawer panel with terminal blocks
IO 1000 II (without RTD) IQ Data Plus II (with MWH counter)
Style No. 2147A95G37

## IO 2000 Retrofit Kit

IQ 2000 Models A and B can be retrofitted depending on functions needed. IQ 1000 II is supplied for current protection. IQ 1000 II and Data Plus II are supplied for current and voltage protection. These kits include new low voltage control sections. Contact your local Cutler-Hammer Field Sales Office for more information.

## TECHNOLOGY UPGRADES, Continued

## LF Starter Retrofit Kits



Front View


Drawout Design
400A Air to Vacuum Starter Retrofit Kit Complete full voltage, non-reversing, induction, vacuum AMPGARD motor starter, 400A, 7200 V max., for mounting in existing 36 -inch wide enclosure. Includes main contactor, isolation switch, three power fuses, IQ 1000 II motor protection without RTD module, (3) current transformers, vertical bus, high and low voltage doors, and welded cell assembly for mounting in existing 36 -inch wide enclosure.
Refer to RPD 8855C for more details.
Style No. 2147A95G01 (Slideout)
Style No. 2147A95G02 (Rollout)

400A Air to Vacuum Contactor Retrofit Kit
This kit is for retrofitting an existing 400A LF air contactor with the directly interchangeable 400A SJA contactor.
Refer to RPD 8855V for further information.
Complete contactor 2300/120V, 750VA transformer.
Style No. 2147A45G01
Complete contactor 2300/120V, 2 kVA transformer.
Style No. 2147A45G02
Complete contactor 4160/120V, 600VA transformer.
Style No. 2147A45G03
Complete contactor 4160/120V, 2 kVA transformer.
Style No. 2147A45G04


700A Air to Vacuum Conversion Kit This kit will convert an existing fullvoltage non-reversing 700A air break starter to vacuum rated, either 450A maximum full-load current or 720A maximum full-load current.
Refer to RPD 8855C for more details.
Style No. 2147A95G31 450-630A max. Style No. 2147A95G32 720A max.


50L2 Air-to-Vacuum Retrofit Kit
This kit replaces the out-of-production 5000 volt, 200 ampere air break contactor with an SJ vacuum contactor, for starters built after 1974 with Iso-Switch shutter mechanism mounted in the cell. The customer keeps the existing starter cell and isolation switch and modifies the cell to accept the SJ contactor which is mechanically interlocked with the isolation switch. The rating remains 200 ampere.
Refer to RPD 8855C for more details.
Style No. 2147A95G30 200A max.
Contact your local Cutler-Hammer Field Sales Office for 320 ampere design and pre-1974 50L2 retrofit kits.

## PRODUCT DESCRIPTION

## Originally a Westinghouse Product

The SJ Vacuum Contactor was designed and engineered specifically for use in AMPGARD starters. The contactor is a low-chop design that permits application matching of the starter to the motor for $2200 \mathrm{~V}-7200 \mathrm{~V}$ and ratings of 400 A and 800A. The 400A contactor is available in both slide-out and roll-out configurations. The 800A contactor is available in the rollout design only. The SJ AMPGARD is a horsepower specific starter design that uses the component-to-component circuitry concept. The full-voltage 400A rating in a NEMA 1 enclosure is 36 inches wide $\times 30$ inches deep $\times 90$ inches high. These 400A starters are mounted one or two high per structure. The 800A rating in an enclosure is 40 inches wide $\times 30$ inches
deep x 90 inches high in a one-high construction for a full voltage starter.

## Ratings (max.)

400A, 800A
3000 HP @ 2500V; 5500 HP @ 5000V; 8000 HP @ 7200V

## Chronology

The SJ vacuum design AMPGARD starter was introduced in 1982 with the 400A rating. The 800A rating followed in 1987. With the introduction of the vacuum contactor, the air break starter has been gradually phased out and is rarely specified in an assembly. The starters are built in Asheville, NC.


## REPLACEMENT CAPABILITIES

## Renewal and Replacement Parts for

 SJ Design StartersRefer to RPD 8855V or RP.48J.01.T.E for identifying the parts needed. Refer to Price List/Style Number Index 8855 for prices by style number and old style number-to-new style number cross-reference information.

## Synchronous Control Retrofit Using

 Mark V Solid-State ControlReplace existing relay type synchronous control with state-of-the-art solid-state Mark V control. Refer to pages 186-189, 192 of this publication for synchronous motor field control panels.

Add-on Vacuum Starter Structures
New add-on vacuum structures as an extension to the $S J$ type structure may be connected directly to the main bus without a transition section. Contact your local Cutler-Hammer Field Sales Office.

Replacement Vacuum Contactors
New replacement vacuum break contactors are available for all SJ model ratings.

## TECHNOLOGY UPGRADES

## Vacuum Starter Retrofits

400A Vacuum Starter Retrofit Kit
Complete full-voltage, non-reversing, induction, vacuum AMPGARD motor starter, 400A, 7200 V max., for mounting in existing 36 -inch wide enclosure. Includes main contactor, isolation switch three power fuses, IQ 1000 II motor protection without RTD module, three current transformers, vertical bus, high- and low-voltage doors, and welded cell assembly for mounting in existing 36 -inch wide customer enclosure. Refer to RPD 8855C for more details.
Style No. 2147A95G01 (Slideout)
Style No. 2147A95G02 (Rollout)

## IQ Retrofit Kits

IO 1000 II and Data Plus II Retrofit Kit This kit includes parts necessary to retrofit IO products into AMPGARD starters very easily. The IO devices are included and are pre-wired to terminal blocks on the drawout panel.
Included: Typical starter schematics, 400A Low-voltage door with three device panels
Works-in-a-drawer panel with terminal blocks
IQ 1000 II (without RTD)
IQ Data Plus II (with MWH counter)
Style No. 2147A95G37


Low Voltage Panel Completely Extended
IQ 1000 II/Data Plus II Retrofit

## CUSTOMER REOUIRED INFORMATION

## Procedure for Identifying Renewal Parts

## AMI

The AMI is an obsolete design with very few parts available. Retrofitting an AMI starter is possible with up-to-date AMPGARD components. Refer to p3age 202 for your options or refer to the Asheville, NC Aftermarket Team for more information.
Limited parts are available as follows: 1) AMI Iso-Switch - transferred to Phoenix Elec., Boston, MA 617-821-0200 Type H and K contactors - some parts available through Homewood Electromechanical Parts and Products Center, Pittsburgh, PA 412-665-2700.

## LF Air and SJ Vacuum

We have published AMPGARD renewal parts in the RPD 8855 series of books which provide the proper identification of standard parts which may be required. All of the complete contactors, isolation switches and subassemblies that are available are shown photographically in kit form. All of the parts shown in the kits are compatible with the design from 1962 to the present (or noted otherwise). The method of identifying parts is simple. Using the guidelines in the correct RPD 8855 book, identify the style of the complete contactor and determine from the photographs in the RPD which parts are required and identify them by style number.

Since many starters are supplied to meet specific customer requirements, other parts not shown in the RPD might occasionally be needed. Price and availability of parts not listed may be obtained by contacting the Asheville, NC Aftermarket Team. Provide a complete description of the part, along with the complete data on the starter nameplate which is found in the low-voltage area. Be sure to include ratings, shop order and diagram reference.


Renewal Parts
Cross Reference
Price List/Style Number Index 8855


Renewal Parts Data 8855A
AMPGARD, Air Break 200, 400, 700A


Renewal Parts Data 8855C
AMPGARD, Electrical
Components


Renewal Parts Data
8855V
AMPGARD, Vacuum Break 400, 800A


Renewal Parts Data
8855S
Slipsyn - Synchronous
Field Control

## FURTHER INFORMATION

Product	Date	Literature Number	Description
AMPGARD	Aug. 940	PL/SNI8855	AMPGARD Renewal and Replacement Parts Cross Reference and Price List
	Sept. 881	RPD8855A	Renewal/Replacement Parts for Air Break 200, 400, 700A
	Aug. 940	RPD8855V	Renewal/Replacement Parts for Vacuum Break 400, 800A
	Mar. 00	RP.48J.01.T.E	Renewal/Replacement Parts for Vacuum Break 400, 800A
	Aug. 940	RPD8855C	AMPGARD Starter Retrofit Kits, IQ Retrofit Kits
	Apr. 910	RPD8855S	Renewal Parts Data Slipsyn Synchronous Control
General Information	Oct. 89	DB8850	Descriptive Bulletin for AMPGARD Starters
		SA-11841	Sales Aid AMPGARD Contactors - Air to Vacuum Retrofit
		SA-LEL012	Sales Aid Tune-up Service - LF Contactor
		SA-LEL013	Sales Aid Tune-up Service - SJ Contactor

## PRICING INFORMATION

Product	Date	Literature   Number	Description
AMPGARD Parts	Aug. 940	PL/SNI8855	AMPGARD Renewal and Replacement Parts Cross Reference and Price List
AMPGARD Assemblies		PL8810	Price List for AMPGARD Assemblies
AMPGARD Parts		VISTA/VISTALINE	Discount Symbol AMP-RP
AMPGARD Assemblies		VISTA/VISTALINE	Discount Symbol AMP

## Low Voltage MCCs

PRODUCT DESCRIPTION


F2100

Nearly fifty years ago, Cutler-Hammer and Westinghouse introduced the low voltage Motor Control Center (MCC) assembly, enabling the group mounting of low voltage ( 600 V class) electrical controls. This allowed for supervision and safe operation of motor starter units, feeder tap units and auxiliary equipment in a flexible structure arrangement at a centralized location.
The foundation for today's MCCs is a modular plug-in combination motor controller assembly with components of proven electrical and mechanical integrity. These assemblies are enclosed in metal structures which prevent accidental contact with live electrical parts.

The MCC structure consists of structural steel, horizontal and vertical wireways for conduit and load cable entry and exit and vertical and horizontal bus systems for distributing power throughout the MCC. The starter unit consists of a rugged steel shell (wrapper) for mounting the unit components, a combination motor starter with factory wired control, a handle mechanism for on/off operation and a rigid unit door.

## PRODUCT HISTORY

Group mounted motor control was originally developed by Westinghouse in 1937. What came to be known as motor control centers were built in 14 manufacturing and repair shops around the country, including a plant in Chicago, IL which opened in 1941. In 1963, Chicago became the primary MCC manufacturing plant. The Fayetteville, NC operation was opened in 1980 to relieve some of Chicago's volume. The Fayetteville plant was expanded in 1984 and the Chicago operation was closed. Motor control centers are currently manufactured in Fayetteville and in eight service centers around the country.
The Westinghouse plug-in starter design for group mounted control (called motor control centers) was first introduced in 1937, and in 1950 became known as the Type 11-300 motor control center and utilized the 11-200 motor starter. The Type W MCC replaced the 11-300 in 1965, first using the 11-200 starter and then moving to the A200 starter. The 5 Star was introduced in

1975 to replace the Type W. It, too, used the A200 motor starter. The Series 2100 updated the 5 Star design in 1987, but is mechanically compatible with the 5 Star. The ADVANTAGE MCC was introduced as a sister product to the Series 2100 in 1991 with the introduction of the ADVANTAGE starter. It was also mechanically compatible with the 5 Star. With the merger of CutlerHammer and Westinghouse Electric Distribution and Control Business Unit in 1994, a new hybrid motor control center line was introduced. It was called the F2100 MCC and featured the Freedom starter.
The Cutler-Hammer plug-in starter design motor control center was introduced in the late 1950s as the 9800 Series Unitrol. These motor control centers used the 3 -Star type motor starter. In 1968, the Citation line of starters replaced the 3-Star type in the 9800 MCC. The motor control center was totally redesigned around the Citation starter in 1972 and was called the

F10 Unitrol. The next generation of MCC was introduced in 1989, using the Freedom line of starters, called the Freedom Unitrol. Freedom Unitrol was discontinued in 1994 and replaced with the Cutler-Hammer F2100 motor control center.
Cutler-Hammer motor control centers were originally built in Milwaukee, WI. In 1962, manufacturing moved out of Milwaukee to plants in Atlanta, GA, Bethlehem, PA, Chicago, IL, Los Angeles, CA, Dallas, TX, San Francisco, CA, and Cleveland, TN. In 1972, these plants consolidated to Atlanta, Bethlehem, Chicago, Dallas, and Los Angeles. In 1984, another consolidation left manufacturing in only Atlanta and Los Angeles. With the introduction of the Freedom starter in 1989, all manufacturing was moved to Atlanta. After the merger all motor control center manufacturing moved to the Fayetteville, NC location.

PRODUCT HISTORY TIMELINE


## GENERAL INFORMATION

## Procedure for Identifying Motor Control Center Types

In the event that the nameplate is missing, it is possible to identify the MCC design by the type of handle mechanism, starter type, bucket width, and door width.

MCC Type	Type of Handle   Mechanism	Starter Type	Bucket Width   (Inches)	Door Width   (Inches)	Page   Number
$11-300$	Rotary	$11-200$ Life Line Type N	$15-3 / 4$	210	
9800	Rotary	3 Star	$16-1 / 8$	20	
Type W	Slider	A200 or 11-200	$11-3 / 4$	$19-3 / 8$	
F10	Slider	Citation	14	$13-3 / 8$	212
Freedom Unitrol				$14-3 / 4$ w/Wireway	
5 Star/Series 2100	Lever	Freedom Series	$19-1 / 2$ w/o Wireway		
ADVANTAGE	Lever	A200	$13-3 / 8$	$15-1 / 2$	
F2100	Lever	ADVANTAGE	$13-3 / 4$	$15-5 / 8$	214



## PRODUCT DESCRIPTION

## Originally a Westinghouse Product

Introduced in 1937, Westinghouse manufactured the 11-300 MCC through 1965 and it was available as match and line-up until 1974. It used standard structures each 20 inches wide, $90-3 / 8$ inches high and either 20-1/4 inches or 12 inches deep for front mounted and 20-1/4 inches for back-toback mounting. Vertical sections could be bolted together to form a single line-up with continuous horizontal bus and open horizontal wireways.
Unit height was measured in either $9-1 / 3$-inch or 14 -inch increments up to a maximum of 70 inches of usable vertical space. ANSI 61 light gray enamel was used on all structural parts. The unit door hinged on the right and covered the entire width of the structure.
The 11-300 starter unit was most easily recognized by the slide plate type of handle mechanism. Bus and support systems were typically braced to withstand fault currents of $25,000 \mathrm{~A}$.

Maximum Ratings:
3-phase, 600V, $600 \mathrm{HP}, 2500 \mathrm{~A}$ bus


Unit with A200 Starter


## REPLACEMENT CAPABILITIES

Replacement Starter Units
Replacement starter cell units are available for all plug-in MCC designs. A complete unit for adding to an existing MCC includes a unit door, divider pan, and all necessary mounting hardware. Features of the replacement unit include:

- Size 1-5 starter units
- UL labeled
- Series C disconnect device
- A200 or ADVANTAGE starter
- New tin-plated copper stab assembly
- New door, handle mechanism and hardware


Unit with ADVANTAGE Starter

Don't forget the option to upgrade to ADVANTAGE.

- Solid-state
- Communication capability
- Reduced coil wear
- No heater
- Smaller size
- Built-in over-current and ground fault protection


## Replacement Feeder Units

Replacement feeder cell units are available for all plug-in MCC designs. A complete unit for adding to an existing MCC includes a unit door, divider pan and all necessary mounting hardware. Features of the replacement unit include:

- Feeder breakers and fusible switches through 400A
- UL labeled
- Series C disconnect device
- New tin-plated copper stab assembly
- New door, handle mechanism and hardware


11-300 Dual Feeder

## PRODUCT DESCRIPTION

## Originally a Cutler-Hammer Product

## Introduced in 1956, the 9800 was

Cutler-Hammer's initial offering in the motor control center product grouping. The door of the unit measured 19-3/8 inches wide and the bucket width measured 16-1/8 inches. Unit height was measured in $9-1 / 3$-inch and 14 -inch increments. The MCC did not utilize a wireway.
ANSI 49 was applied to the units, structural framework, roof, sidesheets, and all exterior doors.
9800 starter units were originally supplied with a 3-Star starter and a rotary handle mechanism. Replacements today utilize the newer Citation starter and a slider handle mechanism and new door. The rotary handle mechanism is no longer available. Bus and bus systems were typically braced to withstand fault currents of $25,000 \mathrm{~A}$.

## Maximum Ratings:

3 -phase, $600 \mathrm{~V}, 100 \mathrm{HP}, 2500 \mathrm{~A}$ bus


Unit with Citation Starter


## REPLACEMENT CAPABILITIES

## Replacement Starter Units

Replacement starter cell units are available for all plug-in MCC designs. A complete unit for adding to an existing MCC includes a unit door, divider pan, and all necessary mounting hardware. Features of the replacement unit include:

- Size 1-4 starter units
- UL labeled
- Series C disconnect device
- Citation, Freedom or ADVANTAGE starter
- New tin-plated copper stab assembly
- New door, handle mechanism and hardware


[^29]Don't forget the option to upgrade to ADVANTAGE.

- Solid-state
- Communication capability
- Reduced coil wear
- No heater
- Smaller size
- Built-in over-current and ground fault protection


## Replacement Feeder Units

Replacement feeder cell units are available for all plug-in MCC designs. A complete unit for adding to an existing MCC includes a unit door, divider pan and all necessary mounting hardware. Features of the replacement unit include:

- Feeder breakers and fusible switches through 400A
- UL labeled
- Series C disconnect device
- New tin-plated copper stab assembly
- New door, handle mechanism and hardware


9800 Feeder Unit

## 212 MOTOR CONTROL CENTERS Type W

## PRODUCT DESCRIPTION

## Originally a Westinghouse Product

Manufactured from 1965 to 1975, this Westinghouse MCC used standard structures each 19 inches wide, 90 inches high, and either 15 inches or 20 inches deep for front mounted or 20 inches deep for back-to-back mounting. Vertical sections were bolted together forming a single line-up with continuous horizontal bus. Unit height is measured in 6-inch increments up to a maximum of 72 inches of usable vertical space. Starter units are 13-1/2 inches wide.
A two-tone light/dark enamel paint system was used with an ANSI 70 light gray applied to the structural framework and cover plates. A dark gray was used for unit and wireway doors.
The Type W starter units are easily recognized by their sliding handle mechanism, the MC Motor Control type. Bus and bus support systems were typically braced to withstand fault currents of $22,000 \mathrm{~A}$.

Maximum Ratings:
3 -phase, $600 \mathrm{~V}, 400 \mathrm{HP}, 2500 \mathrm{~A}$ bus

Unit with A200 Starter



## REPLACEMENT CAPABILITIES

## Replacement Starter Units

Replacement starter cell units are available for all plug-in MCC designs. A complete unit for adding to an existing MCC includes a unit door, divider pan, and all necessary mounting hardware. Features of the replacement unit include:

- Size 1-5 starter units
- UL labeled
- Series C disconnect device
- A200 or ADVANTAGE starter
- New tin-plated copper stab assembly
- New door, handle mechanism and hardware


Unit with ADVANTAGE Starter

Don't forget the option to upgrade to ADVANTAGE.

- Solid-state
- Communication capability
- Reduced coil wear
- No heater
- Smaller size
- Built-in over-current and ground fault protection

Add-on MCCs
New F2100 or ADVANTAGE MCCs can be added to existing line-up through a transition section.

## Replacement Feeder Units

Replacement feeder cell units are available for all plug-in MCC designs. A complete unit for adding to an existing MCC includes a unit door, divider pan and all necessary mounting hardware. Features of the replacement unit include:

- Feeder breakers and fusible switches through 400A
- UL labeled
- Series C disconnect device
- New tin-plated copper stab assembly
- New door, handle mechanism and hardware


Type W Dual Feeder

## PRODUCT DESCRIPTION

## Originally a Cutler-Hammer Product

Introduced in 1972, this Cutler-Hammer MCC was available in both 16 inches wide (with wireway) and 20 inches wide (without wireway). Bucket width is 14 inches and replacement units are available with both designs. Unit height is measured in 6-inch increments.
ANSI 40 was applied to the units, structural framework, roof, sidesheets and all exterior doors.
The F10 MCC utilized the Citation starter and was identified by the slider type handle mechanism. Bus and bus support systems were typically braced to withstand fault currents of $42,000 \mathrm{~A}$.

Maximum Ratings:
3 -phase, $600 \mathrm{~V}, 150 \mathrm{HP}, 2000 \mathrm{~A}$ bus

Unit with Citation Starter



## REPLACEMENT CAPABILITIES

## Replacement Starter Units

Replacement starter cell units are available for all plug-in MCC designs. A complete unit for adding to an existing MCC includes a unit door, divider pan and all necessary mounting hardware. Features of the replacement unit include:

- Size 1-5 starter units
- UL labeled
- Series C disconnect device
- Citation, Freedom or ADVANTAGE starter
- New tin-plated copper stab assembly
- New door, handle mechanism and hardware


Unit with ADVANTAGE Starter

Don't forget the option to upgrade to ADVANTAGE.

- Solid-state
- Communication capability
- Reduced coil wear
- No heater
- Smaller size
- Built-in over-current and ground fault protection


## Add-on MCCs

New F2100 or ADVANTAGE MCCs can be added to existing line-up through a bus splice kit.

## Replacement Feeder Units

Replacement feeder cell units are available for all plug-in MCC designs. A complete unit for adding to an existing MCC includes a unit door, divider pan and all necessary mounting hardware. Features of the replacement unit include:

- Feeder breakers and fusible switches through 400A
- UL labeled
- Series C disconnect device
- New tin-plated copper stab assembly
- New door, handle mechanism and hardware


F10 Feeder Unit

## 214 MOTOR CONTROL CENTERS Freedom Unitrol

## PRODUCT DESCRIPTION

## Originally a Cutler-Hammer Product

Introduced in 1989, this Cutler-Hammer MCC had vertical structures that measured 20 inches wide, 91-1/2 inches high and either 15 inches or 20 inches deep. It allowed a 6-inch size 1 unit design.
ANSI 49 was applied to the units, structural framework, roof, sidesheets and all exterior doors.
The Freedom Unitrol utilized the Freedom starter and was identified by the slider type handle mechanism. Bus and bus support systems were typically braced to withstand fault currents of $42,000 \mathrm{~A}$ with the option to increase to $65,000 \mathrm{~A}$.

Maximum Ratings:
3-phase, 600V, $400 \mathrm{HP}, 2500 \mathrm{~A}$ bus


Unit with Freedom Starter


## REPLACEMENT CAPABILITIES

## Replacement Starter Units

Replacement starter cell units are available for all plug-in MCC designs. A complete unit for adding to an existing MCC includes a unit door, divider pan and all necessary mounting hardware. Features of the replacement unit include:

- Size 1-5 starter units
- UL labeled
- Series C disconnect device
- Freedom or ADVANTAGE starter
- New tin-plated copper stab assembly
- New door, handle mechanism and hardware


Unit with ADVANTAGE Starter

17
Don't forget the option to upgrade to ADVANTAGE.

- Solid-state
- Communication capability
- Reduced coil wear
- No heater
- Smaller size
- Built-in over-current and ground fault protection

Add-on MCCs
New F2100 or ADVANTAGE MCCs can be added to existing line-up through a bus splice kit.

## Replacement Feeder Units

Replacement feeder cell units are available for all plug-in MCC designs. A complete unit for adding to an existing MCC includes a unit door, divider pan and all necessary mounting hardware. Features of the replacement unit include:

- Feeder breakers and fusible switches through 400A
- UL labeled
- Series C disconnect device
- New tin-plated copper stab assembly
- New door, handle mechanism and hardware


Freedom Unitrol Feeder Unit

## PRODUCT DESCRIPTION

## Originally a Westinghouse Product

The 5 Star MCC was introduced by Westinghouse in 1975. The structure design was the basis for the Series 2100, ADVANTAGE and F2100 products later. The Series 2100 updated the 5 Star design in 1987 with higher ratings and newer components.
The vertical structures are normally 20 inches wide, 90 inches high, and 16 inches or 21 inches deep. Vertical sections may be bolted together forming a single lineup with continuous horizontal bus and open horizontal wireways. Unit height is measured in 6-inch increments up to a maximum of 72 inches of usable vertical space.
A two-tone light/dark enamel paint system is used for this design. ANSI 70 off white is applied to the structural framework and units. ANSI 61 gray is applied to the roof and side sheets and all exterior doors. Starter units are 13-3/4 inches wide.
The 5 Star/Series 2100 starter unit's handle mechanism is a gray toggle type handle with a black exterior mounting panel and is used on the ADVANTAGE and F2100 designs. Bus and bus support systems are typically braced to withstand fault currents of $42,000 \mathrm{~A}$ on the 5 Star and $65,000 \mathrm{~A}$ on the Series 2100.

Maximum Ratings:
3 -phase, 60V, $600 \mathrm{HP}, 2500 \mathrm{~A}$ bus


Unit with A200 Starter


## REPLACEMENT CAPABILITIES

## Replacement Starter Units

Replacement starter cell units are available for all plug-in MCC designs. A complete unit for adding to an existing MCC includes a unit door, divider pan and all necessary mounting hardware. Features of the replacement unit include:

- Size 1-5 starter units
- UL labeled
- Series C disconnect device
- A200 starter
- New tin-plated copper stab assembly
- New door, handle mechanism and hardware


[^30]Don't forget the option to upgrade to ADVANTAGE.

- Solid-state
- Communication capability
- Reduced coil wear
- No heater
- Smaller size
- Built-in over-current and ground fault protection

Add-on MCCs
New F2100 or ADVANTAGE MCCs can be added to existing line-up through a bus splice kit.

## Replacement Feeder Units

Replacement feeder cell units are available for all plug-in MCC designs. A complete unit for adding to an existing MCC includes a unit door, divider pan and all necessary mounting hardware. Features of the replacement unit include:

- Feeder breakers and fusible switches through 400A
- UL labeled
- Series C disconnect device
- New tin-plated copper stab assembly
- New door, handle mechanism and hardware


[^31]
## INTRODUCTION AND DESCRIPTION

## Originally a Westinghouse Product

Introduced in 1991 as a sister to the Westinghouse Series 2100 MCC , the ADVANTAGE starter design revolutionized the industry. It uses state-of-the-art technology to solve motor control application problems, such as coil burnout and contact chatter/welding.
The vertical structures are normally 20 inches wide, 90 inches high, and 16 inches or 21 inches deep. Vertical sections may be bolted together forming a single line-up with continuous horizontal bus and open horizontal wireways. Unit height is measured in 6 -inch increments up to a maximum of 72 inches of usable vertical space. A two-tone light/dark enamel paint system is used for this design. ANSI 70 off white is applied to the structural framework and units. ANSI 61 gray is applied to all exterior back sheets, side sheets and doors. Starter units are 13-3/4 inches wide and are interchangeable with the 5 Star and Series 2100 design.
ADVANTAGE starter unit's handle mechanism is a gray toggle type handle with a black exterior mounting panel and is used on the 5 Star/Series 2100 and Freedom 2100 designs. Bus and bus support systems were typically braced to withstand fault currents of $65,000 \mathrm{~A}$.

Maximum Ratings:
3 -phase, $600 \mathrm{~V}, 600 \mathrm{HP}, 2500 \mathrm{~A}$ bus


Unit with ADVANTAGE Starter


## REPLACEMENT CAPABILITIES

## Replacement Starter Units

Replacement starter cell units are available for all plug-in MCC designs. A complete unit for adding to an existing MCC includes a unit door, divider pan and all necessary mounting hardware. Features of the replacement unit include:

- Size 1-5 starter units
- UL labeled
- Series C disconnect device
- ADVANTAGE starter
- New tin-plated copper stab assembly
- New door, handle mechanism and hardware


Unit with ADVANTAGE Starter

## Device Panel Upgrade

While incorporating ADVANTAGE Starters, increase the information shown on the unit device panel with one or two of the ADVANTAGE Control Modules (ACM) available. These units fit into the standard device panel cutout and provide pushbutton, pilot light and metering functions with reduced wiring costs.
The device panel is hinged on a horizontal rod extending across the front of the unit. With the unit door open, loosening two captive retaining screws at the top of the panel and sliding it $1 / 2$ inches left permits it to swing down. This provides ready access to the rear of the panel and increased accessibility to the unit interior.


ADVANTAGE Device Panel with ACM and Metering Module

## Replacement Feeder Units

Replacement feeder cell units are available for all plug-in MCC designs. A complete unit for adding to an existing MCC includes a unit door, divider pan and all necessary mounting hardware. Features of the replacement unit include:

- Feeder breakers and fusible switches through 400A
- UL labeled
- Series C disconnect device
- New tin-plated copper stab assembly
- New door, handle mechanism and hardware


ADVANTAGE Feeder Unit

## INTRODUCTION AND DESCRIPTION

Cutler-Hammer introduced the F2100 in 1995.
The structure is based on the 5 Star, Series 2100 and ADVANTAGE MCC design. Vertical structures are normally 20 inches wide, 90 inches high, and 16 inches or 21 inches deep. Vertical sections may be bolted together forming a single line-up with continuous horizontal bus and open horizontal wireways. Unit height is measured in 6 -inch increments up to a maximum of 72 inches of usable vertical space.
A two-tone paint system is used for this design. ANSI 70 is applied to the structural framework and units. ANSI 61 gray is applied to the exterior and doors. Starter units are 13-3/4 inches wide with 4-5/8-inch wireways.
The Freedom starter is used in this design along with the HMCP motor circuit protector.
The F2100 starter unit's handle mechanism is a gray toggle type handle with a black exterior mounting panel and is used on the ADVANTAGE and 5 Star/Series 2100 designs. Bus and bus support systems are typically braced to withstand fault currents of $65,000 \mathrm{~A}$.

Maximum Ratings:
3 -phase, $600 \mathrm{~V}, 600 \mathrm{HP}, 2500 \mathrm{~A}$ bus


Unit with Freedom Starter


## REPLACEMENT CAPABILITIES

## Replacement Starter Units

Replacement starter cell units are available for all plug-in MCC designs. A complete unit for adding to an existing MCC includes a unit door, divider pan and all necessary mounting hardware. Features of the replacement unit include:

- Size 1-5 starter units
- UL labeled
- Series C disconnect device
- Freedom starter
- New tin-plated copper stab assembly
- New door, handle mechanism and hardware


[^32]
## Replacement Feeder Units

Replacement feeder cell units are available for all plug-in MCC designs. A complete unit for adding to an existing MCC includes a unit door, divider pan and all necessary mounting hardware. Features of the replacement unit include:

- Feeder breakers and fusible switches through 400A
- UL labeled
- Series C disconnect device
- New tin-plated copper stab assembly
- New door, handle mechanism and
- Solid-state
- Communication capability
- Reduced coil wear
- No heater
- Smaller size
- Built-in over-current and ground fault protection
hardware


F2100 Feeder Unit

## 218

## REPLACEMENT CAPABILITIES

## Replacement Parts

In addition to replacement units, a large number of replacement parts are available for each vintage.

## Examples:



For information on these and additional parts, refer to RPD 8991.
For parts not listed or shown in RPD 8991, contact your local Cutler-Hammer Field Sales Office.

## MCC Replacement Circuit Breakers

Cutler-Hammer Motor Control Center Replacement Circuit Breakers are newly manufactured and tested to the latest applicable standards at the Cutler-Hammer molded case circuit breaker plant in Beaver, PA. This plant has a long and well recognized tradition of product safety, integrity and quality.
All Motor Control Center Replacement Circuit Breakers are easily identified by the prefix "RMC" added to the out-of-production type circuit breaker catalog number they replace.

Out-of-Production   Circuit Breaker	MCC Replacement   Circuit Breaker
F	RMCF
HF	RMCHF
FA	RMCFA
HFA	RMCHFA

Motor Control Center Replacement Breakers do not have the same physical dimensions or mounting holes as the breakers they replace. Types RMCFA and RMCHFA are 6 inches in length and the breakers they replace, FA and HFA, are 6-1/2 inches in length. Types RMCF and RMCHF are 6 inches in length and the breakers they replace, F and HF , are $9-1 / 8$ inches in length. A mounting plate is provided with each breaker to resolve these differences, and must be installed to ensure a proper fit.

Technology Upgrades

## ADVANTAGE TECHNOLOGY RETROFITS



## EASY START ADVANTAGE STARTER



F2100 Easy Start EA Unit

The Easy Start EA
The Easy Start EA offers reduced voltage starting capability in a small, cool running package. The Easy Start EA uses SCRs to provide smooth, stepless acceleration for NEMA three-phase induction motors. Once the motor reaches full speed, an ADVANTAGE bypass contactor is automatically energized in parallel to the SCRs to handle the motor's continuous duty requirements. Available in current ranges from 45 to 135 amperes, the Easy Start EA is the smallest solid-state reduced voltage starter in the industry. Consult the factory for availability and dimensions in replacement motor control center units.


F2100 TVSS Unit

## Transient Voltage Surge Suppression MCC Units

A Transient Voltage Surge Suppression (TVSS) system is a hybrid MOV filter based suppression device that protects sensitive electronic equipment from damaging transients and electrical line noise. The TVSS is installed in parallel to the electrical circuits in a motor control center and provides clean power to the motor starting circuits. The TVSS will only react and draw (surge) current when the transient voltages or high frequency noise enters the motor starting circuit and exceeds the system's nominal operating voltage. Installed in a plug-in MCC unit, the TVSS maximizes performance by
minimizing cable runs to the bus system and saves "outboard" wall space and field installation costs. A TVSS MCC unit is available for all Cutler-Hammer and Westinghouse vintage MCCs. Consult the factory for further information.

## IO RETROFIT KITS

Each IQ Retrofit Kit includes the device selected, mounted and wired to terminal blocks in a new wrapper and door. Wiring diagrams and instruction book accompany each bucket for easy installation and operation.

IO Data Plus II ${ }^{\text {™ }}$


IQ 1000 II


The IQ 1000 II is a multifunctional, motor protective relay that monitors three-phase AC current and, optionally, temperature. It makes separate trip and alarm decisions based on user-programmed motor current and temperature set points. The IQ 1000 II's patented motor protection algorithm is based on proven positive and negative (unbalanced) sequence current sampling and true RMS calculations. Ten years of experience has proven that this algorithm provides the user with maximum motor utilization, virtually eliminating nuisance trips, while providing unparalleled motor protection.

## IQ Analyzer (The Ultimate in Monitoring)



The IQ Analyzer displays the most comprehensive list of metered parameters in its class. The dot-matrix, gas plasma display provides the flexibility of exhibiting large characters with high visibility and small characters for detailed descriptions. Multiple parameters (e.g. currents of phases A, B, and C) are displayed simultaneously for more thorough real-time monitoring. Custom screens can also be configured. Available information includes current, voltage, power, energy, demand and an extensive array of harmonic data.

## Central Monitoring Unit (CMU)



The ADVANTAGE Central Monitoring Unit (CMU) is a microprocessor-based, selfcontained, door-mounted device designed to monitor and display parameters of up to 99 ADVANTAGE starters, contactors, overload relays, IQ-500's and ADVANTAGE Control Modules (ACM) equipped with PONI communicator modules. The CMU can also pass this information to a remote master computer.

## How to Order:

Define the type of Motor Control Center to be upgraded, the type of device and the CT ratio. Then develop a catalog number based on the following:

FT	10K	0600		P1
		$\pm$		
Type of MCC:	Type of IO Device:	CT's:		Options:
FZ = Freedom 2100	IOK = IQ Data Plus II	$0100=100 / 5$	$0800=800 / 5$	P1 = PONI Card for IMPACC
FK = ADVANTAGE	IOL = IQ Analyzer	$0200=200 / 5$	$1000=1000 / 5$	P2 = PONI Card for RS232
FS = Series 2100/5 Star	IQM = IQ 1000 II	$0250=250 / 5$	$1200=1200 / 5$	Blank $=$ No Options
FD = Freedom Unitrol	IQN = CMU	$0300=300 / 5$	$1500=1500 / 5$	
FR $=$ F10		$0400=400 / 5$	$1600=1600 / 5$	
FT = Type W		$0500=500 / 5$	$2000=2000 / 5$	
FN = 9800		$0600=600 / 5$	$2500=2500 / 5$	
FJ $=11-300$		$0700=700 / 5$		
		$0000=$ No CT	(CMU)	

## SERIES C RETROFIT KITS

Series C Retrofit Kits are to be used to upgrade existing Type W and 5 Star Motor Control Center buckets by changing out the old breakers with the Series C. These kits can be applied to both starter and feeder units.
The old breakers that these kits will upgrade include, but are not limited to, the MCP, F, FA, FB, HFB, K, KA, KB, HKB, L, LA, LB and HLB breakers.

5 Star Series C Retrofit Kit


The 5 Star Series C Retrofit Kit Includes:
A. Series $C$ device, 65kA (either HMCP or thermal magnetic breaker)
B. Operating handle mechanism, including tripped indication and push-to-trip
C. Label stating that the MCC unit has been retrofitted with Series C device suitable for 65 kA (similar to UL quality label)
D. Templates for desired frame size
E. Assembly instructions

## How to Order:

Step 1: Select the correct Series C device from the table on page 167 of RPD 8991.
Step 2: Create a catalog number based on the MCC type, device selected, modifications, door size and device panel.
Step 3: Select price from PL 8991A page 26.


## COMPETITIVE UPGRADES

GE7700 Unit Retrofitted with ADVANTAGE and HMCP Device Catalog Number: Use table on page 167 of RPD8991.

Type W Series C Retrofit Kit


The Type W Series C Retrofit Kit Includes:
A. Series C device, 65kA (either HMCP or thermal magnetic breaker)
B. Operating handle mechanism, including tripped indication and push-to-trip
C. Label stating that the MCC unit has been retrofitted with Series $C$ device suitable for 65kA (similar to UL quality label)
D. Templates for proper hole placement for desired frame size
E. Series $C$ breaker mounting hardware
F. New door and hardware
G. New stab assembly
H. Assembly instructions

Gould 5600 Unit Retrofitted with ADVANTAGE and HMCP


All new, UL recognized components are used in every ADVANTAGE retrofit. Components are pre-assembled on a panel for simple insertion, utilizing the existing unit wrapper and stab. A registered UL open industrial control panel is affixed to each panel. Contact the factory for available designs.

## CUSTOMER REQUIRED INFORMATION

Procedure for identifying Renewal Parts:

1. Refer to the proper page of RPD 8991 to identify MCC units and parts.
2. RPs listed below identify those replacement parts which are most frequently ordered and which are readily available from manufacturing stock.
3. For parts not shown in YES or listed in the RPs below, contact your local Cutler-Hammer Field Sales Office or call 1-800-OLD-UNIT.


RPD 8891


Poster SA-11940

## PRODUCT SUPPORT SERVICES

The following replacement units can be obtained from the Fayetteville manufacturing plant:

```
- F2100
 - Type W
- ADVANTAGE - 9800
- 5 Star/Series 2100
- 11-300
- Freedom Unitrol
 - ADVANTAGE technology retrofits
- F10
```

The following replacement units can be obtained from any of the nine regionally located service centers:

- F2100
- ADVANTAGE
- 5 Star/Series 2100

Nine Service Centers are located in:

## Atlanta

(770) 739-6282

Chicago
(847) 299-1911

Cincinnati
(513) 682-4000

Denver
(303) 373-2133
$\star$ Fayetteville
1-800-OLD-UNIT
Hartford
(860) 683-4221

Houston
(713) 939-9696

Los Angeles
(562) 944-6413

Portland
(503) 636-8333


Visit our ExtraNet web page at
https://www.ch.cutler-hammer.com/docs/mcc/

## FURTHER INFORMATION

| Literature Number | Description |
| :--- | :--- | :--- |
| RP |  |

RP.3A.01A.S.E
RP.3A.02A.S.E
RP.3A.03A.S.E
RP.3A.04A.S.E
RP.3A.05A.S.E
RP.3A.06A.S.E
RP.3A.07A.S.E
RP.3A.08A.S.E
SA-11940
LEM002A
LEM005
LEM006
SA-11848
SA-162

Renewal Parts - F2100 MCC
Renewal Parts - ADVANTAGE MCC
Renewal Parts - 2100/5-Star MCC
Renewal Parts - Freedom Unitrol MCC
Renewal Parts - F10 MCC
Renewal Parts - Type W MCC
Renewal Parts - 9800 Unitrol MCC
Renewal Parts - 11-300 MCC
Sales Aid MCC Wall Poster
Tri-fold Mailer "We Have The Solutions" Tri-fold Mailer "MCC Units with TVSS" Tri-fold Mailer "Technology Upgrades" Sales Aid ADVANTAGE MCC
Sales Aid F2100

ADDITIONAL INFORMATION	
Literature Number	Description
PL.03A.03.P.E	Price List All MCC Vintages
PL.03A.01C.P.E	Price List Freedom 2100 MCC
PL.03A.02C.P.E	Price List ADVANTAGE MCC
SA.8K.02.S.E	Sales Aid QDS II Aftermarket Tri-fold
PL.3A.20.P.E	Price List QDS II Freedom 2100 MCC
PL.08.01.P.E	Price List QDS II ADVANTAGE MCC
VISTALINE	Discount Symbol 1CD-2C

## PRICING INFORMATION

Literature Number	Description
PL 8991A	Price List Aftermarket Renewal Parts
PL 8915	Price List Freedom 2100
PL 8916	Price List Freedom QDS II
PL 8912	Price List ADVANTAGE MCC
PL 8913	Price List ADVANTAGE MCC QDS II
VISTA/VISTALINE	Discount Symbol 1CD-2C

## PRODUCT DESCRIPTION


circuit breakers as mains and individually compartmentalized feeders. The service distribution switchboards use insulated case SPB, air DS, molded case (all types), and fusible switches as mains and molded case circuit breakers as feeders.
Distribution switchboards can be a freestanding structure(s) or close coupled as the secondary section of a power center or substation. Power distribution switchboards primarily use individually mounted, fixed or drawout devices. Service distribution switchboards primarily use main devices as individually mounted, fixed or drawout with group mounted molded case circuit breakers. Numerous combinations of devices can be used depending on the specification. Class III (Power Distribution) and Class II (Service Distribution) switchboards are commonly used descriptions for the class of distribution switchboards. Distribution switchboards are built in accordance with all applicable provisions of UL891 and NEMA PB-2.

## PRODUCT HISTORY

## Originally a Westinghouse Product

Distribution switchboards have been around since the 1950s. Each switchboard was designed and built without regard to a standard design. The first generation of distribution switchboards (WF/WRP) was designed as an oversized free-standing panelboard using the circuit protective devices of that time. In the mid 1970s, standard designs were created for distribution switchboards. In addition to standardizing the manufacturing, the common construction gave a uniform and distinctive appearance throughout the product line.
In the mid '70s through the 1980s, distribution switchboards were built in St. Louis, MO. The designs built included Pow-RGear switchboards using SPB drawout
circuit breakers, WRI switchboards using predominantly molded case individually mounted circuit breakers and WF/WRP switchboards using group mounted circuit breakers. Some special switchboards, including Generator Switchboards, were built in the Cincinnati, OH plant until the plant closed in 1985.
During the mid-80s the service distribution switchboards were transferred to new facilities in Visalia, CA., and Sumter, SC. The designs built were WF/WRP switchboards and WRI switchboards. In 1962, Cutler-Hammer entered the switchboard market with its version of the WF/ WRP tusing Westinghouse molded case circuit breakers exclusively. This design was later enhanced to the ES switchboard
for Cutler-Hammer and the Pow-R-Line C switchboard design for Westinghouse. In 1989, the product line was moved to Asheville, NC. New designs were introduced enhancing the St. Louis designs. The Pow-R-Gear design became the Pow-R-M-S design. The WRI design became the Pow-R-I design. In 1991, the Pow-R-I design was further refined and split into two-types of switchboards, SPB mains and SPB/RD fixed individually mounted feeders. The SPB/RD are built in the new Pow-R-M-S/F switchboard in Asheville, NC and SPB mains and molded case circuit breakers or fused switches as feeders in a fixed compartmentalized design called Pow-R-Line I switchboards are built in Sumter, SC.

PRODUCT HISTORY TIMELINE

Page	Product	1955	1960	1965	1970	1975	1980	1985	1990	1995	Present
228	WF/WRP Switchboard										
224	WRI Switchboard										
226	Pow-R-Gear Switchboard										
228	Pow-R-Line C Switchboard										
226	Pow-R-M-S Switchboard										
224	Pow-R-I Switchboard										
228	ES Switchboard										
224	Pow-R-M-S/F Switchboard										
224	Pow-R-Line I Switchboard										

## PRODUCT DESCRIPTION



WRI Switchboard with Individually Mounted Molded Case Breakers

This class of switchboard is commonly called a Class III switchboard. Generally speaking, this means individually mounted main and feeder devices.
The WRI switchboard that was built in St. Louis, MO consisted of rear and front accessible enclosures with all sections flush front to rear. The WRI board was designed for mounting away from the wall. Main devices could be DS, SPB, SCB-II, CBC or molded case circuit breakers or


Pow-R-Line I Switchboard with Individually Mounted Molded Case Breakers

FDP fusible switches. Individually mounted feeders could be either FDP fusible switches or molded case circuit breakers. The WRI design moved to Asheville, NC as the Pow-R-I design with little change, except fusible was not offered with Pow-R-I. Some different structural and bussing methods were used on the Pow-R-I also.
The Pow-R-I product was split in 1991. Switchboards requiring main and individually mounted feeders using SPB break-
ers and the RD Series $C$ breaker were incorporated in the Pow-R-M-S/F design using the same design as the draw/out Pow-R-M-S switchboard except fixed devices. The smaller current individually mounted devices were incorporated into the Pow-R-Line I design introduced in 1991 at Sumter, SC.

Ratings	
WRI/Pow-R-I	
$\quad$ Switchboard Bus	$800-4000 \mathrm{~A}$
Protective Devices	$400-4000 \mathrm{~A}$
Voltage	$120-600 \mathrm{~V}$
Interrupting Capacity	$30-200 \mathrm{kA}$
Pow-R-M-S/F	
$\quad$ Switchboard Bus	$800-5000 \mathrm{~A}$
SPB/RD Breaker	$400-5000 \mathrm{~A}$
Voltage	$240-600 \mathrm{~V}$
Interrupting Capacity	$42-100 \mathrm{kA}$
Pow-R-Line I	
$\quad$ Switchboard Bus	$800-4000 \mathrm{~A}$
Protective Devices	$70-4000 \mathrm{~A}$
Voltage	$240-600 \mathrm{~V}$
Interrupting Capacity	$30-200 \mathrm{kA}$

## Chronology:

WRI was introduced in St. Louis, MO in 1977. In 1990, the design was transferred to Asheville, NC as Pow-R-I. Pow-R-I was discontinued in 1991 and the Pow-R-M-S/F took its place and is the current design.

REPLACEMENT CAPABILITIES


Parts for WRI Switchboard
Cutler-Hammer offers an extensive amount of products to support WRI, Pow-RI, Pow-R-M-S/F and Pow-R-Line I Switchboards.

Pow-R-M-S/F Match and Lineup Cubicles Newly manufactured Pow-R-M-S/F switchboard structures match and lineup to existing Pow-R-M-S/F switchboards. New Pow-R-M-S/F structures can also connect to existing switchboards (Types WRI, Pow-R-I) with a transition section.

## New Circuit Breakers

New SPB, DS, RD and molded case circuit breakers are available for replacement or to fill existing vacant cells. All breakers are newly manufactured and are mechanically and electrically the same as the breakers originally specified and supplied.

Circuit Breaker Provisions/Connector
Breaker provisions are required in switchboards when there is an existing space in a structure that is to be filled with a breaker. Provisions/connectors are available for most ratings of the WRI design, except prior to 1967. Provisions are available for all ratings of the Pow-R-I, Pow-R-M-S/F and Pow-R-Line I designs including all parts required to complete the cell in accordance with the switchboard as originally supplied.

Factory Repair Service for SPB Breakers
Factory authorized non-warranty repair for all SPB breaker frames. Refer to page 226 of this publication.

## Factory Modification and Repair for DS Breakers

Factory modifications and repairs are available for new or customer owned DS circuit breakers. This UL approved service includes trip unit replacements, conversion from manually operated to electrically operated, breaker calibrations and the addition of numerous accessories for the DS and DSL circuit breaker.

## Circuit Breaker Parts

An extensive inventory of newly manufactured breaker renewal parts are available for SPB, DS, RD and molded case circuit breakers.

## Switchboard Structure Parts

Switchboard parts are available for most designs. Newly manufactured replacement parts (such as doors, breaker provisions, lift trucks, metering, etc.) are available.

## Digtrip Trip Unit Retrofit Kits

Trip unit retrofit kits are available for all SPB and DS Breaker frames. Refer to pages 258-261 of this publication. Power Circuit Breakers and Renewal Parts

## TECHNOLOGY UPGRADES

## IO and PowerNet Communications Retrofits

 Cutler-Hammer offers IQ products to replace existing analog meters, instruments, and protective relays with microprocessorbased solid-state true-RMS sensing devices. IQ products can be furnished as components for field installation on the switchgear, or can be provided as new replacement front panels. The new replacement front panels available for WRI, Pow-R-I, Pow-R-S/F, and Pow-R-Line I switchboard assemblies include the IO devices mountedand wired. The IO products can be matched in numerous combinations to include the IQ Analyzer, IO Data Plus II, IO Data, IQ Generator, IQ Data Plus-4000/4100, and the Assemblies Electronic Monitor (AEM II). Communications can then be tied to the Cutler-Hammer PowerNet System.

Digtrip Trip Unit Retrofit Kits
Trip unit retrofit kits are available for all SPB and DS breaker frames. Refer to pages 258-261 of this publication.

Clipper Power System
Transient voltage surge suppression system. Refer to page 229 of this publication.

Pow-R-Command Lighting Control System Microprocessor-based lighting control system. Refer to page 229 of this publication.

The primary differences between the original Pow-R-Gear and its successor Pow-R-M-S are: structural (frame design), trip units (Pow-R-Gear used the Pow-RTrip 7; Pow-R-M-S uses the Digtrip RMS sensing trip family), bus design (Pow-RGear used aluminum of varying heights; Pow-R-M-S uses bolted copper of full height) and vertical spacing (Pow-R-Gear accommodated six high 800 ampere breakers, Pow-R-M-S accommodates four high 800 ampere breakers).

Ratings	
Pow-R-Gear	
Switchboard Bus	$800-4000 \mathrm{~A}$
Protective Devices	$100-5000 \mathrm{~A}$
Voltage	$120-600 \mathrm{~V}$
Interrupting Capacity	100 kA
Pow-R-M-S	
Switchboard Bus	$800-5000 \mathrm{~A}$
SPB Breaker	$400-5000 \mathrm{~A}$
Voltage	$240-600 \mathrm{~V}$
Interrupting Capacity	$42-100 \mathrm{kA}$

## Chronology

Pow-R-Gear was built in St. Louis, MO from 1977 to 1990. Pow-R-M-S was introduced in 1990 and is built in Asheville, NC.


Systems Pow-R-Breaker Type SPB-65 with Pow-R-Trip 7 Trip Unit

Cutler-Hammer offers an extensive amount of products to support Pow-RGear and Pow-R-M-S switchboards.

## Factory Repair Service for SPB Breakers

 These repair services apply to breakers which have exceeded the original factory warranty and are now referred to as nonwarranty repairs. The System Pow-RBreaker family consists of fixed breakers, either front connected or rear connected, and drawout breakers, either behind-the-door or through-the-door design. Four pole breakers are only available in the fixed design front or rear connected.
Cutler-Hammer's SPB Factory Authorized Non-Warranty Repair service features:

- Quality SPB repair specified and audited by factory engineers according to procedures.
- Only genuine new Cutler-Hammer replacement parts are used.
- Original factory specifications and design drawings are used by factory trained technicians.
- One year factory warranty issued from date of shipment from repair center in Beaver, PA.
- Repair lead time is four to six weeks.

Pow-R-M-S Match and Lineup Cubicles Newly manufactured Pow-R-M-S switchboard structures to match and lineup to existing Pow-R-M-S switchboards. New Pow-R-M-S structures can also connect to existing Pow-R-Gear switchboards with a transition section.

## New SPB Circuit Breakers

New SPB breakers are available for replacement or to fill existing vacant cells. All breakers are newly manufactured and are mechanically and electrically the same as the breakers originally specified and supplied.

## SPB Circuit Breaker Provisions

Breaker provisions are required in switchboards when there is an existing space in a structure that is to be filled with a breaker. Provisions are available for most ratings of Pow-R-Gear switchboards and all ratings of the Pow-R-I switchboards which include all parts required to complete the cell in accordance with the switchboard as originally supplied.

## SPB Circuit Breaker Parts

An extensive inventory of newly manufactured breaker renewal parts are available for SPB circuit breakers.

## Switchboard Structure Parts

Switchboard parts are available for all ratings. Newly manufactured replacement parts (such as doors, breaker provisions, lift trucks, metering, etc.) are available.

## Pow-R-Trip 7 Trip Unit Upgrades

Pow-R-Trip 7 was the solid-state trip unit used on Pow-R-Gear switchboards. An upgrade from the Pow-R-Trip 7 trip unit is also available. Modification to the breaker and existing switchboard is required.

## Digtrip Trip Unit Retrofit Kits

Trip unit retrofit kits are available for all SPB Breaker frames. Refer to pages 260261 of this publication.

## TECHNOLOGY UPGRADES

## IO and PowerNet Communications Retrofits

 Cutler-Hammer offers IQ products to replace existing analog meters, instruments, and protective relays with microprocessorbased solid-state true-RMS sensing devices. IO products can be furnished as components for field installation on the switchgear, or can be provided as new replacement front panels. The new replacement front panels available for Pow-R-Gear and Pow-R-M-S switchboard assemblies include the IO devices mounted and wired.The IQ products can be matched in numerous combinations to include the IQ AnaIyzer, IQ Data Plus II, IQ Data, IQ Generator, IQ Data Plus 4000/4100, and the Assemblies Electronic Monitor (AEM II). Communications can then be tied to the Cutler-Hammer PowerNet System.

Digtrip Trip Unit Retrofit Kits
Trip unit retrofit kits are available for all SPB and DS breaker frames. Refer to pages 258-261 of this publication.

Clipper Power System
Transient voltage surge suppression system. Refer to page 229 of this publication.

Pow-R-Command Lighting Control System Microprocessor-based lighting control system. Refer to page 229 of this publication.

PRODUCT DESCRIPTION


WRP Switchboard, Rear Access with Panel Mounted Molded Case Breakers

This class of switchboard is commonly called a Class II switchboard. Generally speaking, this means individually or panel mounted main and panel mounted feeder devices.
The WF/WRP switchboard that was built in St. Louis, MO consisted of front or rear accessible enclosures with various depths depending on the devices within the structure. In the front access design, type WF, the rear of the switchboard was flush for all structures, the rear access design, type WRP, was flush in the front and rear. The WF/WRP switchboard design accommodated the use of DS, SPB, Bolted Pressure Switch (CBC), molded case circuit breaker or FDP fusible switches as main devices.


Pow-R-Line C Switchboard, Front Access with Panel Mounted Molded Case Breakers

Panel mounted feeder devices could be either molded case circuit breakers or FDP fusible switches. The WF/WRP design was moved to Sumter, SC and Visalia, CA, and consequently enhanced with the introduction of the Series $C$ breaker and some structural and bussing changes.
In 1962, Cutler-Hammer entered the switchboard market with the purchase of Mullenbach. Soon after the Mullenbach acquisition, Cutler-Hammer entered into an agreement with Westinghouse to supply breakers and fusible devices for panelboards and switchboards. This led to the introduction of the ES switchboard using exclusively Westinghouse molded case circuit breakers.

In the late 1980s, Westinghouse introduced a new and improved version of the WF/WRP switchboard using the Series C breaker. This new switchboard line, Pow-R-Line C, designates a family of service distribution switchboards incorporating new design concepts that fit the ever increasing need for applications on high short circuit systems, while retaining maximum standardization, safety and convenience throughout the line.

Ratings	
WF/WRP	
Switchboard Bus	$600-4000 \mathrm{~A}$
Protective Devices	$15-4000 \mathrm{~A}$
Voltage	$120-600 \mathrm{~V}$
Interrupting Capacity	$10-200 \mathrm{kA}$
ES Switchboard Bus	$600-4000 \mathrm{~A}$
Protective Devices	$15-4000 \mathrm{~A}$
Voltage	$120-600 \mathrm{~V}$
Interrupting Capacity	$10-200 \mathrm{kA}$
Pow-R-Line C	
Switchboard Bus	$600-6000 \mathrm{~A}$
Protective Devices	$15-6000 \mathrm{~A}$
Voltage	$208-600 \mathrm{~V}$
Interrupting Capacity	$10-200 \mathrm{kA}$

## Chronology:

WF/WRP was introduced in St. Louis, MO in 1955. In 1988, the design was transferred to Sumter, SC and Visalia, CA as Pow-R-Line C switchboards. Consequently, the Cutler-Hammer version, type ES switchboard was later introduced in 1991 as a replacement for their version of the WF/WRP switchboard.

## REPLACEMENT CAPABILITIES

Cutler-Hammer offers an extensive amount of products to support WF/WRP, ES and Pow-R-Line C Switchboards.
Pow-R-Line C Match and Lineup Cubicles Newly manufactured Pow-R-Line C switchboard structures to match and lineup to existing WF/WRP switchboards. New Pow-R-Line C structures can also connect to existing switchboards (Types ES) with a transition section.

## New Circuit Breakers

New SPB, DS, RD and molded case circuit breakers are available for replacement or to fill existing vacant cells. All breakers are newly manufactured and are mechanically and electrically the same as the breakers originally specified and supplied.

## Circuit Breaker Provisions/Connector

Breaker provisions are required in switchboards when there is an existing space in a structure that is to be filled with a breaker. Provisions/connectors are available for most ratings of the WF/WRP design. Provisions are available for all ratings of the Pow-R-Line C designs including all parts required to complete the cell in accordance with the switchboard as originally supplied.

## Factory Repair Service for SPB Breakers

 Factory authorized non-warranty repair for all SPB breaker frames. Refer to pages 260-261 of this publication.
## Circuit Breaker Parts

An extensive inventory of newly manufactured breaker renewal parts are available for SPB, DS, RD and molded case circuit breakers.

## Switchboard Structure Parts

Switchboard parts are available for most designs. Newly manufactured replacement parts (such as doors, breaker provisions, lift trucks, metering, etc.) are available.

## Digitrip Trip Unit Retrofit Kits

Trip unit retrofit kits are available for all SPB and DS Breaker frames. Refer to pages 258-261 of this publication.

DISTRIBUTION SWITCHBOARDS (LOW VOLTAGE)
WF/WRP, ES, Pow-R-Line C Assemblies, Circuit Breakers, Fusible Switches and Renewal Parts

## TECHNOLOGY UPGRADES

Clipper Power System is a hybrid transient voltage surge suppressor used to protect sensitive electronic equipment from the damaging effects of voltage transients and electrical line noise. The Clipper's hybrid design combines both suppression and filtering elements to provide best in class performance. Field installation is required.


Clipper Power System
Transient Voltage Surge Suppressor

## Benefits

- Clipper can be externally mounted to existing distribution equipment
- Five Models - 90kA, 120kA, 160kA, 250kA and 400kA
- Standard NEMA 12 Enclosure, Optional NEMA 4
- Surface or Flush Mounting
- Full range of diagnostic options including the Tri-Monitor
- Five Year Warranty

For more information about Clipper Power Systems, contact your local Cutler-Hammer Field Sales Office.

Pow-R-Command is a microprocessorbased lighting control system designed for today's modern facilities. The system may be utilized as a stand-alone or networked as a system for the control of lighting and other branch circuits.


Pow-R-Command Lighting Control System

## System Features Include:

- Day/Date/Time of Day Scheduling
- Holiday Scheduling-up to 30 Days/Year
- Astronomical Time Scheduling
- Real Time Clock
- Hardware Diagnostics
- Off Warning by Blinking Lights
- Manual Load Override Control
- Brownout and Power Failure Recovery
- Telephone Override of Schedules
- Switch Override of Schedules
- Remote Access to System
- Dimming Systems for Fluorescent Fixtures
- Priority Load Management

Existing facilities can be retrofitted to include various Pow-R-Command scenarios, allowing customers varying degrees of control. For more information on upgrading your building to include the energy savings and control of Pow-R-Command, contact your local Cutler-Hammer Field Sales Office.

IO and IMPACC Communications Retrofits Cutler-Hammer offers IO products to replace existing analog meters, instruments and protective relays with microprocessorbased solid-state true-RMS sensing devices. IQ products can be furnished as components for field installation on the switchgear or can be provided as new replacement front panels. The new replacement front panels available for DB switchgear assemblies include the IO devices mounted and wired. The IO products can be matched in numerous combinations to include the IQ Analyzer, IO Data Plus II, IQ Data, IQ Generator, IQ Data Plus 4000/4100 and the Assemblies Electronic Monitor (AEM II). Communications can then be tied to the Cutler-Hammer IMPACC System.

Digtrip Trip Unit Retrofit Kits
Trip unit retrofit kits are available for all SPB breaker frames. Refer to pages 260261 of this publication.

# 230 DISTRIBUTION SWITCHBOARDS (LOW VOLTAGE) 

## FURTHER INFORMATION

Product	Literature Number	Description
General Information	Catalog 55-000	Cutler-Hammer Product Catalog

PRICING INFORMATION

Product	Literature Number	Description
Pow-R-M-S Switchboards	PL 32-624A	Price List for Pow-R-M-S Switchboard
SPB Breakers	PL.22A.01.P.E	Price List for SPB Breakers

Type C-HRG

## PRODUCT DESCRIPTION



The C-HRG is designed to improve the continuity of electrical service to critical processess. Systems designers sometimes use ungrounded distribution systems to avoid interrupting service during a ground fault. However, ungrounded systems have a significant disadvantage the distribution system is subject to the harmful effects of ground faults, like high transient over-voltages. C-HRG helps customers add the benefits of a grounded system to their ungrounded system.

## PRODUCT HISTORY

## Originally A Westinghouse Product

High resistance grounding technology has been offered as an integral system within our LV switchgear and switchboard
products since the early 1970s. In 1994, Cutler-Hammer adopted the technology into the C-HRG, which is a stand-alone or
wall-mounted product ideal for adapting to the existing electrical system.

## GENERAL INFORMATION



Typical C-HRG Application

## Overview

Where continuity of service is a high priority, high resistance grounding can add the safety of a grounded system while minimizing the risk of service interruptions due to grounds. The concept is a simple one: provide a path for ground current via a resistance that limits the current magnitude, and monitor to determine when an abnormal condition exists.
The ground current path is provided at the point where the service begins by placing resistance in the connection from system neutral to ground. Control equipment continuously measures ground current; a relay detects when the current exceeds a predetermined level. An alarm alerts building personnel that a ground exists. The system has built-in fault tracing means to assist in finding the source of the ground. An integral transformer provides control power from the primary source.

## Minimum Criteria for Use

High resistance grounding systems can be applied to either grounded or ungrounded 3 -wire distribution systems. Per NEC 1996, 250-5(b) exception No. 5, the following criteria must be met before using the C-HRG:
A. The conditions of maintenance and supervision ensure that only qualified persons will service the installation.
B. Continuity of power is required.
C. Ground detectors are installed on the system.
D. Line-to-neutral loads are not served.

[^33]
## GENERAL INFORMATION, Continued

## Wye or Delta System

Adding the Type C-HRG to a Wye connected system requires only that the resistors supplied be connected in series with the neutral-to-ground connection of the power source. Adding the Type C-HRG to an ungrounded Delta system requires the creation of a neutral point. Transformers are supplied for that purpose in the enclosure. The resistors supplied are then connected at that point. In both cases, the components supplied are chosen to limit the ground current to a maximum value of 5 amperes.

## Ground Fault Detection

When one phase of a system becomes grounded, additional current will flow. As all ground current must flow through the grounding resistor assembly, a current sensing relay is placed in this circuit allowing detection when a ground fault occurs. If chosen, a voltage sensing relay can be provided to accomplish the same function.

## Pulser Circuit

The pulser circuit offers a convenient means to locate the faulted feeder and trace the fault to its origin. The pulser is available any time a fault has been detected. The "pulse" light flashes on and off, corresponding to the on-off cycles of the pulsing contactor. The pulser contactor switches a bank of resistors on and off, allowing a momentary increase in the ground current.

## Ground Fault Location

The current pulses can be noted with a clamp-on ammeter when the ammeter is placed around the cables or conduit feeding the fault. The operation tests each conduit or set of cables until the pulsing current is noted. By moving the ammeter along the conduit, the fault can be traced to its origin. The fault may be located at the point where the pulsing current drops off or stops. If little or no change in the pulsing current is noted along the entire length of a conduit, then the fault may be in the connected load.


C-HRG Cabinet Internal Control

Standard Features

- NEMA 1 Enclosure
- Current Sensing Ground Fault Detection (1-5 Ampere Pickup)
- Ground Current Transformer
- Fused Control Circuit Disconnect Switch
- Lockable Door Handle
- Ground Current Ammeter
- Indicating Lights Red (Ground Fault) Green (Normal) White (Pulse)
- Adjustable Pulsing Timer
- Tapped Resistor
- 3-Position Selector Switch
- Manual or Automatic Reset
- Ground Fault Contacts (1-NO and 1-NC)
- UL Label
- Front Accessible
- Nylon Flag-type Wire Markers


## SEQUENCE OF OPERATIONS

## Normal

Green "normal" light on.
Red "ground fault" light off.
White "pulse" light off.
System control switch in "normal" position.
Reset control switch in either "auto" or "manual."

Test
Turn and hold the system control switch in the "test" position. Phase B will be grounded via the test resistor. The ground current will activate the sensing circuit, causing the green "normal" light to turn off and the red "ground fault" light to turn on. The pulser will be activated as well.
The white "pulse" light will turn on and off as the pulser contactor closes and opens. The ground current ammeter will display the total ground current, including the incremental pulse current. When ready, return the system control switch to
"normal." The pulser will stop. If the reset control is in the "manual" position, turn it to "reset" to reset the fault sensing circuit. The red "ground fault" light will turn off, and the green "normal" light will turn on. Test mode is not available if the system is detecting a ground. The sensing circuit will disable the test circuit.

## Ground Fault

When the sensing circuit detects a fault, the green "normal" light will turn off and the red "ground fault" light will turn on. The ground current ammeter will indicate the total ground current. To use the pulser, turn the system control switch to "pulse." The pulser contactor will cycle on and off as controlled by the recycle timer relay. Use the clamp-on ammeter to locate the faulted feeder. Open the feeder and clear the fault. If the reset control switch is in the "manual" position, turn it to "reset" to reset the sensing circuit. (If reset control is in "auto," it will reset itself.) When ready to restore service to the load, close the feeder. Return the system control to "normal." (LOW VOLTAGE)
Type C-HRG

## CUSTOMER REQUIRED INFORMATION

## Selection Table

A C-HRG High-Resistance Grounding Assembly can be completely described and priced by a nine or ten digit catalog number using the option codes from column \#4.

Catalog Digit	Feature	Feature Description	Option Code	Option Description
1	Enclosure Type	Free-standing enclosures provide for mounting the grounding resistors internally. A wall-mounted enclosure requires a separately-mounted grounding resistor. The "no enclosure" option includes a door-mounted panel, a control panel and a separately-mounted resistor assembly. (See Catalog Digit 10 to specify wire harness length.	$\begin{aligned} & \hline \mathbf{F} \\ & \mathbf{S} \\ & \mathbf{R} \\ & \mathbf{W} \\ & \mathbf{N} \end{aligned}$	Free-standing NEMA 1   Free-standing NEMA 1 with screened vents   Free-standing NEMA 3R   Wall-Mounted NEMA 1   No Enclosure
2	Distribution System Voltage	Voltage of the distribution system.	$\begin{aligned} & \hline 6 \\ & 4 \\ & 3 \\ & 2 \end{aligned}$	$\begin{array}{\|l} \hline 600 \mathrm{~V}, 60 \mathrm{~Hz} \\ 480 \mathrm{~V}, 60 \mathrm{~Hz} \\ 380 \mathrm{~V}, 50 \mathrm{~Hz} \\ 208-240 \mathrm{~V}, 60 \mathrm{~Hz} \end{array}$
3	System Neutral Point	Choose Wye when the neutral point of the power source is accessible for direct connection to the grounding resistor. Choose Delta when there is no neutral, or when the neutral is not conveniently accessed. See page 2 for complete description.	$\begin{aligned} & \hline \mathbf{W} \\ & \mathbf{Z} \\ & \mathbf{D} \end{aligned}$	Wye   Delta (Zig-Zag grounding transformers)   Delta (Wye-Broken Delta grounding transformers)   Requires circuit breaker. See Catalog Digit 4
4	Distribution   System Fault Current	The distribution system voltage and fault current will determine the grounding transformer's primary breaker for Zig-Zag or Wye-Broken Delta systems. A Wye system does not require this additional breaker.	$\begin{aligned} & \hline 6 \\ & 1 \\ & 2 \\ & \mathbf{N} \end{aligned}$	lan $\frac{480 \mathrm{~V}}{25 \mathrm{kA}}$ $\frac{240 \mathrm{~V}}{65 \mathrm{kA}}$   $\ldots$ 100 kA    200kA 200kA 200 kA   Not Applicable (Note: Wye system is rated     for 200kA)
5	Fault Sensing	Current-sensing. Voltage-sensing.	$\begin{aligned} & \hline \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Overcurrent relay   Double-setpoint voltmeter relay
6	Audible Alarm	Alarm contacts are standard in all assemblies.	$\begin{aligned} & \hline \mathbf{N} \\ & \mathbf{R} \end{aligned}$	No Audible Alarm Alarm Horn with Re-Alarm Timer
7	Loss of Control Power Alarm	A relay is connected across the output of the control power transformer for customer use.	$\begin{aligned} & \mathrm{N} \\ & \mathbf{L} \end{aligned}$	No Relay   Alarm Relay with 1-NO and 1-NC contact wired to a terminal block
8	Indicating Lights	Standard lights are industrial, oil-tight, full-voltage type. Optional are the same type lights except with a push-to-test feature and/or transformer with 6.3V lamp.	$\begin{aligned} & \hline \mathbf{S} \\ & \mathbf{L} \\ & \mathbf{P} \\ & \mathbf{D} \\ & \mathbf{T} \\ & \mathbf{X} \end{aligned}$	Standard, incandescent lamps   Standard, LED lamps   Push-to-test, incandescent lamps   Push-to-test, LED lamps   Transformer-type, incandescent lamp   Push-to-test transformer type
9	Wire Markers	Marks all internal wiring for ease of maintenance	$\begin{aligned} & \mathrm{F} \\ & \mathrm{H} \end{aligned}$	Standard nylon flag-type Heat-shrink sleeve-type
10	Wire   Harness   Length (No   Enclosure model only)	Wiring from the door panel plugs to the left edge of the control panel. Choose a harness length that will allow for a hinge loop at the edge of the door.	$\begin{aligned} & 4 \\ & 6 \\ & 8 \\ & 0 \\ & 2 \end{aligned}$	4 foot harness   6 foot harness 8 foot harness 10 foot harness 12 foot harness

## Example: F4WNCRNSF

Defines a free-standing NEMA 1 enclosure, $480 / 60 \mathrm{~Hz}$ Wye-connected system, current-sensing control scheme, alarm horn with re-alarm timer, standard-type incandescent lights, flag-type wire markers.
Accessory: Portable Clamp on Detector with Case (1/2/5/10/20 Ampere Scales with Shorting Switch) [Option Add Item]

## FURTHER INFORMATION

Literature   Number	Description
SN.44C.01.S.E	Sales Notes for C-HRG
PL.44C.01A.P.E	Price List for C-HRG
TD.44C.01.T.E	Technical Data for C-HRG
SA-32-602B	Sales Aid for High Resistance Grounding Systems
IB 32-698B	Instruction Booklet for High Resistance
	Grounding System
Catalog 25-000	Cutler-Hammer Quick Selector Catalog
Catalog 55-000	Cutler-Hammer Consulting Application Guide   CAT.71.01.T.E

## PRICING INFORMATION

[^34]
## 234 SWITCHGEAR (LOW VOLTAGE) <br> Assemblies, Power Circuit Breakers and Renewal Parts

PRODUCT DESCRIPTION


DSII Switchgear with DS Air Circuit Breakers


DS Switchgear with DS Air Circuit Breakers

Low voltage switchgear is designed to protect power circuits so that the flow of short circuit current can be safely and quickly interrupted to isolate the fault, while the other circuits remain in operation and continue to supply the various loads. Low voltage switchgear is built in accordance with ANSI C37.20.1 for metal enclosed drawout switchgear. The current product offering uses the DSII/DSLII air circuit breakers.

## PRODUCT HISTORY

Originally a Westinghouse Product

DB switchgear with electromechanical trip units was introduced around 1950. The switchgear ratings were 15A-4000 A with a system voltage of $208 \mathrm{~V}-600 \mathrm{~V}$.
During the late 1960s, Westinghouse
Electric introduced the DS circuit breaker
and switchgear. This switchgear assembly was used for both industrial and commercial applications. This switchgear assembly also introduced the first solid-state trip unit (Amptector) which eventually lead to today's standard of the Digitrip III RMS Trip Unit.

Although the switchgear assembly itself underwent a variety of changes and relocation of manufacturing facilities, it has proven to be a durable and long lasting product. The DS switchgear ratings today are 800A-5000A with a system voltage of 208V-600V.

PRODUCT HISTORY TIMELINE

Page	Product	1950	1955	1960	1965	1970	1975	1980	1985	1990	199	Present
235	DB Switchgear - East Pittsburgh											
237	DS Switchgear - East Pittsburgh (Vintage 1)											
237	DS Switchgear - East Pittsburgh (Vintage 2)											
237	WPA Switchgear - St. Louis											
237	DS Switchgear - St. Louis (Vintage 3)											
237	DS Switchgear - St. Louis (Vintage 4)											
237	DS Switchgear - St. Louis (Vintage 5)											
238	DSII Switchgear w/ DS Breaker - Asheville											
238	DSII Switchgear w/ DSII Breaker - Asheville											



DB Switchgear with DB Air Circuit Breakers

Westinghouse DB switchgear used the DB breaker in its design. Among the breakers used were the DB15, DB25, DB50, DB75, DB100 and the current limiting type DBL25 and DBL50. A characteristic of the DB switchgear was that the panel door could be kept closed when the breaker was in the open, test and disconnected position of the three-position DB breaker. The single position DB breaker also had this feature but did not have a test position. In either case, both the three- and single-position DB breakers utilized the electromechanical trip unit.
The DB switchgear structures were approximately $903 / 8$-inch high construction with a universal frame that accommodated
breaker compartment widths of 18, 26, 30 and 36 inches All main bus joints and tap connections are silver plated and tightly clamped with through-bolts to insure maximum conductivity. The outdoor switchgear was a walk-in type with rear hinged doors for easy access to connections.

## Ratings

DB Switchgear Bus $\quad 800$ - 4000A
DB Breaker
Voltage
15 - 4000A
Interrupting Capacity
$208-600 \mathrm{~V}$
$15-150 \mathrm{kA}$

## Chronology

This switchgear started in East Pittsburgh, PA approximately 1950 and final production ended around 1980.

REPLACEMENT CAPABILITIES


Cutler-Hammer offers an extensive amount of products to support DB Switchgear:

## New DB Air Circuit Breakers

Completely new factory manufactured breakers are still available for DB25, DB50, DBL25, DBL50, DBF6 and DBF16.

## Remanufactured DB Breakers and Factory

 Repair ServiceFactory remanufacturing of most frame sizes of DB circuit breakers are available. All are asbestos-free, in accordance with ANSI C37.59, calibrated per original specifications and equipped with Digitrip RMS 510 trip units as standard.

## DB Breaker Parts

A complete line of DB breaker replacement parts are available built from the original drawings and design specifications. Among the items stocked are asbestos-free arc chutes, complete pole units, contacts, primary disconnects and coils.

## DB Switchgear Structure Parts

DB switchgear parts are available for most DB designs. Newly manufactured replacement parts (such as doors, breaker provisions, lift trucks, metering, etc.) are available.

Digitrip Trip Unit Retrofit Kits
Trip unit retrofit kits are available for all DB breaker frames. Refer to pages 256257 of this publication.

[^35]THIS PAGE INTENTIONALLY LEFT BLANK

## GENERAL INFORMATION

## DS Switchgear Vintage I and II 1969 through 1984 at East Pittsburgh, PA

The first vintage of DS switchgear was the first switchgear that incorporated the DS breaker with a solid-state trip unit (Amptector). During this time, the DS532 breaker was used. The DS532 breaker was a 3000 ampere frame breaker with an interrupting rating of 50,000 symmetrical amperes. The structures themselves were of a stepped roof design that incorporated a standard bolted copper or flash welded aluminum bus design. Other characteristics of this switchgear include the following: rear frame height was 87.5 inches, flat roof sheets, ventilated front doors, wire ducts, removable instrument modules and a welded frame design. The breaker
compartments were also different with fuse trucks stacked above the mains, the DS840, DS532 and the newly developed DS632. The outdoor design incorporated the use of a walk-in type side door entry.
The second vintage of switchgear was a new design that incorporated the use of both bolted copper and welded extruded aluminum rise bus. It is basically the same as the first vintage but with a revised bus design.

## Ratings

800-4000A
208/600V

## Chronology

The first vintage was built from September of 1969 to approximately September of 1973 in East Pittsburgh, PA using the shop order numbers with a prefix of 24 Y . The second DS vintage was also built in East Pittsburgh which used the 27 Y prefix on shop orders. This vintage was built the same time as the WPA design in St. Louis, MO. The switchgear in East Pittsburgh was designed to be used for industrial applications, whereas the St. Louis design was built for commercial applications.

## DS Switchgear Vintage III 1984 at St. Louis, MO

The third generation of DS switchgear was introduced due to the change of plant locations. It is classified as a vintage because it was the beginning of the merge between two plants (St. Louis and East Pittsburgh). The engineering was completed in East Pittsburgh and the assembly was built in St. Louis, along with the Cincinnati, OH plant to help pick up the slack until full production in St. Louis. This vintage was similar to the previous 27 Y
style with a few modifications. It was the first time that both DS and DSL were used in switchgear by the use of a conjunction box. The physical appearance also changed by increasing the height to 92 inches and adding top hat vents that protruded 4 inches above the switchgear. Internally the neutral bus was located in the bus compartment along with unified breaker compartments for the variety of breakers.

## Ratings

800-4000A
208/600V

## Chronology

This vintage lasted from May of 1984 to approximately October of 1984 in East Pittsburgh. Usually the switchgear shop order number is defined by a prefix of 28 Y .

## WPA Switchgear 1973-1984 at St. Louis, MO

The WPA switchgear was designed for commercial applications that also used DS Breakers which was similar to the East Pittsburgh design for industrial applications. The two designs differed structurally but used the same breakers. Some characteristics of the WPA design are as follows: riser bus was tapered design, frames were bolted and not welded, height of 90 inches, neutral bus mounted
on rear frame, did not use removable instrument compartments and outdoor design had front and rear doors. In all, the WPA design differed extensively compared to the East Pittsburgh design.

## Ratings

800-4000A
208/600V

## Chronology

This vintage was built from February of 1973 to approximately October of 1984 in St. Louis. Usually the switchgear is identified by General Order and Item numbers. Shop Order numbers were not used.

## DS Switchgear Vintage IV 1984-1990 at St. Louis, MO

This vintage of switchgear was a combination of the St. Louis WPA and East Pittsburgh design. The design was classified as a hybrid between the two that consisted of the East Pittsburgh design in the front compartments that held the DS breaker and the St. Louis design in the rear compartment that housed the bus. The rear compartment still used the tapered riser bus (a characteristic of the St. Louis design
which was used right up until the DS switchgear moved to Asheville, NC. The design was very similar to the design today except for the different riser bus along with the height being 92 inches.

## Ratings

800-4000A
208/600V

## Chronology

This vintage was built from October of 1984 to approximately May of 1990 in St. Louis. Usually the switchgear is identified by General Order and Item numbers. 28 Y Shop Order numbers started in 1987 and continued into the Asheville design.

## DS Switchgear Vintage V 1990-1994 at St. Asheville, NC

The vintage was built from May of 1990 to the end of 1996 in Asheville. The switchgear is identified by Shop Order number $28 Y$. The switchgear incorporates both designs with the option for the variety of IQ products. The riser bus went back to a full rated type that is bolted copper only. Aluminum bus work was initially done only on special orders at customer request.

The switchgear also has many improvements such as the design of an instrument panel door that was able to accommodate three device panels across DS632 in the C and $D$ compartments and a variety of communication capabilities with IMPACC. The outdoor design changed with the concept of a side walk-in enclosure.

## Ratings

800-4000A
208/600V

## Chronology

This vintage was built from May of 1990 to the end of 1996 in Asheville. The switchgear is identified by Shop Order number 28Y.

## 238 SWITCHGEAR (LOW VOLTAGE) DS Switchgear Assemblies Chronology/Description of Vintages

## GENERAL INFORMATION, Continued

## DSII Switchgear Original Design 1994-Present at Asheville, NC

The original design of DSII switchgear manufactured in Asheville includes the DS/DSL Circuit Breaker and the new and improved DSII Switchgear enhancements. These enhancements were developed with the input of our valued customers.
DSII switchgear provides enhanced operational features and a new control wiring configuration that builds upon the reliability and flexibility of the original DS switchgear design. The quality and reliability of DS Switchgear has been consistently proven for over 25 years.

DSII switchgear continues to utilize DS/DSL 100\% rated air circuit breakers, which represent the largest installed base of domestic low voltage power circuit breakers. Microprocessor-based Digitrip RMS Trip Units are standard on the circuit breakers. This vintage of DSII is what we offer to match existing line-ups of DS switchgear via 13 inch wide transition section.

## Ratings

800-6000A
208/600V

## Chronology

This vintage was built from April of 1994 to the present in Asheville. The switchgear is identified by Shop Order number 82Y1000 through 82Y3000.

## DSII Switchgear New Design 1995-Present at Asheville, NC

The new design of DSII switchgear manufactured in Asheville includes the new and improved DSII/DSLII low voltage power circuit breakers. The DSII/DSLII breakers now include the Digitrip 510 Trip Unit as standard with the DSLII providing extended interrupting ratings up to 200kA. A variety of trip units are now available that offer numerous features to benefit the customer: Digitrip 510, 610, 810, 910 and the OPTIM 750 and 1050.

Consequently, they are used on systems where the overload protection and switching functions of air power circuit breakers are required and available fault currents exceed the interrupting ratings of the circuit breakers alone and/or exceed the withstand and interrupting ratings of downstream circuit components.

## Ratings

800-6000A
208/600V

## Chronology

This vintage was built from February of 1996 to the present in Asheville. The switchgear is identified by Shop Order numbers larger than 82Y3000.

## PRODUCT DESCRIPTION



DS Switchgear Assembly Typical Asheville Design, 1991

Westinghouse DS switchgear with type DS (non-limiting) and type DSL (with limiters) low voltage air power circuit breakers was introduced in 1969. There have been many product design changes, as well as, plant movements that have necessitated product improvements. Overall, the product has remained the standard for low voltage switchgear in the industry.
Typical DS switchgear is constructed in accordance with ANSI C37.20.1 standards for low voltage, metal-enclosed drawout switchgear. As such, it contains low voltage power circuit breakers, type DS or DSL, as the principal overcurrent protective devices both as main and as feeder protection. The drawout feature of DS breakers facilitates testing and maintenance important in many applications.
Compartmentalization of the drawout breakers is part of the standard construction. DS and DSL circuit breakers are designed to ANSI standards C37.13, C37.16 and C37.17 in frame sizes ranging from 800A to 5000A. Type DS switchgear is designed in accordance with ANSI standard C37.20.1, C37.51 and UL Standard 1558.

Ratings
DS Switchgear Bus DS/DSL Breaker
Voltage
Interrupting Capacity
800-6000A
15 - 5000A
$120-600 \mathrm{~V}$
30-200kA

## Chronology

There have been five vintages of DS switchgear since the original design was manufactured in 1969. Today, many capabilities still exist to support the different vintages of DS Switchgear.

REPLACEMENT CAPABILITIES


View Showing Controls on the Panel - DS416


DSL416 Breaker - Side View

Cutler-Hammer offers an extensive amount of products to support DS Switchgear.

## New DS Air Circuit Breakers

New DS circuit breakers are available for replacement or to fill existing vacant cells. All breakers are newly manufactured and are mechanically and electrically the same as the breakers as originally specified and supplied.

## DS Circuit Breaker Provisions

Breaker provisions are required in switchgear when there is an existing space in a structure that is to be filled with a breaker. Provisions are available for all ratings and include all parts required to complete the cell in accordance with the switchgear as originally supplied.

## Factory Modification and Repair

Factory modifications and repairs are available for new or customer owned DS circuit breakers. This UL approved service includes trip unit replacements, conversion from manually operated to electrically operated, breaker calibrations and the addition of numerous accessories for the DS and DSL circuit breaker.

## DS Breaker Parts

An extensive inventory of newly manufactured renewal parts for DS and DSL power circuit breakers are available. Refer to RPD33-790-IH for an in-depth listing of renewal parts.

## DS Switchgear Structure Parts

DS switchgear parts are available for most DS designs. Newly manufactured replacement parts (such as doors, breaker provisions, lift trucks, metering, etc.) are available. Contact your local Cutler-Hammer Distributor for availability.

## Digitrip Trip Unit Retrofit Kits

Trip unit retrofit kits are available for all DB Breaker frames. Refer to pages 256257 of this publication.

## 240 <br> SWITCHGEAR (LOW VOLTAGE)

DS Assemblies, Power Circuit Breakers and Renewal Parts
REPLACEMENT CAPABILITIES, Continued

## Divider Panel Kits



Between the circuit breakers in switchgear are divider pans which usually hold a variety of components for breaker control and metering. The most common components are the ammeter, ammeter switch, kirk key interlock and electrically operated push button and lights. (120VAC Std.)

| Divider panel with ammeter and current <br> transformer and shorting block |
| :--- | :--- |
| Style  <br> Number Ammeter <br> Scale <br> 3A73104G01 $0-100$ <br> 3A73104G02 $0-150$ <br> 3A73104G03 $0-200$ <br> 3A73104G04 $0-300$ <br> 3A73104G05 $0-400$ <br> 3A73104G06 $0-500$ <br> 3A73104G07 $0-600$ <br> 3A73104G08 $0-800$ <br> 3A73104G09 $0-1000$ <br> 3A73104G10 $0-1200$ <br> 3A73104G11 $0-1500$ <br> 3A73104G12 $0-1600$ <br> 3A73104G13 $0-2000$ |



Order Entry Point - LVP
Divider panel with ammeter, switch, three current transformers and shorting block.

Style   Number	Ammeter   Scale
3A73107G01	$0-100$
3A73107G02	$0-150$
3A73107G03	$0-200$
3A73107G04	$0-300$
3A73107G05	$0-400$
3A73107G06	$0-500$
3A73107G07	$0-600$
3A73107G08	$0-800$
3A73107G09	$0-1000$
3A73107G10	$0-1200$
3A73107G11	$0-1500$
3A73107G12	$0-1600$
3A73107G13	$0-2000$



Each kit requested is completely preassembled, pre-wired with the appropriate hardware and includes instructions for ease of installation.

| Divider panel with ammeter, switch, <br> pushbuttons, lights, three current transformers <br> and shorting block. |
| :--- | :--- |
| Style  <br> Number Ammeter <br> Scale  <br> 3A73114G01 $0-100$ <br> 3A73114G02 $0-150$ <br> 3A73114G03 $0-200$ <br> 3A73114G04 $0-300$ <br> 3A73114G05 $0-400$ <br> 3A73114G06 $0-500$ <br> 3A73114G077 $0-600$ <br> 3A73114G08 $0-800$ <br> 3A73114G09 $0-1000$ <br> 3A73114G10 $0-1200$ <br> 3A73114G11 $0-1500$ <br> 3A73114G12 $0-1600$ <br> 3A73114G13 $0-2000$ |



Divider panel with ammeter, pushbuttons,   lights, one current transformer and shorting   block.	
Style    Number Ammeter   Scale    3A73112G01 $0-100$   3A73112G02 $0-150$   3A73112G03 $0-200$   3A73112G04 $0-300$   3A73112G05 $0-400$   3A73112G06 $0-500$   3A73112G07 $0-600$   3A73112G08 $0-800$   3A73112G09 $0-1000$   3A73112G10 $0-1200$   3A73112G11 $0-1500$   3A73112G12 $0-1600$   3A73112G13 $0-2000$	


Kits are for the following DS circuit breakers.	
Breaker Type	Frame Size
DS-206	800
DS-206S, H	800
DSL-206	800
DS-416	1600
DS-416S, H	1600
DSL-416	1600
DS-420	2000



Divider panel with ammeter, switch, two current transformers and shorting block.

Style   Number	Ammeter   Scale
3A73106G01	$0-100$
3A73106G02	$0-150$
3A73106G03	$0-200$
3A73106G04	$0-300$
3A73106G05	$0-400$
3A73106G06	$0-500$
3A73106G07	$0-600$
3A73106G08	$0-800$
3A73106G09	$0-1000$
3A73106G10	$0-1200$
3A73106G11	$0-1500$
3A73106G12	$0-1600$
3A73106G13	$0-2000$



Divider panel with ammeter, switch, pushbuttons, lights, two current transformers and shorting block.

Style   Number	Ammeter   Scale
3A73113G01	$0-100$
3A73113G02	$0-150$
3A73113G03	$0-200$
3A73113G04	$0-300$
3A73113G05	$0-400$
3A73113G06	$0-500$
3A73113G07	$0-600$
3A73113G08	$0-800$
3A73113G09	$0-1000$
3A73113G10	$0-1200$
3A73113G11	$0-1500$
3A73113G12	$0-1600$
3A73113G13	$0-2000$

[^36]
## REPLACEMENT CAPABILITIES, Continued

## Switchgear Kits and Renewal Parts



## Neutral Sensors

The sensor kit includes a fourth current sensor and mounting hardware for four wire ground fault protection. Additional wiring needs to be done to the DS circuit breaker. (lf there is no ground fault protection on the existing DS circuit breaker, the trip unit also needs to be changed).

Kit contains one neutral sensor, mounting plate, and hardware.

Sensor Rating   Amperes	Sensor Style   Number
50	$3 A 73101 \mathrm{G} 01$
100	$3 A 73101 \mathrm{G} 02$
150	$3 A 73101 \mathrm{G} 03$
200	$3 A 73101 \mathrm{G} 04$
300	$3 A 73101 \mathrm{G} 05$
400	$3 A 73101 \mathrm{G} 06$
600	$3 A 73101 \mathrm{G} 07$
800	$3 A 73101 \mathrm{G} 08$
1200	$3 A 73101 \mathrm{G} 09$
1600	$3 A 73101 \mathrm{G} 10$
2000	3A73101G11



CTD-2
CTD-10
Capacitor Trip Device
120 Vac
DS Switchgear
Style Number CTD-1 (330 Microfarad)
Style Number CTD-2 (1500 Microfarad)
DSII Switchgear
Style Number CTD-10 (330 Microfarad)


Order Entry Point - LVP
DS Breaker Cell Switch
3-NO, 3-NC
Style Number 2A89010G01
6-NO, 6-NC
Style Number 2A89010G02


Three-Phase Current Transformer Below is a three-phase current transformer that takes the guess work out of wiring along with a new glass polyester barrier and required hardware. This can be used instead of the individual current transformers for metering and instrumentation only. Only applicable for DS206, DS206H, DS206S, DSL206, DS416, DS416S, DS416H, DSL416 and DS420 circuit breakers.

Ratio	Style Number
$250: 5$	$3 A 73102 \mathrm{G01}$
$300: 5$	$3 A 73102 \mathrm{G} 02$
$400: 5$	$3 A 73102 \mathrm{G} 03$
$500: 5$	$3 A 73102 \mathrm{G} 04$
$600: 5$	$3 A 73102 \mathrm{G} 05$
$750: 5$	$3 A 73102 \mathrm{G} 06$
$800: 5$	3A73102G07
$1000: 5$	3A73102G08
$1200: 5$	3A73102G09
$1500: 5$	3A73102G10
$1600: 5$	$3 A 73102 \mathrm{G} 11$
$2000: 5$	3A73102G12



## Key Interlock Provisions

The key interlock provision kit includes all of the necessary hardware to complete a provision for all DS circuit breakers. The kit includes a new divider panel and blank plates to accept a key interlock. (two cylinders max.)


DS-206S, DS-206H, DSL-206, DS-416
DS-416S, DS-416H, DSL-416, and DS-420 Style Number 3A73116G01
Key Interlock Provision for DS-632 and DSL-632. Style Number 3A73116G02
Key Interlock Provision for DS-840 and DSL-840
Style Number 3A73116G03


Current Transformers
The current transformers shown below are for metering and instrumentation only. Do not use these current transformers for relaying. Kit contains three current transformers and required hardware.

## Current Transformer Type

DSM-16	DSM-32	DSM-40
DS206, S, H	DS632	DS840
DS416, S, H	DSL632	DSL840
DS420		
DSL206		
DSL416		
Type	Ratio	Style Number
DSM-16	$100: 5$	3A73103G01
DSM-16	$150: 5$	3A73103G02
DSM-16	$200: 5$	3A73103G03
DSM-16	$250: 5$	3A73103G04
DSM-16	$300: 5$	3A73103G05
DSM-16	$400: 5$	3A73103G06
DSM-16	$500: 5$	3A73103G07
DSM-16	$600: 5$	3A73103G08
DSM-16	$800: 5$	3A73103G09
DSM-16	$1000: 5$	3A73103G10
DSM-16	$1200: 5$	3A73103G11
DSM-16	$1500: 5$	3A73103G12
DSM-16	$1600: 5$	3A73103G13
DSM-16	$2000: 5$	3A73103G14
DSM-16	$2500: 5$	3A73103G15
DSM-16	$3000: 5$	3A73103G16
DSM-32	$2400: 5$	3A73103G17
DSM-32	$2500: 5$	3A73103G18
DSM-32	$3000: 5$	3A73103G19
DSM-32	$3200: 5$	3A73103G20
DSM-32	$4000: 5$	3A73103G21
DSM-40	$4000: 5$	3A73103G22
DSM-40	$5000: 5$	3A73103G23
DSM-40	$6000: 5$	3A73103G24



[^37]REPLACEMENT CAPABILITIES, Continued

## Breaker Accessories



New Test Kit (including adapter) Includes 140D481G03 tester and the 6779C02G03 adapter.
This test kit can be used for testing DS Breakers that have either the Amptector or Digitrip RMS trip units. This test kit also works on the new DSII Breakers.

Style Number 8779C02G02
Calibration and Repair Services
Test Unit Style $\quad$ Service Options
140D481G01 Trade-in Only
140D481G02 Trade-in Only
140D481G03-Repair Available
Trade-in Program
If you have
one of these:
You can get this
140D481G01有

140D481G02
8779C02G02
Send us your old test units, and receive the new test kit, at a discounted price.
Contact you local Cutler-Hammer Field
Sales Office for details.


## Adapter

In May of 1993, Cutler-Hammer changed the test port on DS circuit breakers that have Digitrip RMS trip units. The test port was moved from the front cover to the left-hand side, as you face the front of the breaker. The new port was also changed from an 11 pin, banana plug to a 9 pin plug. The adapter is for using a 140D481(G02R), (G02RR), or (G03) tester to test DS breakers with Digitrip that have the new side-mounted, 9 pin plug. The adapter converts the banana plugs on the tester to a 9 pin plug. DO NOT use the adapter with the old 140D481G01 or 140D481G02 tester.


## Breaker Transport Cart

Floor running portable circuit breaker transfer truck with manual lifting mechanism. Requires 60 -inch deep front aisle space.
Style Number 6727D63H20


Breaker Lifting Device
Includes gear lifter, spreaderbar and crank. Top rails not included.

## Style Number 694C616G01

Background Information

Style Number	Description
140D481G01	(Obsolete Test Unit, only for use with Amptector)
140D481G02	(Obsolete Test Unit, only for use with Amptector)
140D481G02R	(Same as 140D481G02, except retrofitted to test both Amptector
	and Digitrip)
140D481G02RR	(Same as 140D481G02, except retrofitted to test both Amptector
	and Digitrip)
(Obsolete Test Kit Adapter, superseded by 8779C02G03)	

The following parts are used with any breaker that was upgraded with "Digitrip Retrofit Kits." Refer to Section "S" of this catalog for further information on Digitrip Retrofit Kits.

Style Number	Description
6503C53G01	(Wire harness with female banana plugs for temporary connection direct   from tester to the auxiliary CT module on the retrofitted breaker)   (Adapter harness for converting banana from the tester to a 12 pin plug for   6503C54G01   retrofitted breakers equipped with a 6503C55G01)   New Adapter for converting 12 pin plug on 6503C55G01 into 9 pin plug for   connecting to the test unit adapter style \# 8779C02G03.   6503C55G01   (Wire harness with 12 pin plug for permanent connection to auxiliary   CT module on the retrofitted breaker; plug connects to 6503C54G01 or   6503C54G02)   (Current Auxiliary Power Module for supplying power to Digitrip trip unit   during test procedures, also identical to catalog number PRTAAPM)

## TECHNOLOGY UPGRADES

## Application

Cutler-Hammer DS-VSR is a self-contained vacuum starter replacement for a DS drawout air circuit breaker used for motor starting applications.
Type DS Air Circuit Breakers have been manufactured for over 25 years and have proven their quality and dependability in applications for which they were designed. In some cases, DS Air Circuit Breakers are used for motor starting applications. Air circuit breakers are not designed to withstand the frequent switching service and mechanical stresses associated with repetitive motor starting duty. This is due to the breaker mechanism which must be designed to close and latch against a fault. In order to meet these requirements, the mechanism must close at high speeds with a great deal of force. Frequent closing operations stress and deteriorate the breaker mechanisms.
The Cutler-Hammer DS-VSR is a self-contained replacement vacuum starter for a DS drawout air circuit breaker. The DSVSR is interchangeable with all quarterhigh DS breaker elements and requires no cell modifications.


## Ratings

The DS-VSR vacuum starter is rated as follows:
Max. Continuous Current 320A
Max. Voltage Rating 600 V
Fuse Size
Fuse Type
Short Circuit Rating
at 600 V
400A

Max. Motor Hp at $480 \mathrm{~V} \quad 250 \mathrm{Hp}$
Max. Motor Hp at $240 \mathrm{~V} \quad 125 \mathrm{Hp}$

## Advantages

The use of a DS-VSR vacuum starter can prolong device life and significantly reduce maintenance repair and downtime.
A DS-206 air circuit breaker has an effective life of 4,000 operations while a DSVSR vacuum starter has an effective life of $1,000,000$ operations. For example, a
motor starting application that required 2 starts per hour on continuous duty would require a major rebuild of the DS Breaker within 3 months. The expected life of a DS-VSR vacuum starter would be over 50 years.
The DS-VSR vacuum starter fits in a DS206, DS-206H, DS-416, DS-416S, DS-420 cell without modifications to the switchgear assembly. Since it is a roll-out, roll-in solution, no costly downtime is associated with this change-out.
The DS-VSR vacuum starter uses state-of-the-art Cutler-Hammer vacuum interrupters. The interrupters employ the latest vacuum technology with long life, resistance to environmental contaminants, and positive contact wear indicators.
The integral, solid-state, trip units used on the DS Breakers are designed primarily for cable and transformer protection. Motors require more precisely set overcurrent devices that prevent motor damage as well as avoiding nuisance tripping. A solidstate relay, Cutler-Hammer Type IQ-500, provides overload protection, Class II ground fault protection, and phase unbalance protection. This relay was designed exclusively for motor protection.

## Features

## Motor Starter

The DS-VSR consists of a Cutler-Hammer V201 vacuum contactor, Class J current limiting fuses, KD molded case switch, IQ500 multi-function motor protective relay, three (3) current transformers and an integral control power transformer.

## Vacuum Contactor

The Cutler-Hammer V201 vacuum contactor is designed for starting and controlling three-phase, $50 / 60 \mathrm{~Hz}$ ac motors. Current interruption is contained within the vacuum bottles and no arc by-products are vented to the outside environment. Contact condition is given by wear indicators.

## Series Current Limiting Fuses

Class J, current limiting fuses provide short circuit protection and allow a combination rating of 65 kA at 600 V and 100 kA at 480 V .

## Disconnect Device

Cutler-Hammer Series C, type KD molded case switch permits positive disconnection of the motor controller.

## IO-500 Motor Protective Relay

The Cutler-Hammer IO-500 multi-function solid-state, motor protection relay provides the following features:

- Overload protection, Class 5, 10, 20 or 30
- Ground fault protection, Class II
- Phase unbalance protection, $10 \%, 20 \%$ or 50\%
- Manual or automatic reset
- Isolated alarm relay output contact
- LED status indication
- IMPACC/PowerNet communication (option)
- JAM overtorque protection (option)
- Long acceleration (option)
- Underload protection (option)
- Load control (option)


DS Replacement Door with AEMII, IQ Data PlusiI, Poni Cards (2), and Blank Plate


DSII Circuit Breaker with Digitrip RMS Trip Unit Family (T510, T610, T810, T910)

IO and PowerNet Communications Retrofits Cutler-Hammer offers IO products to replace existing analog meters, instruments, and protective relays with microprocessorbased solid-state true rms sensing devices. IO products can be furnished as components for field installation on the switchgear or can be provided as new replacement front panels. The new replacement door panels available for DS switchgear assemblies include the IO devices mounted and wired. The instrument compartment door will fit all vintages of DS switchgear from 1968 to the present. Door panels can be supplied with analog instruments, breaker control devices, or any other device that will physically fit. The IQ products can be matched in numerous combinations to include the IQ Analyzer, IQ Data PlusII, IQ Data, IQ Generator, IQ Data Plus 4000/4100 and the Assemblies Electronic Monitor (AEMII). Communications can then be tied to the Cutler-Hammer PowerNet System.

## Digitrip Trip Unit Retrofit Kits

Trip unit retrofit kits are available for all DB breaker frames. Refer to pages 256-257 of this publication.


DSII Switchgear Assembly
Typical Asheville Design, 1993

Westinghouse DSII switchgear with type DS (non-limiting) and type DSL (with limiters) low voltage air power circuit breakers was introduced in 1993. The DSII and DSLII circuit breakers were incorporated in the DSII switchgear assembly in 1996. The design of the new DSII switchgear was not undertaken without the valued input of our customers. To determine what needed to be improved, changed and added, a survey of many of our customers was made. The results of this input centered around quality, cycle time reduction during both production and maintenance, standardization of wiring, placement of repetitive devices and ease of maintenance.
DSII switchgear is constructed in accordance with ANSI C37.20.1, C37.51, NEMA SG3 and SG5, and UL Standards 1558 for low voltage, metal-enclosed drawout switchgear. As such, it contains low voltage power circuit breakers, type DS/DSL or DSII/DSLII as the principal overcurrent protective devices both as main and as feeder protection. The enhanced structure features of DSII switchgear allows the
breakers to be positioned in the "connected," "test," "disconnected," or "remove" position with the breaker compartment door closed. This eliminates the danger of exposed live circuits or protruding breakers commonly associated with "through the door drawout" construction.
Compartmentalization of the drawout breakers is part of the standard construction. DS/ DSL or DSII/DSLII circuit breakers are designed to ANSI standards C37.13, C37.16 and C37.17 in frame sizes ranging from 800 A to 5000A.

## Ratings

DSII Switchgear Bus	$800-6000 \mathrm{~A}$
DSII/DSLII Breaker	$15-5000 \mathrm{~A}$
Voltage	$208-600 \mathrm{~V}$
Interrupting Capacity	$30-200 \mathrm{kA}$

## Chronology

There have been five vintages of DS switchgear since the original design was manufactured in 1969. Today, many capabilities still exist to support the different vintages of DS switchgear.

## REPLACEMENT CAPABILITIES

Cutler-Hammer offers an extensive amount of products to support DSII switchgear:

## New DSII Air Circuit Breakers

New DSII circuit breakers are available for replacement or to fill existing vacant cells. All breakers are newly manufactured and are mechanically and electrically the same as the breakers originally specified and supplied.

## DSII Circuit Breaker Provisions

Breaker provisions are required in switchgear when there is an existing space in a structure that is to be filled with a breaker. Provisions are available for all ratings and
include all parts required to complete the cell in accordance with the switchgear as originally supplied.

## Factory Modification and Repair

Factory modifications and repairs are available for new or customer owned DSII circuit breakers. This UL approved service includes trip unit replacements, conversion from manually operated to electrically operated, breaker calibrations, and the addition of numerous accessories for the DSII and DSLII circuit breaker.

## DSII Breaker Parts

An extensive inventory of newly manufactured renewal parts for DSII and DSLII circuit breakers are available.

## DSII Switchgear Structure Parts

DSII switchgear parts are available for most DS designs. Newly manufactured replacement parts (such as doors, breaker provisions, lift trucks, metering, etc.) are available.

TECHNOLOGY UPGRADES


PowerNet Monitoring and Control System
IQ and PowerNet Communications Retrofits Cutler-Hammer offers IO products to replace existing analog meters, instruments, and protective relays with microprocessorbased solid-state true-RMS sensing devices.

IO products can be furnished as components for field installation on the switchgear or can be provided as new replacement front panels. The new replacement door panels available for DS switchgear assemblies include the IO devices mounted and wired. The instrument compartment door will fit all vintages of DS switchgear from 1968 to the present. Door panels can be supplied with analog instruments, breaker control devices, or any other device that will physically fit. The IO products can be matched in numerous combinations to include the IQ Analyzer, IQ Data PlusII, IQ Data, IQ Generator, IQ Data Plus 4000/4100, and the Assemblies Electronic Monitor (AEMII). Communications can then be tied to the Cutler-Hammer PowerNet System.


DSII Circuit Breaker with Digitrip RMS Trip Unit Family (T510, T610, T810, T910)

## Digitrip Trip Unit Retrofit Kits

Trip unit retrofit kits are available for all DB breaker frames. Refer to pages 256-257 of this publication.

SWITCHGEAR (LOW VOLTAGE)

## CUSTOMER REOUIRED INFORMATION

Procedure for Identifying Renewal Parts For all switchgear requests, include information from the list at right to ensure that parts and breakers supplied will consist of correct options and settings. With the variety of switchgear vintages, the information is needed to supply the correct parts. There might be modifications needed to the breaker cell or the bus work to accommodate the breaker that will only be recognized by the drawings.

For all requests include the following:

- Shop Order Number
- Front View Drawing Number
- General Order Number (GO\#)
- Manufacturing Date
- Item Number
- Metering Required
- Optional Relays
- CTs
- What changes have been made since equipment was originally installed in the field?

Requests requiring additional or replacement breakers also require the following information:

- Breaker Type
- Trip Rating
- MO or EO
- Trip Unit
- 3-wire or 4-wire
- Trip Settings (LSIG)
- Fixed or Drawout
- Which Compartment
- Any New Options


## FURTHER INFORMATION

Product	Literature Number	Description
DB Breakers	RPD 32-254	Renewal Parts Data for DB, DBL, DBF Breakers
	LEL005A	Sales Aid for the DB Remanufacture Program
	SA-11745	Sales Aid for Custom Fluidized Switchgear Bus
DS Breakers	RP.22B.01.T.E	Renewal Parts Data for DS Breakers
DSII Breakers	RP.22B.02.T.E	Renewal Parts Data for DSII Breakers
DS/DSII Switchgear Assemblies	RP.44B.01.T.E	Renewal Parts Data for DS/DSII Switchgear Assemblies
	LEL017	Sales Aid for the LV Switchgear Cell Retrofits using DS/DSL and SPB Breakers
DSII Switchgear and Breaker	SA-32-610A	Sales Aid for DSII Low Voltage Switchgear
	AD 32-650A	Application Data for DSII Switchgear

## PRICING INFORMATION

Product	Literature Number	Description
DS Breakers	PL.22G.01.P.E	Price List for DS Breakers and Accessories, Discount Symbol DS-1
DSII Breakers	PL.22B.01.P.E	Price List for DSII Breakers and Accessories
DS Breaker Parts	VISTA/VISTALINE	Discount Symbol Y1
DSII Breaker Parts	VISTA/VISTALINE	Discount Symbol Y1

## PRODUCT DESCRIPTION

## Application

Digitrip RMS trip unit retrofit kits are fully engineered, field installable retrofit kits that enable the user to completely replace an existing tripping system. They are applicable to ( 600 VAC ) low-voltage power breakers and are designed for application on both Westinghouse and non-Westinghouse power breakers.
Digitrip RMS trip unit retrofit kits provide true RMS sensing, the most accurate and current
state-of-the-art technology for measuring amperage loads. True RMS sensing removes the possibility of false tripping due to harmonic distortion of the power waveform and enables greater accuracy in selective coordination of the power distribution system. The micropro-cessor-based Digitrip trip unit also allows communications for remote monitoring to a host computer or local Assemblies Electronic Monitor (AEM) via the Integrated Monitoring Protection and Control Communications (PowerNet) communication system.

## Ratings

Digitrip RMS trip unit retrofit kits are available for a wide variety of both Westinghouse and non-Westinghouse low-voltage power breaker frames. Ratings range from 100 amperes to 4000 amperes. Multitapped CTs, interchangeable rating plugs, programmable pickup and time delay settings provide the user with flexibility.

## PRODUCT HISTORY

## Originally a Westinghouse Product

In the past there have been three types of automatic control for low voltage power breakers: electromechanical trip units, solidstate peak sensing trip units, and state-of-the-art true RMS sensing trip units.

## Electromechanical Trip Units:

Electromechanical trip units were initially used in the early 1940s and phased out by all manufacturers in the mid-1970s.
Westinghouse used these trip devices on types DA and DK power circuit breakers. They were also used initially on the DB power circuit breaker. The electromechanical trip units were the conventional form of protection on all manufacturers' breakers, up until the 1970s.
Electromechanical trip units were composed of a solenoid, springs, a diaphragm, seals, and air venting apertures. Three trip units were required per breaker. Due to age or harsh environments these devices would fail or lose calibration. They required a great deal of preventative maintenance.

## Solid State Peak Sensing Trip Units:

In 1970, the Amptector Trip Unit was introduced as the standard trip unit on the Westinghouse type DS power circuit breaker. The Amptector solid-state trip system provided much greater accuracy and reliability and included new features like ground fault (G) protection, mode of trip indication, and the ability to perform secondary injection testing.
Electromechanical trip devices immediately became obsolete, creating a retrofit market. Amptector retrofit kits were introduced to convert the type DB breakers that had been factory equipped with the electromechanical type trip units.
In 1976, the POW-R-Trip 7 trip unit was introduced on the Westinghouse SPB insulated case power circuit breaker. A more simplified version with only two trip functions, known as the POW-R-Trip; became available in 1978. Then in 1982 the POW-R Digitrip trip unit became available and offered on the SPB breakers.
In 1985, RK trip units and retrofit kits were introduced to provide a solid-state trip unit small enough to retrofit General Electric breakers as well as the Westinghouse type DB breakers.

Peak sensing trip units were an improvement and provided improved reliability and accuracy. Only one trip unit was required per breaker; however, peak sensing trip units were not able to handle harmonic conditions. They caused nuisance tripping and unnecessary downtime.

## True RMS Sensing Trip Units:

In 1987, Westinghouse introduced the Digitrip II RMS trip unit (standard version) for use on type DS and SPB power circuit breakers. Digitrip II RMS was the first microproces-sor-based true RMS sensing trip unit.
True RMS trip units enabled the measuring of current rather than the sensing of current.
Since they are microprocessor-based digital devices, they are capable of taking discrete samples of the current waveform in each phase. By applying a mathematical algorithm, the current is accurately mapped out and measured. This method of measurement provides the ability to adapt to a changing harmonic content while providing repeatable and reliable protection.

## PRODUCT HISTORY TIMELINE



## GENERAL INFORMATION

## State-of-the-Art Features

Digitrip RMS trip unit retrofit kits come in several different model types. Among these types, they provide a variety of accommodating features (see table below).
True RMS measurement and protection. Extremely accurate and able to compensate for harmonic content and disturbances.
Ground fault may be added to an existing power breaker. Ground fault is offered in a 3 -wire and a 4 -wire version.
Zone interlocking is available on the short time and ground fault modes of protection. This enables enhanced selectivity for high fault and ground fault coordination between the main and feeder breakers.
Local monitoring via a display. A red Light Emitting Diode (LED) display enables the user to step through and read currents and energy readings for each phase and ground.
Communications via the PowerNet system. This allows all pertinent information, regarding static and dynamic operation of the breaker, to be remotely monitored either by a host computer or IQ AEM. This facilitates energy management and power management. Remember:

## The Packaged Kit

Each Digitrip RMS trip unit retrofit kit includes a Digitrip trip unit, an auxiliary CT module, a Direct Trip Actuator (DTA), qty. (3) current sensors, a rating plug, interconnecting wiring harnesses, mounting brackets, copper connectors (when required), hardware, and installation instructions. Digitrip RMS retrofit kits are complete tripping systems engineered specifically for each breaker type and frame rating. All kits are designed for field installation.

## Application and Service Condition

 In order to ensure that Digitrip RMS trip unit retrofit kits are successfully applied, installation must only be done by a qualified individual.Appropriate testing must be performed to qualify the retrofitted breaker prior to placing the breaker in service. Digitrip RMS trip unit retrofit kits will provide protection based on their published time-current curves when the breaker is properly maintained and operated in accordance with the original manufacturer's specification and instructions.

## Service Life

The physical structure, the bus assemblies, and control wiring of switchgear are normally in good condition. The replacement of the trip system coupled along with either refurbishment or reconditioning of the breaker will prolong the life of the switchgear and provide modern state-of-the-art protection.

## Availability

Digitrip RMS trip unit retrofit kits are currently available for select breaker frames from the following manufacturers:

Westinghouse	General Electric
ITE	Allis-Chalmers
Siemens-Allis	Federal Pacific

Roller Smith

## Order Information

In order to obtain the proper kit, the following information should be provided to your authorized Cutler-Hammer distributor: breaker manufacturer, breaker frame designation, breaker frame rating, breaker continuous current rating, kit type (see table below) (i.e., RMS510...RMS810), modes of protection, sensor rating, rating plug rating.
"If you can't measure it, you can't manage it."

## FUNCTIONAL COMPARISONS OF TRIP UNITS

Past Technology					Features	Present Technology				
RMS   500	$\begin{aligned} & \text { RMS } \\ & 500 \\ & \text { Zone } \end{aligned}$	RMS 600	$\begin{aligned} & \text { RMS } \\ & 700 \end{aligned}$	$\begin{aligned} & \text { RMS } \\ & 800 \end{aligned}$		RMS 510	$\begin{aligned} & \text { RMS } \\ & 510 \\ & \text { Zone } \end{aligned}$	RMS 610	$\begin{aligned} & \text { RMS } \\ & 810 \end{aligned}$	$\begin{aligned} & \text { RMS } \\ & 910 \end{aligned}$
$\bullet$	$\bullet$	$\bigcirc$	$\bigcirc$	$\bullet$	Cause of trip LED indicators	$\bullet$	$\bullet$	$\bullet$	$\bigcirc$	$\bullet$
$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bullet$	Integral self test	$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bullet$
$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bullet$	Trip reset button	$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bullet$
$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bullet$	Hardware driven thermal memory					
					Software driven thermal memory (sel. O/O)	$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bullet$
$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bullet$	Discriminator circuit on LS and LSG protection modes					
					Discriminator circuit on LS and LSG protection modes selectable (on/off)	$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bullet$
	$\bullet$	-	-	$\bullet$	Zone protective interlocking for short time and ground fault modes of protection		$\bullet$	-	$\bullet$	$\bullet$
	$\bullet$	$\bullet$	$\bullet$	$\bullet$	Auxiliary contact for long time, short circuit, and ground fault functions		$\bullet$	$\bullet$	$\bullet$	$\bullet$
		$\bullet$		$\bullet$	Local display of phase currents			$\bullet$	$\bullet$	$\bullet$
		$\bullet$		$\bullet$	Local display of ground currents			$\bullet$	$\bullet$	$\bullet$
		$\bullet$		$\bullet$	Local display of cause of trip			-	$\bullet$	-
				$\bullet$	Local display of energy (MWh)				$\bullet$	$\bullet$
				$\bullet$	Local display of peak demand (MW)				$\bullet$	$\bullet$
				$\bullet$	Local display of present demand (MW)				$\bullet$	$\bullet$
			-	-	Communication with PowerNet communicated data includes:   All display values, trip unit status, high load alarm, cause of trip, rating plug status, breaker status, reason for breaker status				-	-
					Trip settings				$\bullet$	$\bullet$
					Power factor				$\bullet$	$\bullet$
			$\bullet$	$\bullet$	Control via the PowerNet system (open/close)				$\bullet$	$\bullet$
					Voltage phase-to-phase, displayed on trip unit and communicated via PowerNet communications.					$\bullet$
					Total harmonic distortion (THD); phase A, B, C. Displayed on trip unit and communicated via PowerNet communications.					-
					Total harmonic distortion per harmonic from the 2nd through the 27th harmonic displayed on trip unit and communicated via PowerNet communications.					-
					System power factor. Displayed on trip unit and communicated via PowerNet communications.					$\bullet$

## REPLACEMENT CAPABILITIES

Digitrip RMS Trip Unit Replacement When a Digitrip RMS trip unit requires replacement, it can be replaced directly using the enclosed charts. Observe the following restrictions:

1. The group function (G) cannot be added in the field just by changing the trip unit.

Trip Functions
All Digitrip RMS retrofit kit types are available with the necessary combinations of Long, Short, Instantaneous, and Ground Fault (LSIG) modes of protection as depicted and deemed necessary by industry standards.
The combinations of modes of protection are:

LI	LS
LSI	LIG
LSG	LSIG

Rating Plug Replacement
When changing or replacing rating plugs, use the charts provided on pages 251-253 for DS, SPB and all other retrofitted breakers.

Standard Retrofit RMS Replacement Trip Units for DS and SPB Breakers

Past Technology				Present Technology			
Digitrip Model	Protective Functions	Catalog Number	Style Number	Digitrip Model	Protective Functions	Catalog Number	Style Number
RMS 500	LI   LSI   LS   LIG   LSG   LSIG	T51BLI T52BLSI T53BLS T54BLIG T55BLSG T56BLSIG	$\begin{aligned} & 1230 \text { C } 97 G 01 \\ & \text { 1230C97G02 } \\ & \text { 1230C97G03 } \\ & \text { 1230C97G04 } \\ & \text { 1230C97G05 } \\ & \text { 1230C97G06 } \end{aligned}$	RMS 510	LI   LSI   LS   LIG   LSG   LSIG	$\begin{aligned} & \hline \text { S51LI } \\ & \text { S52LSI } \\ & \text { S53LS } \\ & \text { S54LIG } \\ & \text { S55LSG } \\ & \text { S56LSIG } \end{aligned}$	$\begin{aligned} & \hline 7829 \mathrm{C} 05 \mathrm{G} 01 \\ & 7829 \mathrm{C} 05 \mathrm{G} 02 \\ & 7829 \mathrm{C} 05 \mathrm{G} 03 \\ & 7829 \mathrm{C} 05 \mathrm{G} 04 \\ & 7829 \mathrm{C} 05 \mathrm{G} 05 \\ & 7829 \mathrm{C} 05 \mathrm{G} 06 \end{aligned}$
RMS 600	LI   LSI   LS   LIG   LSG   LSIG	T61BLI T62BLSI T63BLS T64BLIG T65BLSG T66BLSIG	1230C97G07   1230C97G08   1230C97G09   1230C97G10   1230C97G11   1230C97G12	RMS 610	LI   LSI   LS   LIG   LSG   LSIG	S61LI S62LSI S63LS S64LIG S65LSG S66LSIG	$\begin{aligned} & \hline 7829 \mathrm{C} 10 \mathrm{G} 01 \\ & 7829 \mathrm{C} 10 \mathrm{G} 02 \\ & 7829 \mathrm{C} 10 \mathrm{G} 03 \\ & 7829 \mathrm{C} 10 \mathrm{G} 04 \\ & 7829 \mathrm{C} 10 \mathrm{G} 05 \\ & 7829 \mathrm{C} 10 \mathrm{G} 06 \end{aligned}$
RMS 700	LI   LSI   LS   LIG   LSG   LSIG	T71BLI T72BLSI T73BLS T74BLIG T75BLSG T76BLSIG	1230C97G19   1230C97G20   1230C97G21   1230C97G22   1230C97G23   1230C97G24	There is no direct replacement for Digitrip RMS 700. Use Digitrip RMS 810 or 910 . See below.			
RMS 800	LI LSI LS LIG LSG LSIG	T81BLI T82BLSI T83BLS T84BLIG T85BLSG T86BLSIG	$\begin{aligned} & \text { 1230C97G13 } \\ & \text { 1230C97G14 } \\ & \text { 1230C97G15 } \\ & \text { 1230C97G16 } \\ & \text { 1230C97G17 } \\ & 1230 \text { C } 97 G 18 \end{aligned}$	RMS 810	LI LSI LS LIG LSG LSIG	S81LI S82LSI S83LS S84LIG S85LSG S86LSIG	7829C08G01 7829C08G02 7829C08G03 7829C08G04 7829C08G05 7829C08G06
				RMS 910	LI LSI LS LIG LSG LSIG	$\begin{aligned} & \hline \text { S91LI } \\ & \text { S92LSI } \\ & \text { S93LS } \\ & \text { S94LIG } \\ & \text { S95LSG } \\ & \text { S96LSIG } \end{aligned}$	$\begin{aligned} & 7829 \mathrm{C} 09 \mathrm{G} 01 \\ & 7829 \mathrm{C} 09 \mathrm{G} 02 \\ & 7829 \mathrm{C} 09 \mathrm{G} 03 \\ & 7829 \mathrm{C} 09 \mathrm{G} 04 \\ & 7829 \mathrm{C} 09 \mathrm{G} 05 \\ & 7829 \mathrm{C} 09 \mathrm{G} 06 \end{aligned}$

NOTE: At the time of this publication, the standard trip units for Low Voltage Digitrip Retrofit Kits are the RMS 510/610/810/ 910. From 1989-1996, the standard trip units were the RMS 500/600/700/800. These trip units are no longer in production. Replacement orders for the 500/600/700/800 trip units will be filled by the equivalent 510/610/810/910 trip units. Remember when replacing a 500/600/700/800 unit with a 510/610/810/910, the rating plug must also be replaced.

Rating plugs for the 500/600/700/800 trip units will still be available. These rating plugs are not interchangeable with the 510/610/810/910 trip units.
Likewise, rating plugs for the 510/610/810/910 are not interchangeable with the 500/600/700/800 trip units.

SWITCHGEAR (TRIP UNIT RETROFIT KITS) Digitrip RMS Trip Units for Power Circuit Breakers

REPLACEMENT CAPABILITIES, Continued
Horizontal Retrofit RMS/R Replacement Trip Units for all Other Breakers


NOTE: At the time of this publication, the standard trip units for Low Voltage Digitrip Retrofit Kits are the RMS 510/610/810/ 910. From 1989-1996, the standard trip units were the RMS $500 / 600 / 700 / 800$. These trip units are no longer in production. Replacement orders for the 500/600/700/800 trip units will be filled by the equivalent 510/610/810/910 trip units. Remember when replacing a 500/600/700/800 unit with a 510/610/810/910, the rating plug must also be replaced.

Rating plugs for the $500 / 600 / 700 / 800$ trip units will still be available. These rating plugs are not interchangeable with the 510/610/810/910 trip units.
Likewise, rating plugs for the 510/610/810/910 are not interchangeable with the 500/600/700/800 trip units.

## INTRODUCTION AND DESCRIPTION

Rating plugs for Digitrip RMS Trip Units determine the continuous current rating of the circuit breaker. All protection function settings on the face of the trip unit are expressed in per unit multiples of the rating plug ampere rating $\left(I_{n}\right)$.
The rating plug is interlocked with the tripping mechanism to automatically "open" the breaker when the plug is removed. The breaker will remain "trip free" with the plug removed.


SPB Rating Plug and Details

SPB rating plugs must be selected to match the desired continuous current rating of the breaker as well as the frame rating and the system frequency, i.e., 50 or 60 Hz .
DS and retrofit rating plugs must be selected to match the desired continuous current rating of the breaker, the sensor tap setting and the system frequency, i.e., 50 or 60 Hz .
Rating plugs are equipped with a backup battery to maintain the mode of trip operation following a circuit breaker tripping


Rating Plug for all Other Retrofitted Breakers


DS Rating Plug
when external power is not available. The battery is a long-life lithium type, that is accessible from the front of the trip unit, without removing the rating plug.
Replacement types and instructions are provided in Application Data 33-855.
Following a trip operation and with no supplementary control power available, the battery will maintain the mode of trip LED for approximately 60 hours.

NOTE: At the time of this publication, the standard trip units for Low Voltage Digitrip Retrofit Kits are the RMS 510/610/810/ 910. From 1989-1996, the standard trip units were the RMS $500 / 600 / 700 / 800$. These trip units are no longer in production. Replacement orders for the 500/600/700/800 trip units will be filled by the equivalent 510/610/810/910 trip units.
Remember when replacing a 500/600/700/800 unit with a 510/610/810/910, the rating plug must also be replaced.

Rating plugs for the 500/600/700/800 trip units will still be available. These rating plugs are not interchangeable with the 510/610/810/910 trip units.
Likewise, rating plugs for the 510/610/810/910 are not interchangeable with the 500/600/700/800 trip units. SWITCHGEAR (TRIP UNIT RETROFIT KITS) Digitrip RMS Rating Plugs

## REPLACEMENT CAPABILITIES

## Rating Plugs for DS Breakers

Past Technology (500/600/700/800)				Present Technology (510/610/810/910)			
Sensor Tap Connection	Rating Plug Rating	60 Hz ©   Catalog Number	60 Hz (   Style Number	Sensor Tap Connection	Rating Plug Rating	$\begin{aligned} & \text { 50/60 Hz } \\ & \text { Catalog Number } 2 \end{aligned}$	$50 / 60 \mathrm{~Hz}$   Style Number(2
$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	$\begin{aligned} & \text { PD6D02A010 } \\ & \text { PD6D02A020 } \end{aligned}$	$\begin{aligned} & \text { 2613D10G01 } \\ & \text { 2613D10G02 } \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	$\begin{aligned} & \hline \text { RP6D02A010 } \\ & \text { RP6D02A020 } \end{aligned}$	$\begin{aligned} & \text { 3D86734G01 } \\ & \text { 3D86734G02 } \end{aligned}$
$\begin{aligned} & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 200 \\ & 250 \\ & 300 \end{aligned}$	PD6D03A020 PD6D03A025 PD6D03A030	2613D10G03 2613D10G04 2613D10G05	$\begin{aligned} & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 200 \\ & 250 \\ & 300 \end{aligned}$	RP6D03A020   RP6D03A025   RP6D03A030	$\begin{aligned} & \text { 3D86734G03 } \\ & \text { 3D86734G04 } \\ & \text { 3D86734G05 } \end{aligned}$
$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 200 \\ & 250 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & \hline \text { PD6D04A020 } \\ & \text { PD6D04A025 } \\ & \text { PD6D04A030 } \\ & \text { PD6D04A040 } \end{aligned}$	2613D10G06 2613D10G07 2613D10G08 2613D10G09	$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 200 \\ & 250 \\ & 300 \\ & 400 \end{aligned}$	RP6D04A020 RP6D04A025 RP6D04A030 RP6D04A040	3D86734G06 3D86734G07 3D86734G08 3D86734G09
$\begin{aligned} & 600 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 300 \\ & 400 \\ & 600 \end{aligned}$	$\begin{aligned} & \hline \text { PD6D06A030 } \\ & \text { PD6D06A040 } \\ & \text { PD6D06A060 } \end{aligned}$	$\begin{aligned} & \text { 2613D10G10 } \\ & \text { 2613D10G11 } \\ & \text { 2613D10G12 } \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 300 \\ & 400 \\ & 600 \end{aligned}$	$\begin{aligned} & \text { RP6D06A030 } \\ & \text { RP6D06A040 } \\ & \text { RP6D06A060 } \end{aligned}$	$\begin{aligned} & \text { 3D86734G10 } \\ & \text { 3D86734G11 } \\ & \text { 3D86734G12 } \end{aligned}$
$\begin{aligned} & 800 \\ & 800 \\ & 800 \end{aligned}$	$\begin{aligned} & 400 \\ & 600 \\ & 800 \end{aligned}$	PD6D08A040 PD6D08A060 PD6D08A080	2613D10G13 2613D10G14 2613D10G15	$\begin{aligned} & 800 \\ & 800 \\ & 800 \end{aligned}$	$\begin{aligned} & 400 \\ & 600 \\ & 800 \end{aligned}$	RP6D08A040 RP6D08A060 RP6D08A080	3D86734G13   3D86734G14   3D86734G15
$\begin{aligned} & \hline 1200 \\ & 1200 \\ & 1200 \\ & 1200 \end{aligned}$	$\begin{array}{r} 600 \\ 800 \\ 1000 \\ 1200 \end{array}$	$\begin{aligned} & \hline \text { PD6D12A060 } \\ & \text { PD6D12A080 } \\ & \text { PD6D12A100 } \\ & \text { PD6D12A120 } \end{aligned}$	2613D10G16 2613D10G17 2613D10G18 2613D10G19	$\begin{aligned} & 1200 \\ & 1200 \\ & 1200 \\ & 1200 \end{aligned}$	$\begin{array}{r} 600 \\ 800 \\ 1000 \\ 1200 \end{array}$	$\begin{aligned} & \hline \text { RP6D12A060 } \\ & \text { RP6D12A080 } \\ & \text { RP6D12A100 } \\ & \text { RP6D12A120 } \end{aligned}$	3D86734G16 3D86734G17 3D86734G18 3D86734G19
$\begin{aligned} & \hline 1600 \\ & 1600 \\ & 1600 \\ & 1600 \end{aligned}$	$\begin{array}{r} 800 \\ 1000 \\ 1200 \\ 1600 \end{array}$	$\begin{aligned} & \hline \text { PD6D16A080 } \\ & \text { PD6D16A100 } \\ & \text { PD6D16A120 } \\ & \text { PD6D16A160 } \end{aligned}$	2613D10G20 2613D10G21 2613D10G22 2613D10G23	$\begin{aligned} & \hline 1600 \\ & 1600 \\ & 1600 \\ & 1600 \end{aligned}$	$\begin{array}{r} 800 \\ 1000 \\ 1200 \\ 1600 \end{array}$	$\begin{aligned} & \hline \text { RP6D16A080 } \\ & \text { RP6D16A100 } \\ & \text { RP6D16A120 } \\ & \text { RP6D16A160 } \end{aligned}$	3D86734G20 3D86734G21 3D86734G22 3D86734G23
$\begin{aligned} & 2000 \\ & 2000 \\ & 2000 \\ & 2000 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1200 \\ & 1600 \\ & 2000 \end{aligned}$	PD6D20A100   PD6D20A120   PD6D20A160   PD6D20A200	$\begin{aligned} & \text { 2613D10G24 } \\ & \text { 2613D10G25 } \\ & \text { 2613D10G26 } \\ & \text { 2613D10G27 } \end{aligned}$	$\begin{aligned} & 2000 \\ & 2000 \\ & 2000 \\ & 2000 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1200 \\ & 1600 \\ & 2000 \end{aligned}$	RP6D20A100   RP6D20A120   RP6D20A160   RP6D20A200	$\begin{aligned} & \text { 3D86734G24 } \\ & \text { 3D86734G25 } \\ & \text { 3D86734G26 } \\ & \text { 3D86734G27 } \end{aligned}$
$\begin{aligned} & 2400 \\ & 2400 \\ & 2400 \end{aligned}$	$\begin{aligned} & 1600 \\ & 2000 \\ & 2400 \end{aligned}$	$\begin{aligned} & \hline \text { PD6D24A160 } \\ & \text { PD6D24A200 } \\ & \text { PD6D24A240 } \end{aligned}$	$\begin{aligned} & \text { 2613D10G28 } \\ & \text { 2613D10G29 } \\ & \text { 2613D10G30 } \end{aligned}$	$\begin{aligned} & \hline 2400 \\ & 2400 \\ & 2400 \end{aligned}$	$\begin{aligned} & \hline 1600 \\ & 2000 \\ & 2400 \end{aligned}$	$\begin{aligned} & \text { RP6D24A160 } \\ & \text { RP6D24A200 } \\ & \text { RP6D24A240 } \end{aligned}$	$\begin{aligned} & \text { 3D86734G28 } \\ & \text { 3D86734G29 } \\ & \text { 3D86734G30 } \end{aligned}$
$\begin{aligned} & 3200 \\ & 3200 \\ & 3200 \\ & 3200 \end{aligned}$	$\begin{aligned} & 1600 \\ & 2000 \\ & 2400 \\ & 3200 \end{aligned}$	PD6D32A160   PD6D32A200   PD6D32A240   PD6D32A320	2613D10G31 2613D10G32 2613D10G33 2613D10G34	$\begin{aligned} & 3200 \\ & 3200 \\ & 3200 \\ & 3200 \end{aligned}$	$\begin{aligned} & 1600 \\ & 2000 \\ & 2400 \\ & 3200 \end{aligned}$	$\begin{aligned} & \hline \text { RP6D32A160 } \\ & \text { RP6D32A200 } \\ & \text { RP6D32A240 } \\ & \text { RP6D32A320 } \end{aligned}$	3D86734G31 3D86734G32 3D86734G33 3D86734G34
$\begin{aligned} & 4000 \\ & 4000 \\ & 4000 \\ & 4000 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2400 \\ & 3200 \\ & 4000 \end{aligned}$	PD6D40A200   PD6D40A240   PD6D40A320   PD6D40A400	2613D10G35 2613D10G36 2613D10G37 2613D10G38	$\begin{aligned} & 4000 \\ & 4000 \\ & 4000 \\ & 4000 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2400 \\ & 3200 \\ & 4000 \end{aligned}$	$\begin{aligned} & \hline \text { RP6D40A200 } \\ & \text { RP6D40A240 } \\ & \text { RP6D40A320 } \\ & \text { RP6D40A400 } \end{aligned}$	3D86734G35 3D86734G36 3D86734G37 3D86734G38

NOTE: Choose the rating plug to match the continuous current rating and the sensor tap selected.
When ordering as part of a retrofit kit, refer to pages 254 thru 273.

NOTE: At the time of this publication, the standard trip units for Low Voltage Digitrip Retrofit Kits are the RMS 510/610/810/ 910. From 1989-1996, the standard trip units were the RMS 500/600/700/800. These trip units are no longer in production. Replacement orders for the 500/600/700/800 trip units will be filled by the equivalent 510/610/810/910 trip units. Remember when replacing a 500/600/700/800 unit with a 510/610/810/910, the rating plug must also be replaced.

Rating plugs for the 500/600/700/800 trip units will still be available. These rating plugs are not interchangeable with the 510/610/810/910 trip units.
Likewise, rating plugs for the 510/610/810/910 are not interchangeable with the 500/600/700/800 trip units.

REPLACEMENT CAPABILITIES, Continued

Rating Plugs for SPB Breakers							
Past Technology (500/600/700/800)				Present Technology (510/610/810/910)			
Sensor Tap Connection	Rating Plug Rating	60 Hz Catalog Number	60 Hz ( Style Number	Sensor Tap Connection	Rating Plug Rating	$50 / 60 \mathrm{~Hz}$ Catalog Number(3	50/60 Hz Style Number(3
400	200	PD6S04A020	2613D09G01	400	200	RP6S04A020	3D86737G01
400	250	PD6S04A025	2613D09G02	400	250	RP6S04A025	3D86737G02
400	300	PD6S04A030	2613D09G03	400	300	RP6S04A030	3D86737G03
400	400	PD6S04A040	2613D09G04	400	400	RP6S04A040	3D86737G04
800	400	PD6S08A040	2613D09G05	800	400	RP6S08A040	3D86737G05
800	600	PD6S08A060	2613D09G07	800	600	RP6S08A060	3D86737G07
800	800	PD6S08A080	2613D09G08	800	800	RP6S08A080	3D86737G08
1200	600	PD6S12A060	2613D09G09	1200	600	RP6S12A060	3D86737G09
1200	800	PD6S12A080	2613D09G10	1200	800	RP6S12A080	3D86737G10
1200	1000	PD6S12A100	2613D09G11	1200	1000	RP6S12A100	3D86737G11
1200	1200	PD6S12A120	2613D09G12	1200	1200	RP6S12A120	3D86737G12
1600	800	PD6S16A080	2613D09G13	1600	800	RP6S16A080	3D86737G13
1600	1000	PD6S16A100	2613D09G14	1600	1000	RP6S16A100	3D86737G14
1600	1200	PD6S16A120	2613D09G15	1600	1200	RP6S16A120	3D86737G15
1600	1600	PD6S16A160	2613D09G16	1600	1600	RP6S16A160	3D86737G16
2000C	1000	PD6S21A100	2613D09G17	2000C	1000	RP6S21A100	3D86737G17
2000 C	1200	PD6S21A120	2613D09G18	2000 C	1200	RP6S21A120	3D86737G18
2000 C	1600	PD6S21A160	2613D09G19	2000 C	1600	RP6S21A160	3D86737G19
2000 C	2000	PD6S21A200	2613D09G20	2000C	2000	RP6S21A200	3D86737G20
2000	1600	PD6S20A160	2613D09G21	2000	1600	RP6S20A160	3D86737G21
2000	2000	PD6S20A200	2613D09G22	2000	2000	RP6S20A200	3D86737G22
2500	1600	PD6S25A160	2613D09G23	2500	1600	RP6S25A160	3D86737G23
2500	2000	PD6S25A200	2613D09G24	2500	2000	RP6S25A200	3D86737G24
2500	2500	PD6S25A250	2613D09G25	2500	2500	RP6S25A250	3D86737G25
3000	1600	PD6S30A160	2613D09G26	3000	1600	RP6S30A160	3D86737G26
3000	2000	PD6S30A200	2613D09G27	3000	2000	RP6S30A200	3D86737G27
3000	2500	PD6S30A250	2613D09G28	3000	2500	RP6S30A250	3D86737G28
3000	3000	PD6S30A300	2613D09G29	3000	3000	RP6S30A300	3D86737G29
4000	2000	PD6S40A200	2613D09G30	4000	2000	RP6S40A200	3D86737G30
4000	2500	PD6S40A250	2613D09G31	4000	2500	RP6S40A250	3D86737G31
4000	3000	PD6S40A300	2613D09G32	4000	3000	RP6S40A300	3D86737G32
4000	3200	PD6S40A320	2613D09G33	4000	3200	RP6S40A320	3D86737G33
4000	4000	PD6S40A400	2613D09G34	4000	4000	RP6S40A400	3D86737G34
5000	3000	PD6S50A300	2613D09G35	5000	3000	RP6S50A300	3D86737G35
5000	3200	PD6S50A320	2613D09G36	5000	3200	RP6S50A320	3D86737G36
5000	4000	PD6S50A400	2613D09G37	5000	4000	RP6S50A400	3D86737G37
5000	5000	PD6S50A500	2613D09G38	5000	5000	RP6S50A500	3D86737G38

NOTE: Choose the rating plug to match the continuous current rating and the sensor tap selected.
When ordering as part of a retrofit kit, refer to pages 254 thru 273.

NOTE: At the time of this publication, the standard trip units for Low Voltage Digitrip Retrofit Kits are the RMS 510/610/810/ 910. From 1989-1996, the standard trip units were the RMS 500/600/700/800. These trip units are no longer in production. Replacement orders for the 500/600/700/800 trip units will be filled by the equivalent 510/610/810/910 trip units. Remember when replacing a 500/600/700/800 unit with a 510/610/810/910, the rating plug must also be replaced.

Rating plugs for the 500/600/700/800 trip units will still be available. These rating plugs are not interchangeable with the 510/610/810/910 trip units.
Likewise, rating plugs for the 510/610/810/910 are not interchangeable with the 500/600/700/800 trip units.
(1) 50 Hz rating plugs are available. Contact Cutler-Hammer for details.
(2) Rating plugs may be ordered separately by above style number or as part of a complete retrofit kit. SWITCHGEAR (TRIP UNIT RETROFIT KITS) Digitrip RMS Rating Plugs

## REPLACEMENT CAPABILITIES, Continued

Rating Plugs for All Other Breakers
Past Technology (500/600/700/800)

Past Technology (500/600/700/800)				Present Technology (510/610/810/910)			
Sensor Tap Connection	Rating Plug Rating	60 Hz ( Catalog Number	$\begin{aligned} & 60 \mathrm{Hzo} \\ & \text { Style Number } \end{aligned}$	Sensor Tap Connection	Rating Plug Rating	$50 / 60 \mathrm{~Hz}$   Catalog Number(3	$\begin{aligned} & 50 / 60 \mathrm{~Hz} \\ & \text { Style Number®2 } \end{aligned}$
200	100	PR6A02A010	3D86709G01	200	100	RP6A02A010	3D86766G01
200	200	PR6A02A020	3D86709G02	200	200	RP6A02A020	3D86766G02
250	250	PR6A02A025	3D86709G11	250	250	RP6A02A025	3D86766G11
300	200	PR6A03A020	3D86709G36	300	200	RP6A03A020	3D86766G36
300	250	PR6A03A025	3D86709G12	300	250	RP6A03A025	3D86766G12
300	300	PR6A03A030	3D86709G37	300	300	RP6A03A030	3D86766G37
400	200	PR6A04A020	3D86709G13	400	200	RP6A04A020	3D86766G13
400	250	PR6A04A025	3D86709G14	400	250	RP6A04A025	3D86766G14
400	300	PR6A04A030	3D86709G15	400	300	RP6A04A030	3D86766G15
400	400	PR6A04A040	3D86709G03	400	400	RP6A04A040	3D86766G03
600	300	PR6A06A030	3D86709G16	600	300	RP6A06A030	3D86766G16
600	400	PR6A06A040	3D86709G17	600	400	RP6A06A040	3D86766G17
600	600	PR6A06A060	3D86709G04	600	600	RP6A06A060	3D86766G04
800	400	PR6A08A040	3D86709G18	800	400	RP6A08A040	3D86766G18
800	600	PR6A08A060	3D86709G19	800	600	RP6A08A060	3D86766G19
800	800	PR6A08A080	3D86709G05	800	800	RP6A08A080	3D86766G05
1200	600	PR6A12A060	3D86709G20	1200	600	RP6A12A060	3D86766G20
1200	800	PR6A12A080	3D86709G21	1200	800	RP6A12A080	3D86766G21
1200	1000	PR6A12A100	3D86709G22	1200	1000	RP6A12A100	3D86766G22
1200	1200	PR6A12A120	3D86709G10	1200	1200	RP6A12A120	3D86766G10
1600	800	PR6A16A080	3D86709G23	1600	800	RP6A16A080	3D86766G23
1600	1000	PR6A16A100	3D86709G24	1600	1000	RP6A16A100	3D86766G24
1600	1200	PR6A16A120	3D86709G25	1600	1200	RP6A16A120	3D86766G25
1600	1600	PR6A16A160	3D86709G06	1600	1600	RP6A16A160	3D86766G06
2000	1000	PR6A20A100	3D86709G26	2000	1000	RP6A20A100	3D86766G26
2000	1200	PR6A20A120	3D86709G27	2000	1200	RP6A20A120	3D86766G27
2000	1600	PR6A20A160	3D86709G28	2000	1600	RP6A20A160	3D86766G28
2000	2000	PR6A20A200	3D86709G07	2000	2000	RP6A20A200	3D86766G07
3000	1600	PR6A30A160	3D86709G29	3000	1600	RP6A30A160	3D86766G29
3000	2000	PR6A30A200	3D86709G30	3000	2000	RP6A30A200	3D86766G30
3000	2500	PR6A30A250	3D86709G31	3000	2500	RP6A30A250	3D86766G31
3000	3000	PR6A30A300	3D86709G08	3000	3000	RP6A30A300	3D86766G08
3200	1600	PR6A32A160	3D86709G39	3200	1600	RP6A32A160	3D86766G39
3200	2000	PR6A32A200	3D86709G40	3200	2000	RP6A32A200	3D86766G40
3200	2400	PR6A32A240	3D86709G41	3200	2400	RP6A32A240	3D86766G41
3200	3200	PR6A32A320	3D86709G42	3200	3200	RP6A32A320	3D86766G42
4000	2000	PR6A40A200	3D86709G32	4000	2000	RP6A40A200	3D86766G32
4000	2500	PR6A40A250	3D86709G33	4000	2500	RP6A40A250	3D86766G33
4000	3000	PR6A40A300	3D86709G34	4000	3000	RP6A40A300	3D86766G34
4000	3200	PR6A40A320	3D86709G35	4000	3200	RP6A40A320	3D86766G35
4000	4000	PR6A40A400	3D86709G09	4000	4000	RP6A40A400	3D86766G09

NOTE: Choose the rating plug to match the continuous current rating and the sensor tap selected.
When ordering as part of a retrofit kit, refer to pages 254 thru 273.

NOTE: At the time of this publication, the standard trip units for Low Voltage Digitrip Retrofit Kits are the RMS 510/610/810/ 910. From 1989-1996, the standard trip units were the RMS 500/600/700/800. These trip units are no longer in production. Replacement orders for the 500/600/700/800 trip units will be filled by the equivalent 510/610/810/910 trip units. Remember when replacing a 500/600/700/800 unit with a 510/610/810/910, the rating plug must also be replaced.

Rating plugs for the 500/600/700/800 trip units will still be available. These rating plugs are not interchangeable with the 510/610/810/910 trip units.
Likewise, rating plugs for the 510/610/810/910 are not interchangeable with the 500/600/700/800 trip units.

## CUSTOMER REOUIRED INFORMATION

## How To Select A Retrofit Kit

To properly select a retrofit kit, the following information is required:

- Breaker Nameplate Information
- Manufacturer
- Breaker Type
- Ampere Frame Size
- Manually or Electrically Operated
- Drawout or Fixed Mounting
- Fused or Non-Fused
- Digitrip Trip Unit Type Required - 510, 610, 810, 910
- Protective Functions Required
- LI, LSI, LS, LIG, LSG, LSIG
- Continuous Current Rating Required (Trip Rating of Breaker)
- 3-wire or 4-wire system (determines number of sensors required)

To properly select options, the following questions need to be answered:

- Will customer supply 120 VAC control power or is breaker-mounted CPT needed?
- applies only to Digitrip 610, 810, and 910
- Are zone interlocks required?
- Does the application require relay outputs from the Digitrip 610, 810, or 910 for remote indication?
- Does the breaker have an existing Amptector or Digitrip Trip Unit installed? If so, what is it?


## How To Generate A Catalog Number

Refer to pages 255-273 to view the Retrofit Kit Catalog Numbers for specific breaker manufacturers and frames. When used in
conjunction with the information obtained from the section above, these pages con-
tain all the information necessary to generate a Catalog Number.

## How To Price A Kit

To correctly price a Low Voltage Digitrip Retrofit Kit, refer to the Retrofit Kit Product Guide. It is also available on FRED II
(412-937-6400) as Document \#9375487. This Product Guide includes base prices,
adders and options for all Low Voltage Digitrip Retrofit Kits.

ACCESSORIES		
Catalog Number	Style Number	Description
PRTAAPM	1267C16G01   8779C02G02   6503C53G01   6503C54G01   6503C55G01   6502C83G01   8259A91G05   8259A91G06   6506C34G01   6506C34G02   6506C34G03	Aux. Power Module   Amptector and Digitrip Test Set (Tests for both)   Amptector Adapter Harness   Amptector 2-Piece Adapter Harness (Test Set Half)   Amptector 2-Piece Adapter Harness (Breaker Half)   External Harness (Zone Interlock Shorting Plug)   Auxiliary CPT Kit (Non-DS)   Auxiliary CPT Kit (DS)   Simplified Cell Harness 1 ft .   Simplified Cell Harness 6 ft .   Simplified Cell Harness 4 ft .

NOTE: At the time of this publication, the standard trip units for Low Voltage Digitrip Retrofit Kits are the RMS 510/610/810/ 910. From 1989-1996, the standard trip units were the RMS $500 / 600 / 700 / 800$. These trip units are no longer in production. Replacement orders for the 500/600/700/800 trip units will be filled by the equivalent 510/610/810/910 trip units. Remember when replacing a 500/600/700/800 unit with a 510/610/810/910, the rating plug must also be replaced.

Rating plugs for the 500/600/700/800 trip units will still be available. These rating plugs are not interchangeable with the 510/610/810/910 trip units.
Likewise, rating plugs for the 510/610/810/910 are not interchangeable with the 500/600/700/800 trip units. Digitrip Retrofit Kits for Westinghouse DA and DK Breakers

## CATALOG NUMBER



Sample shown is a Digitrip Retrofit Kit for a DK-25, with an RMS 810 trip unit, with LSIG protection, with a 60 Hz Plug, rated at 800A for a sensor tap of 800A, four sensors (for a 4 -wire ground system) that have a sensor tap of 800 A , there is a breaker-mounted CPT with the kit, the cell wiring is simplified
(only 6 wires vs. 16), and the breaker was previously retrofitted with a Digitrip 500/ 510 , so this is an upgrade kit.
This information is subject to change. Updated pricing and availability information resides on Fred II. (412-937-6400)

RP	No Rating Plug	
Cat. Code	Current Rating	
	Tap	Plug
21	200	100
22	200	200
32	300	200
30	300	250
33	300	300
42	400	200
40	400	250
43	400	300
44	400	400
63	600	300
64	600	400
66	600	600
84	800	400
86	800	600
88	800	800
T6	1200	600
T8	1200	800
TA	1200	1000
TT	1200	1200
C8	1600	800
CA	1600	1000
CT	1600	1200
CC	1600	1600

NOTE: At the time of this publication, the standard trip units for Low Voltage Digitrip Retrofit Kits are the RMS 510/610/810/910.

## REPLACEMENT AND UPGRADE

Create the Digitrip RMS Retrofit Kit catalog number to match the Westinghouse DA or DK breaker type, retrofit kit type, protection function, rating plug type, current sensor type, CPT, and type of kit required for application. See the example provided above.

## Application Notes for DA and DK Power

 Circuit Breakers1. Retrofit kits are for use on 50 and 60 Hz distribution systems.
2. All retrofit kits are designed for Drawout Power Circuit Breakers only. Refer all fixed mounted breaker applications to the Cutler-Hammer Digitrip Retrofit Kit Technical Service Center at 1-800-937-5487.
3. The breaker compartment doors on the switchgear assembly must be free
of panel mounted instruments and devices (i.e. ammeters, switches, etc.) or the retrofitted breaker may interfere with these devices when the compartment door is closed.
4. When the Ground Fault (G) option is selected, please observe the following:
a. For 3-phase, 3 -wire solidly grounded systems, choose quantity three current sensors in the catalog number development.
b. For 3-phase, 4-wire solidly grounded systems, choose quantity four current sensors in the catalog number development. Three sensors are mounted on the breaker and one sensor is mounted on the switchgear neutral. Hardware to mount the
current sensor on the switchgear neutral and provisions to wire it into the trip unit circuit (including a required pair of breaker secondary disconnecting contacts) are not included in the kit.
5. RMS 510 Zone, 610,810 , and 910 Retrofit kits include a cell terminal block assembly that must be installed in the switchgear assembly. Internal switchgear wiring to accommodate the customer application schemes must be added in the field.
6. RMS 610, 810, and 910 Retrofit Kits require a customer supplied 120 VAC source connected to the cell terminal block assembly to power the Digitrip RMS Digital Displays and Communications functions (as applicable).

INTRODUCTION AND DESCRIPTION


DB-25 Breaker Retrofitted with Digitrip RMS 810 Retrofit Kit


Typical Digitrip RMS 810 Retrofit Kit for a DB-25 Power Circuit Breaker

Digitrip RMS Retrofit Kits for Westinghouse DB and DBL Power Circuit Breakers were first introduced in 1989. For a complete description of the Digitrip RMS Trip System and the features of Models RMS 510, 610, 810, and 910, see page 247.

## Ratings

Digitrip RMS Retrofit Kits are applied on DB breakers with frame ratings from 225A (DB-15) to 4000A (DB-100) as identified below. The rating plug and the current sensor rating act in concert to provide for a wide spectrum of overload and short circuit settings.

## Chronology

Digitrip RMS Retrofit Kits and replacement trip units for DB Breakers became available around 1989. The Digitrip RMS 510 Model is the modern day replacement for the Amptector and RK Trip Systems.

## REPLACEMENT AND UPGRADE

Create the Digitrip RMS retrofit kit catalog number to match the Westinghouse DB breaker type, retrofit kit type, protection function, rating plug type, current sensor type, CPT, and type of kit required for application. See the example provided on page 257.

## Application Notes for Westinghouse DB

 and DBL Power Circuit Breakers1. Retrofit kits are for use on 50 and 60 Hz distribution systems.
2. All retrofit kits are designed for Drawout Power Circuit Breakers only. Refer all fixed mounted breaker applications to the Cutler-Hammer Digitrip Retrofit Kit Technical Service Center at 1-800-937-5487.
3. The breaker compartment doors on the switchgear assembly must be free of panel mounted instruments and devices (i.e. ammeters, switches, etc.) or the retrofitted breaker may interfere with these devices when the compartment door is closed.
4. Type DB-15 and DBL breaker components may have a metal baffle on the inside of the compartment door. If so, the baffle will have to be removed to accommodate the retrofitted DB breaker.
5. Contact Cutler-Hammer if the existing DB breaker has an Undervoltage Trip Device (UVTA), Bell Alarm, or Shunt Trip.
6. When the Ground Fault (G) option is selected, please observe the following:
a. For 3-phase, 3-wire solidly grounded systems, choose quantity three current sensors in the catalog number development.
b. For 3-phase, 4-wire solidly grounded systems, choose quantity four current sensors in the catalog number development. Three sensors are mounted on the breaker and one sensor is mounted on the switchgear neutral. Hardware to mount the current sensor on the switchgear neutral and provisions to wire
it into the trip unit circuit (including a required pair of breaker secondary disconnecting contacts) are not included in the kit.
7. RMS 510 Zone, 610,810 , and 910 Retrofit kits include a cell terminal block assembly that must be installed in the switchgear assembly. Internal switchgear wiring to accommodate the customer application schemes must be added in the field.
8. RMS 610, 810, and 910 Retrofit Kits require a customer supplied 120 VAC source connected to the cell terminal block assembly to power the Digitrip RMS Digital Displays and Communications functions (as applicable).
9. If the existing DB breaker has been retrofitted with an Amptector Trip System, and a Digitrip RMS retrofit is desired, contact the Cutler-Hammer Digitrip Retrofit Kit Technical Service Center at 1-800-937-5487 for details. Digitrip Retrofit Kits for Westinghouse DB Breakers

## CATALOG NUMBER



INTRODUCTION AND DESCRIPTION


DS Breaker Retrofitted with Digitrip RMS 810 Retrofit Kit


Typical Digitrip RMS 810 Retrofit Kit for a DS Power Circuit Breaker

Digitrip RMS Retrofit Kits for Westinghouse DS and DSL Power Circuit Breakers were first introduced in 1987. For a complete description of the Digitrip RMS Trip System and the features of Models RMS 510, 610, 810, and 910, see page 247.

## Ratings

Digitrip RMS Retrofit Kits are applied on DS breakers with frame ratings from 800A (DS-206) to 4000A (DS-840) as identified below. The rating plug and the current sensor rating act in concert to provide for a wide spectrum of overload and short circuit settings.

Chronology
Digitrip RMS Retrofit Kits and replacement trip units for DS Breakers became available around 1987. The Digitrip RMS 510 Model is the modern day replacement for the Amptector Trip Systems.

## REPLACEMENT AND UPGRADE

Create the Digitrip RMS Retrofit Kit catalog number to match the Cutler-Hammer or Westinghouse DS breaker type, retrofit kit type, protection function, rating plug type, current sensor type, CPT, and type of kit required for application. See the example provided on page 259.

## Application Notes for Cutler-Hammer or Westinghouse DS and DSL Power Circuit Breakers

1. Retrofit kits are for use on 50 and 60 Hz distribution systems.
2. All retrofit kits are designed for Drawout Power Circuit Breakers only. Refer all fixed mounted breaker applications to the Cutler-Hammer Digitrip Retrofit Kit Technical Service Center at 1-800-937-5487.
3. The breaker compartment doors on the switchgear assembly must be free of panel mounted instruments and devices (i.e. ammeters, switches, etc.) or the retrofitted breaker may interfere with these devices when the compartment door is closed.
4. When the Ground Fault (G) option is selected, please observe the following:
a. For 3-phase, 3-wire solidly grounded systems, choose quantity three current sensors in the catalog number development.
b. For 3-phase, 4-wire solidly grounded systems, choose quantity four current sensors in the catalog number development. Three sensors are mounted on the breaker and one sensor is mounted on the switchgear neutral. Hardware to mount
the current sensor on the switchgear neutral and provisions to wire it into the trip unit circuit (including a required pair of breaker secondary disconnecting contacts) are not included in the kit.
5. RMS 510, 610, 810, and 910 Retrofit kits include a cell terminal block assembly that must be installed in the switchgear assembly. Internal switchgear wiring to accommodate the customer application schemes must be added in the field.
6. RMS 610, 810, and 910 Retrofit Kits require a customer supplied 120 Vac source connected to the cell terminal block assembly to power the Digitrip RMS Digital Displays and Communications functions (as applicable).

SWITCHGEAR (TRIP UNIT RETROFIT KITS) Digitrip RMS Retrofit Kits for Westinghouse DS Breakers

## CATALOG NUMBER



Sample shown is a Digitrip Retrofit Kit for a DS-206, with an RMS 810 trip unit, with LSIG protection, with a 60 Hz Plug, rated at 250A for a sensor tap of 400A, four sensors (for a 4-wire ground system) that have a sensor tap of 400A, and there are no other features so this is a standard original kit.

This information is subject to change. Updated pricing and availability information resides on Fred II. (412-937-6400)

> NOTE: At the time of this publication, the standard trip units for Low Voltage Digitrip Retrofit Kits are the RMS $510 / 610 / 810 / 910$.


SPB－100 Series－3000 Ampere Frame－ Digitrip RMS


Rear View of Plug Adaptor Box and Digitrip RMS 510．Typical Parts of Retrofit Kit．

Digitrip RMS Retrofit Kits for Westinghouse SPB Power Circuit Breakers equipped with Pow－R Trip 7 or Pow－R Digitrip Trip Units were first introduced in 1989．Field retrofits are limited to the RMS 510 model．For a complete description of the Digitrip RMS Trip System，see page 247.

## Ratings

Digitrip RMS 510 Retrofit Kits are applied on SPB breakers with frame ratings from 400A（SPB－50）to 5000A（SPB－150）as iden－ tified on page 105．The rating plug and the current sensor rating act in concert to pro－ vide for a wide spectrum of overload and short circuit settings．

## Chronology

Digitrip RMS Retrofit Kits for SPB Breakers became available around 1989．The Digitrip RMS 510 Model is the only model that is available．Retrofits are limited to SPB Breakers equipped with a Pow－R Trip 7 or Pow－R Digitrip（also known as Digitrip 1） Trip Units．

## REPLACEMENT AND UPGRADE

Create the Digitrip RMS Retrofit Kit catalog number to match the Cutler－Hammer or Westinghouse SPB breaker type，retrofit kit type，protection function，rating plug type， current sensor type，CPT，and type of kit required for application．See the example provided on page 261.

## Application Notes for Cutler－Hammer or Westinghouse SPB Power Circuit Breakers

1．Retrofit kits are for use on 50 and 60 Hz distribution systems．
2．Only SPB breakers equipped with a Pow－R Trip 7 or Pow－R Digitrip（also known as Digitrip 1）Trip Units are retrofittable at this time．Breakers equipped with a Pow－R Trip cannot be retrofitted．
3．SPB breakers installed in automatic transfer switches and equipped with a
bell alarm contact cannot be retrofitted at this time．
4．An automatic trip relay（ATR）is a remote mounted accessory designed to provide visual trip mode indication， alarm and lockout interlocking circuitry following a breaker automatic tripping operation．SPB breakers equipped with Pow－R Trip 7 and this ATR cannot be retrofitted at this time．
5．An SPB breaker with a 250 ampere frame rating can not be retrofitted．
6．Ground fault protection cannot be added to the SPB breaker．The breaker must be originally equipped with ground fault protection，for ground fault protection to be selected． Changing the ground fault protection from 3－wire to 4－wire is not permitted． Interchanging between LI，LS，LSI，LIG， LSG，or LSIG is not permitted．

7．SPB breakers equipped with zone interlocking for short time and／or ground fault time delays can be retro－ fitted，provided the existing zone inter－ lock configuration is not changed．
8．For Digitrip RMS Trip Unit replace－ ments，see page 248．For Pow－R Trip 7 Trip Unit Replacements，see page 261.
9．A factory retrofit is possible for applications requiring Digitrip RMS 610， 810 and 910 ．Contact your local Cutler－Hammer Field Sales Office at 1－800－222－9773．
10．SPB breakers retrofitted with Digitrip RMS can be tested with primary injec－ tion testing and trip unit self test． Secondary injection testing is not available．

# SWITCHGEAR (TRIP UNIT RETROFIT KITS) Digitrip RMS Retrofit Kits for Westinghouse SPB Breakers 

## CATALOG NUMBER

Code	Breaker Frame Description	Breaker Frame Rating and Sensor Tap
W34	SPB-50-400	400
W38	SPB-50-800	800
W4T	SPB-65-1200	1200
W4C	SPB-65-1600	1600
W4E	SPB-65-2000 Compact	2000 C
W54	SPB-100-400	400
W58	SPB-100-800	800
W5T	SPB-100-1200	1200
W5C	SPB-100-1600	1600
W5D	SPB-100-2000	2000
W5E	SPB-100-2000 Compact	2000 C
W5P	SPB-100-2500	2500
W5H	SPB-100-3000	3000
W5K	SPB-100-4000	4000
W5L	SPB-100-5000	5000
W64	SPB-150-400	400
W68	SPB-150-800	800
W6T	SPB-150-1200	1200
W6C	SPB-150-1600	1600
W6D	SPB-150-2000	2000
W6E	SPB-150-2000 Compact	2000 C
W6P	SPB-150-2500	2500
W6H	SPB-150-3000	3000
W6K	SPB-150-4000	4000
W6L	SPB-150-5000	5000

This information is subject to change. Updated pricing and availability information resides on Fred II. (412-937-6400)

NOTE: At the time of this publication, the standard trip units for Low Voltage Digitrip Retrofit Kits are the RMS 510/610/810/910.


AK-2A-25 Breaker Retrofitted with Digitrip RMS 810 Retrofit Kit


Typical Digitrip RMS 810 Retrofit Kit for GE AK-2A-25 Power Circuit Breaker

Digitrip RMS Retrofit Kits for various GE power circuit breakers were first introduced in 1989. For a complete description of the Digitrip RMS trip system and the features of models RMS 510, 610, 810, and 910, see page 247.

## Rating

Digitrip RMS Retrofit Kits are applied on GE breakers of the types listed and with frame ratings from 225-4000A as indicated on pages 263-265.

## Chronology

Digitrip RMS Retrofit Kits and replacement trip units for GE breakers became available around 1989. The Digitrip RMS 510 model is the modern day replacement for electromechanical trip device or peak sensing solid state trip systems.

## REPLACEMENT AND UPGRADE

Choose or create the Digitrip RMS Retrofit Kit catalog number to match the GE, AK, AL and other breaker types, retrofit kit type, protection function, rating plug type, current sensor type, CPT, and type of kit required for application. See the example provided on pages 263-265.

Application Notes for GE, AK, AL and other Power Circuit Breakers

1. Retrofit kits are for use on 50 and 60 Hz distribution systems.
2. All retrofit kits are designed for Drawout Power Circuit Breakers only. Refer all fixed mounted breaker applications to the Cutler-Hammer Digitrip Retrofit Kit Technical Service Center at 1-800-937-5487.
3. The breaker compartment doors on the switchgear assembly must be free of panel mounted instruments and
devices (i.e. ammeters, switches, etc.) or the retrofitted breaker may interfere with these devices when the compartment door is closed.
4. When the Ground Fault (G) option is selected, please observe the following:
a. For 3-phase, 3-wire solidly grounded systems, choose quantity three current sensors in the catalog number development.
b. For 3-phase, 4-wire solidly grounded systems, choose quantity four current sensors in the catalog number development. Three sensors are mounted on the breaker and one sensor is mounted on the switchgear neutral. Hardware to mount the current sensor on the switchgear neutral and provisions to wire it into the trip unit circuit (including a required pair of breaker secondary
disconnecting contacts) are not included in the kit.
5. RMS 510 Zone, 610,810 , and 910 Retrofit kits include a cell terminal block assembly that must be installed in the switchgear assembly. Internal switchgear wiring to accommodate the customer application schemes must be added in the field.
6. RMS 610, 810, and 910 Retrofit Kits require a customer supplied 120 VAC source connected to the cell terminal block assembly to power the Digitrip RMS Digital Displays and Communications functions (as applicable).
7. Refer all AKU Series (AK breakers with current limiters) breakers to the Cutler-Hammer Digitrip Retrofit Kit Technical Service Center at 1-800-937-5487 for evaluation.

SWITCHGEAR (TRIP UNIT RETROFIT KITS) Digitrip RMS Retrofit Kits for General Electric AK Breakers

## CATALOG NUMBER



Protection	
$\mathbf{1}$	LI
$\mathbf{2}$	LSI
$\mathbf{3}$	LS
$\mathbf{4}$	LIG
$\mathbf{5}$	LSG
$\mathbf{6}$	LSIG



$\mathbf{N}$	Standard Kit
$\mathbf{S}$	Simplified Cell Harness
$\mathbf{R}$	Cell Harness Removed



NRP		No Rating Plug	
Cat.   Code$\|$	Current Rating		
	Tap	Plug	
$\mathbf{2 1}$	200	100	
22	200	200	
32	300	200	
3Q	300	250	
33	300	300	
42	400	200	
4Q	400	250	
43	400	300	
44	400	400	
63	600	300	
64	600	400	
66	600	600	
84	800	400	
86	800	600	
88	800	800	
C8	1600	800	
CA	1600	1000	
CT	1600	1200	
CC	1600	1600	
DA	2000	1000	
DT	2000	1200	
DC	2000	1600	
DD	2000	2000	
HC	3000	1600	
HD	3000	2000	
HP	3000	2500	
HH	3000	3000	
KD	4000	2000	
KP	4000	2500	
KH	4000	3000	
KJ	4000	3200	
KK	4000	4000	


Code	Breaker Frame Description	Sensor Code	Current Rating of Sensor and Available Taps
	ALL FRAMES	S	NO SENSORS PROVIDED
G12	AK-1-15 Manualo	2	200
G16	AK-1-25	6	600, 400
G2C	AK-1-50, AK-2/2A-50, AK-3/3A-50 (if frameless use GMC)	C	1600, 800
		8	800, 400
		4	400, 200
GMC	AK-1-50 Slow Close No Top Frame	C	1600, 800
		8	800, 400
		4	400, 200
G2H	AK-1-75, AK-2/2A-75, AK-3/3A-75	H	3000, 2000
G2K	AK-1-100, AK-2/2A-100, AK-3/3A-100	K	4000
G22	AK-2/2A-15 Manually Operatedo	2	200
G26	AK-2/2A-25	6	600, 400, 300, 200
GTD	AKT-2A-50	C	2000
G36	AK-3/3A-25	6	600, 400, 300, 200
GU6	AKU-2/2A-25®	6	600, 400, 300, 200
GU7	AKU-3/3A-250	6	600, 400, 300, 200
GUC	AKU-2A/3A-50®	C	1600, 800
		8	800, 400
		4	400, 200
G58	AKR(u)-7D-305	8	800
GA8	AKR-4A/5A-30	8	800
GAC	AKR-4A/5A-50	C	1600
GAD	AKRT-4A/5C-50	D	2000

This information is subject to change. Updated pricing and availability information resides on Fred II. (412-937-6400)

NOTE: At the time of this publication, the standard trip units for Low Voltage Digitrip Retrofit Kits are the RMS 510/610/810/910.

Code	Breaker Frame Description	Sensor   Code	Current Rating of Sensor   and Available Taps
		ALL FRAMES	$\mathbf{S}$
NO SENSORS PROVIDED			
GQ6	AL-2-50-600 Manually Operated	$\mathbf{6}$	$600,400,300,200$
GQ8	AL-2-50-800 Manually Operated	$\mathbf{8}$	$800,600,400$
		$\mathbf{2}$	200
GQT	AL-2-50-1200 Manually Operated	$\mathbf{T}$	1200,600
		$\mathbf{8}$	$800,600,400$
		$\mathbf{2}$	200
GQC	AL-2-50-1600 Manually Operated	$\mathbf{C}$	1600,1200
		$\mathbf{8}$	$800,600,400$
		$\mathbf{2}$	200
GL6	AL-2-600 Electrically Operated	$\mathbf{6}$	$600,400,300,200$
GL8	AL-2-800 Electrically Operated	$\mathbf{8}$	$800,600,400$
		$\mathbf{2}$	200
GLT	AL-2-1200 Electrically Operated	$\mathbf{T}$	1200,600
		$\mathbf{8}$	$800,600,400$
		$\mathbf{2}$	200
GLC	AL-2-1600 Electrically Operated	$\mathbf{C}$	1600,1200
		$\mathbf{8}$	$800,600,400$
	$\mathbf{2}$	200	
GLD	AL-2-75-2000 Electrically Operated	$\mathbf{D}$	2000

Sample shown is a Digitrip Retrofit Kit for an AL-2-50-600 Manually Operated, with an RMS 810 trip unit, with LSIG protection, with a 60 Hz Plug, rated at 250 A for a sensor tap of 400A, four sensors (for a 4-wire ground system) that have sensor taps of $600,400,300$ and 200A, there is a breakermounted CPT with the kit, the cell wiring is simplified (only 6 wires vs. 16), and the breaker was previously retrofitted with a Digitrip 500/510, so this is an upgrade kit.

This information is subject to change. Updated pricing and availability information resides on Fred II. (412-937-6400)

NOTE: At the time of this publication, the standard trip units for Low Voltage Digitrip Retrofit Kits are the RMS 510/610/810/910. Other General Electric Breakers

## CATALOG NUMBER



Sample shown is a Digitrip Retrofit Kit for an AE-1-25, with an RMS 810 trip unit, with LSIG protection, with a 60 Hz Plug, rated at 250A for a sensor tap of 400A, four sensors (for a 4-wire ground system) that have sensor taps of 600, 400, 300 and 200A, there is a breaker-mounted CPT with the kit, the cell wiring is simplified (only 6 wires vs. 16), and the breaker was previously retrofitted with a Digitrip $500 / 510$, so this is an upgrade kit.

This information is subject to change. Updated pricing and availability information resides on Fred II. (412-937-6400)

NOTE: At the time of this publication, the standard trip units for Low Voltage Digitrip Retrofit Kits are the RMS 510/610/810/910.

INTRODUCTION AND DESCRIPTION


Allis Chalmers LA 600 Gold Breaker Retrofitted with Digitrip RMS 810 Retrofit Kit


Typical RMS 810 Retrofit Kit for Allis Chalmers LA 600 Gold Power Circuit Breaker

Digitrip RMS Retrofit Kits for Allis Chalmers, LA power circuit breakers were first introduced in 1991. For a complete description of the Digitrip RMS trip system and the features of models RMS 510, 610, 810, and 910, see page 247.

## Ratings

Digitrip RMS Retrofit Kits are applied on Allis Chalmers breakers from 600A (LA 600) to 3000A (LA 3000). The rating plug and the current sensor act in concert to provide for a wide spectrum of overload and short circuit settings.

## Chronology

Digitrip RMS Retrofit Kits and replacement trip units for Allis Chalmers LA breakers became available in 1991. The Digitrip RMS 510 model is the modern day replacement for electromechanical trip device or peak sensing solid state trip systems.

## REPLACEMENT AND UPGRADE

Choose or create the Digitrip RMS Retrofit Kit catalog number to match the Allis Chalmers LA breaker type, retrofit kit type, protection function, rating plug type, current sensor type, CPT, and type of kit required for application. See the example provided on page 267.

## Application Notes for Allis Chalmers LA Power Circuit Breakers

1. Retrofit kits are for use on 50 and 60 Hz distribution systems.
2. All retrofit kits are designed for Drawout Power Circuit Breakers only. Refer all fixed mounted breaker applications to the Cutler-Hammer Digitrip Retrofit Kit Technical Service Center at 1-800-937-5487.
3. The breaker compartment doors on the switchgear assembly must be free of panel mounted instruments
(i.e. meters, instruments, control switches, indicating lamps, etc.) or the retrofitted breaker may interfere with these devices when the compartment door is closed.
4. When the Ground Fault (G) option is selected, please observe the following:
a. For 3-phase, 3-wire solidly grounded systems, choose quantity three current sensors in the catalog number development.
b. For 3-phase, 4-wire solidly grounded systems, choose quantity four current sensors in the catalog number development. Three sensors are mounted on the breaker and one sensor is mounted on the switchgear neutral. Hardware to mount the current sensor on the switchgear neutral and provisions to wire it into the trip unit circuit (including
a required pair of breaker secondary disconnecting contacts) are not included in the kit.
5. RMS 510 Zone, 610, 810, and 910 Retrofit kits include a cell terminal block assembly that must be installed in the switchgear assembly. Internal switchgear wiring to accommodate the customer application schemes must be added in the field.
6. RMS 610, 810, and 910 Retrofit Kits require a customer supplied 120 Vac source connected to the cell terminal block assembly to power the Digitrip RMS Digital Displays and Communications functions (as applicable).
7. Refer all LAF (LA breakers with current limiters) breakers to the Cutler-Hammer Digitrip Retrofit Kit Technical Service Center at 1-800-937-5487 for evaluation.

SWITCHGEAR (TRIP UNIT RETROFIT KITS) Digitrip RMS Retrofit Kits for Allis Chalmers LA Breakers

## CATALOG NUMBER




K-1600 Breaker Retrofitted with Digitrip RMS 810 Retrofit Kit


Typical Digitrip RMS 810 Retrofit Kit for ITE K-1600 Power Circuit Breaker

Digitrip RMS Retrofit Kits for ITE K-Line power circuit breakers were first introduced in 1991. For a complete description of the Digitrip RMS trip system and the features of models RMS 510, 610, 810 and 910, see page 247.

## Ratings

Digitrip RMS Retrofit Kits are applied on ITE K-Line breakers from 225A (K-225) to 3000A (K-3000), the rating plug and the current sensor rating act in concert to provide for a wide spectrum of overload and short circuit settings.

## Chronology

Digitrip RMS retrofit kits and replacement trip units for ITE K-Line breakers became available in 1991. The Digitrip RMS 510 model is the modern day replacement for electromechanical trip device or peak sensing solid state trip systems.

## REPLACEMENT AND UPGRADE

Choose or create the Digitrip RMS Retrofit Kit catalog number to match the ITE K-Line and other breaker types, retrofit kit type, protection function, rating plug type, current sensor type, CPT, and type of kit required for application. See the example provided on pages 269-270.

Application Notes for ITE K-Line and other Power Circuit Breakers

1. Retrofit kits are for use on 50 and 60 Hz distribution systems.
2. All retrofit kits are designed for Drawout Power Circuit Breakers only. Refer all fixed mounted breaker applications to the Cutler-Hammer Digitrip Retrofit Kit Technical Service Center at 1-800-937-5487.
3. The breaker compartment doors on the switchgear assembly must be free of panel mounted instruments and
devices (i.e. ammeters, switches, etc.) or the retrofitted breaker may interfere with these devices when the compartment door is closed.
4. When the Ground Fault (G) option is selected, please observe the following:
a. For 3-phase, 3-wire solidly grounded systems, choose quantity three current sensors in the catalog number development.
b. For 3-phase, 4-wire solidly grounded systems, choose quantity four current sensors in the catalog number development. Three sensors are mounted on the breaker and one sensor is mounted on the switchgear neutral. Hardware to mount the current sensor on the switchgear neutral and provisions to wire it into the trip unit circuit (including a required pair of breaker secondary
disconnecting contacts) are not included in the kit.
5. RMS 510 Zone, 610,810 and 910

Retrofit kits include a cell terminal block assembly that must be installed in the switchgear assembly. Internal switchgear wiring to accommodate the customer application schemes must be added in the field.
6. RMS 610, 810 and 910 Retrofit Kits require a customer supplied 120 Vac source connected to the cell terminal block assembly to power the Digitrip RMS Digital Displays and Communications functions (as applicable).
7. Refer all K-DON Series (K-Line breakers with current limiters) breakers to the Cutler-Hammer Digitrip Retrofit Kit Technical Service Center at 1-800-937-5487 for evaluation.

SWITCHGEAR (TRIP UNIT RETROFIT KITS) Digitrip RMS Retrofit Kits for ITE K-Line Breakers

## CATALOG NUMBER



## CATALOG NUMBER



SWITCHGEAR (TRIP UNIT RETROFIT KITS) Digitrip Retrofit Kits for Siemens and Siemens-Allis Breakers

## NUMBER <br> CATALOG NUMBER

Code	Breaker Frame Description	Sensor Code	Current Rating of Sensor and Available Taps
	ALL FRAMES	S	NO SENSORS PROVIDED
LA8	LAF-8000	8	800, 400
		6	600, 400, 300, 200
RX8	RL(X)-8000	8	800
		6	600
		4	400
		3	300
		2	200
RXC	RL(X)-1600®	C	1600
		T	1200
		8	800
		6	600
		4	400
		3	300
		2	200
RLJ	RL-3200	J	3200
RLK	RL-4000	K	4000

Sample shown is a Digitrip Retrofit Kit for an LAF-800, with an RMS 810 trip unit, with LSIG protection, with a 60 Hz Plug, rated at 250A for a sensor tap of 400A, four sensors (for a 4-wire ground system) that have sensor taps of 600, 400, 300 and 200A, there is a breaker-mounted CPT with the kit, the cell wiring is simplified (only 6 wires vs. 16), and the breaker was previously retrofitted with a Digitrip 500/ 510 , so this is an upgrade kit.

This information is subject to change. Updated pricing and availability information resides on Fred II. (412-937-6400)

NOTE: At the time of this publication, the standard trip units for Low Voltage Digitrip Retrofit Kits are the RMS 510/610/810/910.

## CATALOG NUMBER



## CATALOG NUMBER



## FURTHER INFORMATION

Literature Number	Description
SA-11723C	Sales Aid for Digitrip RMS Retrofit Kits
AD 33-855	Instructions for the Application of Digitrip RMS Retrofit Kits on Power Circuit Breakers
SA-11581D	Sales Aid for Digitrip Trip Units
IL 29-885-A	Instruction Leaflet for Digitrip RMS 510 Trip Unit
IL 29-886	Instruction Leaflet for Digitrip RMS 610 Trip Unit
IL 29-888	Instruction Leaflet for Digitrip RMS 810 Trip Unit
IL 29-889	Instruction Leaflet for Digitrip RMS 910 Trip Unit
AD 32-870	Application Data for Time Current Curves for DS and DSL Circuit Breakers

PRICING INFORMATION

Literature Number	Description
Document \#9375487	Retrofit Kit Product Guide on Fred II (412-937-6400)   Discount Symbol Y1-R

## PRODUCT DESCRIPTION



Medium Voltage Switchgear Assembly (Type DHP with Drawout Breaker)

Medium voltage switchgear serves to channel and switch power in industrial, commercial and utility electrical distribution systems. It is manufactured to industry standards that define the requirements for its ratings, design, construction and testing. ANSI C37.20.2-1987 is the current applicable industry standard for medium voltage switchgear, defining the rated maximum voltage range to be from 4.76 kV to 38 kV .

Medium voltage switchgear consists of one or more metal structures that house draw-out power circuit breakers, phase bus conductors, auxiliary, control,
metering and protective devices. These switchgear components are customized in various combinations during manufacturing to satisfy the application requirements of the switchgear user. Control switches, meters, instruments and protective relays are generally mounted on the switchgear front panels to provide for breaker control, metering and circuit protection.
Medium voltage switchgear is characterized by metal-clad construction, which means that the switchgear compartments enclosing primary voltage are separated from adjacent compartments by grounded metal barriers.

## PRODUCT HISTORY

## Originally a Westinghouse Product

In 1939, Westinghouse introduced type DH medium voltage air magnetic power circuit breakers and associated switchgear. Initially, DH breakers were rated up to 5 kV with a maximum interrupting capacity of 150 MVA. Product design enhancements evolved and additional variations of the DH breaker became available. In 1946, the maximum rated voltage of the DH breaker was extended to 15 kV . Eventually, the maximum rated interrupting capacity of the DH breaker reached 1000 MVA.
In 1963, Westinghouse introduced type DHP medium voltage porcel-line air magnetic power circuit breakers and associated switchgear with all live parts insulated to ground by high strength porcelain insulation. Porcelain provided excellent high dielectric, non-tracking, non-combustible, non-hygroscopic, and non-aging insulation characteristics. This was a technological improvement over the first DH breakers, which were furnished with a paper phenolic insulation. DHP switchgear was manufactured in ratings from $5 \mathrm{kV}, 75 \mathrm{MVA}$ to 15 kV , 1000 MVA. In 1978, Westinghouse introduced the DVP breaker, the first Westinghouse medium voltage power
circuit breaker to use vacuum interrupters. The DVP vacuum breaker was manufactured in 500 and 750 MVA interrupting ratings and was directly interchangeable with DHP air magnetic breakers of the same ratings.
In 1981, Westinghouse introduced VacClad medium voltage metal-clad switchgear with type VCP vacuum power circuit breakers. VCP breakers were furnished with vacuum interrupters, greatly reducing breaker size and weight. The reduced size permitted most breaker ratings to be stacked two-high in the switchgear enclosure, saving on switchgear installation space. VCP breakers included a design improvement called the patented V-flex current transfer system, which eliminated the transfer of primary current over a moving hinge or sliding contact assembly on the breaker. Porcelain insulation was maintained on the breaker elements and in the switchgear, except for the 5 kV switchgear cell insulation which was glass polyester. The switchgear phase bus was insulated with a fluidized bed epoxy insulation system, which was a technological improvement over the epoxy impreg-
nated kraft paper or noryl sleeving that was used over phase bus bars in previous switchgear designs. Vac-Clad switchgear was manufactured in ratings from 5 kV , 250 MVA to $15 \mathrm{kV}, 1000 \mathrm{MVA}$.
In 1986, Westinghouse introduced VacClad-W World Class medium voltage metal-clad switchgear with type VCP-W vacuum power circuit breakers. VCP-W switchgear included product improvements in manufacturing design and product performance. However, many of the attractive design features of VCP switchgear were maintained, including two-high breaker stacking, V-flex breaker current transfer and fluidized epoxy insulation on the switchgear phase buses. VCP-W breakers and switchgear were furnished with high grade glass polyester insulation as standard. Optional insulation upgrades included cycloaliphatic epoxy insulation for breaker element insulation (VCP-WSE breakers) and porcelain insulation for the switchgear cell contact bottles. VacCladW switchgear is manufactured in ratings from $5 \mathrm{kV}, 250 \mathrm{MVA}$ to $15 \mathrm{kV}, 1500 \mathrm{MVA}$ to 38 kV and at $27 \mathrm{kV}, 1250$ MVA.

## PRODUCT HISTORY TIMELINE

Page	Product 19	1955	1960	1965	1970	1975	1980	1985	1990	Present
276	DH Switchgear and Breakers									
277	DHP Switchgear and Breakers									
277	DHP-VR Replacement Breaker									
278	VCP Vac-Clad Switchgear and Breakers									
279	VCP-W Vac-Clad Switchgear and Breakers									



Westinghouse DH Draw-out Air Magnetic Power Circuit Breaker (Interphase Barrier Removed)

Westinghouse DH medium voltage metal-clad switchgear with type DH "De-lon" air circuit breakers was introduced in 1939. The draw-out breaker element consists of an operating mechanism that drives a set of three pole units. When the breaker is tripped, the moving and stationary contacts separate. The resulting arc on each phase is drawn up and into the arc chutes which dissipate the arc through ceramic splitter plates. The de-ionizing interruption process is aided magnetically by the arc chute blow out coil assembly.
DH switchgear was available in indoor and in sheltered aisle and aisle-less outdoor enclosures. DH metal-clad switchgear structure dimensions were standardized, but varied with individual breaker ratings. Widths varied from 20 inches for the 50DH75 (1200 ampere) light duty rating to 26 inches for the 50DH250 (1200 ampere) rating to 36 inches for most 2000 ampere and 7.5 and 15 kV ratings.

## Ratings

DH switchgear ratings started with the light duty 50DH75 ( $5 \mathrm{kV}, 75$ MVA) 1200 ampere breaker. The spectrum of ratings also included 7.5 and 15 kV ratings. The maximum breaker rating produced was the $150 \mathrm{DH} 1000(15 \mathrm{kV}, 1000 \mathrm{MVA}) 3000$ ampere.

## Chronology

DH switchgear was introduced in 1939 and was actively manufactured by Westinghouse in complete switchgear assemblies until the introduction of DHP switchgear in 1963. As production activity tapered after 1963, only match and lineup additions to existing DH switchgear were manufactured along with complete replacement circuit breakers and renewal parts. The last new manufactured DH breakers and switchgear cells were produced in 1983.

REPLACEMENT CAPABILITIES


New DH factory manufactured switchgear structures and breakers are no longer available. However, Cutler-Hammer offers the following through qualified retrofitting organizations.

## DH-VR Vacuum Replacement Breakers

The DH-VR is a brand new direct roll-in replacement vacuum breaker for DH air magnetic breakers. The DH-VR breaker permits DH switchgear modernization by using state-of-the-art Cutler-Hammer VCP-W vacuum breaker technology. The DH-VR is factory designed and manufactured with complete factory and ANSI design testing.

50DH250E 1200 Ampere DH-VR Breaker

## PRODUCT HISTORY



Type DHP Drawout Air Magnetic Power Circuit Breaker (Front Interphase Barrier Removed)

Westinghouse DHP medium voltage porcel-line metal-clad switchgear with type DHP air magnetic power circuit breakers was introduced in 1963. DHP breakers and switchgear were similar to, but not interchangeable with, the older DH product. DHP was provided with porcelain insulation on all live parts to ground in the switchgear and on the breaker element. DHP switchgear was available in indoor and in sheltered aisle and aisle-less outdoor enclosures.
DHP air magnetic breakers were subject to three major design changes that were phased in during their manufacturing life. The first DHP breakers were furnished with solenoid operated mechanisms with cast parts and monolithic pole units. From 1964 to 1968, the stored energy spring mechanism gradually phased out the solenoid operator. After 1968, cast mechanisms were phased out by fabricated mechanisms. After 1970, monolithic pole
units were phased out by the postinsulator pole unit (PIP) design.
DVP vacuum breakers were introduced in 1978. DVP breakers were first generation vacuum breakers that were interchangeable in DHP switchgear with DHP air magnetic breakers of the same ratings.

## Ratings

DHP Breakers: 5 kV $(75,250$ and 350 MVA)
7.5 kV (500 MVA)
$15 \mathrm{kV}(500,750$ and 1000 MVA)
DVP Breakers: $7.5 \mathrm{kV}(500 \mathrm{MVA})$ and 15 kV (500 and 750 MVA )

## Chronology

DHP switchgear was introduced in 1963 and was actively manufactured by Westinghouse in complete switchgear assemblies until 1984.

REPLACEMENT CAPABILITIES


150DHP-VR500 1200 Ampere Vacuum Replacement Breaker for DHP Switchgear

Cutler-Hammer offers an extensive amount of products to support DHP switchgear.

DHP Match and Lineup Cubicles
New manufactured DHP switchgear structures to match and line up to existing Westinghouse DHP switchgear are available in indoor and in outdoor sheltered aisle and aisle-less enclosure construction.

## DHP-VR Vacuum Replacement Breakers

 The DHP-VR is a brand new direct roll-in replacement vacuum breaker for DHP air magnetic and DVP vacuum breakers. The DHP-VR breaker permits DHP switchgear modernization by using state-of-the-art Cutler-Hammer VCP-W vacuum breaker technology. The DHP-VR is factory designed and manufactured with complete factory and ANSI design testing.New DHP Air Magnetic Breakers
Completely new factory manufactured DHP air magnetic power circuit breakers are still available in ratings from 50DHP250 1200 ampere to 150 DHP1000 3000 ampere.

## Remanufactured DHP Breakers and

 Factory Repair ServiceFactory remanufacturing of DHP breakers and factory repair service for DHP breakers are available.

## Renewal Parts

Cutler-Hammer offers an extensive inventory of newly manufactured renewal parts for DHP switchgear structures and breakers. Power Circuit Breakers, and Renewal Parts

## PRODUCT HISTORY



Vac-Clad Switchgear with Type VCP Drawout Vacuum Power Circuit Breakers

Westinghouse Vac-Clad medium voltage metal-clad switchgear with type VCP vacuum power circuit breakers was introduced in 1981. Vacuum interrupter technology provided many advantages over the previous DH and DHP air magnetic breaker designs. Vacuum interrupters permitted the breaker size and weight to be significantly reduced, allowing for twohigh stacking construction of most breaker
ratings in the switchgear enclosure. VCP breakers withdraw onto switchgear rail assemblies for ease of inspection. Maintenance associated with air magnetic arc chutes was eliminated and contact maintenance was reduced to visual inspection of wear gap indicators.
VCP breakers included a design improvement called the patented V-flex current
transfer system, which eliminated the transfer of primary current over a moving hinge (like DHP breakers) or sliding contact assembly (like DVP breakers). Porcelain insulation was maintained on the breaker elements and in the switchgear except for the 5 kV switchgear cell insulation, which was glass polyester as standard. The switchgear phase bus was insulated with a fluidized bed epoxy insulation system, which was a major improvement over the epoxy impregnated kraft paper or noryl that was used as sleeving on phase bus bars in previous switchgear designs.
Vac-Clad switchgear was manufactured in indoor and in sheltered aisle and aisle-less outdoor enclosures.

## Ratings

VCP switchgear provided the first complete line of Westinghouse vacuum breakers in the medium voltage ratings:

$$
\begin{aligned}
5 \mathrm{kV} & (250 \text { and } 350 \mathrm{MVA}) \\
7.5 \mathrm{kV} & (500 \mathrm{MVA}) \\
15 \mathrm{kV} & (500,750 \text { and } 1000 \mathrm{MVA})
\end{aligned}
$$

## Chronology

Vac-Clad switchgear was introduced in 1981 and was manufactured by Westinghouse in complete switchgear assemblies until the introduction of VacClad-W switchgear in 1986. Today, many capabilities still exist to support Vac-Clad switchgear.

REPLACEMENT CAPABILITIES


Cutler-Hammer offers an extensive amount of products to support Vac-Clad switchgear.

## New VCP Vacuum Breakers

Completely new factory manufactured VCP vacuum power circuit breakers are still available in ratings from 50VCP250
1200 ampere to 150 VCP 10003000
ampere.
Remanufactured VCP Breakers and

## Factory Repair Service

Factory remanufacturing of VCP Breakers and factory repair service for VCP Breakers are available.

## Renewal Parts

Cutler-Hammer offers an extensive inventory of newly manufactured renewal parts for VCP switchgear structures and breakers.

Fluidized Switchgear Bus
Cutler-Hammer offers new fluidized epoxy bus - insulated bus to replace existing switchgear phase bus insulation.

Type VCP-W Vacuum Power Circuit Breaker (Front and Rear Views)

PRODUCT HISTORY


VacClad-W Switchgear with Type VCP-W Drawout Vacuum Power Circuit Breakers

Westinghouse VacClad-W world class medium voltage metal-clad switchgear with type VCP-W vacuum power circuit breakers was introduced in 1986. VCP-W breakers and switchgear were similar to but not interchangeable with the original Vac-Clad (VCP) product.
The VCP-W design includes a consolidation of improvements in product design
and performance that enables the introduction of IEC and 27 kV breaker ratings. However, VCP-W still includes many of the proven product features of VCP switchgear design, including two-high breaker stacking, V-flex breaker current transfer and fluidized epoxy insulation on the switchgear phase buses. VCP-W breakers withdraw onto removable switchgear rail assemblies for ease of inspection. VCP-W breakers and
switchgear were furnished with high grade glass polyester insulation as standard. Optional insulation upgrades included cycloaliphatic epoxy insulation for breaker element insulation (VCP-WSE breakers) and porcelain insulation for the switchgear cell contact bottles. VacClad-W switchgear is manufactured in indoor and in sheltered aisle and aisle-less outdoor enclosures.

ANSI Ratings	IEC Ratings
$\begin{gathered} 5.0 \mathrm{kV} \text { (250 and } \\ 350 \text { MVA) } \end{gathered}$	$\begin{gathered} 3.6 \mathrm{kV}(25,31.5,40 \mathrm{kA} \\ \text { RMS SC MAKE) } \end{gathered}$
7.5 kV ( 500 MVA )	$7.2 \mathrm{kV}(25,31.5,40 \mathrm{kA}$
15.0 kV ( 500,750 ,	RMS SC MAKE)
and 1000 MVA$)$	12.0 kV (25, 31.5, 40 kA
27.0 kV (1250 MVA)	RMS SC MAKE)
38.0 kV	17.5 kV (31.5, 40 kA RMS RMS SC MAKE)
	24.0 kV ( 25 kA RMS SC MAKE)

## Chronology

VacClad-W switchgear was introduced in 1986 and is the current state-of-the-art Westinghouse switchgear product. The VCP-WSE breaker with special cycloaliphatic epoxy insulation and the 27 kV VCP-W rating were introduced in 1990. IEC VCP-W ratings were introduced in 1991. 38 kV was introduced in 1995.

## REPLACEMENT CAPABILITIES



Type VCP-W Vacuum Power Circuit Breaker (Front and Rear Views)

Cutler-Hammer offers an extensive amount of products to support VacClad-W switchgear.

## Complete New VacClad-W Switchgear

## Assemblies

Complete new manufactured VacClad-W switchgear assemblies are available to replace obsolete existing switchgear with new Cutler-Hammer state-of-the-art vacuum switchgear.

VacClad-W Match and Lineup Cubicles
New manufactured VacClad-W switchgear structures to match and line up to existing Westinghouse VacClad-W switchgear. New VCP-W structures can also connect to existing non-current Westinghouse indoor switchgear (types DH, DHP, and VCP) with a transition section.

## New VCP-W Vacuum Breakers

Completely new factory manufactured VCP-W vacuum power circuit breakers are available in all published ratings.

## Renewal Parts

Cutler-Hammer offers an extensive inventory of newly manufactured renewal parts for VCP-W switchgear structures and breakers.

Fluidized Switchgear Bus
Cutler-Hammer offers new fluidized epoxy bus - insulated bus to replace existing switchgear phase bus insulation.

# 280 SWITCHGEAR (MEDIUM VOLTAGE) Technology Upgrades 

## IQ AND IMPACC COMMUNICATIONS RETROFITS

DHP, VCP, VCP-W


New VCP-W Front Panel with Digitrip MV and IQ Data Plus II

Cutler-Hammer offers IQ products to replace existing analog meters, instruments and protective relays with micropro-cessor-based solid-state true-RMS sensing devices. IQ products can be furnished as components for field installation on the switchgear or can be provided as new replacement front panels. The new replacement front panels available for DHP, VCP and VCP-W switchgear assemblies includes the IO devices mounted and wired. Wire markers and wiring diagrams are provided for ease of installation. The existing panel is removed, the new panel is set in place and the solid-state devices are wired into the switchgear unit. The IO products can be matched in numerous combinations to include the Digitrip MV, IQ Analyzer, IQ Data Plus II, IQ Data, IQ Generator and the IQ Data Plus 4000/4100. Communications can then be tied to the Cutler-Hammer IMPACC System.


New VCP-W Front Panel with Digitrip MV and IQ Analyzer

FLUIDIZED SWITCHGEAR BUS


Any bus bar shape or configuration is uniformly coated. There are no dielectric weak spots and taping is not necessary.

Cutler-Hammer offers a cost effective program that can extend the life of any manufacturers' equipment by reconditioning or replacing the bus and insulating it with fluidized bed epoxy. The bus insulation in many existing switchgear assemblies may be Noryl, Micarta, redacta, heat shrink tubing or fiberglass. These materials are adversely affected by aging, environment and operating conditions. The solution to these concerns can be answered with the high quality, state-of-the-art system and superiority offered by the fluidized bed epoxy process. Customers can utilize any of the following services to fit specific switchgear applications from 600 V to 15 kV :

- Bus Reconditioning
- Bus Replacement
- Bus Duct Reconditioning
- Bus Duct Replacement


Coated bus bars pass through a post-heat oven to cure and fuse the epoxy.

## SWITCHGEAR UPGRADES

## DHP, VCP, VCP-W

Switchgear upgrades are available from Cutler-Hammer to increase the MVA and continuous current ratings of the entire assembly.

EI

## FURTHER INFORMATION

Product	Literature Number	Description
DHP Switchgear and Breaker	RPD 32-253-4D	Renewal Parts Data for DHP Breaker and Switchgear Parts
	LEL006A	Sales Aid for the DHP Remanufacture Program
	SA-11876B	Sales Aid for the DHP-VR Vacuum Replacement Breaker
	LEL014	Sales Aid for the DHP-VR Breaker vs. Retrofitted Breaker
	RPD 32-290	Renewal Parts Data for the DHP-VR Vacuum Replacement Breaker
VCP Switchgear and Breaker	RPD 32-274	Renewal Parts Data for VCP Breaker and Switchgear Parts
	LEL007A	Sales Aid for the VCP Remanufacture Program
VCP-W Switchgear and Breaker	RPD 32-255A	Renewal Parts Data for VCP-W Switchgear Parts
	SA-11671	Sales Aid for VCP-W Switchgear
	DB 32-255	Descriptive Bulletin for VCP-W Switchgear
	AD 32-265	Application Data for VCP-W Switchgear
Fluidized Bus	SA-11745	Sales Aid for Custom Fluidized Switchgear Bus
General Information	SA-11936B	Sales Aid for Greenwood Aftermarket Product Center Capabilities
	LEL004A	Sales Aid for Breaker Remanufacture Program

## PRICING INFORMATION

Product	Literature   Number	Description
VCP-W Breaker	PL 33-729	Price List for VCP-W Breaker Parts
VCP-WR Breaker	PL 33-724	Price List for VCP-WR Fixed Vacuum Breakers
MV Air/Vacuum Switchgear Parts	VISTA/VISTALINE	Discount Symbol Y1

## PRODUCT DESCRIPTION

Approximately 40 years ago,
Westinghouse began to produce a threephase load interrupter medium-voltage switch housed in a metal enclosure. The switch is rated 5 to 15 kV and 600 to 1200 amperes. This switch was an economical visible disconnect used primarily for unit substations, main service entrance and distribution of service entrance via a lineup of these switches. Most switches have a fuse for circuit protection on the load side. The switch structure consists of 11 gauge structural steel. The appearance of the switch has not changed drastically over the years.


## Standard Manually Operated Fused WLI

## Switch

(1) Switch Position Indicator/Operator Mechanism
(2) Provisions for Padlocking Door
(3) Inspection Window
(4) Full Height Main Door
(5) Door Stop, Foot Operated
(6) Grounded Metal Safety Barrier
(7) Door Interlock
(8) Switch Interlock
(9) Interphase Barrier
(10) Switch Operator Mechanism Access Door

## PRODUCT HISTORY

## Originally a Westinghouse Product

Metal enclosed load break air interrupter switches were first produced in 1952 under the name Load Break Fusible (LBF) at M \& R facilities around the country. In 1964, the manufacturing of the product was consolidated in the Cincinnati, OH facility. The product was discontinued in 1972 and replaced with Westinghouse Load Interrupter (WLI) having many design changes and improvements. Parts for the two products are incompatible but the current WLI design can be added to existing LBF lineups. The WLI product line
was moved to the Sumter, SC manufacturing facility in 1979.
As stated earlier, LBF and WLI look similar in design. They can be differentiated by the nameplate located behind the operating handle access door. The front is largely covered by the main door, with viewing window, providing access to the switch and fuse compartment. A smaller access door on the main door allows access to the switch operating mechanism. Upon opening the main door, the switch in the
upper part of the structure is covered by a protective screen barrier which allows visual inspection. The fuses, when provided, are located in the lower part of the structure, and are readily visible for easy maintenance when the main door is open. The rear of the switch structure is generally used for cable entrance and/or exit. Access to the cable entrance/exit area is via a rear cover or door.

PRODUCT HISTORY TIMELINE

Page	Product	1950	1955	1960	1965	1970	1975	1980	1985	1990	Present
283	Westinghouse LBF										
284	WLI + MVS										

## PRODUCT DESCRIPTION

## LBF Load Break Switch

The LBF switch standard structure was 33 -inch wide, 90.38 -inch high (indoor), 98.88 -inch high (outdoor), with varying depths. Vertical sections were freestanding, close coupled to transformers, and bolted together forming lineups. ANSI 61
light gray enamel was the internal color for all structures and external color for indoor structures. ANSI 24 dark gray enamel was the external color for outdoor structures.

## LBF Ratings

Three-phase, 5 and 15 kV maximum, 600 and 1200 amperes.

## REPLACEMENT CAPABILITIES

The LBF product line was discontinued in 1972. Due to design change and retooling, replacement parts are no longer available.

## TECHNOLOGY UPGRADES

The MVS product, which replaces the LBF, is a completely new and improved design and parts are incompatible.

## PRODUCT DESCRIPTION

## MVS Load Break Switch

The MVS switch standard structures for 5 and 15 kV gear is 33 to 48 in . wide, 90.38 in . high (indoor), 98.88 in . high (outdoor), with varying depths. The WLI switch standard structures for 25.8 and 38 kV gear is 48 to 54 in . wide, 101.5 or 127 in. high (indoor), 110 or 135.5 in. high (outdoor), with varying depths. Vertical sections are freestanding, close coupled to transformers, and bolted together forming lineups. ANSI 61 light gray enameI is the standard internal color for all structures and became the standard external color for all structures in 1984. ANSI 24 dark gray enamel was the external color for outdoor structures prior to this date.

## MVS Ratings

Three-phase, 5 and 15 kV maximum, 600 and 1200 amperes
Three-phase, 25.8 and 38 kV maximum, 600 amperes


MVS Switch Mechanism
(Refer to pictures below for part identification)

REPLACEMENT CAPABILITIES

	Part Description	Style Number	Quantity per Switch	List Price Each
Switch Pole Assemblies				
	Switch Pole Assemblies   Three-pole set includes main and flicker blades, break jaws, arc chutes and adjustment tool kit.   ( 60 kV BIL or 95 kV BIL)   5 and 15 kV - 600 amperes   5 and $15 \mathrm{kV}-1200$ amperes   (110 kV BIL)   15 kV - 600 amperes   15 kV - 1200 amperes   ( 125 kV BIL or 150 kV BIL)   25 and 38 kV - 600 amperes	$\begin{aligned} & \text { 7278A27G01 } \\ & \text { 7278A27G02 } \\ & \text { 7278A27G03 } \\ & \text { 7278A27G04 } \\ & \\ & \text { 7278A27G05 } \end{aligned}$	1 set   1 set   1 set   1 set   1 set	$\$ 10130$ 13220   10520   13600   14400
Arcing Contact Assemblies				
	Arcing Contact Assemblies   Three-pole set includes flicker blades and arc chutes. This kit is not required when switch pole assemblies above are ordered.   ( 60 kV BIL or 95 kV BIL)   5 and 15 kV - 600 amperes   5 and 15 kV - 1200 amperes   ( 125 kV BIL or 150 kV BIL)   25 and 38 kV - 600 amperes	$\begin{aligned} & \text { 7278A27G06 } \\ & \text { 7278A27G07 } \\ & \text { 7278A27G08 } \end{aligned}$	1 set 1 set   1 set	$\begin{aligned} & 2540 \\ & 3320 \\ & \\ & 3600 \end{aligned}$
Drive Rod Link (Polyester)				
	```Drive Rod Link (polyester, set of three) 5 kV (60 kV BIL) 15 kV (95 kV BIL) 15 kV (110 kV BIL) 25 and 38 kV (125 kV BIL or 150 kV BIL)```	$\begin{aligned} & \text { 7278A27G09 } \\ & \text { 7278A27G10 } \\ & \text { 7278A27G11 } \\ & \text { 7278A27G12 } \end{aligned}$	1 set   1 set   1 set   1 set	$\begin{aligned} & 450 \\ & 550 \\ & 590 \\ & 650 \end{aligned}$

SWITCHGEAR (MEDIUM VOLTAGE) FUSIBLE Renewal Parts

REPLACEMENT CAPABILITIES

	Part Description	Style Number	Quantity per Switch	List Price Each
Drive Rod Link (Porcelain)				
	```Drive Rod Link (porcelain) (set of three) 5 kV (60 kV-BIL) 15 kV (95 kV-BIL) (125 kV-BIL or 150 kV-BIL) 25 and 38 kV```	$\begin{aligned} & \text { 7278A27G13 } \\ & \text { 7278A27G14 } \\ & \text { 7278A27G15 } \end{aligned}$	1 set   1 set   1 set	$\begin{array}{r} \$ 4350 \\ 5350 \\ \\ 6350 \end{array}$
Insulators				
Polyester   Porcelain	Insulators (one each)   ( 60 kV -BIL)   5 kV Glass Polyester   5 kV Porcelain   ( 95 kV -BIL)   15 kV Glass Polyester   15 kV Porcelain   (110 kV-BIL)   15 kV Porcelain   ( 125 kV -BIL or 150 kV -BIL)   25 and 38 kV Porcelain	4892A97H03 548 D 224 G 07 4892A97H04 548 D 235 G 07 548D236G07 1707C41G01	as required as required   as required as required   as required   as required	100   440   100   500   540   3480
Removable Handle				
	Removable Handle All Ratings	7274A49H01	1 each	90
Switch Spring Mounting Assembly				
	Switch Spring Mounting Assembly   5-15 kV - 40 kA Fault Close   5 kV - 61 kA Fault Close   15 kV - 61 kA Fault Close   25 kV - 20 kA Fault Close   25 kV - 40 kA Fault Close   25 kV - 60 kA Fault Close   38 kV - 20 kA Fault Close   38 kV - 30 kA Fault Close	7278A27G16   7278A27G17   7278A27G18   7278A27G19   7278A27G20   7278A27G21   7278A27G22   7278A27G23	1 set   1 set	450   450   450   1000   1500   1500   1050   1500
Switch or Fuse Barrier Assembly				
	Switch Barrier Assembly   5 and 15 kV   25 and 38 kV   Fuse Barrier Assembly   15 kV   25 and 38 kV	7278A27G24   7278A27G25   7278A27G26   7278A27G27	1 set   1 set   1 set   1 set	1540   3200   1540   3200

# SWITCHGEAR (MEDIUM VOLTAGE) FUSIBLE MVS Load Interrupter Metal Enclosed Switchgear Renewal Parts 

## REPLACEMENT CAPABILITIES

	Part Description	Style Number	Quantity per Switch	List Price Each
Open Close Indicator/Interlock Cam				
	Open-Close Indicator/Interlock Cam for Lock open/close or Lock open only   Open-Close Indicator/Interlock Cam for Lock close only	$220 \mathrm{C} 934 \mathrm{H} 01$ $220 \mathrm{C} 934 \mathrm{H} 02$	1 each   1 each	$\$ 250$ $250$
Auxiliary Switch Assembly				
	Auxiliary Switch Assembly (5 NO and 5 NC Contacts)	7278A27G28	1 each	770
Switch Adjustment Tool Kit				
	Switch Adjustment Tool Kit   5 and 15 kV   25 and 38 kV	$\begin{aligned} & \text { 221C113G01 } \\ & \text { 221C113G02 } \end{aligned}$	1 each 1 each	$\begin{aligned} & 450 \\ & 450 \end{aligned}$
Fuse Live Part Kit				
	Fuse Live Part Kit   Non Disconnect (Three-Phase - Top and Bottom)   RBA200 5-15 kV   RBA400 5-15 kV   RBA200 $25-38 \mathrm{kV}$   RBA400 $25-38 \mathrm{kV}$   CLE-1 5 - 15 kV   CLE-2 5-15 kV   CLE-3 5-15 kV   CX $5-15 \mathrm{kV}$   CXN-15-15 kV (Single Barrel - 3 inch Dia.)   CXN-15-15 kV (Single Barrel - 4 inch Dia.)   CXN-2 5-15 kV (Double Barrel - 3 inch Dia.)   CXN-2 5-15 kV (Double Barrel - 4 inch Dia.)   NX25 kV   EJO38 kV	7278A27G29 7278A27G30 7278A27G31 7278A27G32 7278A27G33 7278A27G34 7278A27G35 7278A27G36 7278A27G37 7278A27G38 7278A27G39 7278A27G40 7278A27G41 7278A27G42	1 each   1 each	890 925 1050 1125 890 925 1050 775 890 890 1175 1175 850 1190
Space Heaters				
	Space Heaters (Voltage shown is half Rated Voltage) $\begin{aligned} & 125 \mathrm{~V} \\ & 250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 220 \mathrm{C} 974 \mathrm{G} 03 \\ & 220 \mathrm{C} 974 \mathrm{G} 04 \end{aligned}$	as required as required	$\begin{aligned} & 275 \\ & 275 \end{aligned}$
Other Replacement Parts   Other replacement parts are available but must be considered on a job-by-job basis.   Include switch nameplate information located behind the switch operating handle access door with any correspondence. Be sure this includes the "CN" or "SM" number.				

FURTHER INFORMATION

Literature Number	Description
DB 31-935	Descriptive Bulletin for WLI Load Interrupter Metal Enclosed Switchgear
IL 31-930-C	Instruction Leaflet for WLI and WVB Metal Enclosed Switchgear

PRICING INFORMATION

VISTA/VISTALINE	Discount Symbol Y2

> FUSES, MEDIUM VOLTAGE
> Current Limiting and Expulsion

## PRODUCT DESCRIPTION



Medium voltage fuses offer such diverse characteristics that almost any fuse application, within the practical range of such interrupting devices, may be satisfied. These diverse characteristics are offered, in part, by the production of both expulsion and current limiting power fuses.

Expulsion and current limiting fuses provide diverse characteristics by employing different areas of fuse technology. This difference in technology along with the diverse characteristics require that different questions be answered when applying expulsion and current-limiting fuses.

## PRODUCT HISTORY

## Originally a Westinghouse Product

The Cutler-Hammer Power Fuse product line was introduced in the 1930s by Westinghouse Electric Corporation. As power systems grew in size, the need to sectionalize utility feeders and protect equipment became apparent. The initial fuse development efforts resulted in the creation of Non-Current Limiting, Expulsion Type Fuses. As the available fault currents grew, the need for a current limiting fuse was apparent and resulted in new interruption techniques.
While basic fuse technology has not changed greatly over the years, gradual improvements have been made to make the fuses more current limiting and easier to manufacture and install. Because standards for fuses (ANSI C37) detail only test methods and basic performance requirements, many different varieties of fuses (length, diameter, short circuit interruption curves) have been introduced over the years.
Cutler-Hammer presently manufactures medium voltage fuses in Cabo Rojo, PR, where it was moved from East Pittsburgh, PA in 1972.

## PRODUCT HISTORY TIMELINE


(1) BAL superseded by CLE.
(2) BAL-R superseded by CLS.
(3) BA - Refills and holders only, new installations use RBA.

4 DBA - Refills only.
© DBS - Superseded by DBU.

## GENERAL INFORMATION

Fuses in Perspective


## Advantages

## Medium Voltage Fuse Comparison

Expulsion

- Vented
- Electro-Mechanical
- Expels Gases/Noise
- Interrupts at Natural Current Zero
- Generally Higher Voltage/Current Applications
- Differences in Time/Current Characteristics


## Current Limiting

- Sealed
- Static
- No Gases/Noise
- Limits Fault Current
- Generally Higher Interrupting Ratings
- Differences in Time/Current Characteristics


## Application Guide

Selection Guide				Ratings	Feeder Circuit Sectionalizing	Fused Switches	Power   Transformers	Substation Service Transformers	DipPole	Underground Distribution Transformers	Pole   Mounted Transformers	Pad-   Mounted Distribution Transformers	Motor Starters	Potential   Transformers	
Type	Class	Use	Brand	kV, Amp, kA											
Current Limiting	GeneralPurpose Purpose	Power	$\begin{array}{\|l\|l\|} \hline \text { CLE/ } \\ \text { HLE } \end{array}$	$2.4 \mathrm{kV}-15.5 \mathrm{kV}$   10E-1350A   to 85 kA	-	$\bullet$	$\bullet$		-						-
		Dist.	$\begin{aligned} & \hline \text { CX, } \\ & \text { CXN } \end{aligned}$	$\begin{aligned} & 4.3 \mathrm{kV}-15.5 \mathrm{kV} \\ & 3.5 \mathrm{C}-300 \mathrm{C} \\ & 50 \mathrm{kA} \end{aligned}$				$\bullet$				$\bullet$			
			CLT	$\begin{aligned} & 2.4 \mathrm{kV}-15.5 \mathrm{kV} \\ & 4 \mathrm{~A}-150 \mathrm{~A} \\ & 25 \mathrm{kA} \end{aligned}$								$\bullet$			
	Backup	Power	CLEPT	$\begin{aligned} & 2.4 \mathrm{kV}-38 \mathrm{kV} \\ & 0.25 \mathrm{E}-10 \mathrm{E} \\ & \text { to } 80 \mathrm{kA} \end{aligned}$										$\bullet$	
		Dist.	CLS	$\begin{aligned} & 2.4 \mathrm{kV}-8.3 \mathrm{kV} \\ & 2 \mathrm{R}-36 \mathrm{R} \\ & 50 \mathrm{kA} \end{aligned}$									$\bullet$		
Expulsion	$\begin{array}{\|l\|} \text { Boric } \\ \text { Acid } \end{array}$	Power	RBA	$\begin{array}{\|l\|} \hline 4.8 \mathrm{kV}-34.5 \mathrm{kV} \\ 0.5 \mathrm{E}-7200 \mathrm{E} \end{array}$	$\bullet$	$\bullet$	$\bullet$								$\bullet$
			RDB	$\begin{array}{\|l\|} \hline 4.8 \mathrm{kV}-34.5 \mathrm{kV} \\ 0.5 \mathrm{E}-7200 \mathrm{E} \end{array}$	$\bullet$		$\bullet$	$\bullet$	$\bullet$					$\bullet$	$\bullet$
			DBU	$\begin{aligned} & 14.4 \mathrm{kV}-38 \mathrm{kV} \\ & 15 \mathrm{E}-200 \mathrm{E} \\ & 1 \mathrm{~A}-200 \mathrm{~K} \end{aligned}$	$\bullet$	-	$\bullet$	-	-					-	

## Guide to Names:

CLE Current Limiting E-Rated
HLE Current Limiting, E-Rated, Interchangeable
CX, CXN Current Limiting Interchangeable with McGraw-Edison's NX Brand Fuses, C-Rated
CLT Current Limiting Transformer Fuse
CLEPT Current Limiting E-Rated for Potential Transformers
CLS Current Limiting for Motor Starters, R-Rated
RBA Refillable Boric Acid Expulsion Fuse (Indoor Use)
RDB Refillable Dropout Boric Acid Expulsion Fuse (Outdoor Use)
DBU Dropout Boric Acid Fuse (Refill Only) Interchangeable with S\&C's SMU-20 Refill

Guide to Amp Ratings:
"E" Designation
Fuse rated 100 E or below will melt in 300 seconds at a current value between 2.0 and 2.4 times the $E$ number.

Fuse rated above 100 E will melt in 600 seconds at a current value between 2.2 and 2.64 times the E number.

If the current is higher than 2.0 to 2.4 or 2.64 times the E number, the user must consult the time-current curves for that particular fuse.
" R " Designation
The fuse will melt in 15 to 35 seconds when the current equals 100 times the R number.

If the current is higher than 100 times the R number, the user must consult the time-current curves for that fuse.
"C" Designation
The fuse will melt in 1000 seconds at a current value, between 1.7 and 2.4 times the $C$ number.

If the current is higher than 2.4 times the C number, the user must consult the time-current curves for that particular fuse.

Expulsion fuses can also be E-rated, K-rated and T-rated and are also covered in the ANSI standards. The K and Tratings refer, respectively, to relatively "fast" and
"slow" melting expulsion fuses. Detailed time-current tables would be needed to adequately define the ratings.


Current limiting fuses are constructed with pure silver fuse elements, high purity silica sand filler, a specially designed core and a glass resin outer casing.
A high fault current melts the silver element almost instantly and loses energy to the surrounding sand. The sand melts and forms fulgurite, a glass-like substance.
The arc voltage rapidly increases to nearly three times the fuse voltage rating and


CLEPT
Current Limiting E-Rated for Potential Transformer Protection


CLT
Current Limiting for Transformer Protection
forces the current to zero. Low fault current melts a solder drop on the silver fuse element which, in turn, melts the silver.
The element burns back until there is a sufficient internal gap to interrupt the current. This is known as the M-effect.
Cutler-Hammer offers current limiting fuses in two basic types: backup and general purpose. Backup fuses have a published minimum interrupting current


CLS
Current Limiting for Motor Starter
and require a series device for breaking the circuit for currents below this minimum level. General purpose fuses have improved low current interruption capability and are designed to interrupt low fault currents that cause the fuse to melt in one hour or less.

## GENERAL INFORMATION

## Applications

Current limiting technologies can be used to meet almost every fuses application. Typical applications for utility, industrial, construction and OEM customers include:

- Feeder circuit sectionalizing
- Power transformers
- Substation service transformers
- Underground distribution transformers
- Pole-mounted transformers
- Pad-mounted distribution transformers
- Fused switches
- Dip poles
- Motor starters
- Potential transformers
- Substation capacitor banks


## Accessories

A wide assortment of mountings, live parts, end fittings, filters and condensers are available to facilitate power fuse installation.
Mountings include a base, porcelain or glass polyester insulators and live parts. They help enable the fuse to be safely attached to the gear. Mountings can be either disconnect, nondisconnect, or dropout.
Live Parts attach the fuse to the mountings and are considered part of the mounting. All parts above the insulators are live parts.
End Fittings are metal parts that attach to each end of the fuse at the ferrules. They are used only on disconnect fuses or when converting a nondisconnect to a disconnect fuse.


Live Parts

## PRODUCT DESCRIPTION



RBA - Refillable Boric Acid

Cutler-Hammer expulsion fuses use boric acid as the interrupting medium. Under a fault condition, arc heat decomposes the boric acid which produces gases and boric anhydride. The water vapor blast extinguishes the arc in a deionizing action and exits from the bottom of the fuse.
Type RBA indoor expulsion fuses can be fitted with a muffler, comprised of a discharge filter or condenser, that moderates


RDB - Refillable Dropout Boric Acid
the discharge exhaust. The discharge filter limits the exhaust to a small and relatively inert amount of gas and lowers the noise level without affecting the fuse interrupting rating. Steam discharge, that can affect the interrupting, is fully restricted by the condenser.

Type RDB outdoor dropout fuses include an ejector spring which forces the arcing rod through the top of the fuse. The arcing


DBU - Dropout Boric Acid Interchangeable with S \& C's SMU - 20
rod strikes a latch on the mounting which forces the fuse to swing outward through a $180^{\circ}$ arc into the dropout position.
Refill units can be field installed into RBA and RDB expulsion fuses. Once the old unit has been removed, the separately purchased unit can be easily installed into the fuse holder.

## GENERAL INFORMATION

## Applications

Expulsion technologies can be used to meet a number of fuse applications. Typical applications for utility, industrial construction and OEM customers include:

- Feeder circuit sectionalizing
- Fused switches
- Power transformers
- Substation service transformers
- Dip poles
- Potential transformers
- Substation capacitor banks


## Accessories

The following accessories are available for expulsion fuses:
Mountings include a base, porcelain or glass polyester insulators and live parts. They help enable the fuse to be safely attached to the gear. Mountings can be either disconnect, nondisconnect, or dropout. Fuses may be vertical or underhung.

Live Parts attach the fuse to the mountings and are considered part of the mounting. All parts above the insulators are live parts.
Filters and Condensers are for indoor applications of RBA expulsion fuses. They confine the arc within the fuse and substantially reduce the noise and exhaust when the fuse interrupts.

## FURTHER INFORMATION

Product	Literature   Number	Description
Current Limiting Fuses	$36-691$	Technical Data for CLS Fuse
	$36-693$	Fuse Curves for CLS Fuse
	$36-710$	Technical Data for CLE, CLEPT Fuses
	$36-711$	Technical Data for CLE, CLEPT Fuses
	$36-713$	Technical Data for CX, CXN Fuses
	$36-715$	Fuse Curves for CLE, CLEPT Fuses
	$36-733$	Fuse Curves for CX Fuse
	$36-901$	Fuse Curves for CLE, HLE Fuses
General Information	$36-933-A$	Fuse Curves for CXN Fuse
	$36-610$	Literature Index for Current Limiting Fuses
	$36-612$	Supersedure Index for Current Limiting Fuses
	$36-686$	Application Data for Current Limiting Fuses
	$36-630$	Technical Data for RDB Fuse
	$36-631$	Technical Data for RDB Fuse
	$36-632$	Descriptive Bulletin for RDB Fuse
	$36-633$	Technical Data for RBA Fuse
	$36-634$	Descriptive Bulletin for RBA Fuse
	$36-635$	Fuse Curves for RBA, RDB Fuses
	$36-642$	Descriptive Bulletin DBU Fuse
	$36-643$	Fuse Curves for DBU Fuse
	$36-610$	Literature Index for Current Limiting Fuses
	$36-612$	Supersedure Index for Current Limiting Fuses
	$36-616$	Application Data for Current Limiting Fuses
	SA-11888	Sales Aid for Expulsion Fuses

## PRICING INFORMATION

Literature   Number	Description
PL 36-609	Price List for   Medium Voltage Fuses
VISTA/	Discount Symbol Y1-F
VISTALINE	Pricing and Availability Digest

EXCITATION CONTROL EOUIPMENT Voltage Regulators and Static Excitation Systems

## PRODUCT DESCRIPTION

Excitation control equipment is the equipment which provides excitation power, regulation, control, and protection for a synchronous machine.
The primary function of the equipment is to provide field current. In controlling the


PRX-400B Solid-state Regulator for Multi-field Excitation System
field current, the output voltage of the synchronous generator may be regulated. Equally important is the regulation, control, and protection aspects of a modern excitation system. These functions are accomplished automatically by appropriate changes in the level of machine excitation.


WTA-300B Potential Source Static Excitation System

Excitation control equipment is applied primarily as a voltage regulator for synchronous generators. There are also some limited applications of products applied for supplying excitation for synchronous motors.


MGR Solid-state Regulator for Single-field Excitation System

## PRODUCT HISTORY

## Originally a Westinghouse Product

The Excitation Control Equipment Product Line began manufacturing excitation equipment in the 1920s under the name of Westinghouse Electric Corporation. As power systems grew in size, the need to regulate the output voltage of the generator
became apparent. The first voltage regulators were electromechanical designs. Eventually, magnetic designs replaced the electromechanical designs. The magnetic type designs were replaced by solid-state designs which were introduced in the

1960s. Since the introduction of solid-state designs in the 1960s, steady improvements have been made to these designs. Excitation equipment was manufactured in Pittsburgh, PA until 1985 at which time it was moved to Asheville, NC.

PRODUCT HISTORY TIMELINE

(1) Electromechanical.
(2) Magnetic amplifier design.

3 Solid-state design.
4 Digital design.

## GENERAL INFORMATION

## Current System Selection Guide

Application selection for various field current requirements. Consult the factory for quotation.

Equipment Type	Application				Features
	AVR	SEVR	General	Specific	Excitation
MGR	$\bullet$	$\bullet$	- New generators   - Existing generators	Supplies excitation to single field exciters or generator fields up to 600 amperes	- Multi-function logic modularity   - Front access only cubicle   - Fixed power rectifiers
$\begin{aligned} & \hline \text { PRX-302 } \\ & \text { PRX-3020 } \\ & \text { PRX-302X5 } \end{aligned}$	$\bullet$		- New installations   - Combustion turbines   - Steam turbines   - Prime movers (i.e., diesel engines)	Supplies excitation for brushless exciters for generators up to 100 MVA	- Modular logic   - Provisions for redundancy   - Front access only design
PRX-400B	$\bullet$		Retrofit applications	Retrofit for WMA and WR-20 regulators	- Modular logic   - Provisions for redundancy
WTA-300B Brushless	$\bullet$		- New steam turbine installations > 100 MVA   - Retrofit applications	Supplies excitation for generators 100 MVA and up   Primary retrofit for WMA brushless systems	- Modular logic   - Provisions for redundancy   - Draw-out power rectifiers   - Draw-out AC disconnect
PRX-300		$\bullet$	- New generators   - Existing generators	Supplies excitation for generator fields up to 400 amperes	- Modular logic   - Provisions for redundancy   - Fixed power rectifiers
WTA-300B		$\bullet$	- New generators   - Existing generators	Supplies excitation for generator fields 500 amperes and up	- Modular logic   - Provisions for redundancy   - Draw-out power rectifiers   - Draw-out AC disconnect
WDR-2000	$\bullet$	$\bullet$	- New generation   - Existing generators	Supplies excitation to exciter field or directly to the generator field	- Digital Logic   - Provisions for redundancy   - Draw-out power rectifiers   - Draw-out AC disconnect
Portable excitation systems	$\bullet$	$\bullet$	- Portable standby excitation systems	Supplies excitation for systems 6000 amperes and up	- Supplied in outdoor enclosure   - Multi-generator design   - Utilizes WTA-300B system   - Trailer or skid mounted

AVR = Automatic voltage regulator (supplies excitation to exciter field)
SEVR = Static exciter voltage regulator (supplies excitation to generator field)

REPLACEMENT CAPABILITIES


Renewal Parts

## Renewal Parts

Cutler-Hammer offers a complete line of spare parts for current systems as well as parts for some systems not currently manufactured. The table to the right lists systems that have spare parts available. For those systems that do not have spare parts available, the recommended replacement system is listed.


TRA Voltage Regulator

## Renewal Parts Available

Product	Parts Not   Available	Parts   Available	Current   Replacement
BJ-30	$\bullet$		MGR
WMA	$\bullet$		PRX-400
WMA BR(	$\bullet$		WTA-300
WR-20	$\bullet$		PRX-400
Turbograph		$\bullet$	
SRA/SRD	$\bullet$		TRA-TRD
TRA/TRD/   TRX		$\bullet$	
XASV		$\bullet$	XMC
XMC		$\bullet$	
WTA		$\bullet$	WTA-300B
WTA-300   SEVR		$\bullet$	
PRX-300		$\bullet$	
PRX-302		$\bullet$	
PRX-400		$\bullet$	
MGR		$\bullet$	
WDR-2000		$\bullet$	

## FURTHER INFORMATION

## Literature Number

SA-151
SA-231
SA-234
SA-106
SA-247

## Description

Sales Aid for MGR Excitation Systems
Sales Aid for WDR Digital Regulator
Sales Aid for WDRT Digital Test Kit
Sales Aid for Potentiometer Replacement
Sales Aid for Voltage Regulation Is Our Business

## PRICING INFORMATION

Call the Cutler-Hammer Asheville Plant for pricing.
(1) $\operatorname{PRX} 302=420 \mathrm{~Hz}$ PMG (permanent magnet generator) supply, PRX302X $=60 \mathrm{~Hz}$ XMFR supply, PRX302X5 $=50 \mathrm{~Hz}$ XMFR supply. (2) WMA brushless.

## INDEX

A
A10 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . . 153-162
A11 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . . 153-162
A13 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . . 153-162
A200 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . . 165-167
A200 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . . 165-171
A201 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . 165-171
A202 Lighting Contactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A203 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . 165-171
A204 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . 165-171
A206 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . 165-171
A210 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . 165-171
A211 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . 165-171
A213 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A214 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . 165-171
A216 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . . 165-171
A220 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . 165-171
A223 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . 165-171
A224 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . 165-171
A226 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . 165-171
A250 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165-171
A251 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . 165-171
A2B Panelboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A30 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . . 153-162
A31 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . 153-162
A40 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153-162
A41 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . 153-162
A415/A445/A485 Solid State Reduced Voltage Starters . . . . . . . . 177
A50 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . . 153-162
A51 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . 153-162
A515/A545 Solid State Reduced Voltage Starters. . . . . . . . . . . . . 177
A600 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . 165-171
A603 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . 165-171
A604 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . 165-171
A606 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . 165-171
A70 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153-162
A700 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . 165-171
A703 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . 165-171
A704 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . 165-171
A706 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . . 165-171
A71 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153-162
A80 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . . 153-162
A800 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . 165-171
A804 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . 165-171
A806 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . 165-171
A81 Contactors and Starters . . . . . . . . . . . . . . . . . . . . . . . . . . . 153-162

ABH Panelboard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

## Accessories

Current Limiting Fuses (MV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Expulsion Fuses (MV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Low Voltage Retrofit Kits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Molded Case Circuit Breakers. . . . . . . . . . 11, 23, 30-35, 37-39, 43,
44, 46-50, 52, 58-68, 75, 79, 80

## Accutrol

100 Adjustable Frequency AC Drive. . . . . . . . . . . . . . . . . . . . . . . . 179
110 Adjustable Frequency AC Drive. . . . . . . . . . . . . . . . . . . . . . . 179
150 Adjustable Frequency AC Drive. . . . . . . . . . . . . . . . . . . . . . . . . 179
200 Adjustable Frequency AC Drive. . . . . . . . . . . . . . . . . . . . . . . . 179
300 Adjustable Frequency AC Drive. . . . . . . . . . . . . . . . . . . . . . . 179
400 Adjustable Frequency AC Drive. . . . . . . . . . . . . . . . . . . . . . . . 179
700 Adjustable Frequency AC Drive. . . . . . . . . . . . . . . . . . . . . . . . 179
Addressable Relay II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Addressable Relay II (ARII) ..... 136
Adjustable Frequency AC Drives ..... 178-180
ADVANTAGE
MCC (Motor Control Center) ..... 209, 216
Retrofits - Motor Control Centers ..... 219
Starter ..... 142
AEMII (Assemblies Electronic Monitor) ..... 142
AF-1000 Adjustable Frequency AC Drive ..... 179
AF-1500 Adjustable Frequency AC Drive ..... 179
AF-1600 Adjustable Frequency AC Drive ..... 179
AF-2000 Adjustable Frequency AC Drive ..... 179
AF-300 Adjustable Frequency AC Drive ..... 179
AF-3000 Adjustable Frequency AC Drive ..... 179
AF-5000 Adjustable Frequency AC Drive ..... 179
AF-5000+ Adjustable Frequency AC Drive ..... 179
AF-6000 Adjustable Frequency AC Drive ..... 179
AF-7000 Adjustable Frequency AC Drive ..... 179
AF-8000 Adjustable Frequency AC Drive ..... 179
AF-93 Adjustable Frequency AC Drive ..... 179
AF-95 Adjustable Frequency AC Drive ..... 179
AF-97 Adjustable Frequency AC Drive ..... 179
AFD Device Panel ..... 142
Air Circuit Breakers - DB ..... 235
Air Circuit Breakers - DS ..... 234
Air to Vacuum Contactor Retrofits (Medium Voltage) ..... 204-205
Air to Vacuum Starter Retrofits (Medium Voltage) ..... 204-206
AK/AL/AE Breaker Retrofit Kits. ..... 262-265
Allis Chalmers Breaker Trip Unit Retrofit Kits. ..... 266-267
AMI AMPGARD, Medium Voltage Starters ..... 202, 207
AMPGARD Medium Voltage Starters ..... 195-207
AMPGARD, AMI Medium Voltage Starters ..... 202, 207
AMT Vari-Depth Handle Mechanism ..... 89
ARII (Addressable Relay II) ..... 136
ASR Relay Slipsyn. ..... 182
Assemblies Electronic Monitor (AEMII) ..... 142
B
B10 Contactors and Starters. ..... 153-162
B10B (Panelboard). ..... 98
B11 Contactors and Starters. ..... 153-162
B50 Contactors and Starters. ..... 153-162
B51 Contactors and Starters ..... 153-162
B52 Contactors and Starters. ..... 153-162
BA - Overload ..... 168
BAB Miniature Circuit Breaker ..... 13-14
BJ-30 Excitation Control ..... 292
Breaker Identification, Nameplate ..... 6
Breaker Interface Module (BIM) - OPTIM ..... 142
Breakers
Accessories, Molded Case ..... 58-68
Miniature Circuit ..... 13-15
Molded Case Circuit ..... 4-95
Handle Mechanisms ..... 82-93
Motor Control Center Replacement ..... 76-80
Panelboard Replacement ..... 69-75
Power
Low Voltage. 226-227, 234-236, 239-245
Medium Voltage ..... 275-279
Rating Plugs. ..... 53
Replacement Circuit ..... 22-53
Replacement Guide. ..... 16-21
Brush Type Motor Control ..... 182, 184-189


## INDEX


INDEX
HF365N Safety Switch ..... 113
HFB Molded Case Circuit Breakers ..... 22
High Frequency Bus (Busway) ..... 118
HIGH RESISTANCE PULSING GROUND SYSTEM ..... 231-233
HKA Molded Case Circuit Breakers. ..... 27
HKB Molded Case Circuit Breakers ..... 25
HLA Molded Case Circuit Breakers ..... 33-34
HLB Molded Case Circuit Breakers ..... 29
HLC Molded Case Circuit Breakers ..... 42
HLCA Molded Case Circuit Breakers ..... 42
HLCC Molded Case Circuit Breakers ..... 42
HLCCA Molded Case Circuit Breakers ..... 42
HLCCG Molded Case Circuit Breakers ..... 43
HLCCGA Molded Case Circuit Breakers ..... 43
HLCG Molded Case Circuit Breakers ..... 43
HLCGA Molded Case Circuit Breakers ..... 43
HMA Molded Case Circuit Breakers ..... 36
HMC Molded Case Circuit Breakers ..... 45
HMCA Molded Case Circuit Breakers ..... 45
HMCC Molded Case Circuit Breakers ..... 45
HMCCA Molded Case Circuit Breakers. ..... 45
HMCCG Molded Case Circuit Breakers. ..... 45
HMCCGA Molded Case Circuit Breakers ..... 45
HMCG Molded Case Circuit Breakers ..... 45
HMCGA Molded Case Circuit Breakers ..... 45
HNC Molded Case Circuit Breakers ..... 48
HNCA Molded Case Circuit Breakers ..... 48
HNCG Molded Case Circuit Breakers ..... 48
HNCGA Molded Case Circuit Breakers ..... 48
HQP Miniature Circuit Breaker ..... 13-14
IIdentifying Types - Motor Control Centers. . . . . . . . . . . . . . . . . . 209IMPACCCommunications Systems - (See IQ Products) .138-145
Distribution Switchboards ..... 229
Communications Retrofit - DB ..... 236
DSII Switchgear ..... 244
INCOM. ..... 138
IQ PRODUCTS (METERING AND MOTOR PROTECTION). ..... 131-137
Distribution Switchboards ..... 229
1000 II ..... 133, 142, 204, 206
1000 II - Motor Control Centers ..... 220
2000. ..... 204
2000 Model A ..... 137
2000 Model B ..... 137
500. ..... 133, 142
Analyzer ..... 135, 142-143
Analyzer - Motor Control Centers ..... 220
Analyzer 6000 ..... 132, 135
Analyzer 6200 ..... 132, 135
Analyzer, Medium Voltage Switchgear Retrofit ..... 280
Cable ..... 136
Data. ..... 132, 134, 142
Data Plus 4000/4100, Medium Voltage Switchgear Retrofit. . 280Data Plus II .137, 142, 204, 206
Data Plus II - Motor Control Centers ..... 220
Data Plus II, Medium Voltage Switchgear Retrofit ..... 280
Data, Medium Voltage Switchgear Retrofit ..... 280
DC Power Supply ..... 136, 142
DP-4000 ..... 132, 135, 142-143
DP-4100 ..... 132, 135
DSII Switchgear ..... 244
Enclosures - Surface Mounted and Floor Mounted. ..... 136
Energy Sentinel ..... 142
Energy Sentinel (Bus Plugs) ..... 129
Energy Sentinel (IOES) ..... 132, 134
Flange. ..... 136
Generator ..... 132, 134
Generator, Medium Voltage Switchgear Retrofit ..... 280
Retrofit Kits - Motor Control Centers ..... 220
Retrofits - DB ..... 236
Transfer ..... 142
IO-500 DS Switchgear ..... 243
IOES (IO Energy Sentinel). ..... 132, 134
ITE Breaker Trip Unit Retrofit Kits ..... 268-269
J
JA Molded Case Circuit Breakers ..... 26
JB Molded Case Circuit Breakers ..... 24
JF Autostarter ..... 174
K
K Series Safety Switch ..... 113
K-Line Breaker Retrofit Kits ..... 268-270
KA Molded Case Circuit Breakers ..... 27
KB Molded Case Circuit Breakers ..... 25
KT Dry Type Distribution Transformer ..... 114
L
LA Breaker Retrofit Kits. ..... 266-267
LA Molded Case Circuit Breakers ..... 33-34
LA/RL(X) Breaker Retrofit Kits ..... 271
LAB Molded Case Circuit Breakers ..... 32
LAY Molded Case Circuit Breakers ..... 35
LB Molded Case Circuit Breakers. ..... 29
LBB Molded Case Circuit Breakers ..... 28
LBF Medium Voltage Switchgear ..... 283
LC Molded Case Circuit Breakers ..... 42
LCA Molded Case Circuit Breakers ..... 42
LCC Molded Case Circuit Breakers ..... 42
LCCA Molded Case Circuit Breakers ..... 42
LCCG Molded Case Circuit Breakers ..... 43
LCCGA Molded Case Circuit Breakers ..... 43
LCG Molded Case Circuit Breakers ..... 43
LCGA Molded Case Circuit Breakers ..... 43
LCY Molded Case Circuit Breakers ..... 44
LCYA Molded Case Circuit Breakers ..... 44
LCYG Molded Case Circuit Breakers ..... 44
LCYGA Molded Case Circuit Breakers ..... 44
LF Medium Voltage Air Contactors ..... 195
Life Line Unibus (Busway) ..... 118
Lighting Control System, Pow-R-Command. ..... 108
Load Interrupter Switchgear, Medium Voltage ..... 282-286
Load Interrupter, Medium Voltage Switchgear ..... 282-286
LOADCENTERS ..... 110-111
Low Impedance Bus (Busway) ..... 118
Low Impededance Plug-in (Busway) ..... 118, 121-123
Low Voltage
Busway. ..... 116-130
Contactors and Starters ..... 149-175
Distribution Switchboards ..... 223-230
Retrofit Kits, Accessories ..... 254
Switchgear ..... 234-245
Switchgear, Retrofit Kits ..... 246-274

## INDEX

M
MA Molded Case Circuit Breakers . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Mark V Solid State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Mark V Static Slipsyn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Master INCOM Network Translator II (MINT II). . . . . . . . . . . . . . . . 144
MC Molded Case Circuit Breakers . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
MC Motor Control Handle Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . 88
MCA Molded Case Circuit Breakers . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
MCC Molded Case Circuit Breakers . . . . . . . . . . . . . . . . . . . . . . . . . . 45
MCCA Molded Case Circuit Breakers . . . . . . . . . . . . . . . . . . . . . . . . . . 45
MCCG Molded Case Circuit Breakers . . . . . . . . . . . . . . . . . . . . . . . . . 45
MCCGA Molded Case Circuit Breakers. . . . . . . . . . . . . . . . . . . . . . . . 45
MCG Molded Case Circuit Breakers . . . . . . . . . . . . . . . . . . . . . . . . . . 45
MCGA Molded Case Circuit Breakers. . . . . . . . . . . . . . . . . . . . . . . . . 45
MCY Molded Case Circuit Breakers . . . . . . . . . . . . . . . . . . . . . . . . . . 47
MCYA Molded Case Circuit Breakers . . . . . . . . . . . . . . . . . . . . . . . . . 47
MCYG Molded Case Circuit Breakers . . . . . . . . . . . . . . . . . . . . . . . . . 47
MCYGA Molded Case Circuit Breakers. . . . . . . . . . . . . . . . . . . . . . . . 47
MD Dry Type Distribution Transformer . . . . . . . . . . . . . . . . . . . . . . 114
Medium Voltage
Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287-290
Load Interrupter Switchgear . . . . . . . . . . . . . . . . . . . . . . . . . 282-286
Motor Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Motor Starters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195-207
Switchgear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275-281
Metal Enclosed Switchgear, Medium Voltage. . . . . . . . . . . . . 282-286
METER CENTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Metering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Metering and Motor Protection (IQ Products) . . . . . . . . . . . . . 131-137
MGR Excitation Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Miniature Circuit Breakers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-15
Miniature Circuit Breakers, Catalog Numbering . . . . . . . . . . . . . . . 15
MINT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142-144
Mod Bus Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142-143
MOLDED CASE CIRCUIT BREAKERS . . . . . . . . . . . . . . . . . . . . . 4-95
Accessories. . . . . . . . . . 23, 30-35, 37-39, 43, 44, 46-50, 52, 58-68
Handle Mechanisms
.82
Identifying Genuine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Motor Control Center Replacement Breaker Accessories . . 79-80
Motor Control Center Replacement Breakers . . . . . . . . . . . . . . . 76
Motor Control Center Series C Retrofit Kits. . . . . . . . . . . . . . . . . . 78
Panelboard Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69-75
Rating Plugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Replacement Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Replacement Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-53
Replacement Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Molded Case Switches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-55
Molded Case Switches, Replacement . . . . . . . . . . . . . . . . . . . . 54-55
Motor Circuit Protectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Motor Circuit Protectors, Replacement . . . . . . . . . . . . . . . . . . . . . . . 56
MOTOR CONTROL CENTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . 208-222
ADVANTAGE Retrofits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Central Monitoring Unit (CMU) . . . . . . . . . . . . . . . . . . . . . . . . . 220
Competitive Upgrades. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Easy Start ADVANTAGE Starters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Identifying Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
IQ 1000 II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
IQ Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
IQ Data Plus II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
IQ Retrofit Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Renewal Parts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Replacement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Replacement Circuit Breakers. . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Series C Retrofit Kits. ..... 221
Service Centers ..... 222
Technology Upgrades ..... 219-221
TVSS Upgrade. ..... 219
Motor Control, Medium Voltage ..... 195-207
Motor Control, Synchronous ..... 181-194
Motor Field Excitation. ..... 182
MP100 Panelboard ..... 99
MP40 Panelboard ..... 103
MPC Dry Type Distribution Transformer ..... 114
MPC1 Programmable Logic Controller ..... 148
MTA Dry Type Distribution Transformer ..... 114
MTC Dry Type Distribution Transformer ..... 114
MV Trip Unit ..... 135
N
NAB Panelboard ..... 100
NB Molded Case Circuit Breakers ..... 38
NBY Molded Case Circuit Breakers ..... 39
NC Molded Case Circuit Breakers ..... 48
NCA Molded Case Circuit Breakers ..... 48
NCG Molded Case Circuit Breakers ..... 48
NCGA Molded Case Circuit Breakers ..... 48
NCY Molded Case Circuit Breakers ..... 49
NCYA Molded Case Circuit Breakers ..... 49
NCYG Molded Case Circuit Breakers. ..... 49
NCYGA Molded Case Circuit Breakers ..... 49
NEB Panelboard ..... 100
Network Gateways/Bridges ..... 144
NFB Panelboard ..... 98
NHEB Panelboard ..... 100
NLAB Panelboard ..... 100
NQB Panelboard ..... 101
NOC Panelboard ..... 101
NQP Panelboard ..... 101
0
OPTIM Trip Unit Systems ..... 9-12
OVERLOAD RELAYS
A200 ..... 168-169
Citation. ..... 155
FT Fast Trip ..... 170
P
Panelboard Replacement Breaker Guide ..... 70-71
Panelboard Replacement Breakers ..... 69-75
PANELBOARDS ..... 96-109
PB Panelboard. ..... 103
PB Molded Case Circuit Breakers ..... 40
PBF Molded Case Circuit Breakers ..... 40
PC 100/110 Programmable Logic Controller ..... 147
PC 300 Programmable Logic Controller ..... 147
PC 400 Programmable Logic Controller ..... 147
PC 50/55 Programmable Logic Controller. ..... 147
PC 500 Programmable Logic Controller ..... 147
PC 700 Programmable Logic Controller ..... 147
PC Molded Case Circuit Breakers ..... 50
PCA Molded Case Circuit Breakers ..... 50
PCC Molded Case Circuit Breakers ..... 50
PCCA Molded Case Circuit Breakers ..... 50
PCCG Molded Case Circuit Breakers ..... 51
PCCGA Molded Case Circuit Breakers ..... 51
INDEX
PCG Molded Case Circuit Breakers ..... 51
PCGA Molded Case Circuit Breakers ..... 51
PH Panelboard ..... 103
PLC Interface Card ..... 142-143
PLC Interface Modules. ..... 144
PLCs (Programmable Logic Controllers) ..... 146-148
Plug-in Units, Breaker (Busway) ..... 119
Plug-in Units, Fusible (Busway) ..... 119
PONI (1200 Baud) ..... 142-144
Pow-R-Command (Distribution Switchboards) ..... 229
Pow-R-Command (Lighting Control System) ..... 108
POW-R-GEAR Switchboards ..... 226
POW-R-I Switchboard ..... 224
POW-R-LINE C Switchboards ..... 228
POW-R-LINE I Switchboard ..... 224
POW-R-M-S Switchboard ..... 226
POW-R-M-S/F Switchboard ..... 224
Pow-R-Way (Busway). ..... 118
Pow-R-Way II (Busway) ..... 118
Pow-R-Way III (Busway) ..... 118
Power Distribution Bus (Busway) ..... 118
Power Miser Solid State Reduced Voltage Starters ..... 177
Power Quality ..... 132
Pre 3-Star Contactors and Starters ..... 150
PRL1 Panelboard ..... 105
PRL2 Panelboard ..... 105
PRL3 Panelboard ..... 106
PRL3a Panelboard ..... 106
PRL4B Panelboard ..... 107
PRL4F Panelboard ..... 107
PROGRAMMABLE LOGIC CONTROLLERS (PLCS) ..... 146-148
PRX-300 Excitation Control ..... 292
PRX-302 Excitation Control ..... 292
PRX-302X5 Excitation Control ..... 292
PRX-400 Excitation Control ..... 292
Pulser Circuit - C-HRG ..... 232
0
Q10P Panelboard ..... 98
QBHW Miniature Circuit Breaker ..... 13-14
OC Miniature Circuit Breaker ..... 13-14
QCF Miniature Circuit Breaker. ..... 13-14
QCHW Miniature Circuit Breaker ..... 13-14
QCR Miniature Circuit Breaker ..... 13-14
OHCW Miniature Circuit Breaker ..... 13-14
OHCX Miniature Circuit Breaker ..... 13-14
QHPW Miniature Circuit Breaker ..... 13-14
QHPX Miniature Circuit Breaker ..... 13-14
QP Meter Center ..... 112
QPHW Miniature Circuit Breaker ..... 13-14
QS Meter Center. ..... 112
QUICKLAG Miniature Circuit Breakers ..... 13-14
R
Rating Plug, Replacements ..... 250-253
Rating Plugs, Molded Case Circuit Breakers ..... 53
RBA Fuses ..... 288, 290
RDB Fuses ..... 288, 290
RE Panelboard Replacement Breakers ..... 72
REA Panelboard Replacement Breakers ..... 72
Reduced Voltage Solid State Motor Starters ..... 176-180
Reduced Voltage Starters ..... 176-177, 180
REH Panelboard Replacement Breakers. ..... 72
Relay Slipsyn - Brush Type ..... 184
Relay Slipsyn Automatic Field Application Panel. ..... 190-192
Renewal Parts - Motor Control Centers ..... 222
Repair Low Voltage Solid State Motor Control ..... 177, 179-180
Repair Services, PLCs ..... 148
Replacement
Motor Control Centers ..... 218
Breakers, Motor Control Center ..... 76
Breakers, Panelboard ..... 69-75
Capabilities, Molded Case Circuit Breakers .....  8
Circuit Breakers ..... 22-53
Circuit Breakers - Motor Control Centers ..... 218
Contactors, LF ..... 203
Contactors, SJ ..... 206
Guide, Molded Case Circuit Breaker ..... 16-21
Molded Case Switches ..... 54-55
Motor Circuit Protectors .....  . 56
Digitrip Trip Units ..... 248-249
Rating Plugs. ..... 250-253
Retrofit Kits ..... 246-274
Retrofits
IQ Products ..... 204, 206
LF AMPGARD ..... 203-204
Mark V Solid State ..... 203, 206
Synchronous Control ..... 203
RF Panelboard Replacement Breakers ..... 73
RFA Panelboard Replacement Breakers ..... 73
RHF Panelboard Replacement Breakers ..... 73
RHFA Panelboard Replacement Breakers ..... 73
RHK Panelboard Replacement Breakers ..... 75
RHKL Panelboard Replacement Breakers ..... 75
RHLM Panelboard Replacement Breakers ..... 75
RJ Panelboard Replacement Breakers ..... 74
RK Panelboard Replacement Breakers ..... 74
RKL Panelboard Replacement Breakers ..... 74
RLM Panelboard Replacement Breakers ..... 74
RMCF Motor Control Center Replacement Breakers ..... 77
RMCFA Motor Control Center Replacement Breakers ..... 77
RMCHF Motor Control Center Replacement Breakers ..... 77
RMCHFA Motor Control Center Replacement Breakers ..... 77
RMS Sensing ..... 246-247
Roller-Smith Breaker Trip Unit Retrofit Kits ..... 273
RS/SSPB Breaker Retrofit Kits ..... 273
RTD Module ..... 142
RTD Modules ..... 137
S
SAFETY SWITCHES ..... 113
Satellite Plants (Panelboards) ..... 109
Schematics, Medium Voltage Motor Control ..... 196-197
Selection, Low Voltage Retrofit Kits ..... 255
SELTRONIC ${ }^{\text {Tw }}$ Ground Fault Indicator ..... 58
Sequence of Operation - C-HRG ..... 232
Series 2100 (Motor Control Center) ..... 209, 215
Series C Retrofit Kits - Motor Control Centers ..... 221
Series C Retrofit Kits for Motor Control Centers ..... 78
Series C Rotary Handle Mechanism ..... 88
Series III, IMPACC Software ..... 139, 145
Service Centers - Motor Control Centers ..... 222
Siemens Breaker Trip Unit Retrofit Kits ..... 271
Siemens-Allis Breaker Trip Unit Retrofit Kits ..... 271
SJ Medium Voltage Vacuum Contactors ..... 195
Slide Plate Handle Mechanism ..... 85

## INDEX

Slide Plate Handle Mechanism AccessoriesSlipsyn ${ }^{\circledR}$181-193
SM Safety Handle Mechanism ..... 86-87
Software, Series III. ..... 139
SOLID STATE LOW VOLTAGE MOTOR CONTROL ..... 176-180
Solid State Slipsyn ${ }^{\circledR}$ Control .....  193
SPB Breaker Retrofit Kits ..... 260-261
SPB Circuit Breakers ..... 226-227
SRA/SRD Excitation Control .....  292
Standard Plug-in (Busway) ..... 118, 120-123
Starters
AMPGARD ..... 195-207
Low Voltage Electromechanical ..... 149-175
Medium Voltage. ..... 195-207
Reduced Voltage Solid State ..... 176-180
Startrol Power Miser Solid State Reduced Voltage Starters ..... 177
Startrol Solid State Reduced Voltage Starters. ..... 177
Static Excitation Power Supply Panel. .....  184
Static Excitation Systems Excitation Control. ..... 291-292
Switchboards, Low Voltage Distribution ..... 223-230
SWITCHGEAR
Low Voltage ..... 234-245
Low Voltage Trip Unit Retrofit Kits ..... 246-274
Medium Voltage. ..... 275-281
Medium Voltage Load Interrupter ..... 282-286
SYNCHRONOUS MOTOR CONTROL ..... 181-193
SYNCHRONOUS MOTORS ..... 181
Brush Type ..... 182
Brushless Type. ..... 183
Synchronous Starters ..... 181
Synchronous Starters - Low Voltage ..... 181
T
Technical Assistance, PLCs ..... 148
Technology Upgrades - Motor Control Centers ..... 219-221
THD ..... 130
TRA/TRD/TRX Excitation Control ..... 292
Training Low Voltage Solid State Motor Control .....  180
Training, PLCs ..... 148
Transformers, Dry Type Distribution ..... 14-15
Trip Curve Display Software ..... 145
Trip Unit - Digitrip OPTIM System .....  9-12
Trip Unit Retrofit Kits, Low Voltage Switchgear ..... 246-274
Trip Unit Retrofit Kits, Switchgear ..... 246-274
TVSS
108
Panelboard
219
Upgrade - Motor Control Centers.
128
Clipper Power Systems (Busway) ..... 231-233
Type N Contactors and Starters ..... 164
Type W (Motor Control Center). ..... 209, 212
Typical Application - C-HRG ..... 231
U
Unibus (Busway) ..... 118, 124-125
Universal RTD Module ..... 137
Upgrades, AMPGARD 201, 203-206
Upgrades, Medium Voltage Motor Control ..... 201, 203-206
V
Vacuum Retrofits - VCP-WR ..... 276
Vari-Depth Handle Mechanism ..... 84
Vari-Depth Handle Mechanisms Accessories ..... 84
Variable Frequency Drives (see Adjustable FrequencyAC Drives)176-180
VCP
Medium Voltage Switchgear Upgrades ..... 280
Remanufactured Breakers ..... 278
Renewal Parts ..... 278
Retrofits, IQ/IMPACC (Medium Voltage Switchgear) ..... 280
Vac-Clad Switchgear. ..... 278
Vacuum Breakers ..... 278
VCP-W
Drawout Vacuum Circuit Breakers ..... 279
Match and Lineup Cubicles ..... 279
Medium Voltage Switchgear Upgrades ..... 280
Renewal Parts ..... 279
Retrofits, IQ/IMPACC (Medium Voltage Switchgear) ..... 280
Vac-Clad Switchgear. ..... 279
Vectrol Energy Saver Solid State Reduced Voltage Starters ..... 177
Vectrol VMS Solid State Reduced Voltage Starters ..... 177
Victory Bus Duct (Busway) ..... 118
VLT-5 Adjustable Frequency AC Drive ..... 179
Voltage Regulators Excitation Control ..... 291-292
W
W10B Panelboard ..... 101
W10P Panelboard ..... 101
Waveform Display Software ..... 145
WCA Panelboard ..... 101
WCG11 Meter Center ..... 112
WCG3 Meter Center ..... 112
WCG5 Meter Center ..... 112
WCG7 Meter Center ..... 112
WCG9 Meter Center ..... 112
WDR-2000 Excitation Control ..... 292
WEB Panelboard ..... 101
WEHB Panelboard. ..... 101
WF/WRP Switchboards ..... 228
WFB Panelboard ..... 101
WGB Panelboard ..... 101
WGHB Panelboard ..... 101
WHS Excitation Control ..... 292
WLI Medium Voltage Switchgear ..... 284
WM Meter Center ..... 112
WMA BR Excitation Control ..... 292
WMA Excitation Control ..... 292
WP Meter Center ..... 112
WPA Switchgear - St. Louis ..... 237
WR-20 Excitation Control ..... 292
WRI Switchboards. ..... 224
WTA Excitation Control ..... 292
WTA-300 Excitation Control ..... 292
WTA-300 SEVR Excitation Control ..... 292
WTA-300B Excitation Control. ..... 292
Wye or Delta System - C-HRG ..... 232
X
XASV Excitation Control ..... 292
XMC Excitation Control ..... 292
100 Ampere Busway (Busway) ..... 118
11-300 (Motor Control Center) ..... 209-210
25/50 L4 LF Air Contactors ..... 203
25/50 L7 LF Air Contactors ..... 203

## INDEX

25L2 LF Air Contactors.	203	9584 Contactors and Starters.	163
3-Star Contactors and Starters	151	9586 Contactors and Starters	151
4103 Safety Switch.	113	9586 Contactors and Starters.	163
4105 Safety Switch.	113	9589 Contactors and Starters.	151
5 Star (Motor Control Center) .	209, 215	9591 Contactors and Starters.	151
50L2 LF Air Contactors.	203	9658 Contactors and Starters.	. 151
9556 Contactors and Starters	151	9736 Contactors and Starters	151
9560 Contactors and Starters	151	9739 Contactors and Starters .	. 151
9560 Contactors and Starters	163	9800 (Motor Control Center)	

Cutler-Hammer, a part of Eaton Corporation, is a worldwide leader providing customer-driven solutions. From power distribution and electrical control products to industrial automation, Cutler-Hammer utilizes advanced product development, world-class manufacturing, and offers global engineering services and support.

For more information on Cutler-Hammer products and services, call 1-800-525-2000 or 1-616-982-1059, for engineering services call 1-800-498-2678, or visit our web site at www.cutlerhammer.eaton.com

## Description

Type CA, CAH and HCA Circuit Breakers

2 and 3 Poles, 240 Vac Non-Interchangeable Trip
Type CA: 100-225 Amperes, 10,000 AIC
Type CAH: 100-225 Amperes, 22,000 AIC
Type HCA: 100-225 Amperes, 42,000 AIC


Type CA 3-Pole

## Accessories

Description	Catalog Number
Handle Locks:   Non-padlockable	CA23NPL
Handle Locks:   Padlockable	CA23PL
CA23LOCK	
Mounting Hardware:   Base mounting   hardware - 2-pole   Base mounting   hardware - 3-pole   Mounting Bracket -   2-pole   Mounting Bracket -   3-pole	CA2BHW
Terminals:   \#3 to 300MCM	CA3BHW

Breaker Catalog Numbers

Continuous   Ampere   Rating at   $\mathbf{4 0}^{\circ} \mathbf{C}$	Catalog Number			
	Breaker Shipped with:			
	Line and Load   Terminal Installed	Load Terminals   Only Installed	Line Terminals   Only Installed	No Terminals   Installed

Type: CA 10,000 Ampere I.C. Thermal-Magnetic Breakers
2-Pole, 240 Vac

100	CA2100	CA2100X	CA2100Y	CA2100W
125	CA2125	CA2125X	CA2125Y	CA2125W
150	CA2150	CA2150X	CA2150Y	CA2150W
175	CA2175	CA2175X	CA2175Y	CA2175W
200	CA2200	CA2200X	CA2200Y	CA2200W
225	CA2225	CA2225X	CA2225Y	CA2225W
225 MCS	-	-	-	CA2225WK
3-Pole, 240 Vac				
100	CA3100	CA3100X	CA3100Y	CA3100W
125	CA3125	CA3125X	CA3125Y	CA3125W
150	CA3150	CA3150X	CA3150Y	CA3150W
175	CA3175	CA3175X	CA3175Y	CA3175W
200	CA3200	CA3200X	CA3200Y	CA3200W
225	CA3225	CA3225X	CA3225Y	CA3225W
225 MCS	-	-	-	CA3225WK

Type: CAH 22,000 Ampere I.C.Thermal-Magnetic Breakers
2-Pole, 240 Vac

100	CAH2100	CAH2100X	CAH2100Y	CAH2100W
125	CAH2125	CAH2125X	CAH2125Y	CAH2125W
150	CAH2150	CAH2150X	CAH2150Y	CAH2150W
175	CAH2175	CAH2175X	CAH2175Y	CAH2175W
200	CAH2200	CAH2200X	CAH2200Y	CAH2200W
225	CAH2225	CAH2225X	CAH2225Y	CAH2225W
3-Pole, 240 Vac				
100	CAH3100	CAH3100X	CAH3100Y	CAH3100W
125	CAH3125	CAH3125X	CAH3125Y	CAH3125W
150	CAH3150	CAH3150X	CAH3150Y	CAH3150W
175	CAH3175	CAH3175X	CAH3175Y	CAH3175W
200	CAH3200	CAH3200X	CAH3200Y	CAH3200W
225	CAH3225	CAH3225X	CAH3225Y	CAH3225W

Type: HCA 42,000 Ampere I.C. Thermal-Magnetic Breakers
2-Pole, 240 Vac

100	HCA2100	HCA2100X	HCA2100Y	HCA2100W
125	HCA2125	HCA2125X	HCA2125Y	HCA2125W
150	HCA2150	HCA2150X	HCA2150Y	HCA2150W
175	HCA2175	HCA2175X	HCA2175Y	HCA2175W
200	HCA2200	HCA2200X	HCA2200Y	HCA2200W
225	HCA2225	HCA2225X	HCA2225Y	HCA2225W
3-Pole, 240 Vac				
100	HCA3100	HCA3100X	HCA3100Y	HCA3100W
125	HCA3125	HCA3125X	HCA3125Y	HCA3125W
150	HCA3150	HCA3150X	HCA3150Y	HCA3150W
175	HCA3175	HCA3175X	HCA3175Y	HCA3175W
200	HCA3200	HCA3200X	HCA3200Y	HCA3200W
225	HCA3225	HCA3225X	HCA3225Y	HCA3225W

## Modifications

Description	Catalog Suffix	
	Shunt Trip	S1 to S16
	Auxiliary Switch	A1 to A16
	Special Calibration $\left(50^{\circ} \mathrm{C}\right)$	V
	Freeze Testing	H
	Moisture-Fungus Treatment	F

## Further Information

Selling Policy 25-000
Application Data 29-160


[^0]:    (1) 2-pole magnetic only breakers supplied in 3-pole frame with current carrying parts omitted from center pole.
    (2) Magnetic only breakers for DC applications require special calibration. Order by description.

    3 Magnetic only breakers include both line and load terminals.
    4 Suffix " L " on catalog number indicates line and load terminals included. If factory installation is required, specify on order.
    © Style listed is for package of three terminals.
    © Not listed with Underwriters' Laboratories, Inc.
    ( Cannot be used with plug-in adapters.
    (8) Ratings thru 70 amperes can be supplied with terminals for Cu cable only (\#14-\#2). Order by description.

[^1]:    © Set on high side, adjustable to lower limit.
    (2) Terminals are shipped separately from breaker frame.

    B 2-pole breakers are supplied in 3-pole frames with current carrying parts omitted from center pole.
    (4) Not listed with Underwriters' Laboratories, Inc.
    © Optional terminal.
    © Ratings above 10,000 amperes not UL listed.
    © If upgrading a KA, HKA breaker to a Series C K frame in a panelboard application, also order TAD3 spacer kit.

[^2]:    (1) Set on high side, adjustable to lower limits.

[^3]:    © 2-pole breakers are supplied in 3-pole frames.
    (2) Not UL listed.
    (3) If upgrading a DA breaker to a Series C K frame in a panelboard application, also order TAD3 spacer kit.

[^4]:    © Set on high side, adjustable to lower limits
    (2) Terminals shipped separately from breaker
    (3 Terminals, trip units and accessories are not interchangeable between 400- and 600-ampere frames.
    4 2-pole breakers or trips are supplied in 3-pole frames with current carrying parts omitted from center pole.
    © These ratings have interrupting capacities reduced to 25,000 amperes sym. at 240 volts, 20,000 amperes sym. at 480 volts, and 15,000 amperes sym. at 600 volts. © Not listed with Underwriters' Laboratories, Inc.

[^5]:    - Terminals shipped separately from breaker.
    (2) Terminals, trip units and accessories are not interchangeable between 400 and 600 ampere frames.
    (3) 400 ampere frame only.
    © Optional terminal.
    © Interrupting capacities do not apply to molded case switches.
    © Ratings above 10,000 amperes not UL listed.
    - Not listed with Underwriters' Laboratories, Inc.
    © Set on high side, adjustable to lower limits.
    © For 600 ampere frame breakers only.

[^6]:    (1) Not listed with Underwriters' Laboratories, Inc.
    (2) Interrupting capacities shown do not apply to high magnetic molded case switches.
    (3) Above 600 amperes, DC rating applies to magnetic only breakers.

    4 Ratings above 10,000 amperes not UL listed.
    (5 Terminals are shipped separately from breaker.
    6 Set on high side, adjustable to lower limits.
    760 Hz AC only.

[^7]:    (1) Higher frequency calibration not available. Minimum of 50 Hz calibration available on special order.
    (2) Set on high side, adjustable to lower limits.
    (3 Terminals shipped separately from breaker.
    (4) Not listed with Underwriters' Laboratories, Inc.

[^8]:    (1) 2-pole breakers are supplied in 3-pole frames with current-carrying parts omitted from center pole.

[^9]:    (1) Interrupting capacities shown do not apply to molded case switches.
    (2) Does not void listing of UL listed breakers.
    (3) Only one of the attachments may be mounted per breaker.
    (4) For other possible combinations, refer to factory.
    © Molded case switches do not use standard SELTRONIC ${ }^{T M}$ attachments and should be ordered by description.
    © Rated 48 volts minimum for ground fault applications requiring tripping at $55 \%$ of voltage.
    (7) Not for Ground Fault Applications.
    © Also used on breakers with ground fault and on separately mounted neutral current transformers.
    © Type AI/Cu pressure terminal.

[^10]:    (1) Available without external CT for neutral. Order by description and specify similar to above except no neutral CT or terminal connections for neutral CT at same price. Note the standard ground fault unit listed above can also be used without the neutral CT.
    (2) UL listed for standard applications.
    (3) For application other than standard residual schemes, refer to Application Data 29-160.
    (4) These breakers are UL listed for application at $100 \%$ of rating per NEC exceptions when used in a properly ventilated and listed enclosure.

[^11]:    © Ampere rating when used in magnetic only frames: LC-150: 150 Amperes MC-800: 800 Amperes LC-300: 300 Amperes NC-1200: 1200 Amperes LC-400: 400 Amperes PC-2000: 2000 Amperes LC-600: 600 Amperes PC-2500: 2500 Amperes

    PC-3000: 3000 Amperes LCL-250: 250 Amperes LCL-400: 400 Amperes

[^12]:    (1) Catalog number suffix identification:

    K = Molded Case Switch with High Magnetic
    Trip (Fixed Trip Setting)
    S = Saf-T-Vue ${ }^{\circledR}$ cover
    W= No terminals
    (2) Molded case switch dimensions are the same as the equivalent thermal magnetic breaker. Refer to Dimension Sheet 29-171.

    3 For molded case switch types LC, LCC - use LA attachments; MC and MCC - use MA attachments; NC - use NB attachments.
    (4) For molded case switch types PC, PCC and PCF, rating plug is included and use SELTRONIC PC attachments.

[^13]:    © Not Underwriters' Laboratories, Inc. listed.
    (2) One of style 625B229G08 is one package of 10.

    3 Individually mounted.
    (4) Group mounted.
    © Included with frame at no charge.
    © Interrupters used with fuse mounting base will accept all standard PB accessories. See Dimension Sheet 29-171 for mounting details.

[^14]:    (1) Not UL listed.
    (2) Not available for magnetic only, ambient compensating, or breakers with undervoltage release.

    3 When alarm switch is used in conjunction with auxiliary switch, the auxiliary switch is rated 250 volts vax, 5 amperes max.
    (4) Except when other attachments are used, must be mounted in right pole.
    © Right hand mounting standard for EB, EHB, FB, HFB, JB, KB, HKB. All others are left hand mounting as standard unless otherwise specified.
    © Not for use on molded case switches.
    (7) All switches are multiples of 1A-1B with a common electrical connection (see diagram above right).
    (8) Field mounting voids UL listing of breaker except on LA, HLA, MA, HMA, NB, HNB, KB, HKB, KA, HKA, LB, HLB and SELTRONIC ${ }^{\text {M }}$ breakers.
    © For DC applications, refer to factory.
    (1) Thermal magnetic only.
    (1) Right hand mounting only.

[^15]:    (2) Not listed with Underwriters' Laboratories, Inc.

[^16]:    (1) Packaged individually

[^17]:    (1) Please check VISTA for order entry procedures.
    (2) Mechanisms are shown mounted on breaker for illustration purposes only. Breakers are not included.
    (3 These mechanisms are recognized under the component program of Underwriters' Laboratories, Inc.

[^18]:    (1) Mechanisms are shown mounted on breaker for illustration purposes only. Breakers are not included.

[^19]:    (1) Connectors not available.
    (2) Current product offering sold under Cutler-Hammer trade name.
    (3 400A, 600A, 800A, 1200A FDP connectors are NOT compatible with FDPW switches.

[^20]:    © Maximum amperes connected to any one connector cannot exceed 140 amperes.
    (2) GB, GHB breakers cannot be mixed on the same subchassis as BAB, QBHW.
    (3) When only one single pole breaker of the group is required on either side of chassis, the single pole breaker space required changes from 1 X to 2 X .

[^21]:    (1) Check VISTA for pricing and minimum order quantities.

[^22]:    (s) Normally available from stock.
    (1) For units mounting at the joint and feeder type ducts, see bolt-on units - standard plug-in, low impedance, and H5000.
    (2) Full neutral. For half neutral, contact your local Cutler-Hammer Field Sales Office.

    3 Not available for low impedance busduct.
    (4) Contact your local Cutler-Hammer Field Sales Office for delivery. Order by description.

[^23]:    (1) Factory assembled. Contact your local Cutler-Hammer Field Sales Office for delivery and order entry information. When ordering, you must specify:

    1. Load left or load right.
    2. Front or rear mounting.
    3. Type of busway to which unit is to be mounted.
    (2) Full neutral. For half neutral, contact your local Cutler-Hammer Field Sales Office

    3 Not available for low impedance busduct.
    (4) Order by description with bolt-on unit.
    $\boldsymbol{\theta}$ These bolt-on units include an adapter for mounting at the joint. They do not require a power take-off unit.
    © Refer to Price List 29-020 for breaker list prices.

[^24]:    ${ }^{\circledR}$ Microsoft is a registered trademark of Microsoft Corporation.

[^25]:    (1) Model C contact kits and coils 00-4, 2-, 3-, 4- and 5-pole contactors are same as Model J. All other parts are unavailable.
    (2) Use Oty 2 - 373B331G11 (2-pole kit).
    (3) Use one each of 373B331G11 (2-pole kit) and 373B331G12 (3-pole kit).
    (4) Mounting hardware included.
    © Dual voltage coils. Use only on contactors or starters originally supplied with a dual voltage coil.
    © Use only on contactors originally supplied with a DC coil.

[^26]:    Typical Relay Components used in Relay Slipsyn — Refer to RPD 8855S for renewal parts for

[^27]:    (1) If enclosure is omitted, starting and discharge resistor and DC ammeter will be supplied loose and unmounted.
    (2) Power Factor Regulation - Cannot provide regulation below 50\% of rated voltage and/or $25 \%$ of rated current.

    Regulation cannot be accomplished on light loads, i.e., less than $20 \%$ load. Not for use with reciprocating compressors.

[^28]:    (1) Power Factor Regulation - Note: Cannot provide regulation below 50\% of rated voltage and/or $25 \%$ of rated current.

    Regulation cannot be accomplished on light loads, i.e., less than $20 \%$ load.

[^29]:    Unit with ADVANTAGE Starter

[^30]:    Unit with A200 Starter

[^31]:    5 Star/Series 2100 Feeder Unit

[^32]:    Unit with Freedom Starter

[^33]:    (1) Phase-to-neutral loads require a Wye-Delta distribution transformer. The neutral on the secondary side of this transformer must be solidly grounded.

    Not to be confused with the upstream system transformer.

[^34]:    Contact your Local Cutler-Hammer Distributor.

[^35]:    Remanufactured DB-25 Breaker
    Including Digitrip RMS 810 Trip Unit

[^36]:    Divider panel with pushbuttons and lights Style Number 3A73115G02 (Not Shown)

[^37]:    Secondary Contact (Eight Point)
    Style Number 590C808G01

